几种常见的数列的通项公式的求法(两课时)

合集下载

求数列通项公式的十种常用方法

求数列通项公式的十种常用方法

求数列通项公式的十种常用方法一、构造法构造法是最常见的求解数列通项公式的方法,是根据已知的数列的前几项逐步构造出数列的通项公式的过程,主要包括归纳法、设数据项法、递推法等。

1.归纳法归纳法是根据已知数列中前几项,把同一个数列中的每一项视为全体项的一部分,由以已知项为特例,讨论出全体项的总体规律。

2.设数据项法设数据项法是根据数列的某项与它的前面几项的关系来建立通项公式的方法。

设数据项始终指代着形式未知却已给出它跟前几项关系的某一项,而根据设数据项得出的数列形式叫做设数据项形式,其通项公式就是设数据项形式的通项公式。

3.递推法递推法是根据数列中任一项与它的后面几项的关系,从已知项不断向前推出未知项,从而推出数列的通项公式的方法。

二、方程法方程法是利用数列的某一项与此数列的其它项的关系式组成的线性方程组或者非线性方程组,求解通项公式的概念,虽然它给出的通项公式也不易求解,但是它与构造法相比,可能会在某些情况下得到更简洁的通项公式,所以它也成为了求解数列通项公式常用的方法之一。

三、数学归纳法数学归纳法是一种利用一般性原理来更加正规地寻求数列通项公式的方法,它具有比构造法更多的优点,比如说,它可以处理更加复杂的情形(例如次通项不是已知项的一个常数倍)。

四、分析法分析法是指用分析几何和代数几何方法,通过考察数列中某几个项的构成方式,来推导出整个数列的通项公式的抽象方法。

五、导数比导数比是指根据数列的前几项来推算下一项的一种技巧,以项数为横坐标,相邻两项的比值为纵坐标构成一幅函数图象,然后根据曲线图象分析可以推出数列的某种规律,从而推出数列的通项公式。

六、逆序法逆序法是反其道而行之,以数列的最后一项为起点,根据已知的数列的前几项和最后一项的运算关系,得出最后一项的前一项,以此类推,一直到起始项,从而得出数列的通项公式的一种方法。

七、特殊函数解特殊函数解法是指利用特殊函数及其组合函数构成的数列通项公式的解法,在实际问题中,特殊函数有对数函数、指数函数、三角函数等,使用这些函数可以构成一种数列,从而求出数列的通项公式。

数列史上最全求通项公式10种方法并配大量习题及答案

数列史上最全求通项公式10种方法并配大量习题及答案

数列史上最全求通项公式10种方法并配大量习题及答案求数列通项公式的方法有很多种。

这个问题通常是高考试卷的第一问,如果无法解决或没有思路,那么即使后面的问题可以解决,也是无济于事的。

下面我们逐个讲解这些重要的方法。

递推公式法是指利用an=Sn−Sn−1的形式,其中Sn表示数列的前n项和。

这种方法有两种类型。

第一种类型是题目中给出的是Sn=f(n)的形式,要将n改成n-1,包括角标,这样加上题中给出的式子就得到两个式子,两式子做差,即可整理出通项公式。

但是需要注意的是,求出的通项公式一定要检验是否需要写成分段的形式,即验证一下a1和S1是否相等,若不相等,则需要写成分段的形式。

第二种类型是a(n-1),an和a(n+1)与S(n-1),Sn和S(n+1)同时存在于一个等式中,我们的思路是将n改写成n-1,又得到另一个式子,这两个式子做差,在做差相减的过程中,要将等式的一端通过移项等措施处理为零,这样整理,容易得出我们想要的关系式。

累加法(迭、叠加法)是在教材上推导等差数列通项公式和前n项和公式的时候使用的一种方法。

其实这个方法不仅仅适用于等差数列,它的使用范围是非常广泛的。

只要适合an=an-1+f(n)的形式,都可以使用累加法。

基本的书写步骤是将an-an-1=f(n)展开,然后累加,得到an-a1=f(2)+f(3)+f(4)+。

+f(n)。

因此重点就是会求后边这部分累加式子的和,而这部分累加的式子,绝大部分都是三种情况之一,要么是一个等差数列的前n-1项的和,要么是一个等比数列的前n-1项的和,要么就是能够在累加过程能够中消掉,比如使用裂项相消法等。

