静定结构位移计算
静定结构的位移计算—图乘法计算静定结构的位移(建筑力学)
ql 2 8
) (5 8
l) 4
5ql 4 384 EI
()
温度变化时位移计算公式
设结构上侧温度变化t1,下侧温度变化t2,则杆轴线处温度变化为t0 =(h2t1+h1t2)/h。
此时任一微元体变形如图所示,包括两种形式:
①轴线伸长量du; ②截面转角dθ。
使用公式 L t L 和图中的几何关系,不难得到:
l
l
]
[t0
0
l
t h
1 2
l
l
]
-6l 18l 2 6l(1 3)()
h
h
N图
M图
支座位移时结构位移计算公式
支座位移直接引起结构位移,并不引起结构变形。因此,仅有支座位移时, 结构微元体变形为0。所以,虚拟状态内力虚功为0。将这一结论代入结构位移计 算的一般公式,即可得到支座位移时结构的位移计算公式:
N Nds EA
荷载作用下位移计算步骤
(1)计算位移状态(实际状态)结构内力:M、Q、N; (2)假设虚拟状态(受力状态); (3)并求其内力 M、 、Q ;N (4)代入位移计算公式并求解。
计算示例
例:计算图(a)所示简支梁中点C处得竖向线位移(EI为常数)。
(a)实际状态
(b)虚拟状态
解:(1)计算实际状态弯矩
位置如图a所示。
(3)当图形的面积和形心位置不易
图b
确定时,可将其分解为几个简单的图形,分
别与另一图形相乘,最后把结果相加,图b。
图a
(4)当y0所在图形是由若干直线段
组成的折线时,应分段进行图乘,再进行叠
加,图c。
(5)当直杆各杆段截面性质不同,即
EI不同时,应分段图乘,再进行叠加,图d。
静定结构的位移计算—结构位移公式及应用(工程力学课件)
【例4】求图示桁架k点水平位移. (各杆EA相同)
P
P
0
NP 0
P a
2P k
a
1
1 2 2 Ni
Δ= FN FNP l
EA
1
1
解:
kx
1 [(1)(P)a EA
(1)( P )a
2 2P 2a] 2(1 2) Pa () EA
ds
FN FNP EA
ds
1. 梁和刚架
在梁和刚架中,由于轴向变形及剪切变形产 生的位移可以忽略,故位移计算公式为:
2. 桁架
Δ=
MMP EI
ds
Δ=
FN FNP ds FN FNP ds FN FNPl
EA
EA
EA
1
MMP EI
ds
kFQ FQP GA
ds
FN FNP EA
ds
若结构只有荷载作用,则位移计算一般公式为:
1 (M ds FQ 0 FN )ds
MP
EI
0
kFQ P GA
FNP
EA
1
MMP EI
ds
kFQ FQP GA
ds
FN FNP EA
ds
适用条件:小变形、线弹性
➢ 正负号规则
1
MMP EI
ds
kFQ FQP GA
ds
FN FNP EA
M、FQ、FN、FRK :单位载荷 FP1 1在结构中产生
的内力和支座反力
➢ 单位荷载法
一次计算一种位移
求绝对位移!
