啤酒发酵自动控制系统(正文)
啤酒发酵自动控制系统的设计
摘要啤酒工业是我国食品工业中一个重要的产业部门,随着国民经济的发展和人民生活的改善,我国啤酒工业也得到了空前发展。
尽管如此,我国的啤酒生产工业前存在许多不尽如人意的地方。
由于啤酒生产的工艺复杂,目前我国大多数啤酒生产企业装备落后,自动化程度低,产品质量不稳定。
如何提高啤酒生产的综合自动化水平,增强我国啤酒产业的综合实力是一个很好的研究课题。
发酵过程是啤酒生产过程中的重要环节之一,本文针对实验室啤酒发酵装置技术装备落后、自动化程度低、产品质量不稳定以及啤酒发酵罐温度所具有的大时滞、强关联、时变、大时间常数和变量的特点,提出了AT89S52单片机为核心的数字化温度控制系统方案。
在发酵罐中设置上、中和下三个测温点,控制系统对这三个测温点进行循环检测,然后检测到的温度信号送到单片机,由单片机通过具体程序对以上三个信号进行处理,通过本文设定的特殊控制算法决定每层控制阀的开度,从而实现了啤酒发酵罐内部麦汁三层温度的精确控制,进而解决了啤酒发酵罐内部温度控制精度不高的问题,提高了啤酒生产的综合自动化水平本设计是利用毕业设计时间所学习的西门子PLC(S7-200)设计的啤酒发酵自动控制系统。
本文针对啤酒发酵过程控制及其管理自动化的要求,提供了一整套的啤酒发酵过程集散控制系统的方案。
文中介绍了系统的工艺流程、软件设计、PID回路设计。
软件设计包括系统控制的梯形图、实现代码(指令表)及程序说明以及温度设定值的计算和PID回路计算。
该设计编程容易,容易掌握。
关键词PLC PID 啤酒发酵自动控制目录摘要..................................................................................................... 错误!未定义书签。
第1章啤酒发酵自控系统总体设计 (1)1.1功能分析 (1)1.2控制原理分析 (1)第2章啤酒发酵自控系统工艺流程 (1)第3章啤酒发酵自控系统PLC选型和资源配置 (1)3.1 PLC选型 (1)3.2 S7-200主要功能及特点 (1)3.3文本显示器TD200 (2)3.4 TD200具有以下用途 (2)3.5 PLC的I/O资源配置 (3)3.6 PLC其他资源配置 (4)第4章自控系统PLC程序设计 (1)4.1 程序流程图设计 (2)4.2 PLC功能模块程序设计 (3)第5章啤酒发酵自控系统PLC程序说明 (1)5.1 模拟量信号采集处理 (1)5.2 发酵状态处理 (5)5.3 温度设定值的计算 (10)5.4 PID回路计算 (13)5.5 电磁阀控制 (16)第6章设计小结 (1)致谢 (1)参考文献 (1)第1章啤酒发酵自控系统总体设计1.1功能分析目前,啤酒发酵通常采用锥形大罐“一罐法”进行发酵,即前酵,后酵以及储酒等阶段均在同一大罐中进行。
基于PLC的啤酒发酵自动控制系统设计
基于PLC的啤酒发酵自动控制系统设计随着现代工业的发展,啤酒生产的自动化程度逐渐提高,传统的手工操作转变为自动控制。
本文将介绍一种基于可编程逻辑控制器(PLC)的啤酒发酵自动控制系统设计。
啤酒的发酵过程是一个复杂的化学反应过程,需要维持一定的温度、压力和PH值等参数。
传统的发酵过程需要人工监控和控制,不仅耗时耗力,而且容易产生人为误差。
采用PLC控制系统可以实现对啤酒发酵过程的自动化控制,提高生产效率和产品质量。
设计一个PLC控制器,负责监测和控制发酵过程中的各个参数。
该控制器可以通过传感器实时读取温度、压力和PH值等数据,并根据设定的控制策略进行相应的控制操作。
设计一个基于人机界面(HMI)的监控系统,用于操作员与PLC控制器的交互。
该监控系统可以实时显示发酵过程中的各个参数,并提供操作员对参数设定的控制界面。
在控制策略上,可以采用PID控制算法进行温度和PH值的控制。
PID控制算法通过调节温度和PH值的设定参数,使实际参数始终接近设定参数。
也可以设置报警机制,当温度、压力或PH值超出设定范围时,立即发出报警信号。
在硬件方面,需要选择适合的传感器和执行器。
温度传感器可以选择热电偶或温度传感器,压力传感器可以选择压力传感器,PH值传感器可以选择PH值传感器。
执行器可以选择电动阀门或蠕动泵等设备,用于自动调节温度和控制发酵过程。
在软件方面,需要编写PLC控制程序和HMI监控程序。
PLC控制程序主要包括数据采集、控制算法和控制输出等功能。
HMI监控程序主要负责数据显示、参数设定和报警处理等功能。
这些程序可以使用常见的编程语言如 ladder diagram(梯形图)或结构化文本进行开发。
基于PLC的啤酒发酵自动控制系统设计可以有效地实现对啤酒发酵过程的自动化控制,提高生产效率和产品质量。
在设计和实施过程中,需要考虑到实际工艺要求和设备性能,确保控制系统的稳定性和可靠性。
需要对系统进行综合测试和调试,以确保其正常运行。
基于PLC的啤酒发酵自动控制系统设计
基于PLC的啤酒发酵自动控制系统设计1. 引言1.1 背景介绍啤酒是一种古老的饮品,深受人们的喜爱。
随着啤酒产量的增加和品质要求的提高,传统的手工操作已经不能满足生产的需求。
自动控制技术的应用成为解决这一问题的有效途径。
基于可编程逻辑控制器(PLC)的自动控制系统由于其灵活性、稳定性、可靠性和易维护性等优势,成为工业控制领域的主流技术之一。
啤酒发酵过程是生产过程中最为关键的环节之一,发酵的温度、压力、pH值等参数对啤酒质量具有重要影响。
设计一个基于PLC的啤酒发酵自动控制系统对于提高生产效率、保证产品质量具有重要意义。
本文旨在探讨基于PLC的啤酒发酵自动控制系统设计方案,以提高啤酒生产的自动化水平,保证啤酒品质的稳定性和一致性。
通过引入PLC技术,可以实现对发酵过程的精确控制,提高生产效率,减少人工成本,并实现对生产过程的实时监控和追踪。
1.2 研究意义啤酒是一种历史悠久的饮品,受到广泛的消费者喜爱。
在啤酒的生产过程中,发酵是一个至关重要的环节,直接影响着啤酒的口感和质量。
而传统的发酵过程往往需要依靠人工操作,存在操作不稳定、效率低下、产品质量无法保证等问题。
因此,设计一种基于PLC的啤酒发酵自动控制系统具有重要的研究意义。
首先,基于PLC的自动控制系统能够实现对发酵过程的精准控制,保障啤酒的质量稳定和一致性。
PLC技术具有高精度、高可靠性的特点,能够实时监测和调节发酵参数,确保发酵过程的稳定性和可控性。
其次,基于PLC的啤酒发酵自动控制系统可以提高生产效率,减少人力成本。
传统的人工操作需要大量的人力投入,而自动控制系统能够实现全程自动化生产,节省人力资源,提高生产效率。
总之,基于PLC的啤酒发酵自动控制系统的研究对于提高啤酒生产的质量和效率具有重要的意义,有着广阔的应用前景和市场需求。
1.3 研究目的本研究旨在设计一种基于PLC的啤酒发酵自动控制系统,以提高啤酒生产过程的自动化水平,提高生产效率,保证啤酒质量稳定性和一致性。
基于PLC的啤酒发酵自动控制系统设计
基于PLC的啤酒发酵自动控制系统设计随着啤酒市场的不断壮大和消费者对质量和口感要求的提高,啤酒生产企业对生产工艺和控制技术也提出了更高的要求。
传统的啤酒发酵过程需要大量的人力和物力投入,不仅生产效率低下,而且存在一定的生产安全隐患。