累乘法的使用条件是,凡是适合an=an-1*f(n)形式的求通项公式问题,都可以使用累乘法。

它的基本书写步骤格式是:an=a1*f(2)*f(3)*。

*f(n)。

以上是数列通项公式的三种求法。

2.改写每段话:首先,我们来看等式左右两边的乘积。

左边相乘得到的总是1,右边相乘得到的是f(2)乘以f(3)乘以f(4)一直到f(n)。

求数列通项公式的十种方法

求数列通项公式的十种方法

求数列通项公式的十种方法求解数列的通项公式是高中数学中的一个重要问题,通常需要运用数学分析方法、递推关系、差分方法等多种技巧。

下面将列举十种常见的方法来求解数列的通项公式。

方法一:等差数列的通项公式对于等差数列 an = a1 + (n - 1) * d,其中 a1 为首项,n 为项数,d 为公差。

通项公式可以直接通过公式计算得出。

方法二:等差数列的求和公式对于等差数列 S = (n / 2) * (a1 + an),其中 S 为前 n 项和,a1 为首项,an 为末项,n 为项数。

可以通过求和公式推导出等差数列的通项公式。

方法三:等比数列的通项公式对于等比数列 an = a1 * r^(n - 1),其中 a1 为首项,r 为公比,n 为项数。

通项公式可以直接通过公式计算得出。

方法四:等比数列的求和公式对于等比数列S=(a1*(r^n-1))/(r-1),其中a1为首项,r为公比,n为项数。

可以通过求和公式推导出等比数列的通项公式。

方法五:递推关系法对于一些递推关系的数列,可以通过寻找规律,构建递推关系来求解数列的通项公式。

例如斐波那契数列就可以通过递推关系f(n)=f(n-1)+f(n-2),其中f(1)=1,f(2)=1,来求解通项公式。

方法六:二项式展开法对于一些满足二项式展开的数列,可以通过展开得到二项式系数,然后通过系数的通项公式来求解数列的通项公式。

例如二项式数列(x+1)^n的展开系数就是通过n阶二项展开推导出来的。

方法七:差分法通过对数列进行差分操作,找到规律来求解数列的通项公式。

例如,如果差分的结果是一个等差数列,那么原数列就是一个二次或高次多项式。

方法八:线性递推法对于一些线性递推关系的数列,可以通过构建矩阵形式或特征方程的方法来求解数列的通项公式。

例如,对于一阶线性递推数列a(n)=p*a(n-1)+q,可以通过特征方程x-p*x-q=0来求解通项公式。

方法九:插值法通过给定数列中的若干项,利用 Lagrange 插值公式来推导数列的通项公式。

求数列通项公式、前n项和sn常用方法F

求数列通项公式、前n项和sn常用方法F

求数列通项公式常用方法1.归纳法:由给出已知项寻找规律 ,求同存异,猜想通项公式2.公式法:等差数列与等比数列.3.作差法:利用⎩⎨⎧≥-==-)2()1(11n S S n S a n n n , 求n a特别的:已知前n 项积,求n a 使用(作商法).4、累加法:数列}{n a 的递推公式为)(1n f a a n n =-+型时,且{)(n f }中n 项和可求。

5、累乘法:数列}{n a 的递推公式为)(1n f a a n n =+型时,且{)(n f } 中n 项积可求。

6、构造法:形如q a p a n n+∙=-1(q p 、为常数)的形式,往往变为)(1λλ-=--n n a p a ,构成等比数列,求}{λ-na 的通项公式,再求n a .7、倒数法:形如)()()(n h a n g a n f n n++,可取倒数后换元,变为q a p a n n +∙=-18.周期法:计算出前n 项,寻找周期精题自测(1)已知数列}{n a 满足)1(23-=n n a S ,则n a =_____________(2)已知数列}{n a 满足11=a ,n n n a a 21+=+,则n a =_____________(3)已知数列}{n a 满足11=a ,)11ln(1na a n n ++=+,则n a =_____________(4)已知数列}{n a 满足11=a ,n nn a a 21=+,则n a =_____________(5)已知数列}{n a 满足11=a ,0>n a ,0)1(1221=∙+-+++n n n n a a na a n ,则n a =____________(6)已知数列}{n a 满足11=a ,121+=+n nn a a a ,则n a =_____________(7)已知数列}{n a 满足31=a ,62=a ,n n n a a a -=++12,则2013a =_____________(8)已知数列}{n a 满足333313221na a a a n n =∙++∙+∙+- ,则n a =_____________(9)已知数列的前n 项积为2n ,则当≥n 2时,则n a =_____________求前n 项和nS 常用方法1、公式法:等差数列的前n 项和公式: 等比数列的前n 项和公式:①d n n na a a n S n n 2)1(2)(11-+=+= ②⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q qq a a q q a q na S n n nn )1(211+=∑=n n k nk∑=nk k 12=)12)(1(613212222++=++++n n n n 213)]1(21[+=∑=n n k nk 例1:已知3log 1log 23-=x ,求 +++++n x x x x 32的前n 项和.2、分组求和法:把一个数列分成几个可直接求和的数列.例2:求数列211,413,815,…,⎥⎦⎤⎢⎣⎡+-n n 2112)(的前n 项和。

(完整版)求数列通项公式常用的七种方法

(完整版)求数列通项公式常用的七种方法

求数列通项公式常用的七种方法一、公式法:已知或根据题目的条件能够推出数列na 为等差或等比数列,根据通项公式d n a a n11或11n n qa a 进行求解.例1:已知n a 是一个等差数列,且5,152a a ,求n a 的通项公式.分析:设数列n a 的公差为d ,则54111da d a 解得231da 5211ndn a a n二、前n 项和法:已知数列n a 的前n 项和n s 的解析式,求n a .例2:已知数列n a 的前n 项和12nns ,求通项n a .分析:当2n 时,1n nns s a =32321n n=12n 而111s a 不适合上式,22111n n a n n三、n s 与n a 的关系式法:已知数列n a 的前n 项和n s 与通项n a 的关系式,求n a .例3:已知数列n a 的前n 项和n s 满足n n s a 311,其中11a ,求n a .分析:13n na s ①nna s 312n②①-②得n n n a a a 331134nn a a 即341nn a a 2n又1123131a s a 不适合上式数列n a 从第2项起是以34为公比的等比数列222343134n n n a a 2n23431112n na n n注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1na 与1ns 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项.四、累加法:当数列n a 中有n f a a nn1,即第n 项与第1n 项的差是个有“规律”的数时,就可以用这种方法. 例4:12,011n a a a nn,求通项na 分析:121n a a n n112a a 323a a 534a a ┅321n a a nn2n以上各式相加得211327531n n a a n 2n 又01a ,所以21n a n 2n,而01a 也适合上式,21n a n Nn 五、累乘法:它与累加法类似,当数列n a 中有1n na f n a ,即第n 项与第1n 项的商是个有“规律”的数时,就可以用这种方法.例5:111,1nnn a a a n 2,n n N求通项na 分析:Q 11nnna a n 11nn a na n 2,n n N故3241123123411231n nn a a a a na a n a a a a n g g g g L g g g g L g 2,n n N而11a 也适合上式,所以na n n N六、构造法:㈠、一次函数法:在数列n a 中有1nna kab (,k b 均为常数且0k ),从表面形式上来看n a 是关于1n a 的“一次函数”的形式,这时用下面的方法: 一般化方法:设1nna mk a m则11nna ka k m而1nn a ka b1bk m 即1bmk 故111n nb ba k a k k数列11nba k 是以k 为公比的等比数列,借助它去求na 例6:已知111,21n n a a a 2,n n N求通项na 分析:Q 121nna a 1112221n nna a a 数列1n a 是以2为首项,2为公比的等比数列111122n nna a 故21nna ㈡、取倒数法:这种方法适用于11n nnka a ma p2,n n N (,,k m p 均为常数0m),两边取倒数后得到一个新的特殊(等差或等比)数列或类似于1n na kab 的式子.例7:已知11122,2n nna a a a 2,nnN求通项na Q 1122n nna a a 111211122nnnna a a a 即11112nna a 2,n n N数列1n a 是以12为首项,以12为公差的等差数列1111222nn n a 2na n㈢、取对数法:一般情况下适用于1klnn a a (,k l 为非零常数)例8:已知2113,2nn a a a n 求通项na 分析:由2113,2nn a a an知0n a 在21n na a 的两边同取常用对数得211lg lg 2lg n n n a a a 即1lg 2lg n na a 数列lg n a 是以lg 3为首项,以2为公比的等比数列故112lg 2lg3lg3nn na 123nna 七、“mnnc ba a 1(c b,为常数且不为0,*,N nm )”型的数列求通项n a .例9:设数列n a 的前n 项和为n s ,已知*11,3,N ns a a a nn n ,求通项n a .解:nn n s a 31113n nns a 2n两式相减得1132n n nn a a a 即11322n nna a 上式两边同除以13n 得92332311nn n n a a (这一步是关键)令nn na c 3得92321nn c c 3232321n nc c 2n(想想这步是怎么得来的)数列32nc 从第2项起,是以93322a c 为首项,以32为公比的等比数列故nn n n na a c c 32332933232322222323232nn nac 又nn na c 3,所以123223n n na a a a 1不适合上式23223112n a n a a n n n注:求mnnc ba a 1(c b,为常数且不为0,*,N nm )”型的数列求通项公式的方法是等式的两边同除以1n c ,得到一个“1nna kab ”型的数列,再用上面第六种方法里面的“一次函数法”便可求出nn ca 的通式,从而求出n a .另外本题还可以由nnns a 31得到n nn ns s s 31即nn ns s 321,按照上面求n a 的方法同理可求出n s ,再求n a .您不不妨试一试.除了以上七种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这七种方法是经常用的,将其总结到一块,以便于学生记忆和掌握.。