BF
C
D
q
实际状态
(位移状态)
CH求、CV、C
静定结构的位移计算—结构位移计算的一般公式(建筑力学)
W外 P Ri ci
根据虚功原理得:
W内 Md Qds Ndu
Md Qds Ndu Ri ci
①求线位移 其虚拟状态的外荷载为与所求线位移同位 置、同方向的一个单位集中力。 ②求角位移 其虚拟状态的外荷载为与所求角位移同位 置的一个单位力偶。
求线位移
求角位移
ห้องสมุดไป่ตู้
位移计算的两种状态
③求相对线位移
其虚拟状态的外荷载为与所求相对线位移
的两点连线共线、方向相反的一对单位集中力。
④求相对角位移
其虚拟状态的外荷载为作用在所求相对角 位移的两个截面位置处的一对转向相反的单位 力偶。
②结构任一微元体变形
轴向变形 du、切向变形 、ds角位移 。d
位移计算的两种状态
2.虚拟状态(受力状态)
指结构在某种因素(荷载、温度变化、支座位移等)作用下产生位移的之前所处的受力平衡 状态。该平衡状态一般是未知的,它并不影响实际的结构位移,通常可以随意假设,因此也称为 虚拟状态。通常假设虚拟状态的外荷载为与所求位移对应的单位荷载。具体对应关系如下:
虚功原理
1.实功与虚功
(1)实功:力×位移(位移由做功的力引起) (2)虚功:力×位移(位移由其它因素引起)
2.虚功原理 W外 W内
位移计算的两种状态
1.实际状态(位移状态)
指结构在某种因素(荷载、温度变化、支座位移等)作用下产生位移的时刻所处的状态。此 时,结构位移和变形表示为:
①支座的位移
水平位移 c1、竖向位移 、c2转角 。 c3
M
求相对线位移
虚拟状态中,由外荷载引起的支座反力和内力分别记为:
支座反力:水平反力 R、1 竖向反力 、R 2支座转角 。R3 内力:弯矩 M、剪力 、Q轴力 。N
第6章 静定结构位移计算
二、 单位荷载法 1、定义:在所求点所在位移方向加上单位 力,将实际状态的真实位移视作虚拟平衡状态的 虚位移。应用虚功原理,通过加单位荷载求实际 位移的方法。 2、计算结构位移的一般公式
F K+ FRiCi= M d + FNdu + FQdv
式中, F =1 则
六.线弹性体系的特征 1)结构的变形与其作用力成正比
若单位力P1=1作用下产生
的位移δ ,则力P作用下在 K处产生的位移为Pδ
2)结构的变形或位移服从叠加原理
P1
P2
Pi
K Δ
Pn
δ K i 表示Pi=1时 在K处产生的位移。
Δ= P1 K 1 P2 K 2 Pn Kn
P
i i 1
n
Ki
6.2 变形体系的虚功原理 一、变形体的虚功原理 功:力对物体作用的累计效果的度量。 功=力×力作用点沿力方向上的位移 实功 :力在自身引起的位移上所作的功 静力荷载:荷载由零逐渐以微小的增量缓慢地增加 到最终值。结构在静力加载过程中,荷载及内力始 终保持平衡。
虚功: 力在其他因素引起的位移上作的功 其特点是位移与作功的力无关,在作功的过程 中,力的大小保持不变 梁弯曲后,再在点2处加静力荷载FP2,梁产生新 的弯曲。位移△12为力FP2引起的FP1的作用点沿FP1 方向的位移。力FP1在位移△12 上作了功,为虚功, 大小为 W12=FP1△12,此时力不随位移而变化,是 常力。
单位广义力有截然相反的两种设向,计算出的 广义位移则有正负之分: 正值表示广义位移的方向与广义力所设的指向相同 负值表示广义位移的方向与广义力所设的指向相反
力的虚设方法
Fp=1 C Fp=1 B C
结构力学——静定结构位移计算
结构力学——静定结构位移计算在工程和建筑领域中,结构力学作为一门重要的学科,主要研究了结构的受力、变形、破坏机理等问题。
其中,静定结构位移计算是结构力学中的一个重要内容。