如何设计一套高效、自动化的啤酒发酵控制系统成为啤酒生产企业急需解决的问题之一。
本文将从PLC控制技术的角度出发,对基于PLC的啤酒发酵自动控制系统进行设计。
一、啤酒发酵过程控制需求分析啤酒发酵是啤酒生产过程中至关重要的一个环节,它直接影响到啤酒的口感和质量。
传统的发酵过程需要持续的温度控制、压力控制、PH值控制以及酵母活性等参数的监测和调控。
而这些工作的繁琐和复杂性导致了传统发酵生产方式的效率低下和生产成本的增加。
基于PLC的啤酒发酵自动控制系统需具备以下几个方面的功能:1. 温度控制:啤酒发酵过程中,温度的控制是至关重要的,它直接影响到酵母的活性和啤酒的口感。
基于PLC的控制系统需要能够实时监测发酵罐内的温度,并根据预设的发酵曲线自动调节发酵罐内的温度。
基于PLC的啤酒发酵自动控制系统需要具备温度控制、压力控制、PH值控制和酵母活性监测等功能,以实现啤酒发酵过程的高效、自动化控制。
基于PLC的啤酒发酵自动控制系统设计方案主要包括硬件设计和软件设计两个方面。
1. 硬件设计(1) PLC选型:在啤酒发酵自动控制系统中,PLC的选型是至关重要的。
一般来说,需要选择具备较高运算速度、稳定性和扩展性的PLC作为控制核心。
PLC的输入输出模块也需要具备较高的精度和稳定性,以满足发酵过程中对各种参数的监测和控制。
(2) 传感器选择:在啤酒发酵自动控制系统中,需要选择适合的温度传感器、压力传感器、PH值传感器和酵母活性传感器等,用于实时监测发酵过程中的各项参数。
(1) 程序设计:基于PLC的啤酒发酵自动控制系统的程序设计是整个系统设计的核心。
需要根据发酵过程中的控制需求,编写相应的程序,实现对温度、压力、PH值和酵母活性等参数的实时监测和自动调节。
啤酒发酵自动控制解决方案
啤酒发酵自动控制解决方案一、概述:近年来,我国的啤酒需求量日趋增长,为适应这一市场需求,国内各啤酒生产厂家均在努力扩大生产规模,降低生产成本,提高产品质量。
而现在国内一些中小企业的啤酒生产状况仍较落后,自动化程度低,甚至大部或全部仍处于手工操作。
在全部生产过程中,糖化、发酵过程是个非常复杂的生化过程,其中时间、温度、压力、流量等参数控制得是否恰当直接关系到啤酒的产量、质量和消耗。
因此,提高该工艺过程的控制水平,无疑是解决问题的关键。
我们浙江浙大中自集成公司根据对啤酒生产工艺的深入了解,在厂、校专家、教授、工程技术人员的通力合作下,成功地开发了啤酒糖化、发酵自动化控制系统。
该系列控制系统是浙江浙大中自集成公司自行开发的高新技术产品,它集自动化仪表技术、自动控制理论、微机控制技术、微机网络技术、集散系统技术于一体,具有自动化程度化高、结构紧凑、操作简单方便、可靠性高等特点。
本系统的使用大大减轻了工人的劳动强度,由于发酵温度可以严格按工艺设定曲线运行,消除了操作工人为因素的影响,提高了控制精度,确保了发酵工艺的正确执行,保证产品质量的长期稳定,由于系统可以长期保持运行数据,大大提高了管理水平。
二、啤酒工艺过程:啤酒生产过程主要分为:制麦、糖化、发酵、罐装四个部分。
一般讲啤酒自动化,主要是指糖化和发酵过程的自动化。
三、控制系统简介:浙江浙大中自集成控制股份有限公司在广泛的用户调查、专家访谈、市场调研与行业分析的基础上,吸收浙江大学工业自动化国家工程研究中心、浙江大学工业控制技术国家重点实验室、浙江大学工业控制技术研究所数十年的科研成果,基于浙大中自长期的科技攻关与技术创新实力,并结合其丰富的系统集成与工程应用经验,经过不断分析总结、开发创新、测试改进与考核完善,成功推出了新一代Suny系列集散控制系统。
Suny系列集散控制系统采用尖端的电子技术、仪表控制技术、现代控制理论,吸取迄今为止的各种控制系统的长处,是集成综合了智能仪表、多功能回路控制器、顺序控制器、可编程控制器功能的集散控制系统。
基于PLC的啤酒发酵自动控制系统设计毕业论文
基于PLC的啤酒发酵自动控制系统设计毕业论文目录第一章绪论 (1)第二章啤酒发酵过程简介 (2)第一节啤酒发酵设备 (2)第二节啤酒发酵工艺曲线 (3)第三章啤酒发酵自控系统PLC选型和配置 (5)第四章啤酒发酵自控系统PLC程序设计 (7)第一节编程软件的介绍 (7)第二节温度设定值的计算 (9)第三节PID回路计算 (11)第四节电磁阀控制 (13)结论 (14)致谢 (15)参考文献 (16)附录 (17)第一章绪论啤酒是一种低浓度的饮料,也是富含营养价值的食品,每100g中仅有酒精3—5g,一般不超过8g。
它有特殊的酒精花清香味和适口的苦味,并有较高的营养成分即有较高的发热量。
啤酒是世界上产量以及消费最大的一种酒,啤酒市场非常巨大,世界啤酒的未来充满希望,欧洲啤酒市场和美国啤酒市场,随着人均消费量增长,啤酒消费量增长显著,居世界前列。
作为世界最大且增速最快的啤酒,饮料生产消费大国之一,中国已日趋成为最具吸引力市场。
未来五年中国啤酒将保持平稳持续增长的态势。
同时啤酒工业是我国食品工业中一个重要的产业,随着国家经济的发展和人民生活的改善,喝啤酒变成一种时尚,我们国家人均啤酒消费较世界水平少,这也透出了我国啤酒市场浓浓的商机。
我国内生产啤酒的企业数以百计,但与国外的主要啤酒生产厂家相比,大部分企业的技术相对落后,国的啤酒生产工业前存在许多不尽如人意的地方。
由于啤酒生产的工艺复杂,目前我国大多数啤酒生产企业装备落后,自动化程度低,产品质量不稳定。
大部分处于手动控制阶段,只有极少数企业实现半自动化,国内的啤酒行业迫切要求进行技术改造,提高生产率,保证产品质量,以确保在激烈的市场竞争中立于不败之地。
如何提高啤酒生产的综合自动化水平,增强我国啤酒产业的综合实力是一个很好的研究课题。
啤酒酿造过程是这样的:糖化,麦汁充氧,添加酵母,发酵,降温,倒罐,贮酒。
而我要做的就是其中发酵的一部分,啤酒发酵也是一个复杂的过程,啤酒生产过程中发酵是一道关键工序,除生产工艺水平外,生产工序控制指标的好坏将直接影响啤酒的质量。
基于PLC的啤酒发酵自动控制系统设计
基于PLC的啤酒发酵自动控制系统设计随着人们对啤酒品质的要求越来越高,啤酒发酵过程的自动化控制成为了一个研究热点。
本文将介绍一种基于PLC的啤酒发酵自动控制系统的设计。
1. 引言啤酒发酵是将麦芽经过磨碎、糖化、煮沸等一系列工序后,添加酵母菌发酵而成的过程。
发酵过程中,温度、压力、PH值等因素对发酵过程有很大影响。
传统的发酵过程依赖人工操作,无法确保发酵过程的一致性和稳定性。
设计一种基于PLC的啤酒发酵自动控制系统,能够提高发酵工艺的稳定性和可控性。
2. 系统结构控制层:控制层采用PLC作为控制器,实时获取和处理传感器的数据,并根据设定的工艺参数控制执行层的执行设备。
执行层:执行层包括发酵罐的加热、冷却、搅拌等执行设备,通过控制层发送的控制信号实现发酵过程的自动化控制。
人机界面:人机界面提供给操作员对系统进行监测和控制的手段,通过触摸屏或电脑软件等方式实现。
3. 系统功能温度控制:基于传感器实时获取发酵罐内部温度,并通过PLC控制发酵罐的加热或冷却装置,使温度保持在设定的范围内。
搅拌控制:通过PLC控制发酵罐的搅拌装置,以保证发酵液的均匀混合。
报警功能:当温度、压力、PH值等参数超出设定的安全范围时,系统能够及时报警并停止发酵过程。
4. 系统实现1) 确定系统的功能需求和工艺参数,设计硬件电路和软件程序。
2) 购买和安装所需的传感器、执行设备和PLC控制器。
