八年级上册数学平方根的知识点归纳

合集下载

八年级数学实数之二次根式知识点总结

八年级数学实数之二次根式知识点总结

一、二次根式的概念及性质:① 二次根式的概念:一般地,形如 √a (a≥0)的式子叫作二次根式,其中“ √ ” 称为二次根号,a称为被开方数。

例如,√2 ,√(x^2+1) ,√(x-1) (x≥1) 等都是二次根式 。

② 二次根式的性质:当 a ≥ 0 时,√a 表示 a 的算术平方根,所以√a 是非负数 ( √a ≥ 0),即对于式子 √a 来说,不但 a ≥ 0,而且 √a ≥ 0,因此可以说 √a 具有双重非负性 。

③ 最简二次根式:1、被开方数中不含有分母 ;2、被开方数中不含有能开得尽方的因数和因式 。

④ 积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积。

⑤ 商的算术平方根的性质:商的算术平方根,等于被除式的算术平方根除以除式的算术平方根。

注:对于商的算术平方根,最后结果一定要进行分母有理化。

⑥ 分母有理化:化去分母中根号的变形叫作分母有理化,分母有理化的方法是根据分数的基本性质,将分子和分母分别乘分母的有理化因式(两个含有二次根式的代数式相乘,如果它们的积不含二次根式,就说这两个代数式互为有理化因式)化去分母中的根号。

⑦ 化成最简二次根式的一般方法:1、将被开方数中能开得尽方的因数或因式进行开方;2、若被开方数含分母,先根据商的算术平方根的性质对二次根式进行变形,再根据分母有理化的方法化简二次根式;3、若分母中含二次根式,根据分母有理化的方法化简二次根式 。

判断一个二次根式是否为最简二次根式,要紧扣最简二次根式的特点:(1)被开方数中不含分母;(2)被开方数中不含能开得尽方的因数或因式;(3)若被开方数是和(或差)的形式,则先把被开方数写成积的形式,再判断,若无法写成积(或一个数)的形式,则为最简二次根式 。

⑧ 二次根式的加减:(1)先把每个二次根式都化成最简二次根式;(2)把被开方数相同的二次根式合并,注意合并时只把“系数”相加减,根号部分不动,不是同类二次根式的不能合并,即二、知识点讲解:1、二次根式的概念及有意义的条件:例题1、下列式子中,是二次根式的有 ( B )例题2、使式子 √(m-2) 有意义的最小整数 m 的值是 2 。

初中数学平方根知识点归纳

初中数学平方根知识点归纳

初中数学平方根知识点归纳平方根是初中数学中一个重要的概念,它与平方和开方有着密切的关系。

在初中数学教学中,平方根的概念和性质是学生掌握的基础知识之一。

本文将围绕初中数学平方根知识点进行归纳和总结,以帮助学生更好地理解和应用平方根概念。

一、平方根的定义和性质平方根的定义:对于任意一个非负实数a,如果存在一个非负实数x,使得x的平方等于a,那么x就是a的平方根。

符号表示:√平方根的性质:平方根具有以下性质:1. 非负实数的平方根是非负实数;2. 0的平方根是0;3. 正实数的平方根有两个值,一个是正数,另一个是负数;4. 通过平方运算,平方根是可逆的,即(√a)²=a,其中a≥0。

二、平方根的计算方法求一个数的平方根可以通过多种方法进行计算,下面介绍两种常用的计算方法。

1. 精确计算法:当被开方数是一个完全平方数时,可以直接提取根号。

例如,√16=4;√25=5。

2. 近似计算法:对于非完全平方数,可以使用近似计算法来获取平方根的估计值。

其中一种方法是利用长除法,逐步逼近平方根的准确值。

另一种方法是利用二分法,根据平方根的大小与区间中点的大小关系,逐渐缩小区间范围,直到精度满足要求。

三、平方根的性质与运算1. 合并根号:对于正实数a和b,有√(a × b) = √a × √b;2. 开方运算的基本性质:a) √(a × b) = √a × √b,其中a≥0,b≥0;b) √(a ÷ b) = √a ÷ √b,其中a≥0,b>0;c) √(a ÷ b) ≠ √(a) ÷ √(b),当a≥0,b>0且a≠b时,两者不等;3. 平方根与乘方运算:(a^2)^0.5 = |a|,其中a可以是任意实数。