静定结构所谓静定结构,是指能够通过静力学方程求解出所有节点的受力、反力和变形的结构。
这种结构是不需要知道材料的物理性质和荷载的实际情况的。
在静定结构中,结构的支座固定方式和荷载情况是已知的,因此能够通过解决一组静力学方程,求解出结构中节点的受力和变形。
静定结构位移计算静定结构位移计算是静定结构的重要计算方法之一。
在结构分析中,位移是一种常见的形变量,它反映了物体在载荷作用下发生的形变情况。
在静定结构中,位移是结构的重要参数之一。
它可以通过求解一组线性方程组得到。
具体来说,就是通过应变—位移—节点力关系,将结构各节点位移用系数矩阵和加载节点力表示出来,再通过求解一个线性方程组,就可以得到各节点的位移值。
静定结构位移计算的步骤静定结构位移计算中的步骤包括:1.列出节点位移方程节点位移与内力之间有一定的关系,可以通过位移方程和内力方程来表示。
这些方程可以根据物理实际条件进行建立。
2.确定支座反力支座反力是从位移计算中得到的结果之一。
支座反力是指结构上所有支点所承受的力,在位移计算时是必须考虑的。
3.形成节点位移方程组形成节点位移方程组时,需要考虑杆件的个数、受力条件、材料特性、支座情况等因素。
4.解出节点位移通过解一个线性方程组,我们可以根据已知的节点力和位移方程,求出每个节点的位移值。
静定结构位移计算的应用静定结构位移计算在现代工程设计中具有广泛的应用。
它能够在保证结构稳定的前提下,可以对结构进行优化设计,提高结构的安全性、稳定性、经济性等方面的性能。
除此之外,静定结构位移计算还可以应用于建筑设计、桥梁设计、机械设计、工业生产等领域中。
它可以提供结构设计的数据支持,为结构工程的实施提供参考。
静定结构位移计算是结构力学中的一个重要方向,其计算方法基于静力学方程进行,其特点是简单、可靠和实用。
静定结构位移计算
真实的位移状态
运用变形体的虚功原理,所有外力所做的虚功等 于内力所做的虚功:
§6-5
温度作用时的计算
t
h ds
有: F N d + Md F N t0ds + M 若是结构,则公式为:
F d + Md F t0ds + M
1 A
△11 △12
Fp1
2 Fp2
B
△22
其中:T FP1 12 ——虚功 ▲ 虚功原理 刚体虚功原理 变形体虚功原理
§6-1
概述
刚体虚功原理: 所有外力所做的虚功等于零,即: W外 0 变形体虚功原理:
W W 外 内 所有外力做的虚功=所有内力做的虚功,即:
虚功原理
虚力原理 虚位移原理
§6-1
概述
很显然求位移用的是虚功原理中的虚力原理 。 2)静定结构位移的类型 支座移动产生的位移——刚体位移 荷载作用产生的位移——变形体位移 制造误差产生的位移——刚体位移 温度改变产生的位移——变形体位移 显然支座移动产生的位移、制造误差产生的位移应 该用刚体的虚力原理计算。荷载作用产生的位移、温 度改变产生的位移应该用变形体的虚力原理计算。
YC δX=1
0.75
虚功方程为: YC×1 +qa×0.75 -qa2×0.75/a -q×1.5×3a/2=0 YC=2.25qa
qa
F
qa2
E
q
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
a
2a qa2
D
a
C QC
2a
B
a
A
qa
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
QC
静 定 结 构 的 位 移 计 算
§4-3 结构位移计算的一般公式
四、结构位移计算的一般步骤 (1)沿所求位移方向施加单位(广义)荷载; (2)由平衡条件求内力和反力; (3)根据不同的外界作用分析应变; (4)由式(b)计算。