3) 根据设计的电路图和软件程序进行硬件和软件的连接。
4) 对传感器进行校准,确保其测量精度和准确性。
5) 进行系统的调试和测试,确保系统能够稳定运行和达到设计要求。
5. 结论基于PLC的啤酒发酵自动控制系统能够提高发酵工艺的稳定性和可控性,实现啤酒的生产自动化。
随着自动化技术的不断发展,基于PLC的啤酒发酵自动控制系统将会越来越普遍应用于啤酒生产过程中。
基于PLC的啤酒发酵自动控制系统设计
基于PLC的啤酒发酵自动控制系统设计一、引言啤酒是一种古老的饮料,经过发酵产生。
在传统的啤酒生产过程中,发酵过程需要精确的控制,以保证最终产品的质量和口感。
为了提高生产效率和产品质量,采用自动控制系统对啤酒发酵过程进行控制是非常必要的。
PLC(可编程逻辑控制器)是一种用于工业自动化控制系统的控制器,它通过编程来实现逻辑控制、定时控制、计数控制等功能。
本文将设计一种基于PLC的啤酒发酵自动控制系统,以实现对啤酒发酵过程的自动控制。
二、系统设计1. 系统架构设计本系统采用了PLC作为控制器,传感器负责采集发酵过程中的温度、压力和PH值等参数,控制执行元件包括发酵罐内的搅拌器、温度控制装置和酵母添加装置。
整个系统的架构如图1所示:PLC通过传感器采集的数据进行逻辑控制,控制发酵罐内的搅拌器、温度控制装置和酵母添加装置,从而实现对发酵过程的自动控制。
2. 系统功能设计(1)温度控制在啤酒发酵过程中,温度是一个非常重要的参数。
过高或过低的温度都会影响发酵速率和产品质量。
系统需要能够对发酵罐内的温度进行实时监测,并根据预设的温度范围进行控制。
当温度过高时,系统应该能够通过控制冷却装置来降低温度;当温度过低时,系统应该能够通过控制加热装置来提高温度。
(3)压力控制在发酵罐内,产生的二氧化碳会增加罐内的压力。
系统应该能够对罐内的压力进行实时监测,并根据预设的压力范围进行控制。
当压力过高时,系统应该能够通过释放装置来释放二氧化碳,以降低罐内的压力。
3. 系统软件设计PLC的软件设计主要包括控制逻辑设计和人机界面设计。
控制逻辑设计是将控制任务分解为各个子任务,并设计每个子任务的控制逻辑;人机界面设计是设计用于监控和操作的人机界面。
(1)控制逻辑设计控制逻辑设计首先需要确定系统的控制目标,然后根据控制目标设计各个子任务的控制逻辑,最后将各个子任务的控制逻辑组合成系统的整体控制逻辑。
对于温度控制任务,可以设计如下的控制逻辑:IF 温度 < 设定温度 - 2 THEN 打开加热装置IF 温度 > 设定温度 + 2 THEN 打开冷却装置IF 设定温度 - 2 <= 温度 <= 设定温度 + 2 THEN 关闭加热装置和冷却装置(2)人机界面设计人机界面设计主要包括监控界面和操作界面。
啤酒发酵自动控制系统设计
啤酒发酵自动控制系统设计一、引言随着科技的不断发展,自动化控制在各个领域的应用越来越广泛。
啤酒发酵作为一项重要的食品生产过程,实现其自动化控制对于提高生产效率、产品质量和节约能源具有重要意义。
本文将介绍一种啤酒发酵自动控制系统的设计,包括传感器、执行器、控制器的设计以及实验验证。
二、系统设计啤酒发酵自动控制系统主要包括控制方案、电路设计和软件设计。
控制方案采用基于传感器反馈的闭环控制,电路设计包括传感器、执行器和控制器等模块,软件设计采用嵌入式系统实现控制算法。
三、传感器设计传感器是啤酒发酵自动控制系统的关键部分,用于检测发酵过程中的重要参数,如温度、压力、液位等。
本系统采用高精度、稳定可靠的传感器,通过嵌入式芯片进行信号处理和反馈控制。
同时,为确保传感器准确工作,采用校准和数据修正技术对传感器进行定期维护和校准。
四、执行器设计执行器是系统的另一个重要组成部分,用于执行控制算法并驱动被控对象。
本系统采用电动调节阀作为执行器,通过接收控制器的信号来调节发酵罐内的温度、压力和液位等参数。
为确保执行器快速、精确地响应,选用具有高动态性能的电动调节阀,同时对执行器进行定期维护和校准。
五、控制器设计控制器是整个系统的核心部分,负责接收传感器的反馈信号,根据预设的控制算法对执行器进行控制,以实现啤酒发酵过程的自动化。
本系统采用嵌入式控制器,具有高可靠性、快速响应和鲁棒性等特点。
控制器通过算法优化,实现精确控制和自适应调节,以满足不同工况下的控制要求。
六、实验验证为验证啤酒发酵自动控制系统的有效性和可靠性,进行了一系列实验。
实验设置包括发酵罐、传感器、执行器和控制器等关键部件。
数据采集和处理采用专业的测试仪器进行实时监测与记录。
实验结果表明,该自动控制系统能够有效地控制啤酒发酵过程,确保产品质量和生产效率的提升。
同时,实验结果还显示,系统的稳定性和可靠性得到了充分验证,为实际生产提供了可靠保障。
七、结论本文介绍的啤酒发酵自动控制系统设计在实现生产过程的自动化和智能化方面具有显著优势。
基于PLC的啤酒发酵自动控制系统设计
基于PLC的啤酒发酵自动控制系统设计引言啤酒是一种古老的酿造饮料,而发酵是啤酒酿造过程中其中一个最关键的步骤。
发酵过程需要严格的控制温度、压力和搅拌速度等参数,以确保最终产品的质量和风味。
开发一套自动控制系统来监测和调节发酵过程是至关重要的。
本文将介绍一种基于PLC的啤酒发酵自动控制系统设计,以及其在啤酒酿造中的应用。
一、啤酒发酵过程的控制需求啤酒发酵是在一定条件下,酵母利用麦芽中的糖类产生酒精和二氧化碳的过程。
这个过程需要严格的控制来保证啤酒的质量和口感。
发酵过程中需要控制以下参数:1.温度:酵母在不同温度下会有不同的发酵速率,过高或过低的温度都会影响发酵的效果。
2.压力:发酵过程会产生大量的二氧化碳,需要通过控制压力来避免发酵罐的爆炸。
3.搅拌速度:搅拌速度会影响酵母和麦芽的接触和传质速度,从而影响发酵效果。
一套自动控制系统需要能够实时监测发酵过程中的温度、压力和搅拌速度等参数,并且能够根据实时数据对这些参数进行调节。
二、基于PLC的啤酒发酵自动控制系统设计PLC(可编程逻辑控制器)是一种专门用于工业自动化控制的设备。
它能够接收输入信号做出相应的逻辑运算,并产生输出信号来控制设备。
基于PLC的啤酒发酵自动控制系统设计如下:1.传感器和执行元件选型:系统需要使用温度传感器、压力传感器和搅拌器执行元件来感知和控制发酵过程中的各项参数。
传感器需要选择能够适应潮湿、高温环境的工业级传感器,执行元件需要选择能够承受高温、高压的设计。
2.PLC选型:根据系统的需求,选用适合的PLC型号,能够满足系统的输入输出信号需求,并且能够稳定可靠地运行在工业环境中。
3.系统架构设计:根据发酵过程的特点和需求,设计系统的硬件架构和控制逻辑。
系统需要能够同时监测和控制多个参数,并且能够在异常情况下及时报警。
系统需要能够记录历史数据以便后续分析和追溯。
4.编程设计:根据系统的硬件架构和控制逻辑,编写PLC程序,实现对发酵过程中各项参数的实时监测和控制。
基于PLC的啤酒发酵自动控制系统设计
基于PLC的啤酒发酵自动控制系统设计随着啤酒产业的不断发展和成熟,啤酒发酵工艺的自动控制系统也越来越受到关注。
传统的啤酒发酵过程需要人工干预和监控,存在生产成本高、生产效率低、产品质量难以稳定等问题。
设计一套基于PLC的啤酒发酵自动控制系统至关重要。
本文将从啤酒发酵工艺的特点出发,综合考虑啤酒生产过程中的温度控制、压力控制、PH值控制、发酵时间控制等因素,设计一套基于PLC的自动控制系统。