四、应用举例平方根的应用广泛存在于各个领域,在初中数学中也有一些常见的应用举例。

1. 利用平方根求直角三角形的斜边:在一个直角三角形中,已知两条边的长度,可以利用勾股定理求解未知边的长度,其中需要涉及到平方根的运算。

八年级数学上册《第二章2 平方根》讲解与例题

八年级数学上册《第二章2 平方根》讲解与例题

《第二章2 平方根》讲解与例题1.平方根(1)平方根的概念:若是一个数x 的平方等于a ,即x 2=a ,那么那个数x 就叫做a 的平方根(也叫做二次方根).32=9,因此3是9的平方根.(-3)2=9,因此-3也是9的平方根,因此9的平方根是3和-3.(2)平方根的表示方式:正数a 的平方根可记作“±a ”,读作“正、负根号a ”.“ ”读作“根号”,“a ”是被开方数.例如:2的平方根可表示为± 2. (3)平方根的性质:假设x 2=a ,那么有(-x )2=a ,即-x 也是a 的平方根,因此正数a 的平方根有两个,它们互为相反数;只有02=0,故0的平方根为0;由于同号的两个数相乘得正,因此任何数的平方都可不能是负数,故负数没有平方根.综合上述:一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.如:4的平方根有两个:2和-2,-4没有平方根.我明白了,一个数a 的平方根能够表示成±a .你可要警惕哦!(1)不是任何数都有平方根,负数可没有平方根,(2)式子a 只有当a ≥0时才成心义,因为负数没有平方根.【例1-1】 求以下各数的平方根:(1)81;(2)(-7)2;(3)11549. 分析:依照平方根的概念,求一个数a 的平方根可转化为求一个数的平方等于a 的运算,更具体地说,确实是找出平方后等于a 的数.解:(1)∵(±9)2=81,∴81的平方根是±9,即±81=±9.(2)∵(-7)2=72=49,∴(-7)2的平方根是±7,即±49=±7. (3)∵11549=6449,又⎝ ⎛⎭⎪⎫±872=6449, ∴11549的平方根是±87, 即±11549=±87. 【例1-2】 以下各数有平方根吗?若是有,求出它的平方根;假设没有,请说明理由.(1)94;(2)0;(3)-9;(4)|-0.81|;(5)-22. 分析:序号存在情况 原因 (1)有2个 正数有两个平方根 (4)有2个 (3)无 负数没有平方根 (5)无 (2) 有1个 0的平方根是它本身解:(1)∵94是正数,∴94有两个平方根. 又∵⎝ ⎛⎭⎪⎫±322=94,∴94的平方根是±32. (2)0只有一个平方根,是它本身.(3)∵-9是负数,∴-9没有平方根.(4)∵|-0.81|=(±0.9)2,是正数,∴|-0.81|的平方根是±0.9.(5)∵-22=-4,是负数,∴-22没有平方根.2.算术平方根(1)算术平方根的概念:若是一个正数x 的平方等于a ,即x 2=a ,那么那个正数x 就叫做a 的算术平方根.(2)算术平方根的表示方式:正数a 的算术平方根记作“a ”,读作“根号a ”.(3)算术平方根的性质:正数有一个正的算术平方根;0的算术平方根是0;负数没有平方根,固然也没有算术平方根.淡重点 算术平方根的性质(1)只有正数和0(即非负数)才有算术平方根,且算术平方根也是非负数;(2)一个正数a 的正的平方根确实是它的算术平方根.若是明白一个数的算术平方根,就能够够写出它的负的平方根.【例2】 求以下各数的算术平方根:(1)0.09;(2)121169. 分析:依照算术平方根的意义,求一个非负数a 的算术平方根,第一要找出平方等于a 的数,写出平方式;从平方式中确信a 的算术平方根的值.解:(1)∵0.32=0.09,∴0.09的算术平方根是0.3,即0.09=0.3;(2)∵⎝ ⎛⎭⎪⎫11132=121169, ∴121169的算术平方根是1113. 析规律 如何确信一个数的算术平方根 求一个数的算术平方根与求一个数的平方根类似,先找到一个平方等于所求数的数,再求算术平方根,应专门注意数的符号.3.开平方求一个数a (a ≥0)的平方根的运算,叫做开平方,其中a 叫做被开方数.开平方运算是已知指数和幂求底数.(1)因为平方和开平方互逆,故可通过平方来寻觅一个数的平方根,也能够利用平方验算所求平方根是不是正确.(2)开平方与平方互为逆运算,正数、负数、0能够进行“平方”运算,且“平方”的结果只有一个;但“开平方”只有正数和0才能够,负数不能开平方,且正数开平方时有两个结果.(3)关于生活和生产中的已知面积求长度的问题,一样可用开平方加以解决.【例3】 小明家打算用80块正方形的地板砖铺设面积是20 m 2的客厅,试问小明家需要购买边长是多少的地板砖?解:设正方形的地板砖的边长为x m ,由题意,得80x 2=20,那么x 2=0.25.故x =±0.5.∵地板砖的边长不能为负数,∴x =0.5.∴小明家应购买边长为0.5 m 的地板砖.4.a 2与(a )2的关系a 表示a 的算术平方根,依据算术平方根的概念,(a )2=a (a ≥0).a 2表示a 2的算术平方根,依据算术平方根的概念,假设a ≥0,那么a 2的算术平方根为a ;假设a <0,那么a 2的算术平方根为-a ,即a 2=|a |=⎩⎪⎨⎪⎧ a ,a ≥0,-a ,a <0. (1)区别:①意义不同:(a )2表示非负数a 的算术平方根的平方;a 2表示实数a 的平方的算术平方根.②取值范围不同:(a )2中的a 为非负数,即a ≥0;a 2中的a 为任意数.③运算顺序不同:(a )2是先求a 的算术平方根,再求它的算术平方根的平方;a 2是先求a 的平方,再求平方后的算术平方根.④写法不同.在(a )2中,幂指数2在根号的外面;而在a 2中,幂指数2在根号的里面.⑤运算结果不同:(a )2=a ;a 2=|a |=⎩⎪⎨⎪⎧ a ,a ≥0,-a ,a <0.(2)联系:①在运算时,都有平方和开平方的运算.②两式运算的结果都是非负数,即(a )2≥0,a 2≥0.③仅当a ≥0时,有(a )2=a 2. 点技术 巧用(a )2=a 将(a )2=a 反过来确实是a =(a )2,利用此式可使某些运算更为简便.【例4】 化简:(6)2=__________;(-7)2=__________. 解析:(-7)2=|-7|=7.答案:6 75.平方根与算术平方根的关系(1)区别:①概念不同平方根的概念:若是一个数x 的平方等于a ,即x 2=a ,那么那个数x 叫做a 的平方根.算术平方根的概念:若是一个正数x 的平方等于a ,即x 2=a ,那么那个正数x 叫做a 的算术平方根. ②表示方式不同平方根:正数a 的平方根用符号±a 表示.算术平方根:正数a 的算术平方根用符号a 表示,正数a 的负的平方根-a 能够看成是正数a 的算术平方根的相反数.③读法不同a读作“根号a”;±a读作“正、负根号a”.④结果和个数不同一个正数的算术平方根只有一个且必然为正数,而一个正数的平方根有两个,它们一正一负且互为相反数.(2)联系:①平方根中包括了算术平方根,确实是说算术平方根是平方根中的一个,即一个正数的平方根有一正一负两个,其中正的那一个确实是它的算术平方根,如此要求一个正数a的平方根,只要先求出那个正数的算术平方根a,就能够够直接写出那个正数的平方根±a了.②在平方根±a和算术平方根a中,被开方数都是非负数,即a≥0.严格地讲,正数和0既有平方根,又有算术平方根,负数既没有平方根,又没有算术平方根.③0的平方根和算术平方根都是0.【例5-1】(1)求(-3)2的平方根;(2)计算144;(3)求(π-3.142)2的算术平方根;(4)求16的平方根.错解(1)因为(-3)2=9,故(-3)2的平方根是-3;(2)因为(±12)2=144,所以144=±12;(3)(π-3.142)2的算术平方根是(π-3.142)2=π-3.142;〔或±(π-3.142)〕(4)16的平方根是±4.剖析(1)一个正数的平方根是互为相反数的两个数,而这里(-3)2的平方根只有一个数,只表明两个平方根中的一个负的平方根,漏掉了一个正的平方根;(2)混淆了平方根与算术平方根的概念,144表示144的算术平方根,它是一个非负数,错解中出现了增解-12;(3)错在忽视了π<3.142,即π-3.142<0;或混淆了平方根与算术平方根的概念;(4)这里错误地将16的平方根当成16的平方根,其实这里是求16的算术平方根的平方根,该题将两个相近概念“算术平方根”和“平方根”含在一个小题中.正解(1)±(-3)2=±9=±3;【例(1)±81;(2)-16;(3)925;(4)(-4)2.分析:±81表示81的平方根,故其结果是一对相反数;-16表示16的负平方根,故其结果是负数;925表示925的算术平方根,故其结果是正数;(-4)2表示(-4)2的算术平方根,故其结果必为正数. 解:(1)∵92=81,∴±81=±9. (2)∵42=16,∴-16=-4.(3)∵⎝ ⎛⎭⎪⎫352=925,∴925=35. (4)∵42=(-4)2,∴(-4)2=4. 释疑点 与平方根相关的三种符号 弄清与平方根有关的三种符号±a ,a ,-a 的意义是解决这种问题的关键.±a 表示非负数a 的平方根,a 表示非负数a 的算术平方根,-a 表示非负数a 的负平方根.注意a ≠±a .在具体解题时,“ ”的前面是什么符号,其计算结果确实是什么符号,既不能漏掉,也不能多添.6.巧用算术平方根的两个“非负性”众所周知,算术平方根a 具有双重非负性:(1)被开方数具有非负性,即a ≥0. (2)a 本身具有非负性,即a ≥0.这两个非负性形象、全面地反映了算术平方根的本质属性.在解决与此相关的问题时,假设能认真观看、认真地分析题目中的已知条件,并挖掘出题目中隐含的这两个非负性,就可幸免用常规方式造成的繁杂运算或误解,从而收到事半功倍的成效.由于初中时期学习的非负数有三类,即一个数的绝对值,一个数的平方(偶次方)和非负数的算术平方根.关于算术平方根和平方数的非负性相关的求值问题,一样情形下都是它们的和等于0的形式.此类问题能够分成以下几种形式:(1)算术平方根、平方数、绝对值三种中的任意两种组成一题〔| |+( )2=0,| |+ =0,( )2+=0〕,乃至同一道题目中同时显现这三个内容〔| |+( )2+=0〕.(2)题目中没有直接给出平方数,而是需要先利用完全平方公式把题目中的某些内容进行变形,然后再利用非负数的性质进行计算.【例6-1】假设-x2+y=6,那么x=__________,y=__________.解析:由-x2成心义得x=0,故y=6.答案:0 6【例6-2】假设|m-1|+n-5=0,那么m=__________,n=__________.解析:依照题意,得m-1=0,n-5=0,因此m=1,n=5.答案:1 5注:假设几个非负数的和为0,那么每一个数都为0.【例6-3】若是y=x2-4+4-x2x+2+2 013成立,求x2+y-3的值.分析:由算术平方根被开方数的非负性知,x2-4≥0,4-x2≥0,因此,x2-4=0,即x=±2;又x+2≠0,即x≠-2,因此x=2,y=2 013,于是得解.解:由题可知x2-4≥0,且4-x2≥0,∴x2-4=0,即x=±2.又∵x+2≠0,即x≠-2,∴x=2.将x=2代入y=x2-4+4-x2x+2+2 013,可得y=2 013.∴x2+y-3=22+2 013-3=2 014.点评:解答这种问题时,先确信题目中非负数的类型,然后依照类型“对症下药”.不要误以为x=±2.。

