上海2021年九年级数学·一模考试(徐汇)
244-5 相似三角形(2021上海各区一模和二模作业2021-2022学年九年级数学上沪教版原卷版
24.4-5相似三角形(2021上海各区一模和二模)一、解答题1.(2021·上海九年级一模)已知:如图,在Rt△ABC中,∠ACB=90°,CH△AB,垂足为点H.点D在边BC上,联结AD,交CH于点E,且CE=CD.(1)求证:△ACE∽△ABD;(2)求证:△ACD的面积是△ACE的面积与△ABD的面积的比例中项.2.(2021·上海九年级一模)已知:如图,在梯形ABCD中,//AD BC,对角线BD、AC相交于点E,过点A作//AF DC,交对角线BD于点F.(1)求证:DF DE BD BE=;(2)如果ADB ACD∠=∠,求证:线段CD是线段DF、BE的比例中项.3.(2021·上海九年级一模)已知:如图,在四边形ABCD中,AB AD=,AC、BD相交于点E,AE CE DE BE⋅=⋅(1)求证:ABE ACB ∽;(2)如果2·DA DE DB =,求证:AB EC BC AE ⋅=⋅.4.(2021·上海九年级一模)如图,在ACB △中,点D 、E 分别在边BC 、AC 上,AD AB =,BE CE =,AD 与BE 交于点F ,且AF DF BF EF ⋅=⋅.求证:(1)ADC BEC ∠∠=;(2)AF CD EF AC ⋅=⋅.5.(2021·上海九年级一模)已知:如图,四边形ABCD 是菱形,点M 、N 分别在边BC 、CD 上,联结AM 、AN 交对角线BD 于E 、F 两点,且MAN ABD ∠=∠.(1)求证:2AB BF DE =⋅;(2)若BE DN DE DC=,求证://EF MN .6.(2021·上海九年级一模)某班级的“数学学习小组心得分享课”上,小智跟同学们分享了关于梯形的两个正确的研究结论:①如图1,在梯形ABCD 中,//AD BC ,过对角线交点O 的直线与两底分别交于点M 、N ,则AM CN DM BN =; ②如图2.在梯形ABCD 中,//AD BC ,过两腰延长线交点P 的直线与两底分别交于点K 、L ,则AK BL DK CL=.接着小明也跟同学们分享了关于梯形的一个推断:过梯形对角线交点且平行于底边的直线被梯形两腰所截,截得的线段被梯形对角线的交点平分.(1)经讨论,大家都认为小明所给出的推断是正确的,请你结合图示(见答题卷)写出已知、求证,并给出你的证明:(2)小组还出了一个作图题考同学们:只用直尺将图3中两条平行的线段AB 、CD 同时平分,请保留作图过程痕迹,并说明你作图方法的正确性(可以直接运用小智和小明得到的正确结论).(注意:请务必在试卷的图示中完成作图草稿,在答题卷上直接用2B 铅笔水笔完成作图,不要涂改)7.(2021·上海九年级一模)Rt ABC 中,∠ACB=90°,点D 、E 分别为边AB 、BC 上的点,且CD=CA ,DE△AB . (1)求证:2CA CE CB =⋅.(2)联结AE ,取AE 的中点M ,联结CM 并延长与AB 交于点H .求证:CH△AB .8.(2021·上海九年级一模)已知:如图,在△ABC 中,DE∥BC ,AD 2=AE•AC .求证:(1)△BCD∽△CDE ;(2)22CD AD BC AB=. 9.(2021·上海九年级一模)如图,点O 是菱形ABCD 的对角线BD 上一点,联结AO 并延长,交CD 于点E ,交BC 的延长线于点F .(1)求证:2AB DE BF =⋅;(2)如果1OE =,2EF =,求CF BF的长. 10.(2021·上海九年级一模)已知:如图,D 、E 分别是ABC 的边AB 、AC 上的点,且AED ABC ∠=∠,连接BE 、CD 相交于点F .