该系统可以实现对发酵过程的全面监控和精准控制,提高生产效率和产品质量,降低生产成本,具有广阔的应用前景。
一、啤酒发酵工艺的特点啤酒发酵是指将麦芽汁通过酵母发酵,生成酒精和二氧化碳的过程。
啤酒发酵工艺具有温度控制严格、时间控制精准、环境要求高等特点。
发酵过程中,温度、PH值、压力等参数的变化均会对产品质量产生重要影响。
啤酒发酵工艺需要一个可靠的自动控制系统来实现对发酵过程的精细控制。
二、基于PLC的自动控制系统设计1. 系统架构设计基于PLC的啤酒发酵自动控制系统的硬件架构主要由传感器、执行机构、PLC控制器和人机交互界面组成。
传感器用于采集发酵过程中的温度、压力、PH值等参数,执行机构用于控制发酵槽的温度、搅拌器的转速等。
PLC控制器作为系统的控制中心,通过编程实现对传感器采集的数据进行处理和控制指令的下达。
人机交互界面用于实现操作人员和系统之间的信息交互。
2. 控制策略设计控制策略是基于PLC的啤酒发酵自动控制系统设计的核心内容。
通过对发酵过程中的温度、压力、PH值等参数的监测和控制,实现发酵过程的精细化管理。
控制策略主要包括PID控制、开关控制、定时控制等。
PID控制是一种常用的控制策略,通过对比实际值和设定值的偏差进行比例、积分、微分控制,实现对温度、压力、PH值等参数的精准控制。
开关控制主要用于对发酵槽的加热、制冷和搅拌器等设备进行开关控制。
定时控制用于控制发酵过程中不同阶段的时间控制。
3. 系统程序设计基于PLC的啤酒发酵自动控制系统的程序设计是实现控制策略的关键。
啤酒发酵自动控制系统
项目六啤酒发酵自动控制系统啤酒发酵是非常复杂的生化变化过程,在啤酒酵母所含酶的作用下,其主要代谢产物是酒精和二氧化碳。
另外,还有一系列的副产物,如醇类、醛类、酸类、酯类、酮类和硫化物等。
这些发酵物决定了啤酒的风味、泡沫、色泽和稳定性等各项理化性能,使啤酒具有各自的独特性。
啤酒发酵是放热反应的过程,随着反应的进行,罐内的温度会逐渐升高,随着二氧化碳的产物的不断产生,密闭罐内的压力会逐渐升高。
发酵过程中的温度压力直接影响到啤酒质量和生产效率,因此,对发酵过程中的温度、压力进行控制显得十分重要。
5.1啤酒发酵自控系统总体设计作为一个啤酒发酵控制系统,应该能够满足实际生产的要求。
因此,从以下几个方面来考虑是十分重要的:(1)必须要符合啤酒发酵的工艺要求;(2)必须为用户提供较合理的控制解决方案;(3)应该符合流程控制的一般要求,包括温度的采集和控制、压力的采集和控制、控制过程中的保护等。
5.1.1功能分析目前啤酒发酵通常采用锥形大罐“一罐法”进行发酵,即前酵、后酵以及储酒等阶段均在同一大罐中进行。
前酵过程中,酵母通过有氧呼吸大量繁殖,大部分发酵糖类分解。
在这一过程初期,反应放出的热量会使温度自然上升,随着反应的进行,酵母的活性变大,反应放热继续增加,双乙酰含量逐渐减少,而芳香类醇含量增多。
后酵是前酵的继续,进一步使残留的糖分解成二氧化碳溶于酒内达到饱和;在降到-1~0℃,使其低温陈酿促进酒的成熟和澄清。
啤酒发酵过程中,其对象特性是时变得,并且存在很大的滞后。
正是这种时变性和大的时滞性造成了温度控制的难点,而发酵温度直接影响啤酒的风味、品质和产量,因而控制精度要求较高。
温度、浓度和时间是发酵过程最主要的参数,三者之间相互制约,又相辅相成。
发酵温度低,浓度下降慢,发酵副产物少,发酵周期长。
反之,发酵温度高,浓度下降快,发酵副产物增多,发酵周期长。
因而必须根据产品的种类、酵母菌种、麦汁成分,控制在最短时间内达到发酵度和代谢产物的要求。
基于PLC的啤酒发酵自动控制系统设计
基于PLC的啤酒发酵自动控制系统设计随着啤酒市场的不断扩大,啤酒生产自动化水平的提高已经成为行业发展的必然趋势。
而PLC(可编程逻辑控制器)作为目前工业自动化控制中的一种重要设备,已经在各种工业控制系统中得到了广泛的应用。
基于PLC的啤酒发酵自动控制系统设计,不仅可以提高生产效率和产品质量,还可以降低生产成本。
本文将介绍基于PLC的啤酒发酵自动控制系统的设计方案及其优势。
一、系统设计方案1. 系统构成基于PLC的啤酒发酵自动控制系统主要由控制系统、数据采集系统和操作界面组成。
控制系统通过PLC控制器对整个发酵过程进行自动化控制,包括温度、压力、PH值、溶解氧等参数的监测和调节;数据采集系统用于采集各种传感器传来的数据,并传输给PLC控制器进行处理;操作界面则提供给操作人员进行监控和操作。
2. 控制策略控制系统的设计需要根据啤酒发酵过程的特点,采用恰当的控制策略。
在发酵过程中,温度是一个非常重要的参数,需要保持在一个合适的范围内,以促进酵母活性和酵素活性,从而保证发酵效果。
可以采用PID控制策略来对发酵罐温度进行控制,通过不断调整加热和冷却设备的输出来维持合适的温度。
3. 数据处理数据采集系统需要对采集到的各种传感器数据进行处理,并将处理后的数据传输给PLC控制器。
在数据处理过程中,可以利用滤波、平滑等算法对数据进行处理,以提高数据的准确性和稳定性。
4. 安全措施在系统设计中,需要考虑啤酒发酵过程中可能出现的安全隐患,比如发酵罐压力过高、温度过高等情况。
因此需要设置相应的安全保护装置,如压力开关、温度传感器等,以及相应的报警系统,一旦发现异常情况,立即采取措施进行处理。
二、系统优势1. 提高生产效率基于PLC的啤酒发酵自动控制系统可以实现对发酵过程的实时监测和自动控制,可以减少人工干预,提高生产效率。
系统还能够实现对发酵参数的精确控制,保证产品质量的稳定性。
2. 降低生产成本自动化控制可以减少人工操作,降低人工成本,同时节约能源和原材料的消耗,从而降低生产成本。
基于PLC的啤酒发酵自动控制系统设计
基于PLC的啤酒发酵自动控制系统设计随着现代化工业的发展,自动化控制系统在各个领域得到了广泛的应用。
在食品饮料行业中,啤酒发酵过程的自动控制系统设计尤为重要。
由于啤酒的发酵过程需要严格控制温度、压力、PH值等参数,传统的人工操作难以保证生产的稳定性和品质一致性。
基于PLC的啤酒发酵自动控制系统成为了现代啤酒生产中的重要技术手段。
PLC(Programmable Logic Controller),即可编程逻辑控制器,是一种专门用于工业控制的计算机。
基于PLC的自动控制系统具有稳定、可靠、高效的特点,能够满足啤酒生产对于生产过程的严格要求。
本文将针对基于PLC的啤酒发酵自动控制系统进行设计,从控制系统的硬件配置、软件编程以及系统调试与运行等方面进行详细阐述。
一、控制系统的硬件配置基于PLC的啤酒发酵自动控制系统的硬件配置包括PLC主控单元、输入输出模块、温度传感器、压力传感器、PH值检测仪和执行器等。
PLC主控单元是整个控制系统的核心,负责控制各个执行器的动作,并实时监测各个传感器的信号。
输入输出模块用于连接PLC 主控单元与外部设备,接收传感器的信号并控制执行器的动作。
温度传感器、压力传感器和PH值检测仪则用于监测发酵过程中的关键参数,为控制系统提供反馈信息。
执行器则根据PLC主控单元的指令进行相应的动作,如调节发酵罐中的温度、压力等参数。
在控制系统的硬件配置中,需要充分考虑设备的可靠性和稳定性,选择高质量的PLC 主控单元和传感器,以确保控制系统能够长时间稳定运行。
还需要合理规划输入输出模块的数量和位置,确保可以满足发酵过程中的实时监测和控制需求。