下面介绍计算位移的图乘法:
§4-6 图乘法
一、图乘法及其应用条件
目的:用弯矩图面积乘积代替积分 条件: (1)各杆为等直杆 (2)各杆截面物理参数(EI、EA、GA)为常数 (3)内力图中至少有一个是直线
§4-5 图乘法
设:M x tan (内力图是直线)
MM P EI
ds
1 EI
MM Pds
指结构上的两个指定截面,位移后新的位置关系相 对其位移前旧位置关系的改变。
线位移,角位移, 相对线位移、相对角位移
等统称广义位移
§4-1 结构位移计算概述
二、位移计算的目的
1、 验算结构的刚度
结构变形不得超过规范规定的容许值。
2、超静定结构的内力分析的需要
超静定结构的计算要同时满足平衡条件和变形连续条件。
泊松比
§4-4 荷载作用下的位移计算
K (F NK FQK M K )ds F RK cR (b)
由(b)式得:
( F N FNP k F QFQP M M P )ds (c)
EA GA EI
(c)式中正负号规定:内力方向一致者,积分结 果取正号,反之取负号。结果为正说明实际位移方向 与假设方向一致,反之为负。
CV
2 1
第4章 静定结构的位移计算
MP κ= EI
γ0 =
kF QP GA
FNP ε= EA
上式适用的条件是:小变形,材料服从虎克定 律,即体系是线性弹性体。
kF FNP MP QP 1⋅∆ = ∑∫ M ds + ∑∫ F ds + ∑∫ FN ds Q EI GA EA
条件:1)存在两种状态: 第一状态为作用有平衡力系; 第二状态为给定位移及变形。 以上两种状态彼此无关。 2)力系是平衡的,给定的变形是符合 约束条件的微小连续变形。 3)上述虚功原理适用于弹性和非弹性 结构。 下面讨论W及V的具体表达式。
q(s) q(s)ds
FP 2
ds
FP 3
ds
C1
FR1
M
FN
A
FR2
FN
A
FR1
F ds F Q Q
给定位移、变形
虚设平衡力系
2. 位移计算一般公式 外力虚功 W = 1 ⋅ ∆ CV + ∑ FRK C K
K
内虚功
V = ∑ ∫ (Mκ + FQγ 0 + FN ε )ds
K
所求位移 1⋅∆CV = ∑∫(Mκ + FQγ 0 + FNε )ds − ∑FRKCK 3. 小结 1) 、Q、N、 RK ——单位载荷 FP1 =1在结构中产 MF F F 生的内力和支座反力, ds、γ 0ds、εds、C1、C2及 κ ∆CV ——给定的位移和变形。力和位移无关。
i K
微段ds的内虚功dV: dV = Mdθ + FQdη + FN dλ = Mκ ds + FQγ 0ds + FNε ds
建筑力学第五章_静定结构位移计算
建筑力学第五章_静定结构位移计算静定结构位移计算是建筑力学中的重要内容,通过位移计算可以得到结构在荷载作用下的变形情况,从而评估结构的稳定性和安全性。
本文将介绍静定结构位移计算的基本原理和具体步骤。
首先,我们需要明确什么是静定结构。
静定结构指的是结构所有部件之间的变形由完全互相嵌入融合而不产生相对变动,这样的结构称为静定结构。
而非静定结构则是指结构所有部件之间的变形不会由于完全互相嵌入而互相制约的结构。
静定结构位移计算的基本原理是根据平衡条件和变形约束条件进行计算。
具体步骤如下:1.建立结构模型:根据实际情况,建立结构的几何形状和支撑条件的数学模型。
可以采用杆件模型、面单元模型等方法进行简化。
2.确定荷载:根据设计要求和实际情况确定结构所受的荷载,包括重力荷载、风荷载、地震荷载等。
3.建立方程:根据平衡条件,建立结构的受力平衡方程。
在平衡方程中,包括结构的受力平衡方程和变形约束条件等。
4.求解方程:根据建立的方程进行求解。