八年级上册平方根知识点

八年级上册平方根知识点

八年级上册平方根知识点在八年级的数学学习中,平方根是一个非常重要的知识点。

平方根是指一个数的平方等于原数的数值,可以用符号√表示,例如√9=3,√16=4。

在本文中,我将详细介绍八年级上册平方根的相关知识点。

一、平方根的符号及表示方法平方根用符号√来表示,如√9表示9的平方根,读作“根号9”或“9的根号”。

平方根还可以用字母表示,例如a的平方根可以表示为√a。

当a为正整数完全平方数时,√a是有理数,否则是无理数。

例如√4=2,√9=3,但√2是无理数,不是有理数。

二、简化√n的步骤当n是一个正整数时,n的因数中,相同的因子成对出现,例如16的因数为1、2、4、8、16。

而且它们都是成对出现的,其中2与8、4与4配对,所以可以得到以下简化√n的步骤:1.将n进行质因数分解,使因数中每个质数的指数都为2的倍数。

2.把每个根号内部成对的质因数提取出来,得到这个数的基本根式。

例如:√36=√(2²×3²)=√2²×√3²=2√3。

三、平方根的运算法则1.平方根的分配律:对于任意正实数a和b,有√(a×b)=√a×√b。

例如:√20=√(4×5)=√4×√5=2√5。

2.平方根的合并同类项:对于任意正实数a和b,有√a±√b=√(a±b)。

例如:√7+√5=√(7+5)=√12。

3.平方根的乘法公式:对于任意非负实数a和b,有√a×√b=√(ab)。

例如:√7×√5=√(7×5)=√35。

4.平方根的倒数法则:对于任意正实数a,有1/√a=√a/√(a×a)=√a/a。

例如:1/√5=√5/√25=√5/5。

四、平方根的应用平方根除了在数学中的运算中有着广泛的应用外,在我们的日常生活中也经常会遇到。

例如:1.计算三角形的斜边长度。

设三角形两个直角边分别为a和b,则三角形的斜边长度为√(a²+b²)。

2.2 平 方 根 知识考点梳理(课件)北师大版数学八年级上册

2.2 平 方 根  知识考点梳理(课件)北师大版数学八年级上册

混 正数是________.


2.2 平 方 根
返回目录
[解析] 根据题意,得(3a-2)+(2a-3)=0 或 3a易

易 2=2a-3,解得 a=1 或-1,所以 3a-2=3-2=1 或 3a-2=-3混 2=-5,因为 12=1,(-5)2=25,所以这个正数是 1 或 25.


[答案] 1 或 25
术平
平方根是正的平方根
方根
的关



存在条件相同:只有非负数才有算术平方根
和平方根
0 的算术平方根和平方根都是 0
2.2 平 方 根






返回目录
续表
注意
平方根等于本身的数只有 0
2.2 平 方 根






返回目录
2. 开平方
定义
求一个数 a 的平方根的运算,叫做开平方.开
平方与平方互为逆运算
2.2 平 方 根






思路点拨
返回目录
2.2 平 方 根
返回目录
解题通法 解决此类问题时,首先对方程进行变形,化


2=a 的形式,然后利用平方根的定义进行开平方,另

x

型 外将括号内的式子看成整体是一个解题技巧.


2.2 平 方 根
返回目录
易 ■未分类讨论导致漏解

例 若 3a-2 和 2a-3 都是一个正数的平方根,则这个

解 1)2=0,求 a+b+c的值.

八年级上册数学算术平方根知识点总结

八年级上册数学算术平方根知识点总结

八年级上册数学算术平方根知识点总结八年级上册数学算术平方根知识点总结「篇一」八年级上册数学算术平方根知识点总结算术平方根的双重非负性1.a中aR02.aR0算术平方根产生根号(即算术平方根)的产生源于正方形的对角线长度根号二,这个根号二的发现一度引起了毕达哥拉斯学派的恐慌。

因为按当时的权威解释(也就是毕达哥拉斯学派的学说),世界的一切事物都可以用有理数代表。

对于这个无理数根号二,最终人们选取了用根号来表示算术平方根举例9的平方根为9的算术平方根为3,正数的平方根都是前面加,算术平方根全部都是正数。

算术平方根辨析算术平方根和平方根是大家学习实数接触最多的概念,两者密不可分。

可对于初学者来说是对孪生杀手,很容易在解题过程中产生错误。

算术平方根和平方根到底有哪些区别与联系呢?一、两者区别1、定义不同:⑴一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根(arithmetic square root)。

⑵一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根(square root)。

这就是说,如果x2=a,那么x叫做a的平方根。

2、表示方法不同:⑴a的'算术平方根记为a ,读作根号a,a叫做被开方数(radicand)。

⑵a的平方根记为a,读作正负根号a,其中a叫做被开方数。

3、个数不同:从形式上看,二者的符号主体相似,但是一个数的平方根要在其算术平方根的前面写上。

这也正好说明了一个正数和零的算术平方根有且只有一个,而一个正数却有两个互为相反数的平方根。

零只有一个平方根二、两者联系1、前提条件相同:算术平方根和平方根存在的前提条件都是只有非负数才有算术平方根和平方根。

2、存在包容关系:平方根包含了算术平方根,因为一个正数的算术平方根只是其两个平方根中的一个。

3、0的算术平方根和平方根相同,都是0。

八年级上册数学算术平方根知识点总结「篇二」八年级上册的数学知识点总结1、 (1)比例的基本性质如果a:b=c:d,那么ad=bc,如果ad=bc,那么a:b=c:d2、 (2)合比性质如果a/b=c/d,那么(ab)/b=(cd)/d3、 (3)等比性质如果a/b=c/d==m/n(b+d++n0),那么(a+c++m)/(b+d++n)=a/b4、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例5、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例6、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边7、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例8、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似9、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)10、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似11、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)12、判定定理3 三边对应成比例,两三角形相似(SSS)13、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的.斜边和一条直角边对应成比例,那么这两个直角三角形相似14、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比15、性质定理2 相似三角形周长的比等于相似比16、性质定理3 相似三角形面积的比等于相似比的平方17、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值18、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值八年级上册数学算术平方根知识点总结「篇三」一次函数的定义一般地,形如y=kx+b(k,b是常数,且k≠0)的函数,叫做一次函数,其中x 是自变量。

初二上册数学《平方根》知识点

初二上册数学《平方根》知识点

初二上册数学《平方根》知识点平方根是数学中的一个重要概念,广泛应用于各个领域,特别是在代数、几何和物理中。

掌握平方根的概念和相关的知识,对于初中学生来说至关重要。

以下是初二上册数学《平方根》的一些重要知识点:一、什么是平方根1.定义:对于非负实数a,如果存在一个非负实数x使得x²=a,那么x就是数a的平方根。

2.平方根的表示方法:√a,读作"a的平方根"。

3.平方根的性质:非负实数a的平方根是存在且唯一的。

二、平方根的运算1.平方根的加减法:√a±√b=√(a±b)2. 平方根的乘法:√a× √b = √(ab)3.平方根的除法:√a/√b=√(a/b),其中b≠04.平方根与混合数的乘法:√(a×b)=√a×√b5.平方根的开方法则:√(a^m)=a^(m/2),其中a≥0,m为正整数三、平方运算与平方根1.平方运算和平方根的逆运算关系:√(a²)=,a,即任意实数a的平方根的平方等于a的绝对值。

2.平方根与平方运算的运算规律:a)(√a)²=a,即平方根的平方等于原来的数。

b)√(a×b)=√a×√b,即两个数的乘积的平方根等于各个因数的平方根的乘积。

c)√(a/b)=√a/√b,即两个数的商的平方根等于各个因数的平方根的商。

四、平方根的应用1.平方根的几何意义:平方根表示直角三角形的边长关系。

2.平方根的估算:使用近似值计算平方根,例如使用奇数的平方根进行估算。

3.平方根的图像表示:绘制平方根函数的图像,了解其随着自变量的变化而变化的规律。

4.平方根在实际问题中的应用:例如计算长方形的对角线长度、计算三角形的边长等。

总而言之,初二上册数学《平方根》主要包括平方根的定义、运算法则以及平方根与平方运算的逆运算关系等知识点。

掌握这些知识,可以帮助学生更好地理解和应用平方根,在解决实际问题时有更好的思路和方法。

八年级数学二次根式知识点

八年级数学二次根式知识点

八年级数学二次根式知识点在八年级数学中,二次根式是比较基础的一个知识点,也是初学者需要特别掌握的内容之一。

本文将详细介绍二次根式的定义、性质、运算方法和解题技巧,希望能够帮助大家更好地掌握这个知识点。

1. 二次根式的定义二次根式是指如下形式的算式:$\sqrt{a}$其中,a是一个非负实数,$\sqrt{a}$表示a的平方根。

例如,$\sqrt{4}$等于2,$\sqrt{9}$等于3。

2. 二次根式的性质(1)二次根式的值不超过其被开方数的值。

即,对于任意非负实数a和b,当a≥b时,有$\sqrt{a}≥\sqrt{b}$。

这是因为,平方根函数$\sqrt{x}$在x≥0的范围内是单调递增的。

(2)二次根式的值域为非负实数。

即,对于任意非负实数a,有$\sqrt{a}≥0$。

这是因为,平方根函数$\sqrt{x}$在x≥0的范围内是非负的。

(3)二次根式可以转化为分数形式。

即,对于任意非负实数a和正整数b,有$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$。

这是因为,分子、分母分别乘以$\sqrt{b}$,可以得到等式右边的形式。

3. 二次根式的运算方法(1)二次根式的加减法对于相同根式$\sqrt{a}$和$\sqrt{b}$,有:$\sqrt{a}±\sqrt{b}=\sqrt{a±b}$例如,$\sqrt{2}+\sqrt{8}=\sqrt{2}+2\sqrt{2}=3\sqrt{2}$。

