初中数学动点问题解题思路
初中动点问题的方法归纳
初中动点问题的方法归纳动点问题是初中生学习数学时常遇到的难题之一。
这类问题需要学生掌握一定的解题方法和技巧才能够解决。
本文将从动点问题的基本概念、解题思路和常见解题方法等方面进行详细的归纳和总结,希望能够帮助学生更好地掌握动点问题的解题技巧。
一、动点问题的基本概念动点问题是数学中的一个重要课题,在初中数学中占据着重要的地位。
动点问题通常是指以点的运动规律为基础,通过分析和推理,确定动点在一定条件下的运动轨迹或者位置。
动点问题涉及到数学中的线性代数、平面几何等多个知识领域,对学生的逻辑思维和解决问题的能力提出了较高的要求。
动点问题的基本概念可以概括为以下几个方面:1.动点的定义:动点是指在一定条件下,按照一定的规律进行运动的点。
动点的轨迹、速度等都是动点问题的研究对象。
2.动点的运动规律:动点在其运动过程中会遵循一定的规律,这种规律可以是直线运动、曲线运动、周期性运动等。
了解动点的运动规律是解决动点问题的基础。
3.动点问题的应用:动点问题在生活和工作中有着广泛的应用,如汽车在高速公路上行驶的轨迹、射击运动中子弹的轨迹等,都可以通过动点问题进行模拟和分析。
二、动点问题的解题思路解动点问题需要遵循一定的思维逻辑和解题方法,下面将对解题思路进行详细的介绍:1.熟悉动点的运动规律:在解动点问题之前,首先需要了解动点所遵循的运动规律。
这包括动点的速度、加速度、运动轨迹等相关信息。
只有了解了动点的运动规律,才能够有针对性地解决动点问题。
2.建立数学模型:解动点问题需要建立适当的数学模型,根据动点的运动规律和条件进行建模。
这包括建立坐标系、确定参照物、建立方程等步骤,通过数学模型能够更清晰地描述动点的运动状态。
3.运用数学知识进行推理:在建立数学模型之后,需要通过数学知识进行推理和分析。
这包括运用几何知识、代数知识、函数知识等进行推导和计算,找出动点在不同条件下的位置和轨迹。
4.检验和求解:在进行推理之后,需要对所得的结果进行检验和求解,验证计算结果的正确性,并对结果进行解释和讨论,这样才能够得出准确的结论。
初中数学几何动点问题解题技巧
初中数学几何动点问题解题技巧初中数学中的几何动点问题是一个常见的考点,也是令很多学生感到头疼的问题。
然而,只要掌握了解题技巧,就能够迎刃而解。
下面,我们就一起来了解一下初中数学几何动点问题解题技巧吧!一、建立坐标系首先,我们需要建立一个适合题目的坐标系,把图形往坐标系上放。
这个坐标系可以是平面直角坐标系或极坐标系,具体是哪种坐标系,需要根据题目要求确定。
二、确定动点接下来,我们需要确定几何图形中的动点,画出动点在坐标系上的轨迹。
通常来说,轨迹可以是一个直线、一个抛物线、一个圆、一个椭圆甚至一个不规则图形等等。
三、列方程有了轨迹,我们就可以根据题目所给条件列出方程,从而解题了。
核心思想是,假设动点的坐标为(x,y),然后利用题目给出的条件,将x和y用一个或多个方程表示出来。
四、解方程列出方程后,我们就可以解方程了。
根据方程的形式不同,我们可以采用不同的方法解方程,如代入法、消元法等等。
五、验证答案最后,我们需要验证答案是否合理。
一般情况下,我们需要将求出的结果代入题目中,看看能否符合题目给出的条件。
如果符合条件,那么我们的答案就是正确的。
在解初中数学几何动点问题时,我们需要注意以下几点:1. 确定坐标系时,要选择适合题目的坐标系。
2. 在列出方程时,要注意是否有无效信息,如引入了负数、零,或者不可取的解等等。
3. 解方程时,要注意正确使用代入法、消元法等各种解法,尤其是在多解的情况下,选择符合题意的解。
4. 最后,做题要认真,润色答案要细心,保证答案的正确性。
通过以上的步骤,我们就能够迎刃而解初中数学几何动点问题,而且效率也会大大提高!。
初中数学动点问题归类及解题技巧
初中数学动点问题归类及解题技巧
初中数学的动点问题是学习者必须掌握的重要知识,其中的解题技巧也非常重要。
因此,本文将对初中数学动点问题的归类及解题技巧进行介绍,以便学习者更好地掌握此类问题。
一、初中数学动点问题的归类
1、一元一次动点问题:即求出给定点之间的距离,或求出给定点的坐标,或求出给
定点斜率等问题。
2、一元二次动点问题:即求出两个给定点之间的距离,或求出两个给定点的切线方程,或求出两个给定点的中点等问题。
3、多元一次动点问题:即求出多个给定点之间的最短距离,或求出多个给定点的重
心坐标,或求出多个给定点的平均值等问题。
二、初中数学动点问题的解题技巧
1、分解法:首先要分解出给定问题,将复杂的问题分解成简单的子问题,从而更容
易解决。
2、组合法:将多个给定点组合在一起,归纳出新的特征,从而更容易解决问题。
3、等价法:将某个问题转换成其他等价的问题,以求出更容易解决的问题。
以上就是关于初中数学动点问题的归类及解题技巧的介绍。
学习者可以根据上述知识,通过分解法、组合法和等价法等方法,更好地掌握动点问题的解题技巧,从而更快更准确
地解决此类问题。
初一动点问题解题技巧和方法
初一动点问题解题技巧和方法初一动点问题解题技巧和引言初一动点问题是初中数学中的一个重要知识点,也是初中数学解题中常见的问题类型之一。
在解决初一动点问题时,我们需要运用一些特定的技巧和方法。
本文将介绍几种常见的初一动点问题解题技巧和方法。
方法一:坐标法1.首先,我们需要给问题中的物体设定坐标系。
通常可以选择平面直角坐标系或平面极坐标系。
2.接着,根据题意,确定物体的初始位置和移动规律。
3.运用坐标变换公式,计算出物体在不同时刻的坐标。
4.根据问题要求,计算或判断物体在某个特定时刻的位置和状态。
方法二:速度法1.首先,我们需要设定物体的初始速度和加速度等关键信息。
2.根据物体的初始速度和加速度,运用运动学公式计算物体在不同时刻的速度和位移。
3.利用速度-时间图像或位移-时间图像分析问题,找出物体在某个特定时刻的位置和状态。
方法三:速度图像法1.通过绘制物体的速度-时间图像,观察图像的特点。
2.根据图像的形状,判断物体的运动状态,如匀速、匀加速、等速变速等。
3.运用速度-时间图像的面积计算方法,求解问题中的相关量。
方法四:位移图像法1.通过绘制物体的位移-时间图像,观察图像的特点。
2.根据图像的形状,判断物体的运动状态,如匀速、匀变速、反向运动等。
3.运用位移-时间图像的斜率计算方法,求解问题中的相关量。
方法五:等效距离法1.根据问题中的条件,把复杂的运动形式化简为等效距离的运动。
2.运用等效距离的运动规律,计算出物体在不同时刻的位置和状态。
3.根据问题要求,计算或判断物体在某个特定时刻的位置和状态。
方法六:代数法1.根据问题中的条件,设定物体的初始位置和移动规律。
2.利用方程组或代数方程表示物体的运动状态。
3.运用代数方法解方程组或代数方程,求解问题中的相关量。
结论初一动点问题的解题方法有很多种,本文介绍了几种常见的方法,包括坐标法、速度法、速度图像法、位移图像法、等效距离法和代数法。
在解题过程中,我们可以根据具体问题的要求选择合适的方法进行计算和分析,提高解题效率。
初中数学动点问题解题思路
∵P、Q同时同速出 ∴AP=BQ
设AP=BQ= x ,则PC=6- x , QC=6+ x
即6-x= 1(6+x)解得x=2 2
∴AP的长是2.