在选用执行器时,也需要考虑其控制精度和响应速度,以确保能够精确地控制发酵过程中的各项参数。
二、控制系统的软件编程控制系统的软件编程是基于PLC的啤酒发酵自动控制系统设计中的关键环节。
通过编程,可以实现对发酵过程中各个参数的精确控制,以及对异常情况的及时响应。
基于PLC的啤酒发酵自动控制系统设计
基于PLC的啤酒发酵自动控制系统设计全文共四篇示例,供读者参考第一篇示例:基于PLC的啤酒发酵自动控制系统设计一、引言随着科学技术的不断进步,自动化控制系统在各行各业中得到了广泛应用,啤酒生产作为重要的酿造行业也不例外。
传统的啤酒生产方式需要大量的人工操作,生产效率低下,而且容易受到人为因素的影响。
基于PLC的啤酒发酵自动控制系统设计能够有效地解决这些问题,提高啤酒生产的自动化水平和生产效率,保证啤酒的品质稳定。
二、系统功能需求分析1. 温度控制功能:啤酒发酵过程中,温度是一个非常重要的控制参数,发酵罐内的温度需要在一定的范围内保持稳定。
基于PLC的控制系统能够通过传感器实时监测发酵罐内的温度,根据预设的控制策略自动调节加热或降温设备,保持温度在合适的范围内。
2. 液位控制功能:在发酵过程中,发酵罐内的液位需要随着发酵过程的进行而逐渐降低。
PLC控制系统可以通过液位传感器监测发酵罐内的液位变化,及时发出控制信号,控制出液阀实现液位的自动控制。
3. 搅拌控制功能:在发酵过程中需要对发酵液进行搅拌以保证发酵液中的微生物得到充分的氧气供应和营养物质的均匀分布。
PLC控制系统可以通过控制搅拌器的启停和转速,实现发酵液中的搅拌控制。
4. PH值控制功能:发酵过程中PH值的变化会对发酵液中微生物的生长和代谢产生影响。
PLC控制系统可以通过PH传感器监测发酵液的PH值,自动调节酸碱液的加入量,保持发酵液的PH值在合适的范围内。
出预设范围,就能够及时发出故障报警信号,提醒操作人员进行相应的处理。
三、系统结构设计基于PLC的啤酒发酵自动控制系统由PLC控制器、传感器、执行机构和人机界面组成。
PLC控制器负责接收传感器采集的各个控制参数数据,根据预设的控制策略进行控制计算,并通过输出模块控制执行机构完成相应的控制动作。
传感器负责采集发酵过程中各个控制参数的数据,如温度传感器、液位传感器、PH传感器、氧气浓度传感器等。
啤酒发酵自动控制系统(正文)
本科生毕业设计(论文)中文题目:啤酒发酵自动控制系统英文题目:Beer fermentation Automatic Control System摘要啤酒工业是我国食品工业中一个重要的产业部门,随着国民经济的发展和人民生活的改善,我国啤酒工业也得到空前发展。
尽管如此,我国的啤酒生产工业前存在许多不尽如人意的地方一。
由于啤酒生产的工艺复杂,目前我国大多数啤酒生产企业技术装备落后,自动化程度低,产品质量不稳定。
如何提高啤酒生产的综合自动化水平,增强我国啤酒产业的综合实力是一个很好的研究课题。
发酵过程是啤酒生产过程中的重要环节之一,本文针对实验室啤酒发酵装置技术装备落后、自动化程度低、产品质量不稳定以及啤酒发酵罐温度所具有的大时滞、强关联、时变、大时间常数和多变量的特点,提出了以AT89S52单片机为核心的数字化温度控制系统方案。
在发酵罐中设置上、中和下三个测温点,控制系统对这三个测温点进行循环检测,然后将检测到的温度信号送到单片机,由单片机通过具体程序对以上三个信号进行处理,通过本文设定的特殊控制算法决定每层控制阀的开度,从而实现了啤酒发酵罐内部麦汁三层温度的精确控制,进而解决了啤酒发酵罐内部温度控制系统控制精度不高的问题,提高了啤酒生产的综合自动化水平。
关键词:AT89852单片机啤酒发酵温度控制ABSTRACTThe thesis puts forward the numeric temperature control system that depends on the principle of single AT89S52,which aims at outdated beerferment equipment, low automation ,instable product and the wheat-liquor temperature in a ferment that has inherence characteristics of multivariable, seriously nonlinear, uncertain, time-variant and largedelay. There are three measure temperature points in a ferment, the temperature signals of the ferment that can be detected circularly by thecontrol system will be sent to the single, and then the single will dealwith the three signals by some specific programs and the opening of thecontrol valves in the three layers is decided by some designed specialcontrol arithmetic. The three layer temperature of the ferment will be controlled precisely, consequently the low control precision of the beerferment internal temperature system has been improved and the comprehensive automation level of beer production will be improved. Atthe same time, the communication strategy between a beer ferment equipment temperature control system and computer has been studied in the thesis,and the hardware and software of the system have been introduced in detail.System simulation has been done in the thesis about a laboratory ferment arithmetic model that base on the experiment status, and the controleffect is better, so the system feasibility is validated theoretically.The disquisition has some reference value to the temperature controlsystem development of small scale ferment equipment in a factory. KEYWORDS:AT89S52 beer ferment temperature control目录1绪论................................................. .. (5)1. 