直线一级倒立摆
(最新整理)倒立摆实验报告

的维数,若 r=n,则系统能控,能够进行极点配置。
第二步:受控系统中引入状态反馈向量 K, K k1 kn 。引入状态反
馈向量后系统特征多项式为: f (s) sI ( A BK ) sn a1sn1 an1s an
(11)
设期望特征根为 1*, 2*,, n* ,则期望特征多项式为:
==
(5) (6)
x 0 1 0 0 x 0
x
x
0 0
0 0
0 0
0
x
1
1 0
0 0 29.4 0 3
x
y
x
1 0
0 0
0 1
0 0
x
0 0
(7) (8)
(9)
2 、PID 控制器设计与调节 PID 整定说明: (1)比例(P 作用)增大,系统响应快,对提高稳态精度有益,但过大易
图 4 PID 控制器参数设计界面
1.4 PID 控制器设计
使用 SISO 界面的
添加零点和极
点,使补偿器 C 为 PID 形式。
1
KDS2 + KPS + KI
(1 + aS)(1 + bS)
GPID = KP + KIS + KDS =
S
=k∗
S
(13)
使用 SISO 界面的“Analysis”选项框中 Response to Step Command 的命 令即可查看被控对象阶跃响应曲线。通过调整 SISO 界面添加的零点,同时观察 单位阶跃输入时的闭环响应曲线,寻找合适的 P、I、D 参数。设合适的补偿器 下的根轨迹和参数以及响应曲线如图 5 和图 6:
x (x, x, ,)
一级倒立摆数学模型建立

一、直线一级倒立摆系统的数学模型1、倒立摆系统是一种复杂的非线性系统,为了简化对系统的反洗,在建立数学模型的过程中,作以下假设:1.)小车、摆杆在运动过程中都是不变得刚体;2.)皮带轮与传动带之间没有相对滑动,皮带不能拉伸变长,传动带没有抖振以及伸长的现象;3.)交流伺服电机的输入和输出之间是纯线性的关系;而且忽略不计电机的电枢绕组中的电感等动态特性;4.)将整个系统运行中的摩擦、各种阻力及机械传动间隙等不确定性忽略不计。
通过上述假设,则可以将直线一级倒立摆系统抽象成小车和均质敢组成的系统,如图1.1所示。
图1.1倒立摆系统2、各参数符号含义如下:符号含义单位数值M 小车质量kg 1.096m 摆杆质量kg 0,109b 小车摩擦系数N/m/sec 0.1l 摆杆转动轴心到杆质心的长度m 0.25I 摆杆转动惯性Kg*m²0.0034g 重力加速度N/kg 9.8x 小车的水平位置mθ摆角大小radN 小车对摆杆水平方向作用力NP 小车对摆杆竖直方向作用力NF 电动机经传动机构给小车的力Nφ摆杆与垂直向上方向的夹角rad3、采用牛顿--欧拉方法建立直线型一级倒立摆系统的数学模型。
图1.2是系统中小车和摆杆的受力分析图。
(a)小车的受力分析 (b)摆杆受力分析图1.2小车与摆杆的受力分析对小车水平方向所受的力进行受力分析,可以得到方程:N x b F x M --=⋅⋅⋅ 式(1.1)对摆杆水平方向所受的力进行受力分析并化简整理,可以得到等式:θθθθsin cos 2⋅⋅⋅⋅⋅-==ml ml x m N 式(1.2)将式(1.2)带入式(1.1)中,可以得到系统的第一个运动方程:θθθθsin cos )(2⋅⋅⋅⋅⋅⋅-+++=ml ml x b x m M F 式(1.3)对摆杆垂直方向所受的力进行受力分析并化简整理,可以得到下面等式:θθθθcos sin 2⋅⋅⋅--=ml ml mg P 式(1.4)力矩平衡方程如下:⋅⋅=--θθθI Nl Pl cos sin 式(1.5)将有关P 和N 的等式代入式(1.5)中,得到系统的第二个运动方程:θθθcos sin )(2⋅⋅⋅⋅-=++x ml mgl ml I 式(1.6)假设φ与1(单位弧度)相比很小,即φ<<1,并设θ=π+φ(φ是摆杆与垂直向上方向的夹角),可以作近似处理:φθθθ-=-==⎪⎭⎫⎝⎛s i n ,1c o s,02dt d 式(1.7)将被控对象的输入力F 用u 来表示,可以得到两个线性化后运动方程,如下 所示:⎪⎩⎪⎨⎧=-++=-+⋅⋅⋅⋅⋅⋅⋅⋅⋅u m l x b x m M x m l m glm l I φφφ)()(2式(1.8)对方程组式(1.8)进行拉氏变换,得到:⎪⎩⎪⎨⎧=Φ-++=Φ-Φ+)()()()()()()()()(22222s U s s ml s bX s s X m M s s mlX s mgl s s ml I 式(1.9)假设初始条件为零,对上述方程组的第一个方程求解,可得:)()()(22s s g ml ml I s X Φ⎥⎦⎤⎢⎣⎡-+= 式(1.10)将式(1.10)代入方程组式(1.9)中的第二个方程,可得:222222)()()()()()()(s s ml s s s g ml ml I b s s s g ml ml I m M s U Φ-Φ⎥⎦⎤⎢⎣⎡-++Φ⎥⎦⎤⎢⎣⎡-++= 式(1.11)整理,可以得到摆角的传递函数为:sq bm gl s q m gl m M s q m l I b s sqm l s U s -+-++=Φ23242)()()()( 式(1.12)式中:]))([(222l m ml I m M q -++=将倒立摆的实际参数值代入上式,得到摆角的传递函数为:ss s s s s U s 3141.28853.270883.03566.2)()(2342-++=Φ 式(1.13)同理,可以得到小车位置的传递函数:sq bm gl s q m gl m M s q m l I b s qm gls q m l I s U s X -+-++-+=23242)()()()()( 式(1.14)将实际的参数值代入,得到小车位置的传递函数为:s s s s s s U s X 3141.28853.270883.01413.238832.0)()(2342--+-= 式(1.15)在方程组(1.8)中对⋅⋅x 、⋅⋅φ求解代数方程,得到解如下:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+++++++++-==++++++++++-==⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅u Mm l m M I m l Mm l m M I m M m gl x Mm l m M I m lb u Mm l m M I m l I Mm l m M I gl m x Mm l m M I b m l I x xx 2222222222)()()()()()()()()(φφφφφ 式(1.16)设系统状态空间方程为:⎪⎩⎪⎨⎧+=+=⋅Du Cx y Bu Ax x 式(1.17)整理式(1.16),得到系统状态空间方程:u Mml m M I ml Mml m M I ml I x x Mml m M I m M mgl Mml m M I mlb Mml m M I gl m Mml m M I bml I x x ⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡++++++⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡+++++-+++++-=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡⋅⋅⋅⋅⋅⋅⋅⋅2222222222)(0)()(00)()()(010000)()()(00010φφφφ 式(1.18)u x x x y ⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⋅⋅0001000001φφφ 式(1.19)将已知的M 、m 、b 、g 、l 、I 代入式(1.18)可得状态方程u x x x x ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡⋅⋅⋅⋅⋅⋅⋅⋅3566.208832.0008285.272357.00100006293.00883.000010φφφφ 式(1.20)输出方程u x x x y ⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⋅⋅0001000001φφφ 式(1.21)。
直线一级倒立摆PID控制实验报告