(1)求证:ABE ACD ∠=∠;(2)如果ED EC =,求证:22DF EF BD EB=. 11.(2021·上海九年级一模)如图,点E 为ABC 边BC 上一点,过点C 作CD BA ⊥,交BA 的延长线于点D ,交EA 的延长线于点F ,且AF CD BC AD ⋅=⋅.(1)求证:AE BC ⊥;(2)如果BE CE =,求证:22BC BD AC =⋅.12.(2021·上海九年级一模)如图,已知在平行四边形ABCD 中,E 是边AD 上一点,联结BE 、CE ,延长BA 、CE 相交于点F ,2CE DE BC =⋅(1)求证:EBC DCE ∠=∠;(2)求证:··BE EF BF AE =.13.(2021·上海九年级一模)如图,在四边形ABCD 中,,B DCB ∠=∠联结AC .点E 在边BC 上,且,CDE CAD DE ∠=∠与AC 交于点,F CE CB AB CD ⋅=⋅.()1求证://AD BC ;()2当AD DE =时,求证:2AF CF CA =⋅.14.(2021·上海九年级一模)如图,在ABC 中,点D 、G 在边AC 上,点E 在边BC 上,DB DC =,//EG AB ,AE 、BD 交于点F ,BF AG =.(1)求证:BFE CGE △△;(2)当AEG C ∠=∠时,求证:2AB AG AC =⋅.15.(2021·上海九年级一模)如图,已知矩形DEFG 的边DE 在ABC 的边BC 上,顶点G ,F 分别在边AB ,AC 上.ABC 的高AH 交GF 于点I .(1)求证:BD EH DH CE ⋅=⋅;(2)设DE n EF =⋅(n 为正实数),求证:11n BC AH EF+=. 16.(2021·上海九年级一模)已知:如图,//AD BC ,ABD C ∠=∠,AE BD ⊥,DF BC ⊥,点E 、F 分别为垂足.(1)求证:AE BD DF BC=; (2)连结EF ,如果ADB BDF ∠=∠,求证:DF DC EF BC ⋅=⋅.17.(2021·上海九年级二模)如图,已知四边形ABCD 是菱形,对角线AC 、BD 相交于点O ,BD = 2AC .过点A 作AE△CD ,垂足为点E ,AE 与BD 相交于点F .过点C 作CG△AC ,与AE 的延长线相交于点G .(1)求证:△ACG≌△DOA ;(2)求证:2DF BD DE AG ⋅=⋅.18.(2021·上海市实验学校九年级二模)如图,在四边形ABCD 中,AC 平分∠BCD ,AC△AB ,E 是BC 的中点,AD△AE .(1)求证:2AC CD BC =⋅(2)过E 做EG△AB ,延长EG 至点F ,使FG=EG ,若∠B=30°,求证:四边形AFEC 是菱形.19.(2021·上海九年级二模)已知:如图,在正方形ABCD 中,联结BD ,E 是边AB 上一点,BF △DE ,垂足为点F,且EF•BD=BE•BF.(1)求证:∠ADE=∠BDE;(2)延长DF与CB的延长线交于点G,求证:BG=BC+AE.20.(2021·上海九年级二模)如图,在△ABCD中,点G是边BC延长线上一点,联结AG分别交BD和CD于点E 和F,联结DG.(1)求证:AE2=EF•EG;(2)如果∠ABD=∠AGD,求证:四边形ABGD是等腰梯形.21.(2021·上海九年级二模)如图,已知四边形ABCD中,AD∥BC,对角线AC、BD相交于点O,AC平分∠BAD,BD平分∠ABC,点E在边BC的延长线上,联结OE,交边CD于点F.(1)求证:四边形ABCD是菱形;(2)如果OE△CD,求证:CE•OF=CF•OE.22.(2021·上海九年级二模)已知:如图,在△ABCD中,点E、F分别在边BC、边BC的延长线上,四边形AEFD是菱形,菱形的对角线AF分别交DE、DC于点P、Q,AF EF BF PF=.