1啤酒生产工艺流程 (5)1. 2国内外啤酒发酵温度控制系统发展现状 (6)1. 2. 1国内外温度控制系统发展 (6)1. 2. 2国内啤酒发酵温度控制系统发展现状 (7)1. 3课题研究目的 (9)1. 4课题研究内容及方案. (9)2啤洒发酵工艺和发酵罐温度控制方案.................... .. (10)2. 1啤酒发酵工艺 (10)2. 1. 1糖化 (10)2. 1. 2发酵................................ . (10)2. 2控制系统选择...................................... . (11)2. 2. 1被控对象分析 (11)2. 3控制系统方案确定 (13)3硬件电路设计...................................... .. (14)3. 1啤酒发酵罐温度控制系统电路结构 (14)3. 2主要器件选择及简介 (15)3. 2. 1单片机AT89S52 (15)3. 2. 2温度传感器DS18B20 (16)3. 2. 2. 1 DS18B20结构 (16)3. 2. 3 LED显示驱动MAX7219 (17)3. 3功能电路设计 (19)3. 3. 1测温电路 (19)3. 3. 2显示与按键电路设计 (20)3. 3. 2. 1显示电路设计 (20)3. 3. 2. 2按键电路设计 (22)3. 3. 3报警电路设计......................... . (23)3. 3. 4接口电路设计 (24)3. 3. 4. 1与上位机通讯接口 (24)3. 3. 4. 1. 1 RS-232C总线接口 (25)3. 3. 4. 1. 2 RS-422总线接口 (26)3. 3. 4. 2与串行E2PROM的接口电路 (27)4系统软件设计....................................... . (30)4. 1系统构成 (30)4 .2系统软件设计思想 (31)4. 3主程序MAIN .................. . (32)4. 4掉电保护程序 (34)4. 5系统监控程序 (35)4. 6采样程序模块.......................................... .36 4. 7显示程序模块.. (37)4. 8系统时钟控制模块 (39)4. 9通信模块 (40)5模糊PID在啤洒发酵罐温度控制系统中的应用.......... . (43)6经济分析报告............................................ . (46)7结论.................................................... . (47)8参考文献................................................ . (48)9致谢.................................................... . (49)10附录一:总电路图....................................... . (50)11附录二:总程序表....................................... . (51)1绪论1.1啤酒生产工艺流程啤酒生产可以分成两大部分:麦芽制取和啤酒酿造。
基于PLC的啤酒发酵自动控制系统设计
基于PLC的啤酒发酵自动控制系统设计1. 引言1.1 研究背景啤酒是一种古老的饮料,广泛受到人们的喜爱。
随着啤酒市场的不断扩大和消费需求的增加,啤酒生产的自动化控制系统变得越来越重要。
传统的啤酒生产过程中,发酵过程需要人工监控和调节,存在着生产效率低、产品质量不稳定等问题。
研究基于PLC的啤酒发酵自动控制系统设计具有重要意义。
在传统的啤酒生产中,发酵过程是整个生产过程中最关键的环节之一。
发酵过程中,需要监测和调节多个参数,包括温度、压力、PH 值等。
传统的控制方法往往依赖于人工经验,存在着主观性强、操作繁琐等问题。
采用基于PLC的自动控制系统能够实现对发酵参数的实时监测和自动调节,提高了生产效率和产品质量。
基于PLC的啤酒发酵自动控制系统设计是当前啤酒生产领域的研究热点之一。
通过引入PLC技术,可以实现啤酒发酵过程的自动化控制,提高生产效率,保证产品质量稳定。
本研究旨在探究基于PLC的啤酒发酵自动控制系统设计,为啤酒生产的自动化和智能化发展提供技术支持。
1.2 研究目的研究目的是设计并实现基于PLC的啤酒发酵自动控制系统,以提高生产效率和产品质量,实现发酵过程的精确监控和调节。
通过该系统,可以减少人为操作失误和提高工作效率,同时确保发酵参数稳定并符合生产要求。
利用PLC技术进行自动化控制,还可以减少人力成本并降低生产过程中的风险,提高工作安全性。
通过本研究,希望能够为啤酒生产企业提供一种先进、高效、安全的控制方案,为啤酒行业的发展和技术进步做出贡献。
2. 正文2.1 PLC在啤酒发酵中的应用啤酒生产过程中的发酵阶段对温度、压力、氧气含量等参数的精确控制至关重要。
传统的手动控制存在操作繁琐、精度低、易出错等问题,而基于PLC的自动控制系统则能够有效解决这些问题。
PLC系统还可以与其他设备和传感器进行实时数据交换,实现对发酵过程的全面监测。
通过在PLC中设定合适的控制算法,可以根据实时数据调节发酵参数,确保啤酒的发酵过程达到最佳状态。
基于PLC的啤酒发酵自动控制系统设计
基于PLC的啤酒发酵自动控制系统设计随着科技的不断发展,啤酒生产工艺也在不断创新和改进。
而自动化控制系统作为工业生产中的重要组成部分,其在啤酒发酵过程中的应用也逐渐受到关注。
本文将介绍基于可编程逻辑控制器(PLC)的啤酒发酵自动控制系统设计,详细阐述其原理、功能和优势。
一、啤酒发酵过程概述啤酒的生产过程主要包括麦芽糖化、酵母发酵、发酵后处理等阶段。
其中酵母发酵是啤酒生产的关键环节,也是整个制酒工艺过程中最为复杂的部分。
在发酵过程中,需要控制温度、pH值、搅拌速度等参数,以保证酵母在最适宜的条件下进行发酵,从而保证啤酒的品质和口感。
传统的啤酒发酵控制方法主要依靠操作工人的经验和手动调节设备的方式,存在操作不精准、易出错等问题。
而基于PLC的自动控制系统,可以实现对发酵过程的精准控制,并能够自动记录和报警,大大提高了生产效率和产品质量。
1. PLC系统架构基于PLC的啤酒发酵自动控制系统由PLC主控模块、输入输出模块、人机界面、传感器和执行器等部分组成。
PLC主控模块负责接收传感器的数据信息,并根据预设的控制策略来控制执行器进行相应的操作;输入输出模块负责与传感器和执行器之间进行信号的转换和传递;人机界面用于监控和操作整个系统,通过触摸屏或者键盘进行参数设置和实时监测。
2. 控制策略设计啤酒发酵过程中需要对温度、pH值、搅拌速度等参数进行精准控制。
在设计控制策略时,需要根据不同的发酵阶段和啤酒种类来确定相应的控制参数范围和控制逻辑。