可以通过解析方法、数值方法或者计算机模拟等方式进行求解。
5.分析结果:得到结构在荷载作用下的位移情况。
根据计算结果进行分析,评估结构的稳定性和安全性。
如果结果超出了允许的范围,则需要对结构进行调整或优化重新计算。
静定结构位移计算过程中需要注意的是,要考虑结构的边界条件和材料的性质等因素。
边界条件包括支座的约束条件和结构的支承情况等,材料的性质包括刚度、强度等。
静定结构位移计算是建筑力学中的重要内容,对于结构的安全性和稳定性评估非常关键。
通过位移计算,可以得到结构的变形情况,为结构设计和优化提供重要的参考依据。
但需要注意的是,位移计算只能适用于静定结构,对于非静定结构需要采用其他方法进行分析和计算。
总之,静定结构位移计算是建筑力学中的重要内容,通过建立结构模型、确定荷载、建立方程、求解方程和分析结果等步骤,可以得到结构在荷载作用下的位移情况。
这对于评估结构的稳定性和安全性非常有帮助。
《结构力学》静定结构的位移计算
03
在实际应用中,可以根据结构特点、计算精度和计算资源等因素综合考虑选择 合适的数值方法。
THANKS FOR WATCHING
感谢您的观看
桥梁横向位移限制
对于大跨度桥梁,需要限制其在风荷载、地震等横向力作用下的横 向位移,以保证桥梁的稳定性和行车安全。
支座位移控制
桥梁支座的位移也需要进行控制,以避免支座过度磨损或脱空等现 象,确保桥梁的正常使用。
建筑工程中变形缝设置要求
伸缩缝设置
为避免建筑物因温度变化、地基沉降等因素而产生裂缝或 破坏,需要在建筑物的适当位置设置伸缩缝,使建筑物能 够自由伸缩。
计算方法
采用分段叠加法,将组合结构分成若 干段,分别计算各段的位移再求和; 或采用有限元法直接求解整体位移。
需考虑不同材料或截面的变形协调问 题。
03 图乘法计算静定结构位移
图乘法基本原理及适用条件
基本原理
图乘法是基于结构力学的虚功原理,通过图形面积与形心位置的乘积来简化计 算结构位移的一种方法。
均布荷载作用
荷载沿梁长均匀分布,引 起梁产生均匀弯曲变形。
位移计算
采用图乘法或积分法求解, 考虑荷载、跨度、截面惯 性矩等因素。
悬臂梁在集中力作用下位移
悬臂梁基本概念
一端固定,另一端自由的 梁,承受集中力、均布荷 载等。
集中力作用
在悬臂梁自由端施加集中 力,引起梁产生弯曲和剪 切变形。
位移计算
采用叠加原理,分别计算 弯曲和剪切变形引起的位 移,再求和。
制造误差对结构位移的影响不同。
影响系数
02
利用影响系数可以计算制造误差引起的结构位移,影响系数与
结构形式和荷载情况有关。
敏感性分析
静定结构位移计算
B 1/2
注意: M 和 M P 的积分起点和正号规定应一致。
§11-4 荷载作用下的位移计算
2、求φB 。
A
q
C ΔCV 1)虚设单位力状态。 x ql/2 φB M 2)求 M 和 P 表达式: l/2 l/2 1 ___ M x (0 x l ) l M 1 ql q 2 A MP x x (0 x l ) 2 2 x 1/l 3)代入梁的位移计算公式: MMP B ds EI 1 ql q 2 ( x )( x x ) 1 l q 2 q 3 l l 2 2 ( x x )dx dx 0 0 EI 2 2l EI ql 3 ( ) 24EI
故得变形体的虚功方程 : W外
( Md Nd Qd )
§11-2 虚功原理
4.虚功方程的应用
虚设广义单位荷载必须与拟求的广义位移相对应
虚设力系(需满足平衡条件)求位移 ——单位荷载法 虚设位移(需满足约束条件,且是微小连续的)求未知力 ——单位位移法
§11-3 结构位移计算的一般公式
1 d1
1 d1
C d1
A
1 d2
1 P d BC杆的转角 BC ?
d2
B
AB AC ?