②用含30°角的直角三角形的性质及 等边三角形性质进行解答(在
Rt△QCP中)
∵△ABC是边长为6的等边 三角形,
∴AC=BC=6,∠C=60° 又∵∠BQD=30° ∴△QCP是含有30°角的Rt△ ∴CQ=2PC ∵P、Q同时同速出发, ∴AP=BQ ∵AP+PC+BC=2AC=12
而△APF是等边三角形, PE⊥AF,
∴AE=EF ∴BD+AE=FD+EF 又(FD+EF)+(BD+AE)=AB
=6, 即ED+ED=6
∴ ED=3为定值,即ED的 长不变
(2) 解法二:构造三角形与 △APE全等
过点Q作QF⊥AB的延长 线于点F
先证△APE≌△BQF ∴AE=BF,PE=QF 又∵∠QDF=∠PDE 再证△QDF≌△PDE ∴FD=DE ∵AB=AE+DE+BD=BF+
二、问题引入 遵义市2012年中考第26题:
• 26.如图,△ABC是边长 为6的等边三角形,P 是 AC边上一动点,由A向C 运动(与A、C不重
• 合),Q是CB延长线上一 动点,与点P同时以相同 的速度由B向CB延长线方 向运动(Q不与B重合) ,过P作PE⊥AB于E,连 接PQ交AB于D.
• (1)当∠BQD=30°时, 求AP的长;
又∵∠A=∠C=60° ∴△APE∽△CQE
利用 AE AP 即 PC CQ
x
1
x 2
x
初中动点问题解题思路
初中动点问题解题思路动点问题是初中数学中一类常见的问题类型,涉及到物体在运动中的位置、速度、加速度等概念。
在解决动点问题时,我们需要分析问题,建立模型,运用相关公式和知识进行计算。
本文将介绍初中阶段解决动点问题的一般思路和方法。
一、问题分析在解决动点问题前,首先需要仔细阅读题目,理解问题。
考虑以下几个问题:1.给出的是哪些已知条件?2.问题要求解决什么?3.题目是否提供了问题的背景和相关信息?通过分析问题,我们可以更好地理解题目,确定问题的解决方向。
二、建立模型在解决动点问题时,我们需要建立数学模型,将实际问题转化为数学问题。
常见的模型包括:1.直线运动模型:将物体在直线上的运动看作一维运动,建立位置-时间、速度-时间等图像和函数模型。
2.曲线运动模型:将物体在曲线上的运动看作二维运动,建立平面坐标系,利用位置矢量、速度矢量、加速度矢量等概念与运动相关的函数模型。
3.相对运动模型:考虑多个物体之间的相对位置和速度,建立相对运动方程。
根据题目的要求和所给的条件,选择合适的模型进行建立,并通过图像、函数等方式进行表示。
三、计算求解在建立模型后,我们需要通过计算求解问题的答案。
这需要应用相关的公式和知识。
以下是一些常见的计算方法:1.运用位移-时间函数或速度-时间函数:根据已知条件,代入相应的公式,计算所需的未知量。
例如,已知物体在直线上运动的速度和时间,可以通过位移-时间函数来计算物体的位移。
2.利用运动方程和相关公式:根据已知条件和问题要求,应用运动方程(如加速度运动方程、相对运动方程等)和相关的公式进行计算。
例如,已知物体在直线上的初速度、加速度和时间,可以利用加速度运动方程来计算物体的位移。
在计算过程中,需要注意单位的转换和精度的控制,确保计算结果的准确性。
四、解答问题计算求解后,需要将结果用合适的语言表达出来,解答问题。
在解答问题时,要注意以下几点:1.将问题翻译成数学语言:将问题所要求的答案用数学术语表示出来,确保解答的准确性和清晰度。
数轴动点问题解题技巧
数轴动点问题解题技巧数轴动点问题是初中数学中比较常见的一类问题,其解题过程需要运用数轴的基本概念和运用数学知识进行分析和推理。
本文将从以下几个方面介绍数轴动点问题的解题技巧。
一、数轴的基本概念数轴是一条直线,上面用数值表示,通常以0点为起点,向右为正方向,向左为负方向。
在解决数轴动点问题时,我们需要了解数轴上的几个重要概念:1. 点:数轴上的任意一个位置都可以称为一个点,通常用小写字母表示,如a、b、c等。
2. 线段:数轴上两个点之间的部分称为线段,通常用大写字母表示,如AB、CD等。
3. 方向:数轴上从左到右的方向称为正方向,从右到左的方向称为负方向。
4. 距离:数轴上两个点之间的距离就是它们在数轴上的距离。
例如,在数轴上A点和B点之间的距离就是AB线段的长度。
二、数轴动点问题的解题思路1. 确定起点和终点数轴动点问题通常是要求在数轴上从一个点到另一个点的距离,因此我们需要确定起点和终点。
确定起点和终点后,我们就可以通过计算它们之间的距离来解决问题。
2. 确定运动方向在确定起点和终点后,我们需要确定运动方向。
通常情况下,我们可以根据题目中的描述来确定运动方向。
如果题目中没有明确说明运动方向,我们可以根据题目中给出的数据进行分析,确定运动方向。
3. 分析运动路径在确定起点、终点和运动方向后,我们需要分析运动路径。
运动路径通常是沿着数轴上的线段进行的,因此我们需要确定数轴上的哪些点是运动路径上的点。
在分析运动路径时,我们需要考虑到运动中可能出现的转弯等情况。
4. 计算运动距离在确定起点、终点、运动方向和运动路径后,我们就可以计算运动距离了。
运动距离就是起点和终点之间的距离,可以通过计算它们之间的线段长度来得出。
三、数轴动点问题的解题技巧1. 画图解题在解决数轴动点问题时,我们可以通过画图的方式来进行分析和推理。
画图可以帮助我们更加直观地了解问题,确定起点、终点、运动方向和运动路径等。
画图时,我们可以使用纸笔或数轴工具等,以便更好地展示问题。
初中数学全等三角形中的动态问题(知识点例题解析)
初中数学全等三角形中的动态问题(知识点+例题解析)初中数学中,动点问题是学习的重、难点,在三角形、矩形等一些几何图形上,设计一个或多个动点,探究全等三角形存在性问题,该类题目具有较强的综合性。
解决动点问题常见的答题思路是:1.注意分类讨论;2.仔细探究全等三角形对应边与对应角的变化;3.利用时间表示出相应线段或边的长度,列出方程求解.【典例解析】【例1-1】(2020·周口市月考)如图,CA⊥AB,垂足为点A,AB=8,AC=4,射线BM⊥AB,垂足为点B,一动点E从A点出发以2厘米/秒的速度沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E离开点A后,运动______秒时,△DEB与△BCA全等.【例1-2】(2020·江阴市月考)已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC-CD-DA向终点A运动,设点P的运动时间为t秒,当t的值为_____秒时,△ABP和△DCE全等.A.1B.1或3C.1或7D.3或7【变式1-1】(2020·无锡市月考)如图,在△ABC中,∠ACB=90°,AC=7cm,BC=3cm,CD为AB边上的高.点E从点B出发沿直线BC以2cm/s的速度移动,过点E作BC的垂线交直线CD于点F.(1)试说明:∠A=∠BCD;(2)当点E运动多长时间时,CF=AB.请说明理由.【变式1-2】(2020·河北灵寿期末)如图,在平面直角坐标系中,O为坐标原点,A、B两点的坐标分别为A(0,m)、B(n,0),且|m﹣n﹣0,点P从A出发,以每秒1个单位的速度沿射线AO匀速运动,设点P的运动时间为t秒.(1)求OA、OB的长;(2)连接PB,设△POB的面积为S,用t的式子表示S;(3)过点P作直线AB的垂线,垂足为D,直线PD与x轴交于点E,在点P运动的过程中,是否存在这样的点P,使△EOP≌△AOB?若存在,请求出t的值;若不存在,请说明理由.【例2】(2020·惠州市月考)如图,点C在线段BD上,AB⊥BD于B,ED⊥BD于D.∠ACE=90°,且AC =5cm,CE=6cm,点P以2cm/s的速度沿A→C→E向终点E运动,同时点Q以3cm/s的速度从E开始,在线段EC上往返运动(即沿E→C→E→C→…运动),当点P到达终点时,P,Q同时停止运动.过P,Q分别作BD的垂线,垂足为M,N.设运动时间为ts,当以P,C,M为顶点的三角形与△QCN全等时,t的值为_____.【变式2-1】(2020·江阴市月考)如图,在四边形ABCD中,AD=BC=4,AB=CD,BD=6,点E从D 点出发,以每秒1个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒3个单位的速度沿C→B→C 作匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动.(1)试证明:AD∥BC.(2)在移动过程中,小芹发现当点G的运动速度取某个值时,有△DEG与△BFG全等的情况出现,请你探究当点G的运动速度取哪些值时,△DEG与△BFG全等.