直线一级倒立摆PID 控制实验一.实验目的本实验的目的是让实验者理解并掌握PID 控制的原理和方法,并应用于直线一级倒立摆的控制,PID 控制并不需要对系统进行精确的分析,因此我们采用实验的方法对系统进行控制器参数的设置。
二.实验设备1:直线一级倒立摆:直线倒立摆是在直线运动模块上装有摆体组件,直线运动模块有一个自由度,小车可以沿导轨水平运动,在小车上装载一级倒立摆。
2.PC机和运动控制卡主机箱三.实验原理经典控制理论的研究对象主要是单输入单输出的系统,控制器设计时一般需要有关被控对象的较精确模型。
PID 控制器因其结构简单,容易调节,且不需要对系统建立精确的模型,在控制上应用较广。
首先,对于倒立摆系统输出量为摆杆的角度,它的平衡位置为垂直向上的情况。
系统控制结构框图如下:图 1 直线一级倒立摆闭环系统图图中KD(s) 是控制器传递函数,G(s) 是被控对象传递函数。
考虑到输入r(s) = 0,结构图可以很容易的变换成:图 2 直线一级倒立摆闭环系统简化图该系统的输出为:其中num ——被控对象传递函数的分子项den ——被控对象传递函数的分母项numPID ——PID 控制器传递函数的分子项denPID ——PID 控制器传递函数的分母项通过分析上式就可以得到系统的各项性能。
由(3-13)可以得到摆杆角度和小车加速度的传递函数:PID 控制器的传递函数为:需仔细调节PID 控制器的参数,以得到满意的控制效果。
在控制的过程中,小车位置输出为:通过对控制量v 双重积分即可以得到小车位置。
四.仿真步骤及结果图 3 直线一级倒立摆PID 控制MATLAB 仿真模型其中PID Controller 为封装(Mask )后的PID 控制器,双击模块打开参数设置窗口 先设置PID 控制器为P 控制器,令0,0,===kd ki kp ,得到以下仿真结果图4从图4中可以看出,闭环控制系统持续振荡,周期约为0.7s 。
大学课程设计-直线一级倒立摆控制系统设计