数列求通项公式方法大全

数列求通项公式方法大全

数列求通项公式方法大全数列是由一系列按特定规律排列的数字组成的序列。

求解数列的通项公式是找出数字之间的规律,从而可以用一个公式表示出数列中第N个数字与N的关系。

这样可以方便地计算数列中的任意项,而不需要逐个计算或列出所有的项。

以下是数列求通项公式的方法大全:1. 等差数列的通项公式:等差数列是指数列中相邻两项之间的差值保持恒定的数列。

根据等差数列的性质,可以得到通项公式为:an = a1 + (n - 1)d其中,an表示第n项,a1表示首项,d表示公差,n表示项数。

2. 等比数列的通项公式:等比数列是指数列中相邻两项之间的比值保持恒定的数列。

根据等比数列的性质,可以得到通项公式为:an = a1 * r^(n - 1)其中,an表示第n项,a1表示首项,r表示公比,n表示项数。

3. 斐波那契数列的通项公式:斐波那契数列是指数列中每一项都等于前两项之和的数列。

斐波那契数列的通项公式为:an = (phi^n - (-phi)^(-n)) / sqrt(5)其中,phi = (1 + sqrt(5)) / 2,an表示第n项。

4. 幂次数列的通项公式:幂次数列是指数列中每一项都是某个常数的指数函数。

幂次数列的通项公式为:an = a1 * (b^(n - 1))其中,an表示第n项,a1表示首项,b表示底数,n表示项数。

请注意,以上是一些常见的数列类型和其通项公式。

但实际上,还存在其他更复杂的数列类型,可能需要使用其他方法求解通项公式。

另外,在某些特定的数列中,可能无法找到通项公式,只能通过递推关系计算每一项。

举例说明:以等差数列为例,假设有一个等差数列的首项为2,公差为3。

现在需要求解数列中第10项的值。

根据等差数列的通项公式,可以得到:a10 = 2 + (10 - 1) * 3= 2 + 27= 29在这个例子中,我们利用等差数列的通项公式直接计算出了第10项的值。

如果没有通项公式,我们可能需要逐个计算前10项,而通项公式可以极大地简化计算过程。

求数列通项公式的十种办法

求数列通项公式的十种办法

求数列通项公式的十种办法求数列的通项公式是数学中的一项重要工作。

下面列举了十种常用的求解数列通项公式的方法:1.递推法:这是最常见的一种方法。

通过观察数列中的规律,找出前一项与后一项之间的关系,并将其表达成递推公式,从而求得数列的通项。

例如斐波那契数列:F(n)=F(n-1)+F(n-2),其中F(n)表示第n项,F(n-1)表示第n-1项,F(n-2)表示第n-2项。

2.数列差法:如果数列的前后两项之间的差值有规律可循,可以通过观察差的变化规律来得到通项公式。

例如等差数列:a(n)=a(1)+(n-1)d,其中a(n)表示第n项,a(1)表示首项,d表示公差。

3.数列比法:如果数列的前后两项之间的比值有规律可循,可以通过观察比的变化规律来得到通项公式。

例如等比数列:a(n)=a(1)*r^(n-1),其中a(n)表示第n项,a(1)表示首项,r表示公比。

4.代数方程法:数列中的数可以看作方程中的未知数,通过列方程组求解,得到方程的解即为数列的通项公式。

例如斐波那契数列可以通过矩阵的特征值和特征向量求得。

5.数列求和法:如果数列是由一个个项的和组成的,可以通过数列的求和公式求得通项公式。

例如等差数列的前n项和:S(n)=[n/2]*[2a(1)+(n-1)d],其中[n/2]表示n除以2的整数部分,a(1)表示首项,d表示公差。

6.数列积法:如果数列可以表达为一系列项的连乘积的形式,可以通过求取连乘积的对数,再利用对数运算得到通项公式。

例如等比数列的前n项积:P(n)=a(1)^n*(r^n-1)/(r-1),其中a(1)表示首项,r表示公比。

7.查表法:如果数列的部分项已知,可以通过列出表格的方式观察规律,推测出通项公式。

例如自然数列:1,2,3,...,通过观察可得到通项公式:a(n)=n。

8.数学归纳法:数学归纳法是一种证明方法,但也可以用来求数列的通项公式。

首先证明数列的通项公式对n=1成立,然后假设对n=k也成立,通过数学归纳法证明对n=k+1也成立,从而得到通项公式。

数列通项公式常见求法

数列通项公式常见求法

数列通项公式常见求法数列通项公式是数列的通项公式,用来表示数列中的一般项。

求数列通项公式是数列的重要性质之一,能够帮助我们了解数列的规律以及计算数列中的任意项。

在数学中,存在许多常见的方法来求解数列的通项公式,下面将介绍几种常见的方法。

1. 直接法:数列如果具有明显的规律性,我们可以直接观察并找出数列的通项公式。

例如,对于等差数列an=a1+(n-1)d,其中a1为第一项,d为公差,n为项数,我们可以通过观察数列的前几项发现,每一项与前一项之间的差值都相等,因此可以得到等差数列的通项公式。