1 d2
§11-4 荷载作用下的位移计算
公式: ( Md Nd Q d ) R k ck 具有普遍性。 ck 0
( Md Nd Q d )
§11-3 结构位移计算的一般公式
P2 K P1
___
P 1
K
c2
c1
R1
K
R2
虚设单位力状态
建筑工程力学单元10-静定结构的位移计算
单元10 静定结构的位移计算
高等教育出版社
单元10 静定结构的位移计算
10.1 计算结构位移的目的 10.2 变形体的虚功原理 10.3 结构位移计算的一般公式 10.4 计算静定结构在荷载作用下的位移 10.5 图乘法计算静定结构在荷载作用下的 10.6 计算静定结构在支座移支时的位移 10.7 线弹性结构的互等定理
线性变形体系和叠加原理的使用条件是:①材料 处于弹性阶段,应力与应变成正比;②小变形。因 此可以应用叠加原理计算结构的位移。
10.2 变形体的虚功原理
一、功、实功和虚功
(1)功:力对物体作用的累计效果的度量 功=力×力作用点沿力方向上的位移
(2)实功:力在本身引起的位移上作功,恒为正值 (3)虚功:力在其它原因引起的位移上所作的功(力 在虚位移上作的功),可正可负 力与位移同向,虚功为正,力与位移反向,虚功为负。 虚位移:与作功的力无关。是结构的支承条件和变形条
刚架与梁的位移计算公式为:
iP
MM Pds EI
在杆件数量多的情况下,不方便. 下面介绍 计算位移的图乘法.
图乘条件:(1)EI为常量或分段为常量; (2)杆轴为直线或分段为直线;(3)MP、 M 中至少有一个为直线或分段为直线。
一、图乘法公式推导
MM EI
P
ds
1 EI
MM Pds
(对于等 截面杆)
K FSFSPds GA
10.4 计算静定结构在荷载作用下的位移
二.位移计算公式
1.梁与刚架
KP
M M P ds EI
2.桁架
KP
FNFNPds EA
FNFNP ds EA
FN FN P l EA
静定结构位移计算
的向下的挠度被抵消一部分,减小了梁跨中
的最大挠度值。
(3) 改善荷载的作用情况 在结构允许的情况下,合理地调整荷载的位置 及分布情况,以降低弯矩,从而减小梁的变形, 提高其刚度。如图所示,将集中力分散作用, 甚至 改为分布荷载,则弯矩降低,从而梁的 变形减小,刚度提高。
14.4 一、图乘法原理
图乘法
续表
3.悬臂梁 均匀分布荷载作用在梁上
ql 3 B 6 EI
wmax
ql 8EI
4
4.简支梁 集中荷载作用跨中位置上
ab l 2
时
16 EI
l ab 时 2
2 A - FP l B
wmax
FPl 3 48EI
续表
5简支梁 均匀分布荷载作用在梁上
ql 3 A - B 24 EI
KP
F N FNPl EA
(3)组合结构
既有梁式杆,又有链杆,取用公式中的前两项
KP
(4)拱
F N FNPl MM P ds EI EA
一般计轴力、弯矩的影响,剪切变形的影响忽 略不计
KP F N FNPl MM P ds EI EA
三、虚拟状态的选取 欲求结构在荷载作用下的指定位移,须取相应 的虚拟状态。即取同一结构,在要求位移的地 方,沿着要求位移的方位虚加单位荷载: 1)欲求一点的线位移,加一个单位集中力 2)欲求一处的角位移,加一个单位集中力偶
AH
AV
截面A 的角位移
A
C、D 两点的水平相对线位移
( C D)H = C +
A、B两个截面的相对转角
D
AB= + B A
四、引起位移的原因
15.静定结构位移计算
P y0
结论:在满足前述条件下,积分式
M M P ds
l EI
之值等于某一图形 面积乘以该面积形心所对应的另一直
线图形的纵标y0,再除以EI。
四、使用乘法时应注意的问题