求证:(1)四边形ABCD为矩形;(2)BE•DQ=FQ•PE.23.(2021·上海九年级二模)如图,已知在梯形ABCD中,AD//BC,对角线BD平分∠ABC,点G在底边BC上,联结DG交对角线AC于F,∠DGB=∠DAB.(1)求证:四边形ABGD是菱形;(2)联结EG,求证:BG•EG=BC•EF.24.(2021·上海九年级二模)已知:如图,梯形ABCD中,AD∥BC,AB=DC,点E在下底BC上,∠AED=∠B.(1)求证:CE•AD=DE2;(2)求证:22 CE AB AD AE=.25.(2021·上海九年级二模)如图,在△ACB中,∠ABC=90°,点D是斜边AC的中点,四边形CBDE是平行四边形.(1)如图1,延长ED交AB于点F,求证:EF垂直平分AB;(2)如图2,联结BE 、AE ,如果BE 平分∠ABC ,求证:AB =3BC .26.(2021·上海九年级二模)已知:如图,在梯形ABCD 中,//AD BC ,90B ∠=︒,E 是AC 的中点,DE 的延长线交边BC 于点F .(1)求证:四边形AFCD 是平行四边形;(2)如果22AE AD BC =⋅,求证四边形AFCD 是菱形.27.(2021·上海九年级二模)如图,已知在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,AE △BD ,垂足为E ,联结CE ,作EF △CE ,交边AB 于点F .(1)求证:△AEF ∽△BEC ;(2)若AB =BC ,求证:AF =AD .28.(2021·上海九年级二模)如图,已知,在平行四边形ABCD 中,E 为射线CB 上一点,联结DE 交对角线AC 于点F ,∠ADE =∠BAC .(1)求证:CF •CA =CB •CE ;(2)如果AC =DE ,求证:四边形ABCD 是菱形.29.(2021·上海九年级二模)如图,在梯形ABCD 中,//,AD BC AB CD =,过点A 作AE BC ⊥,垂足为点E ,过点E 作EF CD ⊥,垂足为点F ,联结DE ,且DE 平分ADC ∠.(1)求证:ABE ECF ≌△△;(2)联结BD ,BD 与AE 交于点G ,当2=⋅AB BG BD 时,求证2=⋅EC BE BC .。
2021年上海市16区中考数学一模考点分类汇编专题15 几何综合(解答题25题压轴题)(逐题详解版)
2021年上海市16区中考数学一模汇编专题15 几何综合(解答题25题压轴题)1.(2021·上海徐汇区·九年级一模)如图,在Rt ABC 中,90ACB ∠=︒,12AC =,5BC =,点D 是边AC 上的动点,以CD 为边在ABC 外作正方形CDEF ,分别联结AE 、BE ,BE 与AC 交于点G . (1)当AE BE ⊥时,求正方形CDEF 的面积;(2)延长ED 交AB 于点H ,如果BEH △和ABG 相似,求sin ABE ∠的值;(3)当AG AE =时,求CD 的长.2.(2021·上海长宁区·九年级一模)己知,在矩形ABCD中,点M是边AB上的一个点(与点A、B不重合),联结CM,作∠CMF=90°,且MF分别交边AD于点E、交边CD的延长线于点F.点G为线段MF的中点,联结DG.(1)如图1,如果AD=AM=4,当点E与点G重合时,求∠MFC的面积;(2)如图2,如果AM=2,BM=4.当点G在矩形ABCD内部时,设AD=x,DG2=y,求y关于x的函数解析式,并写出定义域;(3)如果AM=6,CD=8,∠F=∠EDG,求线段AD的长.(直接写出计算结果)3.(2021·上海宝山区·九年级一模)如图,已知ABC 中,90ACB ∠=︒,AC BC =,点D 、E 在边AB 上,45DCE ∠=︒,过点A 作AB 的垂线交CE 的延长线于点M ,联结MD .