2. 递推法:数列的递推法是一种常见的求解通项公式的方法。

该方法通过观察数列中相邻项之间的关系,构造递推公式从而求得通项公式。

例如,对于斐波那契数列an=an-1+an-2,其中a0=0,a1=1,通过观察数列可以发现每一项都是前两项之和,因此可以通过递推公式求得斐波那契数列的通项公式。

3. 换元法:有时候我们可以通过引入一个新的变量来求解数列的通项公式。

例如,对于幂次数列an=2^n,我们可以通过引入变量k=log2(n)来将问题转化为求解k与n之间的关系,从而得到数列的通项公式。

4. 差分法:差分法是一种常用的求解递推数列通项公式的方法。

该方法通过将数列中相邻项之间的差值构造成新的数列,然后再对新的数列进行求解。

例如,对于等差数列an,可以构造新的数列bn=an-an-1,然后再对数列bn进行观察和求解,最终得到等差数列an的通项公式。

5.等比数列的通项公式:对于等比数列an=a1*r^(n-1),其中a1为第一项,r为公比,n为项数。

求解等比数列的通项公式可以采用多种方法,如利用等比数列的性质进行观察,或采用对数换元法等。

6. 转化法:有时候我们可以将原始数列通过一些变换转化为已知的数列,然后再利用已知数列的通项公式求解原始数列的通项公式。

例如,对于等差数列an,我们可以通过将数列an进行平移或缩放变换,转化为已知的等差数列或等比数列,然后再求解通项公式。

数列通项公式常见求法

数列通项公式常见求法

数列通项公式常见求法1.等差数列:等差数列是指数列中相邻两项之间的差值保持不变的数列。

对于等差数列an,其通项公式可以通过以下方法求得:- 直接法:当等差数列已知首项a1和公差d时,通项公式可以通过观察数列的特点进行直接推导。

常用的通项公式为an = a1 + (n-1)d。

-递推法:对于等差数列,可以通过递推方法得到通项公式。

具体步骤是观察数列的前几项,找到相邻两项之间的关系,然后递推得到通项公式。

- 代数法:利用等差数列的性质,可以通过代数方法求得通项公式。

例如,可以使用方程an = a1 + (n-1)d,联立已知条件求解未知数。

2.等比数列:等比数列是指数列中相邻两项之间的比值保持不变的数列。

对于等比数列an,其通项公式可以通过以下方法求得:- 直接法:当等比数列已知首项a1和公比q时,通项公式可以通过观察数列的特点进行直接推导。

常用的通项公式为an = a1 * q^(n-1)。

-递推法:对于等比数列,可以通过递推方法得到通项公式。

具体步骤是观察数列的前几项,找到相邻两项之间的关系,然后递推得到通项公式。

- 代数法:利用等比数列的性质,可以通过代数方法求得通项公式。

例如,可以使用方程an = a1 * q^(n-1),联立已知条件求解未知数。

3.斐波那契数列:斐波那契数列是指数列中每一项都是前两项的和的数列。

斐波那契数列的通项公式可以通过以下方法求得:- 通项公式法:斐波那契数列有一个特殊的通项公式,即an = φ^n - (1-φ)^n / √5,其中φ为黄金分割比(约等于1.618)。

这个公式可以通过矩阵求解、特征方程、黄金分割法等方法推导得到。

4.幂方数列:幂方数列是指数列中每一项都是公比为一个固定值k的幂函数的数列。

幂方数列的通项公式可以通过以下方法求得:-递推法:对于幂方数列,可以通过递推方法得到通项公式。

具体步骤是观察数列的前几项,找到相邻两项之间的关系,然后递推得到通项公式。

求数列通项公式的十种方法

求数列通项公式的十种方法

求数列通项公式的十种方法求解数列通项公式是数学中的一个重要问题,对于一些特殊的数列,我们可以通过观察规律来找到通项公式,但对于一般的数列来说,我们需要使用一些数学工具和技巧来解决这个问题。