【变式2-2】(2020·重庆巴南月考)如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在cm s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它线段AB上以1/们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的cm s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若运动速度为x/不存在,请说明理由.【变式2-3】(2020·江苏兴化月考)如图,在△ABC中,∠ACB=90°,AC=6,BC=8.点P从点A出发,沿折线AC—CB以每秒1个单位长度的速度向终点B运动,点Q从点B出发沿折线BC—CA以每秒3个单位长度的速度向终点A运动,P、Q两点同时出发.分别过P、Q两点作PE⊥l于E,QF⊥l于F.设点P的运动时间为t(秒):(1)当P、Q两点相遇时,求t的值;(2)在整个运动过程中,求CP的长(用含t的代数式表示);(3)当△PEC与△QFC全等时,直接写出所有满足条件的CQ的长.【例3】(2020·惠州市月考)如图,在△ABC中,AB=AC=18cm,BC=10cm,∠B=∠C,AD=2BD.如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过2s后,△BPD与△CQP是否全等,请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等?(3)若点Q以(2)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?【变式3-1】(2019·山西太原月考)如图1,在长方形ABCD中,AB=CD=5cm,BC=12cm,点P从点B 出发,以2cm/s的速度沿BC向点C运动,设点P的运动时间为ts.(1)PC=___cm;(用含t的式子表示)(2)当t为何值时,△ABP≌△DCP?.(3)如图2,当点P从点B开始运动,此时点Q从点C出发,以vcm/s的速度沿CD向点D运动,是否存在这样的v值,使得某时刻△ABP与以P,Q,C为顶点的直角三角形全等?若存在,请求出v的值;若不存在,请说明理由.【变式3-2】(2020·四川成都)如图,已知四边形ABCD中,AB=12厘米,BC=8厘米,CD=14厘米,∠B=∠C,点E为线段AB的中点.如果点P在线段BC上以3厘米秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为_____厘米/秒时,能够使△BPE与以C、P、Q 三点所构成的三角形全等.【习题精练】=,BC6=,线段PQ=AB,1.(2020·江苏东台月考)如图,有一个直角三角形ABC,∠C=90°,AC10点Q在过点A且垂直于AC的射线AX上来回运动,点P从C点出发,沿射线CA以2cm/s的速度运动,问>,才能使△ABC≌△QPA全等.P点运动___________秒时(t0)2.(2020·江苏泰州月考)如图,AB =12,CA ⊥AB 于A ,DB ⊥AB 于B ,且AC =4m ,P 点从B 向A 运动,每分钟走1m ,Q 点从B 向D 运动,每分钟走2m ,P 、Q 两点同时出发,运动_______分钟后△CAP 与△PQB 全等.3.(2020·常州市月考)如图, ADC 中.∠C =90°,AC =10cm ,BC =5cm .AD ⊥AC ,AB =PQ ,P 、Q 两点分别在AC 、AD 上运动,当AQ =_____时,△ABC 才能和△APQ 全等.4.(2020·江西新余期末)如图,ABC ∆中,90ACB ∠=︒,8cm AC =,15cm BC =,点M 从A 点出发沿A C B →→路径向终点运动,终点为B 点,点N 从B 点出发沿B C A →→路径向终点运动,终点为A 点,点M 和N 分别以每秒2cm 和3cm 的运动速度同时开始运动,两点都要到达相应的终点时才能停止运动,分别过M 和N 作ME l ⊥于E ,NF l ⊥于F .设运动时间为t 秒,要使以点M ,E ,C 为顶点的三角形与以点N ,F ,C 为顶点的三角形全等,则t 的值为______.5.(2020·武城县月考)如图,已知四边形ABCD中,AB=12厘米,BC=8厘米,CD=14厘米,∠B=∠C,点E为线段AB的中点.如果点P在线段BC上以3厘米秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为多少时,能够使△BPE与以C、P、Q三点所构成的三角形全等?6.(2020·盐城市盐都区月考)如图,有一个直角△ABC,∠C=90°,AC=6,BC=3,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,问:当AP=________时,才能使以点P、A、Q 为顶点的三角形与△ABC全等.7.(2020·四川青羊期中)如图,在△ABC中,已知AB=AC,∠BAC=90°,AH是△ABC的高,AH=4cm,BC=8cm,直线CM⊥BC,动点D从点C开始沿射线CB方向以每秒3厘米的速度运动,动点E也同时从点C开始在直线CM上以每秒1厘米的速度向远离C点的方向运动,连接AD、AE,设运动时间为t(t>0)秒.(1)请直接写出CD、CE的长度(用含有t的代数式表示):CD=cm,CE=cm;(2)当t为多少时,△ABD的面积为12cm2?(3)请利用备用图探究,当t为多少时,△ABD≌△ACE?并简要说明理由.8.(2020·郑州市月考)如图,在平面直角坐标系中,O 为坐标原点A 、B 两点的坐标分别A (m ,0),B(0,n ),且|m -n -3|=0,点P 从A 出发,以每秒1个单位的速度沿射线AO 匀速运动,设点P 运动时间为t 秒.(1)求OA 、OB 的长;(2)连接PB ,若△POB 的面积不大于3且不等于0,求t 的范围;(3)过P 作直线AB 的垂线,垂足为D ,直线PD 与y 轴交于点E ,在点P 运动的过程中,是否存在这样的点P ,使△EOP ≌△AOB ?若存在,请求出t 的值;若不存在,请说明理由.9.(2020·宜兴市月考)如图,在△ABC 中,∠BAD =∠DAC ,DF ⊥AB ,DM ⊥AC ,AF =10cm ,AC =14cm ,动点E 以2cm /s 的速度从A 点向F 点运动,动点G 以1cm /s 的速度从C 点向A 点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为t .(1)求证:AF =AM ;(2)当t 取何值时,△DFE 与△DMG 全等;(3)求证:在运动过程中,不管t 取何值,都有2AED DGC S S =△△.10.(2020·江苏工业园区期末)如图①,将长方形纸片沿对角线剪成两个全等的直角三角形ABC、EDF,其中AB=8cm,BC=6cm,AC=10cm.现将△ABC和△EDF按如图②的方式摆放(点A与点D、点B与点E 分别重合).动点P从点A出发,沿AC以2cm/s的速度向点C匀速移动;同时,动点Q从点E出发,沿射线ED以acm/s(0<a<3)的速度匀速移动,连接PQ、CQ、FQ,设移动时间为ts(0≤t≤5).=3S△BQC,则a=;(1)当t=2时,S△AQF(2)当以P、C、Q为顶点的三角形与△BQC全等时,求a的值;(3)如图③,在动点P、Q出发的同时,△ABC也以3cm/s的速度沿射线ED匀速移动,当以A、P、Q为顶点的三角形与△EFQ全等时,求a与t的值.11.(2019·江苏期末)如图①,在ABC ∆中,12AB =cm ,20BC =cm ,过点C 作射线//CD AB .点M 从点B 出发,以3cm /s 的速度沿BC 匀速移动;点N 从点C 出发,以a cm /s 的速度沿CD 匀速移动.点M 、N 同时出发,当点M 到达点C 时,点M 、N 同时停止移动.连接AM 、MN ,设移动时间为t (s ).(1)点M 、N 从移动开始到停止,所用时间为s ;(2)当ABM ∆与MCN ∆全等时,①若点M 、N 的移动速度相同,求t 的值;②若点M 、N 的移动速度不同,求a 的值;(3)如图②,当点M 、N 开始移动时,点P 同时从点A 出发,以2cm /s 的速度沿AB 向点B 匀速移动,到达点B 后立刻以原速度沿BA 返回.当点M 到达点C 时,点M 、N 、P 同时停止移动.在移动的过程中,是否存在PBM ∆与MCN ∆全等的情形?若存在,求出t 的值;若不存在,说明理由.