在温度控制方面,可以根据酵母的适宜生长温度和发酵反应的温度特性,设置相应的控制策略,实现温度的保持和调节;在pH值控制方面,需要根据酵母的酸碱耐受性和发酵过程中产生的酸碱性物质来确定控制范围和控制方式;在搅拌速度控制方面,需要根据酵母的需氧性和氧气传质特性来确定控制范围和控制方法等。
3. 系统功能设计基于PLC的啤酒发酵自动控制系统可以实现温度、pH值、搅拌速度等参数的实时监测和控制,并能够实现数据的记录和报警功能。
啤酒发酵自动控制系统中的压力控制方法
啤酒发酵自动控制系统中的压力控制方法
在啤酒发酵自动控制系统中,压力控制是非常重要的一环。
合理的压力控制可以保证发酵过程的稳定性和啤酒的质量。
以下是几种常见的啤酒发酵压力控制方法:
1.死负反馈控制:这是一种最基本的压力控制方法。
系统会
通过传感器实时监测发酵罐内的压力变化,并将监测到的信号
与预设的目标压力进行比较。
一旦压力超过目标值,控制器会
自动调节发酵罐中的排气阀门,通过释放部分废气来降低压力。
相反,如果压力低于目标值,控制器则会自动关闭排气阀门,
阻止废气排出,从而提高压力。
2.气体调节阀控制:这种控制方法主要依靠气体调节阀来控
制发酵罐中的压力。
发酵罐内设有一个气体调节阀,其开度可
以根据压力传感器的反馈信号自动调整。
当压力超出设定范围时,控制器会通过改变气体调节阀的开度来调节气体流量,从
而达到控制压力的目的。
3.液位调节控制:液位调节是一种间接控制压力的方法。
通
过控制发酵罐中的液位,可以间接地控制压力的变化。
当罐内
压力过高时,控制器会通过增加液位来增加压力释放,反之亦然。
4.温度控制:虽然不是直接控制压力的方法,但是温度控制
在啤酒发酵过程中对于控制压力具有重要作用。
通过控制发酵
罐中的温度,可以间接地影响发酵的速率和产生的废气量,从
而进一步控制罐内的压力。
综上所述,压力控制是啤酒发酵自动控制系统中的重要环节。
通过合理选择控制方法,结合压力传感器的反馈信号,控制器
可以实时调节罐内的压力,保证发酵过程的稳定性,从而生产
出高质量的啤酒。
基于PLC的啤酒发酵自动控制系统设计
基于PLC的啤酒发酵自动控制系统设计啤酒发酵是一个复杂且关键的过程,它涉及到多个参数的监测和调节,确保啤酒的质量和一致性。
在传统的啤酒生产中,人工操作是主要的控制方式,但它存在一些问题,例如操作人员的经验差异和劳动强度大。
为了解决这些问题,并提高啤酒发酵过程的自动化程度和控制精度,本文提出了一种基于PLC的啤酒发酵自动控制系统设计。
该系统主要由温度传感器、液位传感器、压力传感器和PLC控制器组成。
温度传感器用于监测发酵罐中的温度,液位传感器用于监测发酵罐中的液位,压力传感器用于监测发酵罐中的压力。
PLC控制器根据传感器采集到的数据,对发酵过程进行自动控制。
系统的整体工作流程如下:温度传感器采集到发酵罐中的温度数据,然后传输给PLC控制器。
PLC控制器根据预设的温度范围,判断发酵过程是否正常。
如果温度超出预设范围,PLC控制器会自动调节发酵罐中的加热器或制冷器,以使温度回到正常范围。
然后,液位传感器采集到发酵罐中的液位数据,传输给PLC控制器。
PLC控制器根据预设的液位范围,判断发酵过程是否正常。
如果液位超出预设范围,PLC控制器会自动调节发酵罐中的进料量或排出量,以使液位回到正常范围。
压力传感器采集到发酵罐中的压力数据,传输给PLC控制器。
PLC控制器根据预设的压力范围,判断发酵过程是否正常。
如果压力超出预设范围,PLC控制器会自动调节发酵罐中的通气量或排气量,以使压力回到正常范围。
通过以上的工作流程,基于PLC的啤酒发酵自动控制系统可以实现对温度、液位和压力等参数的自动监测和调节,保证了发酵过程的稳定性和一致性。
与传统的人工操作相比,该系统具有操作简单、精确度高和可靠性强的优点,可以大大提高啤酒生产的效率和质量。
基于PLC的啤酒发酵自动控制系统是一个高效、准确、可靠的控制系统,能够实现啤酒发酵过程的自动化控制,提高生产效率和质量。
在啤酒生产过程中具有广阔的应用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本科生毕业设计(论文)中文题目:啤酒发酵自动控制系统英文题目:Beer fermentation Automatic Control System摘要啤酒工业是我国食品工业中一个重要的产业部门,随着国民经济的发展和人民生活的改善,我国啤酒工业也得到空前发展。
尽管如此,我国的啤酒生产工业前存在许多不尽如人意的地方一。
由于啤酒生产的工艺复杂,目前我国大多数啤酒生产企业技术装备落后,自动化程度低,产品质量不稳定。
如何提高啤酒生产的综合自动化水平,增强我国啤酒产业的综合实力是一个很好的研究课题。
发酵过程是啤酒生产过程中的重要环节之一,本文针对实验室啤酒发酵装置技术装备落后、自动化程度低、产品质量不稳定以及啤酒发酵罐温度所具有的大时滞、强关联、时变、大时间常数和多变量的特点,提出了以AT89S52单片机为核心的数字化温度控制系统方案。
在发酵罐中设置上、中和下三个测温点,控制系统对这三个测温点进行循环检测,然后将检测到的温度信号送到单片机,由单片机通过具体程序对以上三个信号进行处理,通过本文设定的特殊控制算法决定每层控制阀的开度,从而实现了啤酒发酵罐内部麦汁三层温度的精确控制,进而解决了啤酒发酵罐内部温度控制系统控制精度不高的问题,提高了啤酒生产的综合自动化水平。
关键词:AT89852单片机啤酒发酵温度控制ABSTRACTThe thesis puts forward the numeric temperature control system that depends on the principle of single AT89S52,which aims at outdated beerferment equipment, low automation ,instable product and the wheat-liquor temperature in a ferment that has inherence characteristics of multivariable, seriously nonlinear, uncertain, time-variant and largedelay. There are three measure temperature points in a ferment, the temperature signals of the ferment that can be detected circularly by thecontrol system will be sent to the single, and then the single will dealwith the three signals by some specific programs and the opening of thecontrol valves in the three layers is decided by some designed specialcontrol arithmetic. The three layer temperature of the ferment will be controlled precisely, consequently