在下面,我将介绍十种常用的方法来求解数列的通项公式。

方法一:递推法递推法是一种常见的求解数列的方法,通过观察数列中相邻项之间的关系,可以找到递推公式。

常见的递推公式有线性递推和非线性递推两种形式。

方法二:列元法列元法是一种将数列元素列出来,然后通过观察数列元素之间的关系,找到通项公式的方法。

常见的列元法包括列出常数项和差项、连加项、平方项和立方项等。

方法三:指数递推法指数递推法是一种将数列元素进行指数递推,然后通过观察递推结果找到通项公式的方法。

常见的指数递推法包括指数增长、指数递减和二阶指数递增等。

方法四:利用级数对于一些复杂的数列,可以使用级数的方法来求解通项公式。

通过构造级数和求导积分等操作,可以得到数列的通项公式。

方法五:利用生成函数生成函数是一种将数列转化为多项式的方法,通过多项式的操作,可以得到数列的通项公式。

常见的生成函数包括普通生成函数和指数型生成函数。

方法六:利用逼近方法逼近方法是通过找到数列与一些函数逼近的关系,然后通过求解该函数的表达式来求解数列的通项公式。

常见的逼近方法包括泰勒级数逼近和拉格朗日插值等。

方法七:利用矩阵运算对于一些特殊的数列,可以使用矩阵运算的方法来求解通项公式。

通过构造矩阵和矩阵的运算,可以得到数列的通项公式。

方法八:利用线性代数利用线性代数的方法,可以将数列看作向量空间中的向量,通过线性变换和线性方程组的解来求解数列的通项公式。

方法九:利用特殊函数对于一些特殊的数列,可以使用特殊函数的方法来求解通项公式。

常见的特殊函数有二次函数、指数函数、对数函数、三角函数和双曲函数等。

方法十:利用离散数学离散数学是一种研究离散结构和离散规律的数学分支,通过利用离散数学的方法,可以求解数列的通项公式。

常见数列通项的求法

常见数列通项的求法

常见数列通项的求法
数列的通项公式是数列的核心,它描述了数列中每一项与项数之间的规律。

求数列的通项公式是数列问题中的重要内容。

以下是几种常见的求数列通项公式的方法:
1.观察法:通过对数列的前几项进行观察,找出规律,从而得到
通项公式。

2.累加法:对于形如an=an−1+f(n)的递推关系,其中f(n)是一个与
n有关的函数,通过累加得到an。

3.累乘法:对于形如an=an−1×f(n)的递推关系,其中f(n)是一个与
n有关的函数,通过累乘得到an。

4.构造法:通过构造新数列,将原数列的递推关系式转化为新数
列的递推关系式,从而求出通项公式。

5.数学归纳法:对于一些与n有关的数列,通过数学归纳法证明
其通项公式。

6.等差数列通项公式:an=a1+(n−1)d,其中d是公差。

7.等比数列通项公式:an=a1×qn−1,其中q是公比。

8.裂项相消法:对于分式形式的递推关系,通过裂项相消法求出
通项公式。

9.特征根法:对于一些特定形式的递推关系,通过特征根法求出
通项公式。

以上是常见的求数列通项公式的方法,具体使用哪种方法需要根据题目给出的条件和递推关系式来确定。

数列通项公式—常见9种求法

数列通项公式—常见9种求法

数列通项公式—常见9种求法数列通项公式是指能够直接给出数列中任意一项的公式。

找到数列通项公式可以帮助我们快速计算数列中的任意项,同时也能更好地理解数列的性质和规律。

在数学中,有多种方法可以求解数列通项公式,下面我们将介绍其中的9种常见方法。

1.递推关系法递推关系法是求解数列通项公式最常见的方法之一、当我们可以找到数列中每一项与前几项之间的关系时,可以利用递推关系求出通项公式。

例如,斐波那契数列中每一项都等于前两项的和,可以用递推关系f(n)=f(n-1)+f(n-2)来求解。

2.等差数列通项公式等差数列是指数列中每一项与前一项之差都相等的数列。

等差数列通项公式为an = a1 + (n-1)d,其中an表示第n项,a1表示第一项,d表示公差。

3.等比数列通项公式等比数列是指数列中每一项与前一项的比都相等的数列。

等比数列通项公式为an = a1 * r^(n-1),其中an表示第n项,a1表示第一项,r 表示公比。

4.幂数列通项公式幂数列是指数列中每一项都是一个幂函数的形式。

幂数列通项公式为an = ar^(n-1),其中an表示第n项,a表示一些常数,r表示递增的比值。

5.组合数列通项公式组合数列是指数列中每一项都是由组合数形成的数列。

组合数列通项公式可以通过求解组合数来获得。

6.一元多项式数列通项公式一元多项式数列是指数列中的每一项都是由一元多项式形成的数列。

可以利用多项式的相关性质和求解方法获得数列通项公式。

7.递推与线性常系数齐次差分方程法递推与线性常系数齐次差分方程法是利用递推关系和差分方程的性质求解数列通项公式的方法。

8.高阶递推关系法当数列中每一项与前面多个项之间有复杂的关系时,可以利用高阶递推关系进行求解。

9.查找数列在数学常数表中的表达式有些数列的通项公式可以在数学常数表中找到,例如斐波那契数列中的通项公式可以在黄金分割数相关的公式中找到。

以上是数列通项公式的9种常见求法,每种方法都可以根据不同的数列规律和特点进行选择和运用。

史上最全的数列通项公式的求法15种

史上最全的数列通项公式的求法15种

史上最全的数列通项公式的求法15种一、等差数列(Arithmetic sequence)1.基本公式:一个等差数列的通项公式为:an = a1 + (n-1)d其中an代表数列的第n项,a1代表数列的首项,d代表数列的公差。

2.另一种形式:等差数列的通项公式还可以表示为:an = a + (n-1) * (a2-a1)/2其中an代表数列的第n项,a代表数列的首项,a1代表数列的第二项,a2代表数列的前两项。

二、等比数列(Geometric sequence)1.基本公式:一个等比数列的通项公式为:an = a1 * r^(n-1)其中an代表数列的第n项,a1代表数列的首项,r代表数列的公比。

2.另一种形式:等比数列的通项公式也可以表示为:an = a * q^n其中an代表数列的第n项,a代表数列的首项,q代表数列的公比。

三、斐波那契数列(Fibonacci sequence)1.基本公式:一个斐波那契数列的通项公式为:Fn=(φ^n-(1-φ)^n)/√5其中Fn代表数列的第n项,φ代表黄金分割比(约1.618)。

2.矩阵法:斐波那契数列的通项公式还可以通过矩阵的形式表示:Fn=(A^n*F0),其中An是一个特定的矩阵,F0是初始向量。

四、调和数列(Harmonic sequence)1.基本公式:一个调和数列的通项公式为:an = 1/n其中an代表数列的第n项。

五、多项式数列(Polynomial sequence)一个多项式数列的通项公式为:an = an-1 + an-2 + ... + an-m其中an代表数列的第n项,an-1为前一项,an-2为前两项,an-m为前m项。

六、余弦数列(Cosine sequence)1.基本公式:一个余弦数列的通项公式为:an = a + b * cos(cn)其中an代表数列的第n项,a、b为常数,c为常数。