摘要倒立摆系统是一个典型的快速、多变量、非线性、不稳定系统,对倒立摆的控制研究无论在理论上和方法上都有深远的意义。
本论文以实验室原有的直线一级倒立摆实验装置为平台,重点研究其PID控制方法,设计出相应的PID控制器,并将控制过程在MATLAB上加以仿真。
本文主要研究内容是:首先概述自动控制的发展和倒立摆系统研究的现状;介绍倒立摆系统硬件组成,对单级倒立摆模型进行建模,并分析其稳定性;研究倒立摆系统的几种控制策略,分别设计了相应的控制器,以MATLAB为基础,做了大量的仿真研究,比较了各种控制方法的效果;借助固高科技MATLAB实时控制软件实验平台;利用设计的控制方法对单级倒立摆系统进行实时控制,通过在线调整参数和突加干扰等,研究其实时性和抗千扰等性能;对本论文进行总结,对下一步研究作一些展望。
关键词:一级倒立摆,PID,MATLAB仿真目录第1章MATLAB仿真软件的应用 (9)1.1 MA TLAB的基本介绍 (9)1.2 MA TLAB的仿真 (9)1.3 控制系统的动态仿真 (10)1.4 小结 (12)第2章直线一级倒立摆系统及其数学模型 (13)2.1 系统组成 (13)2.1.1 倒立摆的组成 (14)2.1.2 电控箱 (14)2.1.3 其它部件图 (14)2.1.4 倒立摆特性 (15)2.2 模型的建立 (15)2.2.1 微分方程的推导 (16)2.2.2 传递函数 (17)2.2.3 状态空间结构方程 (18)2.2.4 实际系统模型 (20)2.2.5 采用MA TLAB语句形式进行仿真 (21)第3章直线一级倒立摆的PID控制器设计与调节 (34)3.1 PID控制器的设计 (34)3.2 PID控制器设计MA TLAB仿真 (36)结论 (41)致谢 (42)参考文献 (43)第1章 MATLAB仿真软件的应用1.1 MATLAB的基本介绍MTALAB系统由五个主要部分组成,下面分别加以介绍。
ppt直线一级倒立摆

倒立摆系统的应用领域
01
02
03
控制理论
倒立摆系统是控制理论中 常用的实验平台,用于研 究控制算法和系统稳定性 问题。
系统稳定性
倒立摆系统可以用来研究 系统的稳定性问题,例如 如何设计控制器使系统保 持稳定。
PPT直线一级倒立摆
目录
• 倒立摆系统简介 • PPT直线一级倒立摆系统模型 • PPT直线一级倒立摆系统的控制
策略 • PPT直线一级倒立摆系统的实验
研究 • PPT直线一级倒立摆系统的应用
前景和发展趋势
01
倒立摆系统简介
倒立摆系统的定义
倒立摆系统是一种具有不稳定平衡状 态的物理系统,其特点是具有一个自 由度的直线运动和一个绕垂直轴的旋 转运动。
建模与仿真
建立倒立摆系统的数学模型,通过仿真验证控制策略的有效性。
硬件实现
将控制算法嵌入到倒立摆系统的硬件中,进行实时控制。
软件实现
通过编写程序实现控制算法,通过上位机与倒立摆系统进行通信 和控制。
04
PPT直线一级倒立摆系统的 实验研究
实验目的和实验设备
实验目的
通过实验研究PPT直线一级倒立摆系 统的动态特性,分析系统的稳定性、 响应速度和抗干扰能力。
PPT直线一级倒立摆系统的原理
当摆杆受到外力作用时,会绕着摆杆的固定点进行摆动。由于上、下质量块之间 的相互作用力,使得摆杆在摆动过程中同时进行倒立摆动。
通过控制电路的控制,驱动机构可以按照指令信号进行摆动,从而实现倒立摆的 稳定控制。
PPT直线一级倒立摆系统的特点
直线一级倒立摆的牛顿—欧拉方法建模