图①图②12.如图,ABC 中,90ACB ∠=︒,8AC cm =,15BC cm =,点M 从A 点出发沿A →C →B 路径向终点运动,终点为B 点,点N 从B 点出发沿B →C →A 路径向终点运动,终点为A 点,点M 和N 分别以每秒2cm 和3cm 的运动速度同时开始运动,两点都要到达相应的终点时才能停止运动,分别过M 和N 作ME l ⊥于E ,NF l ⊥于F 设运动时间为t 秒,要使以点M ,E ,C 为顶点的三角形与以点N ,F ,C 为顶点的三角形全等,则t 的值为________.13.(2019·湖北襄州)在平面直角坐标系中,点A(0,5),B(12,0),在y轴负半轴上取点E,使OA=EO,作∠CEF=∠AEB,直线CO交BA的延长线于点D.(1)根据题意,可求得OE=;(2)求证:△ADO≌△ECO;(3)动点P从E出发沿E﹣O﹣B路线运动速度为每秒1个单位,到B点处停止运动;动点Q从B出发沿B﹣O﹣E运动速度为每秒3个单位,到E点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PM⊥CD于点M,QN⊥CD于点N.问两动点运动多长时间△OPM与△OQN全等?14.(2019·福建省惠安期中)如图,在△ABC中,BC=8cm,AG∥BC,AG=8cm,点F从点B出发,沿线段BC以4cm/s的速度连续做往返运动,同时点E从点A出发沿线段AG以2cm/s的速度向终点G运动,当点E到达点G时,E、F两点同时停止运动,EF与AC交于点D,设点E的运动时间为t(秒)(1)分别写出当0≤t≤2和2<t≤4时线段BF的长度(用含t的代数式表示);(2)当BF=AE时,求t的值;(3)若△ADE≌△CDF,求所有满足条件的t值.15.(2020·无锡市月考)△ABC中,AB=AC=12厘米,∠B=∠C,BC=8厘米,点D为AB的中点.如果点P 在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q 的运动速度为_____厘米/秒,△BPD与△CQP全等.16.(2020·广东龙岗期末)直角三角形ABC中,∠ACB=90°,直线l过点C.(1)当AC=BC时,如图①,分别过点A、B作AD⊥l于点D,BE⊥l于点E.求证:△ACD≌△CBE.(2)当AC=8,BC=6时,如图②,点B与点F关于直线l对称,连接BF,CF,动点M从点A出发,以每秒1个单位长度的速度沿AC边向终点C运动,同时动点N从点F出发,以每秒3个单位的速度沿F→C→B→C→F向终点F运动,点M、N到达相应的终点时停止运动,过点M作MD⊥l于点D,过点N 作NE⊥l于点E,设运动时间为t秒.①CM=,当N在F→C路径上时,CN=.(用含t的代数式表示)②直接写出当△MDC与△CEN全等时t的值.17.(2020·青岛市黄岛区月考)如图1,直线AM AN ⊥,AB 平分MAN ∠,过点B 作BC BA ⊥交AN 于点C ;动点E 、D 同时从A 点出发,其中动点E 以2/m s 的速度沿射线AN 方向运动,动点D 以1/m s 的速度运动;已知6AC cm =,设动点D ,E 的运动时间为t .图1备用图(1)试求∠ACB 的度数;(2)当点D 在射线AM 上运动时满足ADB S :2BEC S = :3,试求点D ,E 的运动时间t 的值;(3)当动点D 在直线AM 上运动,E 在射线AN 运动过程中,是否存在某个时间t ,使得ADB 与BEC 全等?若存在,请求出时间t 的值;若不存在,请说出理由.参考答案及解析初中数学中,动点问题是学习的重、难点,在三角形、矩形等一些几何图形上,设计一个或多个动点,探究全等三角形存在性问题,该类题目具有较强的综合性。
初一线段动点问题解题技巧
初一线段动点问题解题技巧
初一线段动点问题是初中数学中的一个重要知识点,主要涉及
到线段的长度、位置等变化问题。
解题时,我们可以采用以下技巧:
1. 确定变量,首先,我们需要确定线段的两个端点的坐标,并
引入一个表示动点的变量,通常用字母表示。
例如,若线段的两个
端点分别为A(x1, y1)和B(x2, y2),动点P的坐标为(x, y),我们
就可以用变量(x, y)来表示动点P的位置。
2. 建立方程,根据题目所给条件,我们可以建立关于动点P的
方程。
例如,如果题目要求动点P到线段AB的距离为定值,我们可
以利用距离公式建立方程。
如果题目要求动点P满足某种条件,也
可以根据条件建立相应的方程。
3. 求解问题,根据建立的方程,我们可以利用代数运算、方程
组的解法等方法,求解动点P的坐标或满足条件的范围。
4. 分类讨论,有时候,线段动点问题可能会涉及到不同情况的
讨论,比如动点P在线段AB的延长线上的位置、线段AB的中点等
情况,我们需要根据具体情况进行分类讨论,分别建立方程并求解。
5. 检查答案,最后,我们需要将求得的动点坐标代入原题中,检查是否满足题意,确保答案的正确性。
总的来说,初一线段动点问题的解题技巧主要包括确定变量、建立方程、求解问题、分类讨论和检查答案等步骤。
通过灵活运用这些技巧,我们可以更好地解决线段动点问题。
初一数轴动点问题的方法归纳
初一数轴动点问题的方法归纳一、引言初一数轴动点问题是初中数学中的一个重要知识点,通过解决这类问题,可以帮助学生理解数轴上点的运动规律,培养其空间思维能力和解决实际问题的能力。
本文将从问题的分析、解题思路和方法归纳三个方面,介绍初一数轴动点问题的解法。
二、问题的分析在初一数轴动点问题中,通常给定初始位置和一个或多个移动规则,要求确定点在数轴上移动后的位置。
问题的关键在于找到移动规则与初始位置的关系,从而确定点的最终位置。
三、解题思路解决初一数轴动点问题的思路主要分为以下几步:1. 确定初始位置:根据题目给出的信息,确定点的初始位置。
初始位置可以是一个确定的点,也可以是一个范围。
2. 分析移动规则:仔细阅读题目,理解移动规则。
移动规则可以是简单的加减法运算,也可以是根据条件进行判断并作出相应的移动。
3. 确定移动次数:根据题目要求,确定点需要移动的次数。
移动次数可以是确定的,也可以是根据条件进行判断。
4. 进行移动操作:根据移动规则和移动次数,进行相应的移动操作。
根据移动操作的类型不同,可以分为直接移动、相对移动和条件移动等。
5. 确定最终位置:根据移动操作后点的位置确定最终位置。
最终位置可以是一个确定的点,也可以是一个范围。
四、方法归纳根据上述解题思路,我们可以总结出以下几种常见的方法来解决初一数轴动点问题:1. 列表法:将初始位置和移动规则按照一定的规律列成表格,根据移动次数逐步计算出点的位置。
这种方法适用于移动规则比较简单的情况。
2. 递推法:根据初始位置和移动规则,通过递推的方式计算出点的位置。
递推法适用于移动规则具有递推性质的情况。
3. 条件法:根据移动规则中的条件,判断点的移动方式,并计算出最终位置。
这种方法适用于移动规则具有条件判断的情况。
4. 图形法:将数轴和点的移动过程绘制成图形,通过观察图形来确定点的最终位置。
这种方法适用于移动规则复杂或移动次数较多的情况。
五、举例说明为了更好地理解上述方法,我们举一个具体的例子来说明:例题:小明从数轴上的位置0出发,每次可以向左或向右移动1个单位,当移动次数为偶数时向右移动,移动次数为奇数时向左移动。
动点问题求最小值的做法思路
动点问题求最小值的做法思路
1、化动为静:将动点问题转化为静态的几何问题,简化问题,使解题过程更加直观和易于操作。
这种方法适用于多种动点问题,包括但不限于求最值问题。
2、构造比例线段:在某些特定的动点问题中,通过构造比例线段来求解是最直接有效的方法。
这种方法在解决阿氏圆最值模型等题目时尤为常见。
3、利用轴对称性质:初中数学中,利用轴对称的性质可以实现“搬点移线”,从而求解几何图形中的最值问题。
这种方法依赖于基本定理,如两点之间线段最短、三角形任意两边之和大于第三边等。
4、寻找线段的“替身”或“等比替身”:在解决双动点线段问题时,找到一个与原线段长度相等或成比例的线段作为替代,是解题的关键。
这种方法有助于简化问题,找到解决问题的突破口。
5、分类讨论:当动点问题存在多种可能性时,需要进行分类讨论,以确保不遗漏任何可能的情况。
这种方法适用于那些情况复杂、可能存在多种解法的问题。
6、建立直角三角形模型:在某些情况下,通过建立直角三角形模型并利用其性质(如勾股定理)来求解是最有效的策略之一。
这种方法特别适用于涉及圆和直线的问题。
7、动态规划:虽然动态规划主要用于解决算法问题,但其思想也可以应用于某些特定的动点最值问题中。
通过定义状态、计算转移方程和确定终止条件,可以有效地求解这类问题。