2.幂函数法:余弦数列的通项公式还可以表示为:an = a + b * cos(nθ)其中an代表数列的第n项,a、b为常数,θ为角度。

数列通项公式的十种求法

数列通项公式的十种求法

数列通项公式的十种求法方法一:直接法对于一些简单的数列,可以通过观察数列的规律,直接写出通项公式。

例如,对于等差数列an=3n+1,可以观察到每一项都是前一项加上3,因此可以直接写出通项公式。

方法二:递推法递推法是通过数列前一项和通项之间的关系式来推导通项公式。

例如,对于斐波那契数列an=an-1+an-2,可以通过给出前两项的值,然后通过关系式不断求解后续项的值,得到通项公式。

方法三:代数法对于一些特殊的数列,可以通过代数方式求解通项公式。

例如,对于等比数列an=2^n,可以通过代数方法得到通项公式。

方法四:数学归纳法数学归纳法是通过证明法来得到通项公式。

首先证明数列的前几项符合一些表达式,然后假设n=k时表达式成立,再证明n=k+1时也成立,从而得到通项公式。

方法五:求和法有些数列的通项公式可以通过求和公式得到。

例如,对于等差数列an=3n+1,可以通过求和公式求得前n项和Sn=3n(n+1)/2,然后推导出通项公式。

方法六:线性递推法对于一些特殊的数列,可以通过线性递推法求解通项公式。

线性递推法是通过设定通项公式的形式,然后求解出相应的系数。

例如,对于一阶等差数列an=ax+b,可以通过线性递推法求解出通项公式。

方法七:矩阵法矩阵法是通过将数列表示成矩阵的形式,然后通过矩阵运算求解出通项公式。

例如,对于数列an=2n+1,可以将其表示为一个2×2的矩阵,然后通过矩阵运算得到通项公式。

方法八:生成函数法生成函数法是通过定义一个函数来表示数列,然后通过函数运算求解出通项公式。

例如,对于斐波那契数列an=an-1+an-2,可以定义一个生成函数F(x)=a0+a1x+a2x^2+...,然后通过函数运算得到通项公式。

方法九:离散动力系统法离散动力系统法是通过建立数列的动力系统方程,然后求解出通项公式。

例如,对于一阶等差数列an=ax+b,可以将其表示为一个离散动力系统方程xn+1=axn+b,然后通过求解方程得到通项公式。

数列通项公式求法大全

数列通项公式求法大全

数列通项公式求法大全数列是一系列按照其中一种规律排列的数字。

在数学中,我们常常会遇到需要求数列的通项公式的问题。

通项公式是指能够通过一个公式直接计算数列中任意项的公式。

下面是一些常见的数列通项公式求法。

1.等差数列的通项公式:等差数列是指数列中相邻两项之间差值相等的数列。

设等差数列的首项为a1,公差为d,第n项为an,则等差数列的通项公式为an = a1 + (n-1) * d。

2.等比数列的通项公式:等比数列是指数列中相邻两项之间比值相等的数列。

设等比数列的首项为a1,公比为r,第n项为an,则等比数列的通项公式为an = a1 * r^(n-1)。

3.斐波那契数列的通项公式:4.差分法求通项公式:差分法是指通过数列的相邻两项之差的变化规律来推导数列的通项公式。

首先计算数列相邻两项之差的变化规律,如果差值存在规律,则可以推导出数列的通项公式。

5.递推法求通项公式:递推法是指通过已知数列中的几项来逐步推导出数列的通项公式。

首先根据已知项的值进行归纳总结,找出各项之间的规律,然后通过递推关系式来确定数列的通项公式。

6.数列的特殊方法求通项公式:有些特殊的数列,例如阶乘数列、多项式数列等,可以通过数列的特性分析来直接得到数列的通项公式。

这种方法需要观察数列的特殊性质,利用数学知识进行推导。

在实际应用中,数列通项公式的求解对于问题求解十分重要。

通过分析数列的规律,我们可以更加方便地计算数列中任意项的值,从而解决实际问题。

因此,熟练掌握数列通项公式的求法对于数学学习至关重要。

需要注意的是,数列通项公式的求法并不是一成不变的,不同的数列可能存在不同的求解方法。

在实际问题中,我们需要灵活运用各种方法,根据数列的特点选择合适的求解方法。

数列的通项公式的几种常用求法(文科)

数列的通项公式的几种常用求法(文科)

1、 公式法:等差数列、等比数列的通项公式的求法:若在已知数列中存在:1n n a a d +-=(常数)或1a ,(0)n n q q a +=≠的关系,可采用求等差、等比数列的通项公式的求法,确定数列的通项。

2、非等差、等比数列的通项公式的求法。

(1)观察法:通过观察数列中的项与项数的关系,找出项n a 与项数n 的关系。

(2)累差法: 若在已知数列中相邻两项存在:1()n n a a f n +-=的关系,可用“类差法”求通项。

例、在数列{}n a 中,11211,241n n a a a n +==+-,求数列的通项公式。

分析:由已知1n 41a a 2n 1n -=-+,n 取1,2,3,…,然后把(n-1)个等式相加。

解:由已知得:1n 41a a 2n 1n -=-+111()22121n n =--+。

213253111111111111(1),(),(),,()()2323525722321n n a a a a a a a a n n -∴-=--=--=--=--- ⎪⎭⎫⎝⎛---=-⎪⎭⎫ ⎝⎛-=--1n 213n 2121)a a (,,715121a a 1n n 45把上面(n-1)个等式相加得:11143(1)22142n n n a a a n n -∴-=-⇒=--(3)累积法: 若在已知数列中相邻两项存在:1a ()n n g n a +=的关系,可用“累积法”求通项。

例、在数列{}n a 中,0n a >,11,a =且有:1(1,),(,)n n a n a b n a +=+=,,a b 共线,求数列的通项n a分析:根据,a b 共线,得:11n na na n +=+,然后利用累积法求通项。

解:由已知得:11n na na n +=+32412311231234n n a a a a n a a a a n --⇒⋅⋅⋅⋅=⨯⨯⨯⨯111,n n a a a n n ∴==。

求数列通项公式常用的七种方法

求数列通项公式常用的七种方法

第二章 数列的概念与简单表示法一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+=或11-=n n q a a 进行求解.二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a .三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a . 四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就可以用这种方法.五、累乘法:它与累加法类似 ,当数列{}n a 中有()1nn a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法. 六、构造法:一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:取倒数法:这种方法适用于11n n n ka a ma p--=+()2,n n N *≥∈(,,k m p 均为常数 0m ≠),两边取倒数后得到一个新的特殊(等差或等比)数列或类似于 1n n a ka b -=+的式子.取对数法:一般情况下适用于1k ln n a a -=(,k l 为非零常数)特征根法:形如递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。

不动点法若,0≠A B 且0-≠AD BC ,解+=+Ax Bx Cx D,设βα,为其两根。

I 、若αβ≠,数列{}αβ--n n a a 是等比数列; II 、若αβ=,数列1{}-n a a是等差数列。

七、“m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a .例题讲解:1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式.2:已知数列{}n a 的前n 项和12-=nn s ,求通项n a .3:已知数列{}n a 的前n 项和n s 满足n n s a 311=+,其中11=a ,求n a . 4:()12,011-+==+n a a a n n ,求通项n a5:111,1n n na a a n -==- ()2,n n N *≥∈ 求通项n a6:已知111,21n n a a a -==+ ()2,n n N *≥∈ 求通项n a7:已知11122,2n n n a a a a --==+ ()2,n n N *≥∈ 求通项n a8:已知()2113,2n n a a a n -==≥ 求通项n a9: 数列{}n a 满足),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求n a10.已知数列{}n a 满足1172,223+-==+n n n a a a a ,求数列{}n a 的通项公式。