(1)求证:2CE BE DE =⋅;(2)当3AC =,2AD BD =时,求DE 的长;(3)过点M 作射线CD 的垂线,垂足为点F ,设BD x BC=,tan FMD y ∠=,求y 关于x 的函数关系式,并写出定义域.4.(2021·上海浦东新区·九年级一模)四边形ABCD 是菱形,∠B≤90°,点E 为边BC 上一点,联结AE ,过点E 作EF∠AE ,EF 与边CD 交于点F ,且EC=3CF .(1)如图1,当∠B=90°时,求ABE S 与ECF S 的比值;(2)如图2,当点E 是边BC 的中点时,求cos B 的值;(3)如图3,联结AF ,当∠AFE=∠B 且CF=2时,求菱形的边长.5.(2021·上海杨浦区·九年级一模)如图,已知在Rt ABC 中,90ACB ∠=︒,4AC BC ==,点D 为边BC 上一动点(与点B 、C 不重合),点E 为边AB 上一点,EDB ADC ∠=∠,过点E 作EF AD ⊥,垂足为点G ,交射线AC 于点F .(1)如果点D 为边BC 的中点,求DAB ∠的正切值;(2)当点F 在边AC 上时,设CD x =,CF y =,求y 关于x 的函数解析式及定义域;(3)联结DF 如果CDF 与AGE 相似,求线段CD 的长.6.(2021·上海青浦区·九年级一模)在ABC 中,90C ∠=︒,2AC =,BC =D 为边AC 的中点(如图),点P 、Q 分别是射线BC 、BA 上的动点,且BQ =,联结PQ 、QD 、DP .(1)求证:PQ AB ⊥;(2)如果点P 在线段BC 上,当PQD △是直角三角形时,求BP 的长;(3)将PQD △沿直线QP 翻折,点D 的对应点为点'D ,如果点'D 位于ABC 内,请直接写出BP 的取值范围.7. (2021黄浦一模)如图,四边形ABCD 中,4AB AD ==,3CB CD ==,90ABC ADC ∠=∠=︒,点M 、N 是边AB 、AD 上的动点,且12MCN BCD ∠=∠,CM 、CN 与对角线BD 分别交于点P 、Q .(1)求sin MCN ∠的值:(2)当DN DC =时,求CNM ∠的度数;(3)试问:在点M 、N 的运动过程中,线段比PQ MN的值是否发生变化?如不变,请求出这个值;如变化,请至少给出两个可能的值,并说明点N 相度的位置.8.(2021·上海静安区·九年级一模)已知∠MAN是锐角,点B、C在边AM上,点D在边AN上,∠EBD=∠MAN,且CE∠BD,sin∠MAN=35,AB=5,AC=9.(1)如图1,当CE与边AN相交于点F时,求证:DF·CE=BC·BE;(2)当点E在边AN上时,求AD的长;(3)当点E在∠MAN外部时,设AD=x,∠BCE的面积为y,求y与x之间的函数解析式,并写出定义域.9.(2021·上海崇明区·九年级一模)如图,Rt ABC 中,90ACB ∠=︒,6AC =,8BC =,点D 为斜边AB 的中点,ED AB ⊥,交边BC 于点E ,点P 为射线AC 上的动点,点Q 为边BC 上的动点,且运动过程中始终保持PD QD ⊥.(1)求证:ADP EDQ △△;(2)设AP x =,BQ y =,求y 关于x 的函数解析式,并写出该函数的定义域;(3)连接PQ ,交线段ED 于点F ,当PDF 为等腰三角形时,求线段AP 的长.10.(2021·上海闵行区·九年级一模)如图,在矩形ABCD 中,2AB =,1AD =,点E 在边AB 上(点E 与端点A 、B 不重合),联结DE ,过点D 作DF DE ⊥,交BC 的延长线于点F ,连接EF ,与对角线AC 、边CD 分别交于点G 、H .设AE x =,DH y =.