(2)二次根式的乘法对于非负实数a和b,有:$\sqrt{a}·\sqrt{b}=\sqrt{ab}$例如,$\sqrt{2}·\sqrt{8}=\sqrt{16}=4$。

(3)二次根式的除法对于非负实数a和b(b≠0),有:$\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}$例如,$\frac{\sqrt{8}}{\sqrt{2}}=\sqrt{4}=2$。

平方根(知识讲解)八年级数学上册基础知识讲与练(北师大版)

平方根(知识讲解)八年级数学上册基础知识讲与练(北师大版)

专题2.1 平方根(知识讲解)【学习目标】1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根. 【要点梳理】【知识点一】算术平方根的定义如果一个正数的平方等于,即,那么这个正数叫做的算术平方根(规定0的算术平方根还是0);的算术平方根”,叫做被开方数.特别说明:0,≥0. 【知识点二】平方根的定义如果,那么叫做的平方根.求一个数的平方根的运算,叫做开平方.平方与开平方互为逆运算. (≥0)的平方根的符号表达为是的算术平方根.【知识点三】平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:2.联系:(1)平方根包含算术平方根; (2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.特别说明:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.【知识点四】平方根的性质【知识点五】平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者x a 2x a =x a a a a a a 2x a =x a a a a 0)a ≥a 0||000aa a a a a >⎧⎪===⎨⎪-<⎩()20aa =≥向左移动1位..【典型例题】类型一、求一个数的平方根1.求下列各数的算术平方根. (1)169; (2)481; (3)0.09; (4)(﹣3)2. 【答案】(1)13; (2)29; (3)0.3; (4)3 【分析】根据算术平方根的定义解答 解:(1)∵132=169,∵169的算术平方根是13, 13; (2)∵(29)2=481, ∵481的算术平方根是29,29; (3)∵0.32=0.09,∵0.09的算术平方根是0.3, =0.3; (4)∵32=9=(﹣3)2,∵(﹣3)2的算术平方根是3, 3.【点拨】此题考查了求一个数的算术平方根,正确理解算术平方根的定义是解题的关键. 【变式】 求下列各数的算术平方根: (1) 0.64 (2) 4981【答案】(1) 0.8; (2)79【分析】根据算术平方根的定义求解即可. 解:(1)因为0.82=0.64,所以0.64的算术平方根是0.8. (2)因为2749()981=,250=25= 2.5=0.25=所以4981的算术平方根是7979. 【点拨】本题考查了算术平方根,熟练掌握算术平方根的定义是解答本题的关键, 正数有一个正的算术平方根,0的平方根是0,负数没有算术平方根.类型二、利用算术平方根非负性求解2.已知223y x x =-+--,求(x +y )2022的值 【答案】1【分析】根据二次根式的性质得到2x =,计算出1x y +=-,从而计算出最终的答案.解:∵3y =∵2020x x -≥⎧⎨-≥⎩得22x x ≥⎧⎨≤⎩∵2x =∵33y ==- ∵202220222022()(23)(1)1x y +=-=-= ∵2022()1x y +=.【点拨】本题考查二次根式、幂运算的性质,解题的关键是熟练掌握二次根式、幂运算的相关知识.举一反三:【变式】 已知实数a 、b 、c |1|a +=(1) 求证:b c =;(2) 求a b c -++的平方根. 【答案】(1)见分析 (2)3±【分析】根据算术平方根的非负性,即可得证;(2)根据(1)的结论,以及非负数之和为0,求得,,a b c 的值,进而求得a b c -++的平方根.(1)证明:0≥0,0,0b c c b -≥-≥,b c ∴=;(2)解:|1|a +=b c =,10a -=,1,4a b ∴=-=, 4c b ∴==,1449a b c ∴-++=++=,9的平方根是3±.【点拨】本题考查了算术平方根的非负性,非负数之和为0,掌握非负数的性质以及算术平方根的非负性是解题的关键.类型三、求算术平方根的整数部分和分数部分3.已知21a-=3,3a﹣b+1的平方根是±4,c是113的整数部分,求a+b+2c 的平方根.【答案】±5【分析】分别根据算术平方根、平方根的意义,无理数的估算求出a、b、c的值,即可求出a+b+2c的值,根据平方根的意义即可求解.解:=3,∵2a﹣1=9,解得:a=5,∵3a﹣b+1的平方根是±4,∵15﹣b+1=16,解得:b=0,∵1011,∵c=10,∵a+b+2c=5+0+2×10=25,∵a+b+2c的平方根为±5.【点拨】本题考查了算术平方根、平方根的意义,无理数的估算,熟知算术平方根、平方根的意义是解题关键.举一反三:【变式】已知a b-1是400【答案】6a的值,进而利用算术平方根的定义得出b 的值,即可得出答案.解:∵a∵a=15,∵b-1是400的算术平方根,∵b-1=20,解得:b=21,6.【点拨】此题主要考查了估计无理数大小以及算术平方根,得出a 的值是解题关键.类型四、算术平方根相关规律问题4.先填写表,通过观察后再回答问题:(1)表格中x = ,y = ;(2)从表格中探究a∵ ;∵8.973=89.73,用含m 的代数式表示b ,则b = ;(3)a 的大小.【答案】(1)0.1,10(2)∵31.6;∵100b m =(3)当0a =a =;当1a =a =;当01a <<a ;当1a >a 【分析】(1)根据算术平方根的性质,即可求解;(2)根据题意可得当a 扩大10010倍,∵≈3.16,即可求解;∵8.973=89.73,即可求解;(3)分四种情况:当0a =时,当1a =时,当01a <<时,当1a >时,即可求解.(1)解:根据题意得:0.1,10x y ====;(2)解:根据题意得:当a 扩大10010倍,,31.6;8.973=89.73, ∵100b m =;(3)当0a =0=a =;当1a =1=a =;当01a <<时,根据a a >;当1a >时,根据a a ;综上所述,当0a =a =;当1a =a ;当01a <<a >;当1a >时,a <.【点拨】本题主要考查了算术平方根,明确题意,准确得到规律是解题的关键. 举一反三:【变式】 细心观察图,认真分析各式,然后解答问题:221+=; 221+=;221+=;⋅⋅⋅⋅⋅⋅(1)请用含n (n 为正整数)的等式表示上述交化规律:______;(2)观察总结得出结论:直角三角形两条直角边与斜边的关系,用一句话概括为:______;(3的长度;(4)若S 表示三角形面积,121OP P S S =△,232OP P S S =△,343OP P S S =△⋅⋅⋅,计算出222212310S S S S +++⋅⋅⋅+的值.【答案】(1)221+=;(2)直角边的平方和等于斜边的平方;(3)见分析;(4)554. 【分析】(1)观察已知各式,归纳总结规律即可得; (2)根据等式和图形即可得;(3)先作5OP 的垂线,再在垂线上截取561P P =,连接6OP ,可得6OP 出点7P ,连接7OP 即为所求;(4)先分别求出123,,S S S 的值,再归纳总结出一般规律得出n S 的值,从而可得10S 的值,然后代入求和即可.解:(1)观察已知各式可得,各式的变化规律为221+=故答案为:221+=;(2)结合等式和图形可得,直角三角形两条直角边与斜边的关系为:直角边的平方和等于斜边的平方故答案为:直角边的平方和等于斜边的平方;(3)先作5OP 的垂线,再在垂线上截取561P P =,连接6OP ,即可得6OP 作点7P ,连接7OP ,则7OP 即为所求,如图所示:(4)121111122OP P S S==⨯⨯==2321122OP P S S ==⨯343112OP P S S==⨯归纳类推得:1112n n n OP P S S +==⨯当10n =时,101110112OP P S S==⨯=则222222221231010()2S S S S +++⋅⋅⋅+=++++ 123104444=++++123104++++=554=. 【点拨】本题考查了算术平方根、勾股定理等知识点,读懂题意,正确归纳类推出一般规律是解题关键.类型五、算术平方根的实际应用5.如图,用两个边长为18cm 的小方形纸片拼成一个大的正方形纸片,沿着大正方形纸片的边的方向截出一个长方形纸片,能否使截得的长方形纸片的长是宽的2倍,且面积为230cm 请说明理由.【答案】不能,理由见分析【分析】根据拼图求出大正方形的边长,再根据长方形的长、宽之比为2:1,计算长方形的长与宽进行验证即可.解:不能,∵2+2=36(cm 2), ∵大正方形的边长为6cm ,设截出的长方形的长为2b cm ,宽为b cm , ∵2b 2=30,∵b∵2b =6=,∵不能截得长宽之比为2:1,且面积为30cm 2的长方形纸片.【点拨】本题考查了算术平方根的应用,理解算术平方根的意义是正确解答的关键. 举一反三:【变式】 小强同学用两个小正方形纸片做拼、剪构造大正方形游戏:(他选用的两个小正方形的面积分别为1S 、2S ).(1)如图1,121,1S S ==,拼成的大正方形1111D C B A 边长为___________; 如图2,121,4S S ==,拼成的大正方形2222A B C D 边长为___________; 如图3,121,16S S ==,拼成的大正方形3323A B C D 边长为___________.(2)若将(1)中的图3沿正方形3333A B C D 边的方向剪裁,能否剪出一个面积为14.52且长宽之比为4∵3的长方形?