初中数学重点模型14 动点在四边形中的分类讨论(基础)
专题14 动点在四边形中的分类讨论【专题说明】动点问题是中考中非常重要的一类问题,也是中考中的热点问题。
动点问题体现了数学中变化的思想,分类讨论的思想,对学生综合运用知识的能力要求非常高。
四边形中的动点问题是一类非常重要的问题,它将三角形和平行四边形、矩形、菱形、正方形结合在一起进行考察。
一、解题基本思路解决动点问题的思路,要注意以下几点:1、设出未知数动点问题一般都是求点的运动时间,通常设运动时间为t2、动点的运动路径就是线段长度题目通常会给动点的运动速度例如每秒两个单位,那么运动路程就是2t个单位。
而2t也就是这个点所运动的线段长。
进而能表示其他相关线段的长度。
所以我们在做动点问题的时候,第一步就是把图形中的线段都用含t的代数式来表示。
3、方程思想求出时间动点问题通常都是用方程来解决,根据题目找到线段之间的等量关系,然后用含有t的代数式表示出来,列出方程求解出t的值。
4、难点是找等量关系这种题的难点是找到等量关系。
这个等量关系往往不是题目中用语言叙述出来的,而是同学们根据题型自己挖掘出来的等量关系,所以对同学们图形分解的能力以及灵活运用知识的能力要求非常高。
5、注意分类讨论因为点的运动的位置不同,形成的图形就不同,符合结论的情况可能就不止一种,所以做动点问题要注意分类讨论。
【精典例题】1、如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,x ),则AP=2x cm,CM=3x cm,DN=x2cm.若BQ=x cm(0(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形;(2)当x 为何值时,以P ,Q ,M ,N 为顶点的四边形是平行四边形;(3)以P ,Q ,M ,N 为顶点的四边形能否为等腰梯形?如果能,求x 的值;如果不能,请说明理由.【解析】(1)当点P 与点N 重合或点Q 与点M 重合时,以PQ ,MN 为两边,以矩形的边(AD 或BC )的一部分为第三边可能构成一个三角形. ①当点P 与点N 重合时,(舍去).因为BQ +CM =,此时点Q 与点M 不重合.所以符合题意. ①当点Q 与点M 重合时,.此时,不符合题意.故点Q 与点M 不能重合.所以所求x 的值为.(2)由(1)知,点Q 只能在点M 的左侧,①当点P 在点N 的左侧时,由,解得. 当x =2时四边形PQMN 是平行四边形.①当点P 在点N 的右侧时,由, 解得.当x =4时四边形NQMP 是平行四边形.所以当时,以P ,Q ,M ,N 为顶点的四边形是平行四边形.(3)过点Q ,M 分别作AD 的垂线,垂足分别为点E ,F .由于2x >x ,所以点E 一定在点P 的左侧. 若以P ,Q ,M ,N 为顶点的四边形是等腰梯形, 则点F 一定在点N 的右侧,且PE =NF , 即.解得.由于当x =4时, 以P ,Q ,M ,N 为顶点的四边形是平行四边形,所以,以P ,Q ,M ,N 为顶点的四边形不能为等腰梯形2、如图1,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (1, 0)、C (3, 0)、D (3, 4).以A 为顶点的抛212220211211x x x x +==-=--由,得,34(211)20x x +=-<211x =-320,5x x x +==由得22520DN x ==>211-220(3)20(2)x x x x -+=-+120()2x x ==舍去,220(3)(2)20x x x x -+=+-1210()4x x =-=舍去,24x x ==或223x x x x -=-120()4x x ==舍去,ABDCPQ MN物线y =ax 2+bx +c 过点C .动点P 从点A 出发,沿线段AB 向点B 运动,同时动点Q 从点C 出发,沿线段CD 向点D 运动.点P 、Q 的运动速度均为每秒1个单位,运动时间为t 秒.过点P 作PE ①AB 交AC 于点E .(1)直接写出点A 的坐标,并求出抛物线的解析式;(2)过点E 作EF ①AD 于F ,交抛物线于点G ,当t 为何值时,①ACG 的面积最大?最大值为多少? (3)在动点P 、Q 运动的过程中,当t 为何值时,在矩形ABCD 内(包括边界)存在点H ,使以C 、Q 、E 、H 为顶点的四边形为菱形?请直接写出t 的值.图1 思路点拨1.把①ACG 分割成以GE 为公共底边的两个三角形,高的和等于AD . 2.用含有t 的式子把图形中能够表示的线段和点的坐标都表示出来.3.构造以C 、Q 、E 、H 为顶点的平行四边形,再用邻边相等列方程验证菱形是否存在. 满分解答(1)A (1, 4).因为抛物线的顶点为A ,设抛物线的解析式为y =a (x -1)2+4,代入点C (3, 0),可得a =-1.所以抛物线的解析式为y =-(x -1)2+4=-x 2+2x +3. (2)因为PE //BC ,所以2AP AB PE BC ==.因此1122PE AP t ==.所以点E 的横坐标为112t +. 将112x t =+代入抛物线的解析式,y =-(x -1)2+4=2144t -.所以点G 的纵坐标为2144t -.于是得到2211(4)(4)44GE t t t t =---=-+.因此22111()(2)1244ACG AGE CGE S S S GE AF DF t t t ∆∆∆=+=+=-+=--+. 所以当t =1时,①ACG 面积的最大值为1.(3)2013t =或20t =-考点伸展第(3)题的解题思路是这样的:因为FE //QC ,FE =QC ,所以四边形FECQ 是平行四边形.再构造点F 关于PE 轴对称的点H ′,那么四边形EH ′CQ 也是平行四边形.再根据FQ =CQ 列关于t 的方程,检验四边形FECQ 是否为菱形,根据EQ =CQ 列关于t 的方程,检验四边形EH ′CQ 是否为菱形.1(1,4)2E t t +-,1(1,4)2F t +,(3,)Q t ,(3,0)C .如图2,当FQ =CQ 时,FQ 2=CQ 2,因此2221(2)(4)2t t t -+-=.整理,得240800t t -+=.解得120t =-220t =+. 如图3,当EQ =CQ 时,EQ 2=CQ 2,因此2221(2)(42)2t t t -+-=.整理,得213728000t t -+=.(1320)(40)0t t --=.所以12013t =,240t =(舍去).图2 图33、如图1,在Rt①ABC 中,①C =90°,AC =6,BC =8,动点P 从点A 开始沿边AC 向点C 以每秒1个单位长度的速度运动,动点Q 从点C 开始沿边CB 向点B 以每秒2个单位长度的速度运动,过点P 作PD //BC ,交AB 于点D ,联结PQ .点P 、Q 分别从点A 、C 同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动的时间为t 秒(t ≥0).(1)直接用含t 的代数式分别表示:QB =_______,PD =_______;(2)是否存在t 的值,使四边形PDBQ 为菱形?若存在,求出t 的值;若不存在,说明理由,并探究如何改变点Q 的速度(匀速运动),使四边形PDBQ 在某一时刻为菱形,求点Q 的速度; (3)如图2,在整个运动过程中,求出线段PQ 的中点M 所经过的路径长.图1 图2思路点拨1.菱形PDBQ 必须符合两个条件,点P 在①ABC 的平分线上,PQ //AB .先求出点P 运动的时间t ,再根据PQ //AB ,对应线段成比例求CQ 的长,从而求出点Q 的速度.2.探究点M 的路径,可以先取两个极端值画线段,再验证这条线段是不是点M 的路径. 满分解答(1)QB =8-2t ,PD =43t .(2)如图3,作①ABC 的平分线交CA 于P ,过点P 作PQ //AB 交BC 于Q ,那么四边形PDBQ 是菱形.过点P 作PE ①AB ,垂足为E ,那么BE =BC =8.在Rt①ABC 中,AC =6,BC =8,所以AB =10. 在Rt①APE 中,23cos 5AE A AP t ===,所以103t =.当PQ //AB 时,CQ CP CB CA =,即106386CQ-=.解得329CQ =.所以点Q 的运动速度为3210169315÷=.(3)以C 为原点建立直角坐标系.如图4,当t =0时,PQ 的中点就是AC 的中点E (3,0). 如图5,当t =4时,PQ 的中点就是PB 的中点F (1,4). 