the low control precision of the beerferment internal temperature system has been improved and the comprehensive automation level of beer production will be improved. Atthe same time, the communication strategy between a beer ferment equipment temperature control system and computer has been studied in the thesis,and the hardware and software of the system have been introduced in detail.System simulation has been done in the thesis about a laboratory ferment arithmetic model that base on the experiment status, and the controleffect is better, so the system feasibility is validated theoretically.The disquisition has some reference value to the temperature controlsystem development of small scale ferment equipment in a factory. KEYWORDS:AT89S52 beer ferment temperature control目录1绪论................................................. .. (5)1. 1啤酒生产工艺流程 (5)1. 2国内外啤酒发酵温度控制系统发展现状 (6)1. 2. 1国内外温度控制系统发展 (6)1. 2. 2国内啤酒发酵温度控制系统发展现状 (7)1. 3课题研究目的 (9)1. 4课题研究内容及方案. (9)2啤洒发酵工艺和发酵罐温度控制方案.................... .. (10)2. 1啤酒发酵工艺 (10)2. 1. 1糖化 (10)2. 1. 2发酵................................ . (10)2. 2控制系统选择...................................... . (11)2. 2. 1被控对象分析 (11)2. 3控制系统方案确定 (13)3硬件电路设计...................................... .. (14)3. 1啤酒发酵罐温度控制系统电路结构 (14)3. 2主要器件选择及简介 (15)3. 2. 1单片机AT89S52 (15)3. 2. 2温度传感器DS18B20 (16)3. 2. 2. 1 DS18B20结构 (16)3. 2. 3 LED显示驱动MAX7219 (17)3. 3功能电路设计 (19)3. 3. 1测温电路 (19)3. 3. 2显示与按键电路设计 (20)3. 3. 2. 1显示电路设计 (20)3. 3. 2. 2按键电路设计 (22)3. 3. 3报警电路设计......................... . (23)3. 3. 4接口电路设计 (24)3. 3. 4. 1与上位机通讯接口 (24)3. 3. 4. 1. 1 RS-232C总线接口 (25)3. 3. 4. 1. 2 RS-422总线接口 (26)3. 3. 4. 2与串行E2PROM的接口电路 (27)4系统软件设计....................................... . (30)4. 1系统构成 (30)4 .2系统软件设计思想 (31)4. 3主程序MAIN .................. . (32)4. 4掉电保护程序 (34)4. 5系统监控程序 (35)4. 6采样程序模块.......................................... .36 4. 7显示程序模块.. (37)4. 8系统时钟控制模块 (39)4. 9通信模块 (40)5模糊PID在啤洒发酵罐温度控制系统中的应用.......... . (43)6经济分析报告............................................ . (46)7结论.................................................... . (47)8参考文献................................................ . (48)9致谢.................................................... . (49)10附录一:总电路图....................................... . (50)11附录二:总程序表....................................... . (51)1绪论1.1啤酒生产工艺流程啤酒生产可以分成两大部分:麦芽制取和啤酒酿造。
下面将分别讲述麦芽制取和啤酒制造的工艺流程,其工艺流程如图1-1和1-2所示。
(1)麦芽制造工艺流程麦芽制取主要有三大步骤:浸麦、发芽和干燥。
麦芽制造的简单流程如图1-1所示。
图1-1 麦芽制造流程图Fig1-1 Malt making flow chart图1-2 啤酒酿造工艺流程图Fig1-2 Beer brewing process flow chart(2)啤酒酿造工艺流程啤酒酿造的工艺流程如图1-2所示,从下面这个图中可以对啤酒酿造有一个比较抽象的理解。
图1-3能形象地表达出啤酒制造过程的每一个步骤,更能对啤酒制造整体过程有一个形象的理解。
图1-3 啤酒生产流程图Fig1-3 Beer production flow chart1.2国内外啤酒发酵温度控制系统发展现状1.2.1国内外温度控制系统发展在啤酒发酵过程中,工艺操作的控制主要是对温度、糖度、双乙酞、压力和时间变化的控制,而这些参数又是相互耦合的。
糖度、双乙酞的控制是通过调节温度来完成的,而时间和压力的控制,在一定浓度、酵母数量和活性条件下,也取决于发酵的温度。
因此,啤酒发酵过程控制主要是对发酵温度的控制,发酵温度是决定啤酒口感、风味等的一个重要指标,但现场温度的控制比较困难,在现代化生产的今天,为保证啤酒风味的一致性,满足生产的连续化、自动化的需要。
根据现场的要求,采用先进的智能控制策略来对啤酒发酵过程进行控制是必然的,在其发展过程中,主要经历了以下几种控制方式:(1)完全手动操作方式操作人员在现场或集中操作盘上控制主要设备的启停,阀门由工人到现场操作。
这种方式下啤酒生产的控制完全由人工操作,生产工艺参数得不到可靠执行,一致性比较差,啤酒质量受人为因素影响较大,因此啤酒口味稳定性较差,而且工人的操作劳动强度很大,主要生产设备与装置不能工作在最佳状态,原材料利用率低,产品能耗大。