若能,求它的长、宽;若不能,请说明理由;【答案】(2)不能用正方形3333A B C D 纸片裁出符合要求的长方形纸片,理由见分析 【分析】(1)求出所拼成的正方形的面积,再根据算术平方根的定义进行计算即可; (2)根据题意求出其长、宽,再根据算术平方根进行验证即可.(1)解:如图1,当S 1=1,S 2=1,拼成的大正方形A 1B 1C 1D 1的面积为1+1=2,因此其边如图2,当S 1=1,S 2=4,拼成的大正方形A 2B 2C 2D 2的面积为1+4=5如图3,当S 1=1,S 2=16,拼成的大正方形A 3B 3C 3D 3的面积为1+16=17,(2)解:不能,理由如下:设长方形的长为4x ,宽为3x ,则有4x •3x =14.52, 所以x 2=1.21, 即x =1.1(x >0),因此长方形的长为4x =4.4,宽为3x =3.3, 因为(4.4)2=19.36>17,所以不能用正方形A 3B 3C 3D 3剪出一个面积为14.52且长宽之比为4:3的长方形. 【点拨】本题考查算术平方根,理解算术平方根的定义是正确解答的前提.类型六、平方根概念的理解6.已知10﹣3a 的平方根是±1,a ﹣b +2的算术平方根是2,求3a +b 的值. 【答案】10【分析】利用平方根和算术平方根的定义求得a 与b 的值,然后代入3a +b 即可. 解:∵10﹣3a 的平方根是±1,∵()21031a -=±, 解得,a =3,∵a ﹣b +2的算术平方根是 2, ∵222a b -+=, 解得,b =1,∵333110a b +=⨯+=.【点拨】本题考查了平方根和算术平方根的概念,理解掌握概念是解题的关键. 举一反三:【变式】 已知一个正数的两个不相等的平方根是6a +与29a -. (1)求a 的值及这个正数;(2)求关于x 的方程()2280ax --=的解. 【答案】(1)a =1,这个正数是49;(2)8x =± 【分析】(1)由正数的两个平方根互为相反数得到6a ++29a -=0,求解即可得到答案;(2)将a =1代入方程,根据平方根的意义得到答案即可. 解:(1)由题意得6a ++29a -=0,解得a =1,∵这个正数是2(6)49a +=;(2)将a =1代入方程()2280ax --=,得2x -64=0, 解得8x =±.【点拨】此题考查正数平方根的性质,根据平方根的定义解方程,正确理解平方根的性质是解题的关键.类型七、求一个数的平方根7.先用平方根符号表示下列各数,再求值: (1)9(2)1625【答案】(1)记为3±(2)±记为45± 【分析】(1)根据平方根的概念与性质,计算即可; (2)根据平方根的概念与性质,计算即可.(1)解:原式=3=±(2)解:原式45=±【点拨】本题考查平方根的概念与性质,一个数a 的正的平方根,用符号表示,a叫做被开方数,2叫做根指数,a 的负平方根用“表示,根指数是2时,通常略去不写.如“根号a ”,“正、负根号a ”,掌握平方根的概念与性质是解题的关键.举一反三:【变式】 求下列各数的平方根: (1)100; (2)64; (3)4964;(4)1.21.【答案】(1)±10(2)±8(3)78±(4)±1.1【分析】(1)根据2100±=(10)计算即可. (2)根据264±=(8)计算即可.(3)根据2749864±=()计算即可. (4)根据2 1.21±=( 1.1)计算即可.解:(1)∵2100±=(10),∵100的平方根是±10.(2)∵264±=(8),∵64的平方根是±8. (3)∵2749864±=() ∵4964的平方根是78±. (4)∵2 1.21±=( 1.1),∵1.21的平方根是±1.1.【点拨】本题考查了平方根即如果2x a =(a 是非负数),则称x 是a 的平方根,正确理解平方根的意义是解题的关键.类型八、求代数式的平方根8.若2x +的算术平方根是3,求34+x 的平方根.【答案】5±【分析】根据2x +的算术平方根是3,求出x 的值后,代入34+x 中,再求34+x 的平方根.解:∵2x +的算术平方根是3,∵29x +=,∵7x =,∵3425x +=,∵34+x 的平方根为5±.【点拨】本题考查了算数平方根和平方根的应用,解题的关键是:理解算数平方根和平方根的定义,易错点是容易把负的平方根丢掉.举一反三:【变式】k 是64的平方根,求m -n+k 的平方根.【答案】【分析】由互为相反数的两个数的和等于0可得:m+1=0,2-n -0,解得m=-1,n=2;由k 是64的方根,得出k=±8,再代入m 、n 、k 的值求得m -n+k 的值,求其平方根即可.解:0,又,∵m+1=0,2-n-0,∵m=-1,n=2,∵k是64的平方根,∵k=±8;当k=8时,m-n+k=-1-2+8=5,由m-n+k的平方根为当k=-8时,m-n+k=-1-2-8=-11,没有平方根;综合上述可得:m-n+k的平方根为【点拨】考查了非负数的性质和平方根的定义,解题关键掌握几个非负数的和为0时,则这几个非负数都为0.类型九、已知一个数的平方根,求这个数9.一个正数x的两个平方根是3a﹣2与4﹣a,则x是多少?【答案】25【分析】直接利用平方根的性质求解.解:依题意得,3a﹣2+4﹣a=0,∵a=﹣1,∵3a﹣2=﹣5,∵x=25.【点拨】本题考查了平方根的性质,熟练掌握一个正数有两个平方根,它们互为相反数是解题的关键.举一反三:【变式】一个正数x的两个不同的平方根分别是4a﹣1和4﹣a,求a和x的值.【答案】a和x的值分别为﹣1,25【分析】根据一个正数的两个平方根互为相反数,得到4a﹣1+(4﹣a)=0,求出a=﹣1,再根据x=(4a﹣1)2求出x即可.解:∵一个正数的两个平方根互为相反数,∵4a﹣1+(4﹣a)=0,解得a=﹣1,∵x=(4a﹣1)2=(﹣5)2=25.答:a和x的值分别为﹣1,25.【点拨】此题考查了已知一个数的平方根求参数,正确掌握一个正数的两个平方根是一对相反数的性质是解题的关键.类型十、利用平方根解方程10.阅读下列解答过程,在横线上填入恰当内容.解方程:(x-1)2=4解:∵(x-1)2=4(1)∵x-1=2(2)∵x=3(3)上述过程中有没有错误?若有,错在步骤__________(填序号)原因是____________________________________.请写出正确的解答过程.【答案】(2),正数的平方根有两个,它们互为相反数,见分析【分析】根据正数的平方根有两个,它们互为相反数,即可求解.解:上述过程中有错误,错在步骤(2),原因是:正数的平方根有两个,它们互为相反数,正确的解答过程为:解:∵(x-1)2=4∵x-1=±2∵x=3或x=-1故答案为:(2)正数的平方根有两个,它们互为相反数,【点拨】本题考查了根据平方根解方程,掌握正数的平方根有两个,它们互为相反数是解题的关键.举一反三:【变式】求下列式子中的x:(1)25(x﹣35)2=49;(2)12(x+1)2=32.【答案】(1)x1=2,x2=45(2)x1=7,x2=﹣9【分析】(1)两边同时除以25,再开平方解一元一次方程即可;(2)方程两边同时乘以2,再开平方解一元一次方程即可.(1)解:25(x﹣35)2=49,(x﹣35)2=4925,x﹣35=±75,x ﹣35=75或x ﹣35=﹣75, 解得:x 1=2,x 2=45-; (2)12(x +1)2=32,(x +1)2=32×2,(x +1)2=64,x +1=±8,x +1=8或x +1=﹣8,解得:x 1=7,x 2=﹣9.【点拨】此题考查了利用平方根定义解方程,正确理解并掌握平方根的定义是解题的关键. 类型十一、平方根的应用11.如图∵所示是一个长为2m ,宽为2n 的长方形,沿图中虚线用剪刀均分成相等的四个小长方形,然后按图∵的方式拼成一个正方形.(1)图∵中阴影部分的正方形的边长等于______________(2)请用两种不同的方法列代数式表示图∵中阴影部分的面积:方法一:________________________________________________方法二:________________________________________________(3)根据(2)直接写出22(),(),m n m n mn -+这三个代数式之间的等量关系.(4)根据(3)中的等量关系,解决如下问题:对于任意的有理数x 和y ,若9,18x y xy +==,求x y -的值.【答案】(1)m n -(2)2()m n -,2()4m n mn +-(3)22()()4m n m n mn -=+-(4)3±【分析】(1)利用小长方形的长减去宽即可得;(2)方法一:根据(1)的结论,直接利用正方形的面积公式即可得;方法二:利用大长方形的面积减去四个小长方形的面积即可得;(3)根据(2)中方法一与方法二求出的面积相等即可得;(4)先利用(3)中的等式求出2()x y -的值,再根据平方根的性质即可得.(1)解:由题意得:小长方形的长为m ,宽为n ,则图∵中阴影部分的正方形的边长等于为m n -,故答案为:m n -.(2)解:方法一:图∵中阴影部分的正方形的边长等于为m n -,则其面积为2()m n -;方法二:图∵中大正方形的边长为m n +,四个小长方形的长均为m ,宽均为n ,则图∵中阴影部分的面积为2()4m n mn +-,故答案为:2()m n -,2()4m n mn +-.(3)解:因为(2)中方法一与方法二求出的面积相等,所以22()()4m n m n mn -=+-.(4)解:9,18x y xy +==,222()()494189x y x y xy ∴-=+-=-⨯=,3x y ∴-=±.【点拨】本题考查了完全平方公式与图形面积、平方根的应用,结合图形,正确发现图∵中阴影面积的两种求解方法是解题关键.举一反三:【变式】 已知|2020|a a -=,求22020a -的值.【答案】2022【分析】根据算术平方根的非负性确定a 的范围,进而化简绝对值,在根据平方根的定义求得代数式的值.解:∵20220a -≥,∵2022a ≥.∵20200a -<,∵原式化简为2020a a -+=,2020=,∵220222020a -=,故220202022a -=.【点拨】本题考查了算术平方根的非负性,化简绝对值,平方根的定义,根据算术平方根的非负性确定a 的范围化简绝对值是解题的关键.。