直线EF 的解析式是y =-2x +6.如图6,PQ 的中点M 的坐标可以表示为(62t -,t ).经验证,点M (62t -,t )在直线EF 上.所以PQ 的中点M 的运动路径长就是线段EF 的长,EF =25.图3图4 图5 图6考点伸展第(3)题求点M 的运动路径还有一种通用的方法是设二次函数: 当t =2时,PQ 的中点为(2,2).设点M 的运动路径的解析式为y =ax 2+bx +c ,代入E (3,0)、F (1,4)和(2,2),得930,4,42 2.a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩解得a =0,b =-2,c =6. 所以点M 的运动路径的解析式为y =-2x +6.4、如图1,在平面直角坐标系中,抛物线y =ax 2-2ax -3a (a <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),经过点A 的直线l :y =kx +b 与y 轴负半轴交于点C ,与抛物线的另一个交点为D ,且CD =4AC .(1)直接写出点A 的坐标,并求直线l 的函数表达式(其中k 、b 用含a 的式子表示); (2)点E 是直线l 上方的抛物线上的动点,若①ACE 的面积的最大值为54,求a 的值; (3)设P 是抛物线的对称轴上的一点,点Q 在抛物线上,以点A 、D 、P 、Q 为顶点的四边形能否成为矩形?若能,求出点P 的坐标;若不能,请说明理由.图1 备用图 思路点拨1.过点E 作x 轴的垂线交AD 于F ,那么①AEF 与①CEF 是共底的两个三角形.2.以AD 为分类标准讨论矩形,当AD 为边时,AD 与QP 平行且相等,对角线AP =QD ;当AD 为对角线时,AD 与PQ 互相平分且相等.满分解答(1)由y=ax2-2ax-3a=a(x+1)(x-3),得A(-1, 0).由CD=4AC,得x D=4.所以D(4, 5a).由A(-1, 0)、D(4, 5a),得直线l的函数表达式为y=ax+a.(2)如图1,过点E作x轴的垂线交AD于F.设E(x, ax2-2ax-3a),F(x, ax+a),那么EF=y E-y F=ax2-3ax-4a.由S①ACE=S①AEF-S①CEF=11()() 22E A E C EF x x EF x x---=1()2C AEF x x-=21(34)2ax ax a--=21325()228a x a--,得①ACE的面积的最大值为258a-.解方程25584a-=,得25a=-.(3)已知A(-1, 0)、D(4, 5a),x P=1,以AD为分类标准,分两种情况讨论:①如图2,如果AD为矩形的边,那么AD//QP,AD=QP,对角线AP=QD.由x D-x A=x P-x Q,得x Q=-4.当x=-4时,y=a(x+1)(x-3)=21a.所以Q(-4, 21a).由y D-y A=y P-y Q,得y P=26a.所以P(1, 26a).由AP2=QD2,得22+(26a)2=82+(16a)2.整理,得7a2=1.所以a=P(1,.①如图3,如果AD为矩形的对角线,那么AD与PQ互相平分且相等.由x D+x A=x P+x Q,得x Q=2.所以Q(2,-3a).由y D+y A=y P+y Q,得y P=8a.所以P(1, 8a).由AD2=PQ2,得52+(5a)2=12+(11a)2.整理,得4a2=1.所以12a=-.此时P(14)-,.图1 图2 图3考点伸展第(3)题也可以这样解.设P(1,n).①如图2,当AD时矩形的边时,①QPD=90°,所以AM DNMD NP=,即5553a na-=-.解得235ana+=.所以P235(1,)aa+.所以Q3(4,)a-.将Q3(4,)a-代入y=a(x+1)(x-3),得321aa=.所以a=.①如图3,当AD为矩形的对角线时,先求得Q(2,-3a).由①AQD=90°,得AG QKGQ KD=,即32335aa a-=--.解得12a=-.5、如图1,已知抛物线C:y=-x2+bx+c经过A(-3,0)和B(0, 3)两点.将这条抛物线的顶点记为M,它的对称轴与x轴的交点记为N.(1)求抛物线C的表达式;(2)求点M的坐标;(3)将抛物线C平移到抛物线C′,抛物线C′的顶点记为M′,它的对称轴与x轴的交点记为N′.如果以点M、N、M′、N′为顶点的四边形是面积为16的平行四边形,那么应将抛物线C怎样平移?为什么?图1思路点拨1.抛物线在平移的过程中,M′N′与MN保持平行,当M′N′=MN=4时,以点M、N、M′、N′为顶点的四边形就是平行四边形.2.平行四边形的面积为16,底边MN=4,那么高NN′=4.3.M′N′=4分两种情况:点M′在点N′的上方和下方.4.NN′=4分两种情况:点N′在点N的右侧和左侧.满分解答(1)将A (-3,0)、B (0, 3)分别代入y =-x 2+bx +c ,得 930,3.b c c --+=⎧⎨=⎩解得b =-2,c =3. 所以抛物线C 的表达式为y =-x 2-2x +3.(2)由y =-x 2-2x +3=-(x +1)2+4,得顶点M 的坐标为(-1,4).(3)抛物线在平移过程中,M′N′与MN 保持平行,当M′N′=MN =4时,以点M 、N 、M ′、N ′为顶点的四边形就是平行四边形.因为平行四边形的面积为16,所以MN 边对应的高NN′=4.那么以点M 、N 、M ′、N ′为顶点的平行四边形有4种情况:抛物线C 直接向右平移4个单位得到平行四边形MNN ′M ′(如图2); 抛物线C 直接向左平移4个单位得到平行四边形MNN ′M ′(如图2);抛物线C 先向右平移4个单位,再向下平移8个单位得到平行四边形MNM ′N ′(如图3); 抛物线C 先向左平移4个单位,再向下平移8个单位得到平行四边形MNM ′N ′(如图3).图2 图3考点伸展本题的抛物线C 向右平移m 个单位,两条抛物线的交点为D ,那么①MM ′D 的面积S 关于m 有怎样的函数关系?如图4,①MM ′D 是等腰三角形,由M (-1,4)、M ′(-1+m , 4),可得点D 的横坐标为22m -. 将22m x -=代入y =-(x +1)2+4,得244m y =-+.所以DH =244m -.所以S =2311(4)2248m m m m -=-.图4。
七年级数轴上的动点问题解题思路
七年级数轴上的动点问题解题思路一、问题引入数轴是初中数学中常见的一个概念,它不仅仅是一个简单的线段,更是表示数值大小和位置的重要工具。
而在数轴上,经常会涉及到动点问题,即数轴上某个点的位置随着时间的推移而发生变化。
这类问题在初中数学教学中占有重要地位,有着丰富的解题思路和方法。
本文就将围绕着七年级数轴上的动点问题展开讨论,提出一些解题思路,帮助同学们更好地理解和掌握这一知识点。
二、基础知识回顾在开始讨论解题思路之前,我们先来回顾一下与数轴相关的一些基础知识。
我们要明确数轴的正方向和零点的位置,以及数轴上表示数值大小的方法。
我们要熟悉数轴上的加法和减法运算,包括正数和负数的加减法。
我们需要理解数轴上各个点的坐标表示,以及点的位置随时间变化的规律。
三、动点问题的解题思路1. 明确问题要求在解决动点问题时,首先要明确问题的要求,即问题中涉及到的动点随时间的变化规律以及在特定时刻的位置。
这一步骤是解题的基础,也是理解问题的关键所在。
2. 建立坐标系在明确问题要求之后,我们需要建立相应的坐标系,将动点的位置用坐标表示出来。
通常情况下,我们会选择直角坐标系或数轴坐标系,具体根据问题的特点来确定。
建立坐标系之后,我们就可以更清晰地描述动点的位置和运动轨迹了。
3. 分析动点的运动规律动点在数轴上的运动是有规律的,我们需要根据问题中给出的条件,分析动点的运动规律和变化趋势。
这样可以为接下来的解题提供重要线索,帮助我们更好地理解问题和找到解题思路。
4. 列方程解题在分析动点的运动规律之后,我们可以利用代数的方法来解题。
通过建立数学模型,列出动点的运动方程或方程组,然后利用相关的数学知识和技巧,解出动点的位置和运动轨迹等信息。
这种方法在解决一些复杂的动点问题时特别有用。
5. 借助图形解题除了代数方法,我们还可以借助图形的方式来解题。
通过在数轴上绘制动点的轨迹图或运动图,我们可以直观地理解动点的运动规律和位置变化,从而更容易找到解题的突破口。
初中数学动点求解技巧
初中数学动点求解技巧初中数学中,动点求解是一个重要的数学题型,涉及到点的运动、位置的变化以及速度、加速度等概念。
掌握了动点求解技巧,可以帮助我们更好地理解和应用数学知识。