直线一级倒立摆的牛顿—欧拉方法建模首先,我们需要定义系统的坐标和状态变量。
在这个问题中,我们可以选择将质点的位置和角度作为系统的状态。
令x表示质点的水平位置,θ表示摆杆与竖直方向的夹角。
其次,我们需要确定系统的动力学方程。
根据牛顿第二定律和欧拉定理,可以得到如下的动力学方程:m * x'' = -m * g * sin(θ) - c * x';I * θ'' = m * g * cos(θ) * L - J * θ'其中,m是质点的质量,g是重力加速度,c是摩擦系数,L是摆杆的长度,I是质点关于摆杆固定点的转动惯量,J是摆杆的转动惯量。
最后,我们可以采用数值方法来求解这个动力学方程。
牛顿-欧拉方法是一种常用的数值方法,它基于一阶泰勒级数展开近似,并使用离散时间步长来进行数值计算。
具体步骤如下:1.将时间t离散化为n个时间步长Δt的序列:t_0,t_1,...,t_n。
2.初始化系统的状态变量:x(0),θ(0),x'(0),θ'(0)。
3.对于每个时间步长i,计算状态变量的更新:a. 计算加速度:x''(i) = (1/m) * (-m * g * sin(θ(i)) - c * x'(i))θ''(i) = (1/I) * (m * g * cos(θ(i)) * L - J * θ'(i))b.使用泰勒级数展开逼近位置和速度:x(i+1)=x(i)+Δt*x'(i)+0.5*Δt^2*x''(i)θ(i+1)=θ(i)+Δt*θ'(i)+0.5*Δt^2*θ''(i)c.使用泰勒级数展开逼近速度和加速度:x'(i+1)=x'(i)+Δt*x''(i)θ'(i+1)=θ'(i)+Δt*θ''(i)d.根据实际情况对状态进行调整,如质点位置不能超过摆杆范围等。
直线一级倒立摆系统实验报告

直线一级倒立摆系统实验报告1. 实验目的:通过对直线一级倒立摆系统进行分析,掌握系统的基本原理、参数设置和控制策略;提高学生实际动手能力和科学实验能力。
2. 实验内容:(1)搭建直线一级倒立摆系统实验平台;(2)设置系统的动力学模型,采集系统的状态变量;(3)根据系统的特性设计控制策略,实现系统的稳定控制;(4)记录实验数据,并进行数据处理和分析。
3. 实验原理:直线一级倒立摆系统是一种经典的非线性控制系统,其原理和稳定性分析可以使用动力学建模方法来描述。
系统由直线弹簧、质量块、直线导轨和质量块的摆杆组成。
当摆杆处于垂直状态时,系统处于平衡状态;当摆杆被扰动后,系统进入不稳定状态,需要通过控制策略来实现其稳定控制。
在实验中,我们选取了单摆系统作为直线一级倒立摆系统的原形。
单摆系统由一个质点和一个线性弹簧组成,其状态变量为质点的位置和速度。
当质点处于平衡位置时,系统拥有稳定状态;当质点被扰动后,系统进入不稳定状态,需要通过控制策略来实现其稳定控制。
因此,我们可以使用单摆系统来研究直线一级倒立摆系统的控制策略。
4. 实验步骤:(1)搭建实验平台:搭建直线一级倒立摆系统实验平台,包括直线导轨、摆杆、质点、力传感器、位移传感器和控制电路等。
将质点放置在导轨上,并用摆杆将其固定在弹簧上。
使用力传感器和位移传感器来测量系统的状态变量。
(2)设置系统模型:对实验平台的动力学模型进行建模,将系统的状态变量与控制策略联系起来。
(3)设计控制策略:根据系统的特性设计相应的控制策略,使系统保持稳定状态。
常用的控制策略包括模型预测控制、PID控制、滑模控制等。
(4)记录实验数据:实验过程中需要记录系统的状态变量和控制参数,并进行数据处理和分析,得到实验结论。
5. 实验结果分析:通过对直线一级倒立摆系统的实验研究,我们发现系统的稳定控制需要根据其特性和实际情况来确定相应的控制策略。
在实验中,我们采用了模型预测控制策略,通过对系统的状态变量进行预测和调节,成功实现了系统的稳定控制。
直线一级倒立摆文档

0 0 1 0
0 I ml 2 ( M m) I mMl 2 B 0 ml 2 ( M m ) I mMl C I 44
带入参数得线性化后的系统参数矩阵为
1 0 0 0 0.0883167 0.629317 A 0 0 0 0 0.235655 27.8285
图. 4 Simulink 框图
图. 5 小车位置图
图. 6 摆杆与垂直方向角度图
Y轴
φ 摆杆 l F
X轴 小 X
图2
车
导轨
图 3 是将小车与摆杆分开受力分析的示意图。其中(a)图是小车的受力分析示意图, (b)图是摆杆的受力分析示意图。其中 N 和 P 分别为小车与摆杆相互作用的水平和垂直方 向的分量。执行装置的正方向由图. 2 所示的矢量方向确定。
P N F 小 (a)
图. 3 分析小车水平方向所受的合力,可以得到以下方程:
(3) (4)
cos ml 2 sin F bx ml (M m) x
分析摆杆垂直方向上的合力,可以得到下面的方程:
P mg m
即:
d2 (l cos 2 cos P mg ml
根据式(9)可得到如下的状态空间方程:
AX Bu X Y CX
其中
X x1
x2
x3
x4
T
1 0 ( I ml 2 )b 0 ( M m) I mMl 2 A 0 0 mlb 0 ( M m) I mMl 2
0 m 2l 2 g ( M m) I mMl 2 0 ( M m)mgl ( M m) I mMl 2
直线一级倒立摆系统的PID控制算法设计