八年级上册数学各章知识点总结

八年级上册数学各章知识点总结

《实数》知识点梳理及题型解析一、知识归纳(一)平方根与开平方1. 平方根的含义如果一个数的平方等于 , 那么这个数就叫做 的平方根。

即 , 叫做 的平方根。

2.平方根的性质与表示⑴表示: 正数 的平方根用 表示, 叫做正平方根, 也称为算术平方根, 叫做 的负平方根。

⑵一个正数有两个平方根: (根指数2省略) 0有一个平方根, 为0, 记作 , 负数没有平方根 ⑶平方与开平方互为逆运算⑷a 的双重非负性例: 得知⑸如果正数的小数点向右或者向左移动两位, 它的正的平方根的小数点就相应地向右或向左移动一位。

区分:4的平方根为 的平方根为 4开平方后, 得 3.计算a 的方法⎪⎪⎪⎩⎪⎪⎪⎨⎧精确到某位小数 =非完全平方类 =完全平方类 773294 *若 , 则(二)立方根和开立方1. 立方根的定义如果一个数的立方等于 , 呢么这个数叫做 的立方根, 记作 2.立方根的性质任何实数都有唯一确定的立方根。

正数的立方根是一个正数。

负数的立方根是一个负数。

0的立方根是0. 3.开立方与立方开立方: 求一个数的立方根的运算。

()a a =33a a =3333a a -=- (a 取任何数)这说明三次根号内的负号可以移到根号外面。

*0的平方根和立方根都是0本身。

(三)推广: 次方根1.如果一个数的 次方( 是大于1的整数)等于 ,这个数就叫做 的 次方根。

当为奇数时, 这个数叫做的奇次方根。

当为偶数时, 这个数叫做的偶次方根。

2.正数的偶次方根有两个:;0的偶次方根为0:;负数没有偶次方根。

正数的奇次方根为正。

0的奇次方根为0。

负数的奇次方根为负。

(四)实数1.实数: 有理数和无理数统称为实数实数的分类:①按属性分类: ②按符号分类2.实数和数轴上的点的对应关系:实数和数轴上的点一一对应, 即每一个实数都可以用数轴上的一个点表示.数轴上的每一个点都可以表示一个实数.的画法: 画边长为1的正方形的对角线在数轴上表示无理数通常有两种情况:①尺规可作的无理数, 如②尺规不可作的无理数 , 只能近似地表示, 如π, 1.010010001……思考:(1)-a2一定是负数吗?-a一定是正数吗?(2)大家都知道是一个无理数, 那么-1在哪两个整数之间?(3)的整数部分为a,小数部分为b, 则a= , b= 。

八年级数学上册平方根

八年级数学上册平方根

八年级数学上册平方根一、平方根的定义。

1. 概念。

- 如果一个数x的平方等于a,即x^2=a,那么这个数x叫做a的平方根(或二次方根)。

例如,因为(±2)^2 = 4,所以±2是4的平方根。

2. 表示方法。

- 正数a的平方根记为±√(a),读作“正负根号a”。

其中√(a)表示a的正平方根(又叫算术平方根),-√(a)表示a的负平方根。

例如,9的平方根表示为±√(9)=±3。

二、平方根的性质。

1. 正数的平方根。

- 一个正数有两个平方根,它们互为相反数。

例如25的平方根是±5,5和-5互为相反数。

2. 0的平方根。

- 0的平方根是0。

因为0^2=0,所以0只有一个平方根,就是它本身。

3. 负数的平方根。

- 在实数范围内,负数没有平方根。

因为任何实数的平方都是非负数,例如-4,不存在一个实数x,使得x^2=-4。

三、求平方根的运算。

1. 利用定义求平方根。

- 对于一些简单的数,我们可以根据平方根的定义来求。

例如求16的平方根,设x是16的平方根,则x^2=16,解得x = ±4。

2. 利用计算器求平方根。

- 对于一些比较复杂的数,如√(2)≈1.414,我们可以使用计算器来求其近似值。

在计算器上先输入被开方数,然后按下求平方根的键即可得到结果。

四、平方根在实际问题中的应用。

1. 几何问题中的应用。

- 例如,已知一个正方形的面积是25m^2,求这个正方形的边长。

设正方形的边长为x m,根据正方形面积公式S = x^2,则x^2=25,解得x=±5,因为边长不能为负,所以正方形的边长x = 5m。

这里就用到了平方根的知识来求解边长。

2. 物理等其他学科中的应用。

- 在物理学中,例如计算自由落体运动中下落的距离与时间的关系h=(1)/(2)gt^2(g是重力加速度),如果已知下落距离h,求时间t时,就可能会涉及到求解平方根的运算。

八年级上册数学-第二章-知识点复习总结

八年级上册数学-第二章-知识点复习总结

第二章:实数本章的知识网络结构:知识梳理: 知识点一:平方根如果一个数x 的平方等于a ,那么,这个数x 就叫做a 的平方根;也即,当)0(2≥=a a x 时,我们称x 是a 的平方根,记做:)0(≥±=a a x 。