1、y0 必须取自直线图形
y0
MK 图
p
MP 图
Δ
1 EI ωP y0
2、当 M 为折线图形时,必须分段计算;
三、图乘法的证明
y
MP(x) d
M K M P ds l EI
1 EI
B
A M K M Pdx
1 EI
B
A x tgM Pdx
dx
MK(X)
y yo
o
A x
Bx
xo
1 tg EI
b
a xMPdx
1
tg
B
xd
EI
A
1 EI
tg
x0
P
1 EI
i (FN FQ 0 M k)ds FRKcK
1.求截面线位移
单位荷载的设置
1
2.求两截面间相对线位移 B
A
1
3.求截面角位移
A
1
(c)
4.求两截面间相对角位移
1 A
(b)
5.求桁架杆件的角位移
1
Ad
B1 A
1
(d)
M=1
A
B
6.求桁架两杆间相对角位移 (e)
11
一对力偶;广义位移是相应的沿力
ф
方向的线位移和沿力偶转向的角位 移或相对位移。
P (b) P
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⑷需求某两截面相对角位移时,应在两截面处加一对大小相等、转向相反
的单位力偶矩 m=1,如图(d)。
F=1 • A
(a)
m=1 •A
•A
F=1
(b)
F=1
•
B
(c)
•
B m=1
•A m=1
(d)
*⑸需求桁架某杆件角位移或某两杆相对角位移时,因桁架只受轴力,故
须将单位力偶矩 m=1 转化为
1 d
的结点力作用在该杆两端上,下图
结构在使用过程中不允许产生过大变形,必须加以限制。 ⑵为制作和架设结构提供计算依据(如起拱,作图说明)。 ⑶为分析超静定结构作准备。 使结构产生位移的因素主要有三个: ⑴荷载作用。 ⑵温度变化和材料热胀冷缩。 ⑶支座沉降和制造误差。 计算结构位移的两种方法: ⑴以杆件变形关系为基础的几何物理方法。
如计算梁挠度、转角的重积分法。 ⑵以功能原理为基础的单位荷载法,即以虚功原理为基础的单位荷载法。
A l
x B (a) 单位力作用下的弯矩表达式为:
M = -x
1
实际荷载作用下的弯矩表达式为:
A l
B (b)
x
MP
=
-
qx 2 2
故 B 端竖向位移为:
ΔBy =
l MP (x)M(x)dx = 1
0 EI
EI
l (-
0
1qx2 )(-x)dx 2
=
1 qx4 [
EI 8
Δ =
MP (x)M(x)dx + FNP FN L
EI
EA
(5-8)
(梁式杆)
(链杆)
*⑷拱和曲杆
对于一般的拱和曲杆,通常只考虑弯曲变形的影响,即可按梁和刚架
的计算公式计算 。 当拱轴线与压力线比较接近(两者的距离与杆件截面高度为同量级)
, 或计算扁平拱( L 5)中的水平位移时,才需要同时考虑弯曲变形和 f
(x) dx
+
FNP
(x)FN EA
(x)dx
(5-5) 式中:MP、FQP、FNP ——实际荷载下杆件的内力。
M 、 FQ 、FN ——虚设单位力作用下杆件的内力。
EI、GA、EA——杆件的抗弯刚度、抗剪刚度、抗拉刚度。 k——剪力不均匀分布系数。
5.2.4.2 各类结构的位移计算公式
⑴梁和刚架
一个虚设单位力 F=1,由此得到的力状态又称为虚设状态。
常用单位力设置情况
⑴需求某点沿某方向的线位移时,应在该点沿所求位移方向加一单位力
F=1,如图(a)。
⑵需求某截面角位移时,应在该截面处加一单位力偶矩 m=1,如图(b)。 ⑶需求某两点间相对线位移时,应在两点沿其联线方向加一对大小相等、
方向相反的单位力 F=1,如图(c)。
致的挠度为正,反之为负。 转角——横截面对其原来位置所转过的角度,用 表示,自x轴正向转向y
轴正向的 为正,反之为负。