摘要直线一级倒立摆由直线运动模块和一级摆体组件组成,是最常见的倒立摆之一。
设计直线一级倒立摆前,首先要应清楚直线一级倒立摆的定义及它的特性,其次用数学建模的方法建立直线一级倒立摆模型。
再次PID控制器的结构与参数设计,将直线一级倒立摆当作简单的单输入单输出系统(忽略了小车位移的控制),采用了 PID控制器设计方法进行了控制器结构设计和参数设计。
确定PID控制器主要参数KP、KI、KD,通过改变这三个参数的值,使直线一级倒立摆由开环不稳定系统变为闭环稳定系统。
直线一级倒立摆系统在PID控制器下用MATLAB进行仿真,通过改变控制器PID主要参数,使得仿真曲线更接近理论曲线。
这些便是直线一级倒立摆系统的PID控制算法设计的主要内容。
关键词:直线一级倒立摆;Matlab仿真;PID控制ABSTRACTInverted pendulum linear 1-stage stands upside down suspends is composed by the translation module and the level pendulum mass module, is most common stands upside down suspends one Front the design straight line level stands upside down suspends, first must be supposed the clear straight line level to stand upside down the definition and its characteristic which suspends, next stands upside down with mathematics modelling method establishment straight line level suspends the model. Once more the PID controller structure and the parameter design, stood upside down Inverted pendulum linear 1-stage suspends the regard simple single input list output system (to neglect car displacement control), used the PID controller design method to carry on the controller structural design and the parameter design. Determined PID controller main parameter KP, KI, KD, through change these three parameters the value, causes the straight line level to stand upside down suspends becomes the closed loop stable system by the split-ring unstable system. Inverted pendulum linear 1-stage stands upside down suspends the system to carry on the simulation under the PID controller with MATLAB, through the change controller PID main parameter, causes the simulation curve closer theoretical curve.These then are the straight line level stands upside down suspends the system the PID control algorithm design primary coverage.Keywords:Inverted pendulum linear;Matlab Simulation; PID control目录第1章绪论 (1)第2章倒立摆系统 (2)2.1 系统的组成 (3)2.1.1 倒立摆本体 (3)2.1.2 电控箱 (4)2.1.3 电机 (4)2.1.4 编码器 (4)2.1.5 控制卡 (5)2.2 系统使用说明 (5)2.2.1 直线一级摆硬件操作系统 (5)2.2.2 一级摆软件操作说明 (5)第3章自动控制及MATLAB软件介绍 (7)3.1自动控制概念 (7)3.2 自动控制系统的类型 (8)3.2.1 随机系统与自动调整系统 (8)3.2.2 线性系统和非线性系统 (9)3.2.3 连续系统和离散系统 (9)3.2.4 单输入单输出系统和多输入多输出系统 (9)3.2.5 确定系统与不确定系统 (9)3.2.6 集中参数系统和分布参数系统 (9)3.3 自动控制理论概要 (10)3.3.1 自动控制系统所要分析的问题 (10)3.3.2 自动控制系统的设计问题 (10)3.4 MATLAB实验软件 (10)3.5.1 MATLAB的基本介绍 (11)3.5.2 MATLAB程序设计基础 (12)第4章 PID控制 (13)4.1 PID控制原理 (13)4.2 数字PID控制 (14)4.2.1 位置式PID控制算法 (14)4.2.2 增量式PID控制算法 (15)4.3 常见的PID控制系统 (15)4.3.1 串级PID控制 (15)4.3.2 纯滞后系统的大林控制算法 (16)4.3.3 纯滞后系统的smith控制算法 (17)第5章直线一级倒立摆的牛顿—欧拉方法建模 (19)5.1 微分方程的推导 (19)5.2 传递函数 (21)5.3 状态方程 (21)5.4 实际系统模型 (23)5.5 采用MATLAB语句形式进行仿真 (24)第6章直线一级倒立摆控制器设计及仿真 (27)6.1 PID参数的调整 (28)6.2 PID控制回路运行 (28)6.3直线一级倒立摆PID控制器设计 (29)6.4直线一级倒立摆PID控制器设计MATLAB仿真 (32)结论 (37)参考文献 (38)致谢 (39)附录 (40)第1章绪论计算机的诞生和发展给自动控制增添了先进的工具,现代控制理论的发展,又给自动控制提供了新的理论支柱。
直线型一级倒立摆系统的控制器设计