下面就给大家介绍一些初中数学动点求解的常用技巧。
一、设未知量法在动点求解中,我们通常需要找到若干个未知量,通过列方程来求解。
为了简化问题,我们可以通过设未知量的方法来解决。
设未知量法是一种常见的解题技巧。
例如,有一个动点从A点出发,向右运动t小时到达B 点,再向右运动2t小时到达C点,设AB的距离为x,BC 的距离为y,可以设A点的位置为0,B点的位置为x,C 点的位置为x+y。
通过设未知量,我们可以得到方程:x=vt,y=(vt)(2t),其中,v表示点的速度。
二、位置函数法在动点求解中,常常涉及到点的位置随时间变化的函数关系。
这时我们可以通过建立位置函数来解决问题。
例如,一个点从原点出发,以每秒5米的速度向右移动,可以建立位置函数x=5t。
其中,x表示点的位置,t表示时间。
通过位置函数,我们可以求出点的位置随时间变化的规律,进而解决问题。
三、基于速度关系的求解在动点求解中,常常会涉及到点的速度、加速度等相关概念。
利用这些概念的关系,我们可以解决一些问题。
例如,A、B两点相距100米,一个动点从A点出发,以每秒5米的速度向右移动,另一个点从B点以每秒3米的速度向左移动,问两点相遇需要多少时间。
解:设两点相遇所需的时间为t秒,由速度关系可知:5t+3t=100,解得t=10秒。
通过速度关系,我们可以利用相关方程求解未知量,从而解决问题。
四、基于图形的分析在动点求解中,问题常常与图形联系在一起。
通过观察图形、分析特点,我们可以得到一些有用的信息,进而解决问题。
例如,一个动点以匀速直线运动,它在第1秒行驶的路径长度是10米,第2秒是13米,第3秒是16米,如此类推,问它10秒行驶的路径长度是多少。
解:通过观察可知,点的路径长度是逐渐增加的,且增量是递增的。
初一数轴上的动点问题解题技巧
初一数轴上的动点问题解题技巧
数轴上的动点问题是一种常见的数学问题,通常涉及到在数轴上找到两个点,它们的相对位置随时间变化。
这种问题在初中数学中很常见,下面介绍一些解题技巧。
1. 确定动点的位置和时间
要解决这个问题,我们需要知道动点的位置和时间。
通常情况下,我们会选择一个初始位置,然后随着时间的推移,选择一个更新的位置。
在时间轴上,我们可以使用箭头来表示动点的运动方向。
2. 确定动点的性质
在解决数轴上的动点问题时,我们需要考虑动点的性质。
例如,我们可以确定动点是否在数轴上移动,是否为零度或最大度数。
我们还可以确定动点是否以某种方式旋转或缩放。
3. 选择合适的方法
在解决数轴上的动点问题时,我们可以选择多种方法。
例如,我们可以使用代数方法,使用几何方法,或使用平均值方法。
我们需要根据问题的特点选择最合适的方法。
4. 特殊情况的处理
在解决数轴上的动点问题时,我们还需要考虑一些特殊情况。
例如,当动点为零时,我们可能需要特殊处理。
当动点在数轴上为最大或最小值时,我们也需要特殊处理。
5. 结论和拓展
综上所述,解决数轴上的动点问题需要确定动点的位置和时间,考虑动点的
性质,选择合适的方法,并考虑一些特殊情况。
通过这些方法,我们可以找到两个点之间的相对位置关系。
初一数学动点问题归类及解题技巧
初一数学动点问题归类及解题技巧下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、问题归类动点问题是初中数学中常见的一类问题,主要涉及到物体的移动、时间、速度等概念。
初中动点问题解题思路
初中动点问题解题思路动点问题是初中数学中的一个重要内容,也是初步接触物理概念和解题思路的一部分。
在解动点问题时,我们需要运用物理知识和数学方法,通过建立方程、利用图像和数据进行计算,最终得出问题的解答。
本文将介绍初中动点问题的解题思路,并提供一些实例来帮助读者更好地理解。
一、动点问题的基本概念在解动点问题之前,首先需要了解动点的基本概念。
动点是指在物理空间中由于某种原因发生运动的点,可以是质点、物体的质心或其他具有一定质量和形状的点。
动点问题主要涉及到速度、加速度、位移等概念,需要根据题目给出的条件进行分析和求解。
二、解题思路及步骤解动点问题的思路可以分为以下几个步骤:1. 理清问题条件对于给定的动点问题,首先要仔细阅读题目,理解问题所描述的场景和相关条件。
这包括动点的起始位置、速度、加速度等信息。
在理清问题条件后,可以开始建立模型进行计算。
2. 绘制坐标系根据题目所给信息,绘制合适的坐标系,以便更好地理解问题和表达计算过程。
常用的坐标系包括x轴和y轴,可以选择适合情况的坐标轴方向。
3. 建立方程利用物理公式和数学关系,建立与问题相关的方程。
根据问题条件,可以利用运动学公式求解动点的速度、加速度和位移。
在建立方程时,可以选择矢量表达式或分量表达式,以适应问题的特点。
4. 进行计算和求解根据建立的方程,进行数值计算和代数求解。
将条件数据代入方程中,进行计算和化简,最终得出问题的解答。
在计算过程中,需要注意单位的转换和精确性,确保计算结果的准确性和可靠性。
5. 检查和分析结果完成计算后,要仔细检查答案是否与问题要求一致。
同时,对计算结果进行分析,理解结果的物理意义和数学含义。
如果答案不符合实际情况,可以检查计算过程是否有误,并及时进行修正。
三、实例分析为了更好地理解动点问题的解题思路,下面以一个实例进行分析。
【实例】一辆汽车以10 m/s的速度匀速行驶,行驶20 s后司机发现有障碍物,需要紧急刹车。
八年级数学动点问题解题技巧
八年级数学动点问题解题技巧
动点问题是初中数学中常见的问题,这类问题通常涉及到图形和点的运动,需要我们运用几何和代数知识来解决。
以下是一些解决动点问题的基本技巧:
1.建立坐标系:对于涉及运动的点,一个有效的方法是使用坐标系
来表示它们的位置。
这有助于将问题转化为数学表达式,从而更容易地找到解决方案。
2.确定关键点:在解决动点问题时,确定关键点(如起点、终点、
转折点等)的位置非常重要。
这些点的位置通常决定了整个问题的解决方向。
3.运用速度、时间、距离关系:在动点问题中,速度、时间和距离
之间的关系是非常重要的。
这些关系可以帮助我们理解点的运动轨迹和方向。
4.运用函数关系:在许多情况下,点的运动可以用函数来表示,如
一次函数、二次函数等。
这有助于我们预测点的未来位置和运动轨迹。
5.运用几何知识:解决动点问题时,几何知识如平行线、垂直线、
角等是非常有用的。
这些知识可以帮助我们理解点的运动规律和轨迹。
6.逻辑推理:在解决动点问题时,逻辑推理是非常重要的。
我们需
要根据已知条件和信息,推断出未知的信息和结果。
7.数形结合:数形结合是解决动点问题的常用方法。
通过将数学表
达式和图形结合起来,我们可以更直观地理解问题的本质和解决方案。
8.反复练习:解决动点问题需要大量的练习和经验积累。
只有通过
反复练习,我们才能熟练掌握解决这类问题的方法和技巧。
以上是解决八年级数学动点问题的一些基本技巧。
希望对你有所帮助!。
七年级数轴动点问题解题技巧
七年级数轴动点问题解题技巧
数轴上的动点问题一直以来是初中数学中的重点和难点。
这类问题往往涉及到数轴上的移动、速度、距离等概念,需要学生灵活运用数学知识进行解决。
下面我们将从几个方面探讨七年级数轴动点问题的解题技巧。
一、明确问题背景和要求
在解决数轴动点问题时,首先需要明确题目的问题背景和要求。
动点问题常常涉及到速度、时间、距离等物理量的变化,因此我们需要先理解这些概念,并能够将问题抽象为数学模型。
二、画图分析
在解决数轴动点问题时,画图分析是非常重要的。
通过画图可以将抽象的问题具体化,帮助学生更好地理解题意。
在画图时,需要注意以下几点:
1. 确定原点和其他关键点的位置;
2. 标明速度方向和大小;
3. 画出运动轨迹和时间轴;
4. 标注已知量和未知量。
三、运用数学公式解决问题
在解决数轴动点问题时,需要运用数学公式进行计算。
常用的数学公式包括距离公式、速度公式等。
在运用公式时,需要注意以下几点:
1. 确定公式中的变量和参数;
2. 正确代入已知量进行计算;
3. 注意单位的统一;
4. 计算时要仔细认真,避免出现计算错误。
四、验证答案
在得出答案后,需要验证答案的正确性。
可以通过代入原题进行检验,或者使用其他方法进行验证。
如果答案不正确,需要仔细检查解题过程中存在的问题,并进行修正。
综上所述,七年级数轴动点问题的解题技巧包括明确问题背景和要求、画图分析、运用数学公式解决问题以及验证答案。
通过这些技巧的应用,可以帮助学生更好地解决数轴动点问题,提高数学素养和应用能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 1 ∴BD=DF=FA= AB= 6 3 3 =2,
∴AP=2.