(1)求证:ADE CDF ∽△△,并求EFD 的正切值;(2)求y 关于x 的函数解析式,并写出该函数的定义域;(3)连接BG ,当BGE △与DEH △相似时,求x 的值.11.(2021·上海奉贤区·九年级一模)已知圆O 的直径4AB =,点P 为弧AB 上一点,联结PA PO 、,点C 为劣弧AP 上一点(点C 不与点A 、P 重合),联结BC 交PA PO 、于点D E 、()1如图,当78cos CBO ∠=时,求BC 的长;()2当点C 为劣弧AP 的中点,且EDP ∆与AOP ∆相似时,求ABC ∠的度数;()3当2AD DP =,且BEO ∆为直角三角形时.求四边形AOED 的面积.12.(2021·上海普陀区·九年级一模)如图,矩形ABCD 中,1AB =,3BC =,点E 是边BC 上一个动点(不与点B 、C 重合),AE 的垂线AF 交CD 的延长线于点F .点G 在线段EF 上,满足:1:2FG GE =.设BE x =.(1)求证:AD DF AB BE=; (2)当点G 在ADF 的内部时,用x 的代数式表示ADG ∠的余切;(3)当FGD AFE ∠=∠时,求线段BE 的长.13. (2021虹口一模)如图,在ABC 中,90ABC ∠=︒,3AB =,4BC =,过点A 作射线//AM BC ,点D 、E 是射线AM 上的两点(点D 不与点A 重合,点E 在点D 右侧),连接BD 、BE 分别交边AC 于点F 、G ,DBE C ∠=∠.(1)当1AD =时,求FB 的长(2)设AD x =,FG y =,求y 关于x 的函数关系式,并写出x 的取值范围;(3)联结DG 并延长交边BC 于点H ,如果DBH △是等腰三角形,请直接写出AD 的长.14.(2021宝山一模) 如图,已知ABC 中,90ACB ∠=︒,AC BC =,点D 、E 在边AB 上,45DCE ∠=︒,过点A 作AB 的垂线交CE 的延长线于点M ,联结MD .(1)求证:2CE BE DE =⋅;(2)当3AC =,2AD BD =时,求DE 的长;(3)过点M 作射线CD 的垂线,垂足为点F ,设BD x BC=,tan FMD y ∠=,求y 关于x 的函数关系式,并写出定义域.15. (2021松江一模)如图,已知在等腰ABC 中,AB AC ==,tan 2ABC ∠=,BF AC ⊥,垂足为F ,点D 是边AB 上一点(不与A ,B 重合)(1)求边BC 的长;(2)如图2,延长DF 交BC 的延长线于点G ,如果CG 4=,求线段AD 的长;(3)过点D 作DE BC ⊥,垂足为E ,DE 交BF 于点Q ,连接DF ,如果DQF △和ABC 相似,求线段BD 的长.16.(2021嘉定一模)在矩形ABCD 中,6AB =,8AD =,点E 在CD 边上,1tan 2DAE ∠=.点F 是线段AE 上一点,联结BF ,CF .(1)如图11,如果3tan 4CBF ∠=,求线段AF 的长; (2)如图12,如果12CF BC =, ①求证:∠CFE =∠DAE ;②求线段EF 的长.2021年上海市16区中考数学一模汇编专题15 几何综合(解答题25题压轴题)1.(2021·上海徐汇区·九年级一模)如图,在Rt ABC 中,90ACB ∠=︒,12AC =,5BC =,点D 是边AC 上的动点,以CD 为边在ABC 外作正方形CDEF ,分别联结AE 、BE ,BE 与AC 交于点G .(1)当AE BE ⊥时,求正方形CDEF 的面积;(2)延长ED 交AB 于点H ,如果BEH △和ABG 相似,求sin ABE ∠的值; (3)当AG AE =时,求CD 的长.【答案】(1)494;(2)119169;(3. 