直线型一级倒立摆系统的控制器设计引言1. 设计目的(1)熟悉直线型一级倒立摆系统(2)掌握极点配置算法(3)掌握MATLAB/simulink动态仿真技术2. 设计要求基于极点配置算法完成对于直线型一级倒立摆系统的控制器设计3. 系统说明倒立摆控制系统是一个复杂的、不稳定的、非线性系统,对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。
通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。
同时,其控制方法在军工、航天、机器人和一般工业过程领域中都有着广泛的用途,如机器人行走过程中的平衡控制、火箭发射中的垂直度控制和卫星飞行中的姿态控制等。
4. 设计任务(1)建立直线型一级倒立摆系统的状态空间表达式。
(2)对该系统的稳定性、能观性、能控性进行分析。
(3)应用极点配置法对该直线型一级倒立摆系统进行控制器设计。
(4)使用MATLAB/simulink软件验证设计结果目录设计目的........................................................................................... 2-4设计要求:. (4)系统说明:....................................................................................... 4-5设计任务........................................................................................... 5-8运行结果......................................................................................... 8-11收获与体会.. (10)参考文献 (12)1. 设计目的(1)熟悉直线型一级倒立摆系统倒立摆控制系统是一个复杂的、不稳定的、非线性系统,对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。
直线一级倒立摆实验报告

Gs KDs2 KPs KI
s
相当于给系统增加了一个位于原点的开环极点和两个位置可变的开环零点,因此 对于低阶已知数学模型的系统,根据期望的性能指标可以采用根轨迹法确定PID 参数。
2、频域法确定PID参数 对于已知频率特性曲线的系统,PID控制器相当于 给频率特性曲线增加了积分环节和一个二阶微分环节,通过调整PID参数,可以 改变PID控制器的频率特性,进而改变闭环系统的频率特性。
当摆杆被控时,小车的运动的位移也受到导轨实际长度的限制。因此,输出量除 了摆杆角度外,还有一个小车运动的位移。位移与输入量小车加速度之间的关系 为:
X (s) 1
Rs s2
控制系统结构图:
1
s2
Transfer Fcn1
Pos
3
In1 Out1
Step
s2+-29.4
Addห้องสมุดไป่ตู้
Transfer Fcn
Step 0.08
0.06
0.04
0.02
0
0
1
2
3
4
5
6
7
8
9
10
Pos.
0
-2
-4
0
1
2
3
4
5
6
7
8
9
10
Ang.
4
3
2
1
0
0
1
2
3
4
5
6
7
8
9
10
由曲线可以看出,系统角度超调量为33.6%,调整时间接近0.55秒,位移变化平 稳,角度输出稳定。故这组参数可以作为PID控制参数;
2、基于计算机MATLAB 平台进行现场倒立摆控制,绘制实验曲线; 直线一级倒立摆系统是小车在光滑的导轨上运动,小车上铰链了一根摆杆,
直线一级倒立摆建模

一、直线一级倒立摆建模根据自控原理实验书上相关资料,直线一级倒立摆在建模时,一般忽略掉系统中的一些次要因素.例如空气阻力、伺服电机的静摩擦力、系统连接处的松弛程度等,之后可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如下图所示:倒立摆系统是典型的机电一体化系统,其机械部分遵循牛顿的力学定律,其电气部分遵守电磁学的基本定理.因此,可以通过机理建模方法得到较为准确的系统数学模型,通过实际测量和实验来获取系统模型参数.无论哪种类型的倒立摆系统,都具有3个特性,即:不确定性、耦合性、开环不稳定性. 直线型倒立摆系统,是由沿直线导轨运动的小车以及一端固定于小车上的匀质长杆组成的系统. 小车可以通过传动装置由交流伺服电机驱动. 小车导轨一般有固定的行程,因而小车的运动范围是受到限制的。
虽然倒立摆的形式和结构各异,但所有的倒立摆都具有以下的特性:1) 非线性倒立摆是一个典型的非线性复杂系统,实际中可以通过线性化得到系统的近似模型,线性化处理后再进行控制。
也可以利用非线性控制理论对其进行控制。
倒立摆的非线性控制正成为一个研究的热点。
2) 不确定性主要是模型误差以及机械传动间隙,各种阻力等,实际控制中一般通过减少各种误差来降低不确定性,如通过施加预紧力减少皮带或齿轮的传动误差,利用滚珠轴承减少摩擦阻力等不确定因素。
3) 耦合性倒立摆的各级摆杆之间,以及和运动模块之间都有很强的耦合关系,在倒立摆的控制中一般都在平衡点附近进行解耦计算,忽略一些次要的耦合量。
4) 开环不稳定性倒立摆的平衡状态只有两个,即在垂直向上的状态和垂直向下的状态,其中垂直向上为绝对不稳定的平衡点,垂直向下为稳定的平衡点。
由于机构的限制,如运动模块行程限制,电机力矩限制等。
为了制造方便和降低成本,倒立摆的结构尺寸和电机功率都尽量要求最小,行程限制对倒立摆的摆起影响尤为突出,容易出现小车的撞边现象。
由此,约束限制直线型一级倒立摆系统的实际控制要求可归结为3点:(1)倒立摆小车控制过程的最大位移量不能超过小车轨道的长度;(2)为保证倒立摆能顺利起立,要求初始偏角小于20°;(3)为保证倒立摆保持倒立的平衡态,要求控制系统响应速度足够快。
一级直线倒立摆的控制策略与仿真分析