因此:当a=0时,它的平方根只有一个,也就是0本身;当a >0时,也就是a 为正数时,它有两个平方根,且它们是互为相反数,通常记做:a x ±=。

当a <0时,也即a 为负数时,它不存在平方根。

例1.(1) 的平方是64,所以64的平方根是 ; (2) 的平方根是它本身。

(3)若x 的平方根是±2,则x= ;16的平方根是 (4)当x 时,x 23-有意义。

(5)一个正数的平方根分别是m 和m-4,则m 的值是多少?这个正数是多少?知识点二:算术平方根(1)如果一个正数x 的平方等于a ,即a x =2,那么,这个正数x 就叫做a 的算术平方根,记为:“a ”,读作,“根号a ”,其中,a 称为被开方数。

特别规定:0的算术平方根仍然为0。

(2)算术平方根的性质:具有双重非负性,即:)0(0≥≥a a 。

(3) 算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。

因此,算术平方根只有一个值,并且是非负数,它只表示为:a ;而平方根具有两个互为相反数的值,表示为:a ±。

例2.(1)下列说法正确的是 ( )A .1的立方根是1±;B .24±=; C.81的平方根是3±; D.0没有平方根; (2)下列各式正确的是 ( )A 、981±=B 、14.314.3-=-ππC 、3927-=-D 、235=- (3)2)3(-的算术平方根是 。

(4)若x x -+有意义,则=+1x ___________。

(5)已知△ABC 的三边分别是,,,c b a 且b a ,满足0)4(32=-+-b a ,求c 的取值范围。

北师大版八年级数学上册第二章 平方根

北师大版八年级数学上册第二章 平方根
②当x+y=0时,1-2a+3a-4=0,解得a=3,所以x=1-2×3 =-5,所以这个数为(-5)2=25.综上所述,这个数为1或25.
1.平方根的性质有哪些? 一个正数的平方根有两个; 0的平方根是0;负数没有平方根
2.同学们在计算的时候一定要注意区分平方根和算术平方根, 注意正负号.
教材习题:完成课本29页随堂练 习,习题2.4的1,2,3,4题. 作业本作业: .
有.-3,-25,-7
2.思考:
①正数有几个平方根?
②0有几个平方根?
③负数呢?
没有
2个 1个
3.平方根的概念是什么?你能说说平方根与算术平方根的区 别与联系是什么吗?
一般地,如果一个数x的平方等于a,即x2=a,那么这个数x叫做a的平方根. 联系:(1)平方根包含算术平方根,算术平方根是平方根中的一个.(2)只有非负 数才有平方根和算术平方根.(3)0的平方根是0,算术平方根也是0. 区别:(1)个数不同:一个正数有两个平方根且互为相反数,但只有一个算术平
任何
正数的平方是__正____数;0的平方是__0__;
平方 a²

幂 负数的平方是____正_____数.
1. 小组合作完成课本29页习题2.4的5题.
2.若(x+y+1)(x+y-1)=8,则x+y的值为(B )
A.3
B.±3 C.-3 D.±5
小组展示
越展越优秀
提疑惑:你有什么疑惑?
知识点1:平方根的概念(重点)
题型一 求一个数的平方59;
(3)241; (4)(-4)2.
解:(1)因为(±14)2=196,所以± 196=±14.
(2)因为±1532=12659,所以± 12659=±153.

八年级数学根号知识点

八年级数学根号知识点

八年级数学根号知识点数学是一门需要基础扎实的学科,而在数学的学习过程中,根号是一个非常重要的知识点。

在八年级的数学课程中,学习根号的知识点是非常关键的。

本文将带领大家了解八年级数学根号的知识点。

根号的定义根号是指一个数的非负平方根。

当一个数的平方等于另外一个数时,这个另外的数就可以用根号的符号来表示。

例如,√9 = 3, √16 = 4。

根号的特点根号有以下几个特点:1. 如果一个数的平方等于另外一个数,那么这两个数互为平方根。

2. 一个数不能有两个不同的实数平方根。

3. 一个正数的平方根是正数,一个负数的平方根是虚数。

4. 两个数字的和或差的平方根不一定等于它们各自的平方根之和或差。

根号的运算根号的运算主要包括加减乘除和化简。

1. 加减运算根号的加减运算要求根号内的数相同,例如,2√3 + 4√3 = 6√3。

如果根号内的数不同,只能简化不能进行加减运算。

2. 乘法运算根号的乘法运算是将两个根号中的数相乘,例如,3√5 × 2√7 =6√35。

如果根号中的数是完全平方数,则可以化简。

3. 除法运算根号的除法运算是将分子、分母两个根号中的数分别进行化简,例如,6√21 ÷ 2√3 = 3√7。

4. 化简根号的化简是将根号中的数进行分解,使得根号中的数变为最简根式形式。

一个数的最简根式是不能再继续化简的根式。

例如,√24可以化为2√6。

根号的应用根号的应用非常广泛,例如在三角函数和几何学中都有很多应用。

以下举几个例子:1. 在计算三角形的面积时,需要用到根号,如:S = 1/2 ×底 ×高,其中,三角形的底和高都是根号。

2. 在直角三角形中,可以利用勾股定理计算三角形中任意一条边的长度,如:c² = a² + b²,其中a,b是直角边,c是斜边。

3. 在圆的计算中,需要用到根号,如:圆形面积的公式为S = πr²,其中,r为圆的半径。

八年级数学数的开方

八年级数学数的开方

体抬升具有间隙性和各断层抬升速度不同,累计厚度达2000余米,是中国“四大佛教名山”之一,极端最高温度为38. 游泰山看四个奇观:泰山日出、云海玉盘、晚霞夕照、黄河金带。年平均温度为17.?[18] 年平均降雪天数为83天,盖层被风化掉了,起到“地基”作用。故称“涐眉山”。古有
民谚:“傲徕高,一直快飞拢峨眉山了,读音为“太”。成为峨眉山佛像中的精品,你们等我走了三天以后再敲钟。是道教中的重要女神,(中国佛教名山,经伏虎寺、马路桥、育贤桥,一,主要景点 顺手把斧子放在柱头的孔眼里,钱如命听说圣积寺有口几万斤重的大钟是用一皮竹篾吊的,中
例3、若x、y都是实数,且 y x 3 3 x 2 , 求x+3y的平方根。
例4、如果 M ab a b 3是a+b+3的算术平方根, N a2b3 a 2b 是a+2b的立方根,
求M-N的立方根。
例5、已知实数在数轴上的对应点如图所示,化简 a2 a b c a (b c)2
故泰山有“五岳之长”、“五岳独尊”的称誉。北断主要断于三叠系中。6毫米。地极厚,那浑厚宏亮的钟声,侵蚀残留下来的峨眉山背斜西翼的一个单面山,相对高度在200米以上,金佛是峨眉山的标志。重岩叠翠,中国南方发生了地质史上最广泛的海浸,有与泰山主峰争雄之势,向山坡下流
去。并保存有1000年以上古树崖桑、连香树、梓、柿、栲、黄心夜合、白辛树、百日青、冷杉等重要的林木种质资源。古称“岱山”、“岱宗”, 峨眉山(金顶) 第一级夷平面:分布在泰山南麓的虎门、红门、金山及黄山公路四周。峨眉山曾经历了多次构造运动,地貌特征 商务交流为主,请
则鲁,是区域内地势最高、抬升幅度最大、侵蚀切割最强的山地。 ●概况 但老和尚走得急, [16] 摆到山上岂不被冻坏了?编辑 一个白发苍苍的老汉来到了金顶卧云庵。泰山上下的气候呈垂直变化的特征十分明显。禅会稽。 唐·李白 峨眉山 流经九十九倒拐、洪椿坪、黑龙江栈道(一线

八年级开平方知识点

八年级开平方知识点

八年级开平方知识点开平方是初中数学课程中的重要知识点,也是高中数学的基础内容。

在八年级的阶段,开平方的知识点主要集中在正整数的平方根以及简单的无理数的近似值的计算上。

一、正整数的平方根正整数平方根是指一个正整数n的平方根在实数范围内的非负解,记为√n。

求正整数的平方根主要有以下两种方法:1. 试除法以求8的平方根为例,可以通过以下步骤进行试除法:(1)从个位开始,取出第一对数字,结果为2,2的平方等于4;(2)将8与4相减,得到余数4;(3)将余数4与下一对数字16合并,结果为416,当做被除数进行下一轮运算;(4)在商数后面再加上一对数0,即20,将其与目前的商数42合并,结果为420,当做新的被除数进行下一轮运算。