【分析】(1)利用勾股定理求出AB 的长,设CD=x ,则AD=12-x ,利用勾股定理得出13²=x²+(12-x)²+(5+x)²+x²,求出x 的值,再利用正方形的面积公式求解即可;(2)先证∠BAC=∠EBF ,设边长为x ,利用三角函数求出x 的值,再求∠ABE 的正弦值即可;(3)设边长为x ,利用∠BCG∠∠EDG ,得出5DE DG x BC GC ==,然后联立512125x AG GC x AE ⎧=-=-⎪+⎨⎪=⎩,根据AG=AE ,求解即可.【详解】解:(1)Rt∠ABC 中,∠ACB=90°,AC=12,BC=5,13= ,设CD=x ,则AD=12-x ,在∠ADE 中,AE²=DE²+AD²=x²+(12-x)²,在∠BFE 中,BE²=BF²+EF²=(5+x)²+x²,在∠ABE 中,AE∠BE ,∠AB²=AE²+BE²,即13²=x²+(12-x)²+(5+x)²+x²,解得x=72,∠正方形CDEF 的面积=CD²=72×72=494; (2)如图:延长ED 交AB 于H ,∠∠BEH∠∠ABG ,且∠ABG=∠EBH ,∠∠BEH=∠BAG , ∠DE∠EF ,∠∠BEH=∠EBF ,∠∠BAC=∠EBF ,设边长为x , 则tan∠EBF=5x x +,tan∠BAC=512,令5x x +=512,则x=257, ∠25125971284HDAH ADBCAB AC-====,∠59767138484AH =⋅=, ∠BH=13-AH=32584,HD=5929558484⋅=, ∠HE=HD+x=59584, 过H 作HM ,与BE 相交于M ,5sin sin 13B M AG HE ∠=∠=,595sin 84s 951419165in 81332HM HE HEM ABE BH BH ⨯⋅∠∠====;(3)∠DE//BC,∠∠BCG∠∠EDG ,设边长为x ,∠5DE DG xBC GC ==, ∠DG+GC=x ,∠DG=25x x +,GC=55x x +,则512125x AG GC x AE ⎧=-=-⎪+⎨⎪=⎩,令AG=AE , 则或(舍去).【点睛】本题考查了勾股定理、相似三角形的性质与判定及利用三角函数求解,解题的关键是熟练掌握相关性质,正确构造辅助线,表示相关线段的长度.2.(2021·上海长宁区·九年级一模)己知,在矩形ABCD 中,点M 是边AB 上的一个点(与点A 、B 不重合),联结CM ,作∠CMF =90°,且MF 分别交边AD 于点E 、交边CD 的延长线于点F .点G 为线段MF 的中点,联结DG .(1)如图1,如果AD =AM =4,当点E 与点G 重合时,求∠MFC 的面积;(2)如图2,如果AM =2,BM =4.当点G 在矩形ABCD 内部时,设AD =x ,DG 2=y ,求y 关于x 的函数解析式,并写出定义域;(3)如果AM =6,CD =8,∠F =∠EDG ,求线段AD 的长.(直接写出计算结果)【答案】(1)20;(2)()4244644x x y x =-+<;(3)AD =或【分析】(1)运用ASA 证明∠AME DFE ≅∆求出FD 的长再运用三角形面积公式即可得到答案;(2)证明FHM MHC △∽△,根据相似三角形的性质列出比例式,代入相关数值即可求出函数关系式;(3)分点G 在矩形内部和外部两种情况求解即可. 