一级直线倒立摆的控制策略与仿真分析一、引言倒立摆系统是研究控制理论的一种典型的实验装置,具有成本低廉,结构简单,参数和结构易于调整的优点。
然而倒立摆系统具有高阶次、不稳定、多变量、非线性和强耦合特性,是一个绝对不稳定系统。
倒立摆实物仿真实验是控制领域中用来检验某种控制理论或方法的典型方案,它对一类不稳定系统的控制以及对深入理解反馈控制理论具有重要意义。
倒立摆系统在研究双足机器人直立行走、火箭发射过程的姿态调整和直升机飞行控制领域中有重要的现实意义,相关的科研成果已经应用到航天科技和机器人学等诸多领域。
二、一级直线倒立摆模型的建立图1 一级直线倒立摆物理模型图2 小车和摆杆的受力分析图2.1 传递函数模型图1、2是系统中小车和摆杆的受力分析图。
设小车质量为M,摆杆质量为m,小车摩擦系数为b,摆杆转动轴心到杆质心的长度为l,摆杆的转动惯量为I,根据牛顿第二定律,可以得到系统的两个运动方程:F ml ml x b x m M =-+++∙∙∙∙∙∙θθθθsin cos )(2(1)θθθcos sin )(2∙∙∙∙-=++x m l m gl m l I (2)设φπθ+=, 假设φ与1(单位是弧度)相比很小,即c <<1,则可以进行近似处理:1cos -=θ,φθ-=sin ,0)(2=dtd θ。
用u 来代表被控对象的输入力F ,线性化后两个运动方程如下:2()()I ml mgl ml x M m x b x ml uϕϕϕ∙∙∙∙∙∙∙∙∙+-=++-= (3)假设初始条件为0,对式(3)进行拉普拉斯变换得到:22222()()()()()()()()()I ml s s mgl s mlX s s M m X s s bX s s ml s s U s +Φ-Φ=++-Φ=(4)由于输出为角度φ,求解方程组的第一个方程,可以得到:mgl s ml I mls s X s -+=Φ222)()()((5)令∙∙=x v ,则有:mgls ml I mls V s -+=Φ22)()()((6) 把上式代入方程组的第二个方程,得到:)()()(])([)(])()[(222222s U s s ml s s sg ml ml I b s s s g ml ml I m M =Φ-Φ+++Φ-++(7)整理后得到传递函数:232()()()()mlss qb I ml M m mgl bmgl U s s s s q q qΦ=+++--(8) 其中])())([(22ml ml I m M q -++=。
ppt直线一级倒立摆ppt课件

-181
实验结果表明PID与频域法校正系统性
-182
能基本一致,极点配置法因为需要控制
小车位移所以调节时间略大
-183
-184 0
50
100
150
200
250
300
350
400
45046
实物控制 及调试
三种校正方法的优劣性比较
频域法校正的优点是可以很直观的表现响应与频率之间的 关系,可以直接改变低频段、中频段、高频段增益,可以 直观改变穿越频率,增加低频增益和使高频增益快速衰减。 缺点是比较麻烦,运算过程复杂。
增大积分系数有利于减小超调,减小震 荡,使系统稳定性增加,但系统静差消 除时间变长。
增大微分系数有利于加快系统响应速度, 使系统超调量减少,稳定性增加,但系 统对扰动的抑制能力减弱。
18
试凑法的简单规则
控制器设计 (PID)
19
控制器设计 (PID)
对系统模型分析后用simulink建模分析
• 原系统开环传函:
由图可知摆杆角度的单位脉冲和单位阶跃响应都是发散的得知该开环系统丌稳13系统性能分析由matlab的simulink仿真小车位移不输入量加速度的输出响应14系统性能分析单位阶跃响应和单位脉冲响应如下图所示由上图可知小车位移的单位阶跃响应和单位脉冲响应都是发散的说明该系统丌稳定15pid校正设计频域法校正设计极点配置法校正设计16控制器设计pidpid控制原理及试凑法结构框图及传函17控制器设计pid增大系统的比例系数一般将加快系统的响应在有静态误差的情况下有利于减小静差但是过大的比例系数会使系统有较大的超调甚至产生震荡使稳定性变坏
12
摆杆角度的单位脉冲响应和单位阶跃响应图如下: 系统性能分析
直线一级倒立摆的数学建模和根轨迹控制