求数列通项公式的11种方法

求数列通项公式的11种方法

求数列通项公式的11种方法方法总述:一.利用递推关系式求数列通项的11种方法:累加法、 累乘法、 待定系数法、 阶差法(逐差法)、 迭代法、 对数变换法、 倒数变换法、换元法(目的是去递推关系式中出现的根号)、 数学归纳法(少用)不动点法(递推式是一个数列通项的分式表达式)、 特征根法二.四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。

等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。

三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等级差数列或等比数列。

四.求数列通项的基本方法是:累加法和累乘法。

五.数列的本质是一个函数,其定义域是自然数集的一个函数。

一、累加法1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。

2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=两边分别相加得111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=所以数列{}n a 的通项公式为2n a n =。

例2 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。

数列通项公式常见求法

数列通项公式常见求法

数列通项公式常见求法数列通项公式是指数列的一般项的表达式。

在数学问题中,求得数列通项公式可以帮助我们更方便地计算数列中的任意一项数值,解决各种与数列相关的问题。

本文将介绍数列通项公式的常见求法,包括递推法、通项公式和生成函数。

一、递推法递推法是一种通过已知数列的前几项来推导出数列通项公式的方法。

递推法的基本思路是找出数列每一项与前几项之间的关系式。

常见的递推法有差分法、倒推法、倍增法和特殊递推法。

1.差分法差分法是一种通过数列中相邻两项之间的差值来推导出通项公式的方法。

对于一个数列 {an},用 a(n+1) - an 的差来表示,通过不断地进行差分运算,直到差分为常数时,就可以得到数列的通项公式。

以斐波那契数列为例,我们知道斐波那契数列的通项公式是 fn = fn-1 + fn-2,其中 f0 = 0,f1 = 1、通过差分法可以推导出这个通项公式。

2.倒推法倒推法是一种逆序求解数列问题的方法,即从数列的最后一项逐步向前推导出每一项的值。

通过找出数列每一项与后几项之间的关系,从最后一项开始计算,并倒序得到数列的每一项的值。

以等差数列为例,设数列通项公式为 an = a + (n-1)d,其中 a 为首项,d 为公差。

已知 a1 和 an 的值,可以通过倒推法求得数列的通项公式。

3.倍增法倍增法是一种通过将数列每一项扩大或缩小倍数,使得这些倍数值之间构成等差或等比数列的方法。

通过找出数列每一项与前几项之间的倍关系,可以得到数列的通项公式。

以 2 的幂次方数列为例,我们知道这个数列的通项公式是 an = 2^n,其中 n >= 0。

通过倍增法可以推导出这个通项公式。

4.特殊递推法特殊递推法是对一些特殊的数列使用递推法求解通项公式的方法。

这类数列往往具有一些特殊的性质或规律,通过观察和分析这些特点,可以推导出数列的通项公式。

以全为奇数或全为偶数的等差数列为例,可以通过特殊递推法得到数列的通项公式。

数列求通项公式的9种方法

数列求通项公式的9种方法

例14
已知 满足+2 = 3+1 − 2 ,2 = 2, 1 = 1,求 的通项公式
九、奇偶分项求通项公式
核心思想:
n为奇数时,设n=2k-1
n为偶数时,设n=2k
例15 数列 满足 = ቊ
2,为奇数时
,求 的通项公式。

2 ,为偶数时
变式训练15
n2

a n ,求 {an } 的通项公式.
n
变式训练 6 已知数列 {an } 满足 a1 1 , an1 2n an ,求 {an } 的通项公式.
变式训练 7 已知数列 {an } 满足 a1 1 , an n(an1 an ) ,求 {an } 的通项公式.
四、加法构造
数列求通项公式常见的9种方法
知识复习
1、等差数列通项公式: an=a1+ (n-1)d
an=am+(n-m)d
2、等比数列通项公式: an= a1·
qn-1
am= a1·qn-m
一、利用 an 与 Sn 关系求 an
S1,
n=1,
an=
Sn-Sn-1, n≥2.
例1
n+3.
已知数列{an}的前n项和Sn,求数列{an}的通项公式.(1)Sn=2n-1;(2)Sn=2n2+
17
3
变式训练 10 已知数列 {an } 满足 a1
, an an1 5( n 2) ,求 {an } 的通项公式.
2
2
五、倒数构造
型如 an1
m an

(m pq 0) 的数列直接取倒数
pan q

例 8 已知数列 {an } 满足 a1 1 , an1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几种常见的数列的通项公式的求法一. 观察法例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,…(2) ,17164,1093,542,211(3) ,52,21,32,1(4) ,54,43,32,21-- 解:(1)变形为:101-1,102―1,103―1,104―1,…… ∴通项公式为:110-=nn a(2);122++=n n n a n (3);12+=n a n (4)1)1(1+⋅-=+n na n n .点评:关键是找出各项与项数n 的关系。

二、公式法例2: 已知数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x ) = (x -1)2,且a 1 = f (d -1),a 3 = f (d +1),b 1 = f (q +1),b 3 = f (q -1),(1)求数列{ a n }和{ b n }的通项公式;解:(1)∵a 1=f (d -1) = (d -2)2,a 3 = f (d +1)= d 2,∴a 3-a 1=d 2-(d -2)2=2d , ∴d =2,∴a n =a 1+(n -1)d = 2(n -1);又b 1= f (q +1)= q 2,b 3 =f (q -1)=(q -2)2,∴2213)2(qq b b -==q 2,由q ∈R ,且q ≠1,得q =-2,∴b n =b ·q n -1=4·(-2)n -1例3. 等差数列{}n a 是递减数列,且432a a a ⋅⋅=48,432a a a ++=12,则数列的通项公式是( ) (A) 122-=n a n (B)42+=n a n (C) 122+-=n a n (D) 102+-=n a n解析:设等差数列的公差位d ,由已知⎩⎨⎧==+⋅⋅+12348)()(3333a d a a d a ,解得⎩⎨⎧±==243d a ,又{}n a 是递减数列, ∴ 2-=d ,81=a ,∴ =--+=)2)(1(8n a n 102+-n ,故选(D)。