【详解】解(1)过M 作MH∠DC ,垂足为H ,如图1易得四边形ADHM 是正方形,∠AE ED =又∠FED=∠MEA∠∠()AME DFE ASA ≅∆ ∠.4AM FD DH ===∠MH FC ⊥∠∠FHM=∠CHM=90°,∠HCM+∠HMC=90° ∠90FMC ∠=︒,∠∠FMH+∠HMC=90°∠∠FMH=∠HCM∠∠FMH∠∠MCH ∠12MH HC FH MH ==∠2CH =,CF 10=∠1202MFC S CF MH =⋅=△ (2)过M 作MH∠DC ,过G 点作GP∠DC ,垂足分别为H ,P ,如图2,∠FG GM =,//GP MH ∠111222GP MH AD x ===,12FP PH FH == ∠MH∠DC ,∠∠MHF=∠MHC=90°,∠HMC+∠ HCM=90° ∠∠FMC=90°,∠∠FMH+∠HMC=90° ∠∠FMH=∠HCM ,∠FHM MHC △∽△∠FH MH MH HC =,即4FH x x =,∠24x FH =∠28x PH =,228x DP =-,12GP x =∠222DG DP GP =+∠424644x x y =-+由00FH DP >⎧⎨>⎩ 可得4x <<∠定义域为4x <<(3)点G 在矩形内部时,延长DG 交AB 于J ,连接AG ,AF ,如图∠EDG EFD MCB ∠=∠=∠∠AD BC =∠ADJ BCM ≌△△, 2AJ BM == ∠1GJ GMDG GF==,∠AG DG =∠∠12=∠∠∠1390+∠=︒∠∠3490+∠=︒ ∠∠90AGE =︒∠AG 垂直平分FM ∠6AF AM ==∠4DF MJ ==∠AD ===点G 在矩形外部时,延长DG 交BA 延长线于L ,连接DM ,如图∠EDG EFD MCB ∠=∠=∠,AD BC =∠ADL BCM ≌△△, ∠2AL BM ==∠∠L CMD =∠,∠FMC 为直角,∠90DGE ∠=︒,DG 垂直平分FM ∠8DM DF ==,6AM =,∠AD =AD =或【点睛】收费题主要考查了三角形全等的判定与性质、垂直平分线的判定与性质,相似三角形的判定与性质,熟练掌握相关定理和性质是解答此题的关键.3.(2021·上海宝山区·九年级一模)如图,已知ABC 中,90ACB ∠=︒,AC BC =,点D 、E 在边AB 上,45DCE ∠=︒,过点A 作AB 的垂线交CE 的延长线于点M ,联结MD .(1)求证:2CE BE DE =⋅;(2)当3AC =,2AD BD =时,求DE 的长; (3)过点M 作射线CD 的垂线,垂足为点F ,设BDx BC=,tan FMD y ∠=,求y 关于x 的函数关系式,并写出定义域.【答案】(1)见解析;(2)DE=6-;(3)).【分析】(1)先证∠B=∠DCE ,再由∠DEC=∠CEB ,得出∠DEC∠∠CEB ,进而得出结论;(2)由∠DEC∠∠CEB 得BC=BE ,再由∠DEC∠∠DCA ,得AD=AC ,最后利用勾股定理求解即可;(3)连接EF ,先证∠BDC∠∠EDF ,得出FD DE CD BD =,进而得出FDMF=y ,然后结合已知条件得出结果. 【详解】解:(1)∠∠ACB=90°,∠∠B=45°,∠∠DCE=45°,∠∠B=∠DCE ,∠∠DEC=∠CEB ,∠∠DEC∠∠CEB ,∠EC DE BE CE=,故CE²=BE·DE ; (2)由题意得∠DCE 是等腰三角形,DC=CE ,由∠DEC∠∠CEB 得BC=BE , 同理可得∠DEC∠∠DCA ,AD=AC ,∠BC=AC ,∠BE=AD=BC=AC ,∠AC=3,∠在Rt∠ABC中,AB²=BC²+AC²=9+9=18,,∠AD=2BD,∠BD=AB-AD=AB-3,-6,-3,∠DE=AB-BD--3)=6-.(3)连接EF,由三角形相似可得∠FED=∠DBC,∠EF∠BC,∠∠EFD=∠BCD,∠∠EDF=∠BDC,∠∠BDC∠∠EDF,∠FD DECD BD=,∠tan∠FMD=y,∠FDMF=y,在Rt∠MFC中,∠MCF=45°,∠MF=CF,∠FD FDCF MF==y,∠BDxBC=,BE=BC,∠BD BDxBE BC==,∠,FD BDy xCF BE==,∠DE=1xBDx-,CD=1yFDx-,∠FD DECD BD=,11y xy x=--,则y(1-y)=x(1-y),y-xy=x-xy,..