直线一级倒立摆的数学建模和根轨迹控制直线一级倒立摆是一种基于控制理论的研究对象,它可以通过数学建模来进行分析和控制。
数学建模的过程中,需要将倒立摆的动力学方程、控制器以及传感器等元器件进行建模。
根据建模结果可以分析系统的稳定性、响应速度等特征,并为设计控制策略提供参考。
根轨迹控制是一种常用于控制系统设计的方法,它通过分析控制系统的传递函数,绘制根轨迹图来评估控制系统的稳定性和性能。
对于直线一级倒立摆,可以根据其数学模型进行传递函数分析,得出控制系统的传递函数,并绘制根轨迹图。
在根轨迹图上,可以根据根轨迹的位置来判断系统的稳定性和响应速度,从而确定控制策略并调整控制参数,以实现目标控制效果。
因此,直线一级倒立摆的数学建模和根轨迹控制在控制理论研究和工程应用中具有重要意义,可以为控制系统设计提供有效的方法和手段。
一级倒立摆

状态空间表达式为:
0 1 x x 2 0 x x x 3 0 4 0 x 1 0 m 2 gl 2 0 ( M m) J Mm l2 0 0 ( M m)m gl 0 ( M m) J Mm l2 0 0 2 x1 J ml 0 2 x 2 ( M m ) J Mm l u 1 x3 0 ml 0 x 4 2 ( M m ) J Mm l
假定倒立摆系统的参数如下 摆杆的质量: m 摆杆的长度: l 小车的质量:M 摆杆惯量: J 摆杆的质量在摆杆的中心。
l
l u (t ) Mg
mg
对于给定的角度θ 的初始条件,设计一个使倒立摆 保持在垂直位置的控制系统。此外,还要求控制系 统在每一控制过程结束时,小车返回到参考位置。 该系统对初始条件的干扰有效地做出响应(所期望 的角d θ 总为零,并且期望的小车的位置总在参考 位置上。)。
x1 y1 x x1 1 0 0 0 x 2 y x x y 0 0 1 0 3 2 3 x4
(2)分析系统的性能
1 0 0 0 0 0 0 0 I A 0 1 2 ( 2 60) 0 0 0 1 0 60 0 2 10 3 2 j 2 3
4 2 j 2 3
* 4 3 2 f ( ) 24 196 720 1600 得
f * ( ) I ( A BK ) 0.9893 k1 0 1.7667k1
x1 x x y x 1 0 0 0 1 1 2 y x x y 0 0 1 0 3 2 3 x4
直线一级倒立摆自动摆起控制实验

第5章 直线一级倒立摆自动摆起控制实验 对于直线一级倒立摆,其初始状态为静止下垂状态,为使其转化到竖直向上的状态,需要给摆杆施加力的作用。
上面的实验,我们都是采用手动的方法将摆杆提起,下面我们采用自动摆起的方法对其进行控制。
5.1 摆起的能量控制策略单个不受约束的倒立摆系统的能量为:)1(cos 212−+=⋅φφmgl J E 有:φφφφφφCos mul Sin mgl J dtdE ...−=−=⋅⋅ 其中 u ——为水平向右的控制量。
应用李亚普诺夫方法,令:2)(21ref E E V −= 则:φφCos mul E E dtdV ref .)(−−= 因此,令:φφCos E E k u ref .)(−=注意当00.=或=φφCos 时,0=u 。
另外,由于实际物理系统的限制,控制量不能太大,因此采用:⎪⎩⎪⎨⎧≤⋅−=02])[(.πθφφng Cos E E sign v ref其中,()sign 为取符号函数,g v n /max =为常数。
5.2 直线一级倒立摆摆起控制实验实时控制实验在MATALB Simulink 环境下进行,用户在实验前请仔细阅读使用手册。
z在进行MATLAB实时控制实验时,请用户检查倒立摆系统机械结构和电气接线有无危险因素存在,在保障实验安全的情况下进行实验。
实验步骤:1)在MATLAB Simulink中打开直线一级倒立摆起摆控制程序:(进入MATLAB Simulink 实时控制工具箱“Googol Education Products”打开“Inverted Pendulum\Linear Inverted Pendulum\Linear 1-Stage IP Swing-Up Control”中的“Swing-Up Control Demo)图 5-1直线一级倒立摆摆起实时控制程序2)其中“Swing-up Controller”为起摆控制模块。