5.2 位移计算的一般公式
*5.2.1 虚功和虚功原理 5.2.1.1 虚功
W=F 功 力 位移
见图5-2,图5-3 实功——作功的力与相应位移彼此相关时的功。 虚功——作功的力与相应位移彼此无关时的功。
等于第一状态的内力在第二状态的变形上所作的内力虚功。即:
外力虚功 W12 =内力虚功 W12
(5-2)
5.2.2 广义力和广义位移 广义力可以是力,也可以是力偶。 广义位移可以是线位移,也可以是角位移。广义位移包括绝对位移
和相对位移。 因此功的形式仍可用式(5-1)表示。
5.2.3 单位荷载法 利用虚功原理得到单位荷载法,即在所求位移处,沿位移方向加上
一般略去轴力和剪力的影响,只考虑弯矩的影响,有:
*⑵桁架
Δ
=
M
P
(x)M(x)dx EI
(5-6)
只考虑轴力的影响,一般情况下,每根杆件的轴力 FN、FNP 及抗拉刚度
EA 均为常数,故有:
Δ =
FNP (x)FN (x)dx = FNP FN L
EA
EA
*⑶组合结构
(5-7)
梁式杆只考虑弯矩的影响,链杆只考虑轴力的影响,故有:
(5-1)
在下图中,用 W12 表示第一状态的力在第二状态的位移上所作的虚功,则
有:
W12=F12
F1
A
C
B
2
F1
(a)
A
C
B
A
C 2
B
第一状态(力状态) (b)
第二状态(位移状态) (c)
必须注意:在虚功中,力状态和位移状态是彼此独立无关的。
5.2.1.2 虚功原理
变形体虚功原理:第一状态的外力在第二状态的位移上所作的外力虚功,
(e)、 (f)分别为求杆件角位移和两杆相对角位移的虚设单位力状态。
1
Ad
d 1B
d
(e)
11
dd
A
C
dBd
1
1
d
d
(f)
5.2.4 结构位移计算的一般公式 5.2.4.1 荷载作用下的位移计算公式
略去推导过程,可得荷载作用下结构位移计算的一般公式为:
Δ
=
MP
(x)M(x)dx EI
+
kFQP
(x)FQ GA
一般将结构看作是由线弹性材料组成,线弹性材料有两个主要特性: ⑴结构的变形或位移与其作用力成正比,或应力与应变成正比。 ⑵结构的变形微小,服从叠加原理。 挠曲线——平面弯曲和弹性范围内加载情况下,变形后梁轴线弯曲成一条
y 光滑连续的平面曲线。此时,挠曲线为xy平面内的一条曲线。
A
挠曲线
B
x
x
P
挠曲线的方程为: y=f(x) 挠度——截面形心在垂直于梁轴线方向的线位移,用y表示,与y轴正向一
第五章 静定结构位移计算
5.1 位移计算概述
水平线位移
{ { 结构位移 线位移——结构上各点产生的移动。 竖向线位移 角位移——构件某一截面产生的转角。
见下图。
B
F Cx
C
C
Cy
C
Cy C Cx
x C FP D
E FP
A
{ 绝对位移
结构位移 相对位移
(见图)
A
B
图中x为 DE 的相对水平位移。
计算结构位移的目的有: ⑴校核结构的刚度。
轴向变形的影响,即:
Δ)dx EI
+
FNP
(x)FN EA
(x)dx
*5.3 积分法求静定结构的位移
荷载作用下位移计算步骤 ⑴在需求位移处沿位移方向加上一个虚设单位荷载。
⑵由静力平衡条件,求出在单位荷载作用下结构的内力 FN 、FQ 、 M 。
⑶由静力平衡条件,求出在荷载作用下结构的内力 FNP、FQP、MP 。 ⑷由位移计算公式求出位移。
单位荷载法一次可求一个位移,当计算结果为正时,表示所求位移与 单位荷载指向相同,当计算结果为负时,表示所求位移与单位荷载指向相 反。
例5-1. 下图(a)所示悬臂梁的抗弯刚度 EI 为常数,求均布荷载 q 作用下 B
端的竖向位移By。
q
解:在 B 端加一单位力如图(b)所示, 坐标原点取 B 点。