解法三:用相似三角形知识进 行解答
∵P、Q同时同速出发 ,∴AP=BQ 设AP=BQ= x , 则PC=6 - x , QC=6+ x 在Rt△APE中, ∠A=60°,∠AEP= 90° 1 ∴∠APE=30°∴AE= AP=
2
1 x 2
∵∠CQP=30° ,∠C= 60° 0 ∴∠CPQ= 90 0 90 ∴∠CPQ=∠AEP= 又∵∠A=∠C=60° ∴△APE∽△CQE 利用
AE AP PC CQ
即
1 x 2 x 6 x 6 x
x
问题(2) 在运动过程中线段ED的长是否发生 变化? 如果不变,求出线段的长; 如果发生改变,请说明理由.
∴AP的长是2.
②用含30°角的直角三角形的性质及 等边三角形性质进行解答(在 Rt△QCP中)
∵△ABC是边长为6的等边 三角形, ∴AC=BC=6,∠C=60° 又∵∠BQD=30° ∴△QCP是含有30°角的Rt△ ∴CQ=2PC ∵P、Q同时同速出发, ∴AP=BQ ∵AP+PC+BC=2AC=12 ∴BQ+BC+PC=CQ+PC =12 ∴PC=4 ∴AP=AC-PC=2
四:小结与反思
一:本课动点问题求解的知识基础:
1、全等三角形判定及性质; 2、相似三角形判定及性质; 3、等边三角形判定及性质; 4、含30°直角三角形的性质。
二:解决此类问题的基本思想方法:
1、以静制动:动中求静,找寻出变化过程中 始终保持不变的量,以及问题中始终保持不 变的等量关系 2、数形结合、转换思想:把几何问题转化成 代数的方程问题,从而得以解决。
解法二:用三角形全等知识 进行解答
过P作PF∥QC 则△AFP是等边三角形 ∴ PF=AP ∵ △ABC是边长为6的等边三 角形, ∴ AC=BC=AB=6, ∠A=∠ABC=60° ; 又∵∠BQD=30°, ∴∠BQD=∠BDQ=∠FDP =∠FPD=30°∵P、Q同时 出发、速度相同, 即BQ=AP∴BQ=PF ∴△DBQ≌△DFP, ∴BD=DF ∵∠BQD=∠BDQ=∠FDP=∠ FPD=30°,
解法一:用等边三角形性质 进行解答 解:线段DE的长不变. 由(1)的解法(二)知 BD=DF 而△APF是等边三角形, PE⊥AF, ∴AE=EF ∴BD+AE=FD+EF 又(FD+EF)+(BD+AE)=AB =6, 即ED+ED=6 ∴ ED=3为定值,即ED的 长不变
(2) 解法二:构造三角形与 △APE全等
动点问题解题方法探究
近几年来,运动型问题常常被列为 各省市中考的压轴题之一。这类问 题就是在三角形、矩形、梯形等一 些几何图形上设计一个或两个动点 ,并对这些点在运动变化过程中伴 随着等量关系、变量关系、图形的 特殊状态、图形间的特殊关系等进 行研究考察。问题常常集几何、代 数知识于一体、数形结合,有较强 的综合性。
二、问题引入 遵义市2012年中考第26题:
• 26.如图,△ABC是边长 为6的等边三角形,P 是 AC边上一动点,由A向C 运动(与A、C不重 合),Q是CB延长线上一 动点,与点P同时以相同 的速度由B向CB延长线方 向运动(Q不与B重合) ,过P作PE⊥AB于E,连 接PQ交AB于D. (1)当∠BQD=30°时, 求AP的长; (2)在运动过程中线段 ED的长是否发生变化? 如果不变,求出线段ED的 长; 如果发生改变,请说明理 由.
动点问题解题方法探究
一、知识点梳理 1、全等三角形的判定方法
(1) 全等三角形的判定方法:简记为( )、( ),( ) 。 (直角三角形
)、( )
⑵ 相似三角形的判定方法:类似全等三角形简记为 ( )、( )、 ( ) (直角三角形 ) 相似三角形的性质:相似三角形的对应角( , 对应边的比 ( )相似比; (当相似比= 时,两个三角形全等) )
F
1 则FD=AD= 2 (AB+BF) 1 1 =(6+x )=3+ x 2 2 1 1 ∵AE= AP= x 2 2 1 1 ∴DE=AD-AE=3+ x =3 x 2 2
学以致用
如图,A、B两点的 坐标分别是(8, 0),(0、6), 点P由点B出发沿 BA方向向点A作 匀速直线运动, 速度为每秒3个单 位长度,点Q由A 出发沿AO(O为 坐标原点)方向 向点O作匀速直线 运动,速度为每秒2个单位长度, 连接PQ,若设运 动时间为 t(0<t< )秒. 解答如下问题: • 当t为何值时, PQ∥BO?
三:中考动点问题可能出现的几何图形
1、三角形,2、矩形,3、梯形,4、平行四边 形等
③用含30°角的直角三角形的性质及 代数思想进行解答(在Rt△APD中)
∵ △ABC是边长为6的等边三角 形, ∴ AC=BC=AB=6, ∠A=∠ABC=60° ;
∵
∠BQD=30°,∴∠QDB=∠AD P=30° ∴ BQ=BD,△APD是含30角的 Rt△。
∵ P、Q同时同速出发, ∴AP=BQ 设AP=x,则BQ=BD=x,AD=6x (在Rt△APD中利用30°角所对的 直角边是斜边的一半) ∴ 6-x=2x x=2 ∴ AP=2
•
•
•
• •
问题(1)问的解答
(1)解法一: ①用含30°角的直角三角形的性 质及代数思想进行解答(在 Rt△QCP中) ∵△ABC是边长为6的等边三角 形, ∴AC=BC=6,∠C=60° ; 又∵∠BQD=30° ∴△QCP是含有30°角的Rt△ 1 ∴PC= QC 2
∵P、Q同时同速出 ∴AP=BQ 设AP=BQ= x ,则PC=6- x , QC=6+ x 1 即6-x= (6+x)解得x=2 2
等边三角形的判定方法(1)定义:三边相等的三角形 。 (2)三个角都相等的三角形是 等边三角形。 (3)有一个角等于 °的等腰三 角形是等边三角形。 等边三角形的性质:(1)三边 ( )
(2)各角都是 ( )° (3)每边上都满足三线合一。
3、含30°角的直角三角形的性质:30°角所对的直角边 是斜边的 ( )。
过点Q作QF⊥AB的延长 线于点F 先证△APE≌△BQF ∴AE=BF,PE=QF 又∵∠QDF=∠PDE 再证△QDF≌△PDE ∴FD=DE ∵AB=AE+DE+BD=BF+ BD+DE
=FD+DE=6 ∴DE=3为定值, 即 DE的长不变
F
(2)解法三:构造三角形与 △ADP全等
在AB的延长线上截取BF=BQ, 再连结FQ 设AP=BQ= x 先证△BQF是等边三角形 ∴BF=BQ=FQ= x ∠BFQ=60° ∵∠A=∠BFQ=60°, ∠QDF=∠PDA 再证△QDF≌△PDA