最终可以得到8的平方根为2√2。

试除法的精度较低,适用于整数位数较少的情况。

2. 迭代法以求8的平方根为例,迭代法的思路如下:(1)令x为一个初始值,例如x=2;(2)根据x的取值进行迭代运算,得到新的值y=(x+8/x)/2;(3)将y代入迭代公式,再次计算新的值,以此类推,直至精度满足要求。

通过迭代法可以得到8的平方根精确到小数点后若干位。

二、无理数的近似值无理数是指不能表示为两个整数的比例的实数,其平方根是一种常见的无理数。

在八年级的阶段,学生需要掌握求无理数近似值的方法。

1.小数法小数法主要适用于要求近似值精度较低的情况。

以3的平方根为例,可以通过以下步骤求得其近似值:(1)假设3的平方根为1.7;(2)进行平方运算,得到1.7的平方为2.89,与3相差很大;(3)逐渐调整1.7的值,目标是使其平方接近3,例如将1.7调整为1.8;(4)再次进行平方运算,得到1.8的平方为3.24,与3的差距较小,可以接受。

小数法的优点是简单易行,缺点是精度不高。

2.倍增法倍增法主要适用于要求近似值精度较高的情况。

以3的平方根为例,可以通过以下步骤求得其近似值:(1)假设3的平方根在1和2之间;(2)计算平方根的中间值(即1与2的平均数),得到1.5;(3)将1.5的平方与3进行比较,如果太小就将1.5作为新的下界,否则就将1.5作为新的上界,然后重复步骤(2)。

八年级数学《二次根式》知识点归纳和题型归类

八年级数学《二次根式》知识点归纳和题型归类

二次根式知识点归纳和题型归类一、知识框图二.知识要点梳理知识点一、二次根式的主要性质:1.; 2.; 3.;4. 积的算术平方根的性质:;5. 商的算术平方根的性质:.6.若,则.知识点二、二次根式的运算1.二次根式的乘除运算(1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号. (2) 注意每一步运算的算理; (3) 乘法公式的推广:(4)注意:乘、除法的运算法则要灵活运用,在实际运算中经常从等式的右边变形至等式的左边,同时还要考虑字母的取值范围,最后把运算结果化成最简二次根式.2.二次根式的加减运算 需要先把二次根式化简,然后把被开方数相同的二次根式(即同类二次根式)的系数相加减,被开方数不变。

3.二次根式的混合运算(1)明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里;(2)整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用. (3)二次根式运算结果应化简.另外,根式的分数必须写成假分数或真分数,不能写成带分数或小数. 4.简化二次根式的被开方数,主要有两个途径: ○1因式的内移:因式内移时,若,则将负号留在根号外.即:.○2因式外移时,若被开数中字母取值范围未指明时,则要进行讨论.即: 三.典型题训练一. 利用二次根式的双重非负性0≥a (a ≥0),1.下列各式中一定是二次根式的是( )。

A 、3-; B 、x ; C 、12+x ; D 、1-x 2.x 取何值时,下列各式在实数范围内有意义。

(1) (2)121+-x (3)45++x x (4)(5)(6). (7)若1)1(-=-x x x x ,则x 的取值范围是(8)若1313++=++x x x x ,则x 的取值范围是 。

3.若13-m 有意义,则m 能取的最小整数值是 ; 是一个正整数,则正整数m 的最小值是________.1213-+-x x4.当x 为何整数时,1110+-x 有最小整数值,这个最小整数值为 。

八年级上册根号知识点

八年级上册根号知识点

八年级上册根号知识点八年级上册数学课程中,根号是一个重要的概念,它是解决一些复杂数学问题的必要工具。

在本文中,我们将会探讨一些根号的基本概念和应用,以及如何在实际问题中使用根号。

什么是根号?我们可以将根号定义为一种数学符号,在数学中经常用于计算数的平方根、立方根等运算。

例如,√2就是表示2的平方根。

根号可以使数学计算更加简单和精确,让复杂的数学问题更容易被解决。

根号的基本运算法则根号运算法则与其他基本运算法则相似。

例如,如果我们需要计算√4的值,可以将它转换为4的平方,即2²。

因此,√4的值就是2。

同样的,如果我们需要计算√25的值,可以将它转换为25的平方,即5²,所以√25的值就是5。

在根号的运算中,我们还需要了解两个重要的概念: 次方和指数。

次方是指数的一种形式,表示一个数的倍数或幂次。

例如,在数学表达式2³中,3就是指数,表示2的三次方,即2×2×2=8。

指数可以表示不同的值,以进一步扩展根号的运算法则。

例如,√(2²+3²)可以计算出一个直角三角形的斜边,其中2²和3²是直角三角形两个直角边的平方和,再在其上求平方根即可得到直角三角形的斜边长。

根号的实际应用根号在现实生活中有许多实际应用。

例如,在建筑和工程学中,根号可以帮助我们计算斜率、距离、角度等等。

在电力工程中,根号可以用于计算电压和电流的关系。

在航海中,根号可以用于计算船舶在海上的位置和速度。

在解决实际问题时,我们需要学习如何将根号运算与其他数学概念相结合。

例如,在求解直角三角形的斜边时,我们需要应用勾股定理,即 a²+b²=c²,其中a和b是直角三角形两条直角边的长度,c是斜边的长度。

然后,我们需要计算√c²,即斜边的平方根,才能得出斜边的长度。

总结根号在数学中扮演着重要的角色。

根号有其基本概念和应用,通过指数和次方的概念,根号可以在数学中解决更复杂的问题,同时在实际应用中也具有广泛的应用价值。

八年级上册数学第四章知识点

八年级上册数学第四章知识点

八年级上册数学第四章知识点第四章:平方根和实数1. 平方根的定义:一个数的平方根是指能使它的平方等于这个数的数。

2. 平方根的性质:- 非负数的平方根是一个非负数。

- 0 的平方根是 0。

- 任何正数的平方根都是两个数,一个是正的,一个是负的。

3. 平方根的表示方法:- 符号√表示平方根。

- √a表示非负的平方根,即√a ≥ 0。

- -√a表示负的平方根,即-√a ≤ 0。

4. 平方根的性质:- 如果 a > b,则√a > √b 。

- 如果 a > 0 ,则√a > 0 。

- 如果 a > 1,且 a > b > 0 ,则√a > √b 。

5. 实数的定义:实数是有理数和无理数的总称。

6. 无理数:无理数是不能表示成两个整数的比例的数。

7. 无理数的表示方法:无理数可以用无窗尺寸小数或根号表示。

8. 无理数的例子:π(圆周率)、e(自然对数的底数)、√2(2 的平方根)。

9. 实数的运算性质:- 实数的加法、减法、乘法、除法仍是实数。

- 实数的加法、乘法满足交换律和结合律。

- 实数的加法和乘法满足分配律。

10. 绝对值的定义:一个实数的绝对值是它到 0 的距离。

11. 绝对值的表示方法:符号 |a| 表示 a 的绝对值。

12. 绝对值的性质:- 当 a ≥ 0 时,|a| = a。

- 当 a < 0 时,|a| = -a。

- |a * b| = |a| * |b|。

- |a + b| ≤ |a| + |b|。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册数学平方根的知识点归纳
八年级上册数学平方根的知识点归纳
平方根表示法:一个非负数a的平方根记作,读作正负根号a。

a叫被开方数。

中被开方数的取值范围:被开方数a≥0
平方根性质:①一个正数的平方根有两个,它们互为相反数。

②0的平方根是它本身0。

③负数没有平方根
开平方;求一个数的平方根的运算,叫做开平方。

平方根与算术平方根区别:
1、定义不同。

2表示方法不同。

3、个数不同。

4、取值范围不同。

联系
1、二者之间存在着从属关系。

2、存在条件相同。

3、0的算术
平方根与平方根都是0
含根号式子的意义:表示a的平方根,表示a的算术平方根,表示a的'负的平方根。

求正数a的算术平方根的方法;
完全平方数类型
①想谁的平方是数a。

②所以a的平方根是多少。

③用式子表示。

求正数a的算术平方根,只需找出平方后等于a的正数。

三个重要的非负数:
求正数a的平方根的方法;完全平方数类型
①想谁的平方是数a。

②所以a的平方根是多少。

③用式子表示=。

公式:(a≥0)∣a∣=。

相关文档
最新文档