例4. 已知等比数列{}n a 的首项11=a ,公比10<<q ,设数列{}n b 的通项为21+++=n n n a a b ,求数列{}n b 的通项公式。

解析:由题意,321++++=n n n a a b ,又{}n a 是等比数列,公比为q ∴q a a a a b b n n n n n n =++=+++++21321,故数列{}n b 是等比数列,)1(211321+=+=+=q q q a q a a a b ,∴)1()1(1+=⋅+=-q q q q q b n n n点评:当已知数列为等差或等比数列时,可直接利用等差或等比数列的通项公式,只需求得首项及公差公比。

三、 叠加法例5:已知数列6,9,14,21,30,…求此数列的一个通项。

解 易知,121-=--n a a n n ∵,312=-a a ,523=-a a ,734=-a a ……,121-=--n a a n n 各式相加得)12(7531-++++=-n a a n ∴)(52N n n a n ∈+=点评:一般地,对于型如)(1n f a a n n +=+类的通项公式,只要)()2()1(n f f f +++ 能进行求和,则宜采用此方法求解。

例6. 若在数列{}n a 中,31=a ,n a a n n +=+1,求通项n a 。

解析:由n a a n n +=+1得n a a n n =-+1,所以11-=--n a a n n ,221-=---n a a n n ,…,112=-a a , 将以上各式相加得:1)2()1(1+⋅⋅⋅+-+-=-n n a a n ,又31=a 所以 n a =32)1(+-n n 四、叠乘法例7:在数列{n a }中,1a =1, (n+1)·1+n a =n·n a ,求n a 的表达式。

解:由(n+1)·1+n a =n·n a 得11+=+n n a a n n ,1a a n =12a a ·23a a ·34a a…1-n n a a =n n n 11433221=-⋅⋅ 所以n a n 1= 例8. 已知数列{}n a 中,311=a ,前n 项和n S 与n a 的关系是 n n a n n S )12(-= ,试求通项公式n a 。

解析:首先由n n a n n S )12(-=易求的递推公式:1232,)32()12(11+-=∴-=+--n n a a a n a n n n n n 5112521221=--=∴--a a n n a a n n 将上面n —1个等式相乘得: .)12(12(1)12)(12(357)32)(12)(12(13)72)(52)(32(1-+=∴-+=⋅--+⋅---=n n a n n n n n n n n a a n n点评:一般地,对于型如1+n a =f (n)·n a 类的通项公式,当)()2()1(n f f f ⋅⋅ 的值可以求得时,宜采用此方法。

五、S n 法利用1--=n n n S S a (n ≥2)例9:已知下列两数列}{n a 的前n 项和s n 的公式,求}{n a 的通项公式。

(1)13-+=n n S n 。

(2)12-=n s n解: (1)11111-+==S a n a =1--n n S S =[]1)1()1()1(33--+---+n n n n =3232+-n n此时,112S a ==。

∴n a =3232+-n n 为所求数列的通项公式。

(2)011==s a ,当2≥n 时 12]1)1[()1(221-=----=-=-n n n s s a n n n由于1a 不适合于此等式 。

∴⎩⎨⎧≥-==)2(12)1(0n n n a n点评:要先分n=1和2≥n 两种情况分别进行运算,然后验证能否统一。

六、待定系数法:例10:设数列}{n c 的各项是一个等差数列与一个等比数列对应项的和,若c 1=2,c 2=4,c 3=7,c 4=12,求通项公式c n解:设1)1(-+-+=n n bqd n a c 132211121237242-+=⇒⎪⎪⎩⎪⎪⎨⎧=====⎪⎪⎩⎪⎪⎨⎧=++=++=++=+∴n n n c a b d q bq d a bq d a bq d a b a例11. 已知数列{}n c 中,b b c +=11,bb c b c n n ++⋅=-11, 其中b 是与n 无关的常数,且1±≠b 。

求出用n 和b 表示的a n 的关系式。

解析:递推公式一定可表示为)(1λλ-=--n n c b c 的形式。

由待定系数法知:bb b ++=1λλ )1(1,1,12122bbc b b b c b b b n n --=--∴-=∴≠-λ 故数列⎭⎬⎫⎩⎨⎧--21b b c n 是首项为112221-=--b b b b c ,公比为b 的等比数列,故111121211222--=∴-=-=--++-b bb c b b b b b b b c n n n n n 点评:用待定系数法解题时,常先假定通项公式或前n 项和公式为某一多项式,一般地,若数列}{n a 为等差数列:则c bn a n +=,cn bn s n +=2(b 、c为常数),若数列}{n a 为等比数列,则1-=n n Aq a ,)1,0(≠≠-=q Aq A Aq s n n 。

七、辅助数列法(构造法)例12:已知数}{n a 的递推关系为121+=+n n a a ,且11=a 求通项n a 。

解:∵121+=+n n a a ∴)1(211+=++n n a a 令1+=n n a b 则辅助数列}{n b 是公比为2的等比数列∴11-=n n q b b 即n n n qa a 2)1(111=+=+- ∴12-=n n a 例13:在数列{}n a 中,11=a ,22=a ,n n n a a a 313212+=++,求n a 。

解析:在n n n a a a 313212+=++两边减去1+n a ,得)(31112n n n n a a a a --=-+++∴ {}n n a a -+1是以112=-a a 为首项,以31-为公比的等比数列,∴11)31(-+-=-n n n a a ,由累加法得n a =112211)()()(a a a a a a a n n n n +-+⋅⋅⋅+-+---- =+--2)31(n +--3)31(n …11)31(++-=311)31(11+---n =1])31(1[431+---n = 1)31(4347---n 例14: 已知数列{n a }中11=a 且11+=+n nn a a a (N n ∈),,求数列的通项公式。

解:∵11+=+n n n a a a ∴ 11111+=+=+n n n n a a a a , 设nn a b 1=,则11+=+n n b b故{n b }是以1111==a b 为首项,1为公差的等差数列 ∴n n b n =-+=)1(1 ∴n b a n n 11==点评:这种方法类似于换元法, 主要用于已知递推关系式求通项公式。

相关文档
最新文档