【点睛】本题考查了相似三角形的性质与判定及勾股定理的应用,解题的关键是灵活运用相似三角形的性质与判定.4.(2021·上海浦东新区·九年级一模)四边形ABCD 是菱形,∠B≤90°,点E 为边BC 上一点,联结AE ,过点E 作EF∠AE ,EF 与边CD 交于点F ,且EC=3CF . (1)如图1,当∠B=90°时,求ABE S与ECFS的比值;(2)如图2,当点E 是边BC 的中点时,求cos B 的值; (3)如图3,联结AF ,当∠AFE=∠B 且CF=2时,求菱形的边长.【答案】(1)94;(2)15;(3)17. 【分析】(1)先证明:,BEA CFE ∽可得:BE ABCF CE=,结合:3,EC CF =可得:3,AB BE =再设,,CF a BE b == 可得3,AB BC b a ==+而3AB b =,建立方程:33,b a b +=可得:3,2b a = 再利用相似三角形的性质可得答案.(2)延长,AE DC 相交于G ,过F 作FHAD ⊥于,H 连接AF ,先证明:,ABE GCE ≌可得:,,AB CG AE GE == 证明:AF FG =, 设,CF a = 再设DH x =, 利用22222,AF AH FH DF DH -==-求解x ,可得cos ,D 从而可得答案;(3)如图,过E 作EG DC ⊥交DC 的延长线于G ,延长CG 至H ,使,CG HG = 证明:6EH EC ==, 设,DF x = ,HG GC y == 证明:,AFE B D ECH H ∠=∠=∠=∠=∠可得:cos ,6EF ycoc AFE H AF ∠==∠=再证明:,FEH AFD ∽利用相似三角形的性质列方程组,解方程组可得答案.【详解】解:(1)四边形ABCD 是菱形,90B ∠=︒, ∴ 四边形ABCD 是正方形,90B C ∴∠=∠=︒,90BAE BEA ∴∠+∠=︒, ,EF AE ⊥ 90BEA CEF ∴∠+∠=︒, ,BAE CEF ∴∠=∠ ,BEA CFE ∴∽ BE AB CF CE ∴=,,BE CFAB CE∴= 3,EC CF =3,AB BE ∴= 设,,CF a BE b == 3,CE a ∴= 3,AB BC b a ∴==+ 而33,AB BE b ==33,b a b ∴+= 3,2b a ∴= 9,2AB a ∴= 22992.34ABE CEFaSAB SCE a ⎛⎫ ⎪⎛⎫∴===⎪ ⎪⎝⎭ ⎪⎝⎭(2)延长,AE DC 相交于G ,过F 作FH AD ⊥于,H 连接AF ,菱形ABCD ,//,AB CD ∴ ,BAE G ∴∠=∠ E 为BC 的中点,,BE CE ∴=,AEB CEG ∠=∠ ()ABE GCE AAS ∴≌,,,AB CG AE GE ∴==,AE EF ⊥ ,AF FG ∴=设,CF a = 则3,CE BE a == 6AB BC DC CG AD a =====,75,FG AF a DF a ∴===, 设,DH x = 22222,AF AH FH DF DH ∴-==-()()()2222765,a a x a x ∴--=- ,x a ∴= ,DH a ∴= 1cos ,55DH a DDF a ∴=== 由菱形ABCD 可得:,B D ∠=∠ 1cos .5B ∴=(3)如图,过E 作EG DC ⊥交DC 的延长线于G ,延长CG 至H ,使,CG HG =,,EC EH H ECH ∴=∠=∠ 23,CF CE CF ==, 6CE EH ∴==,设,DF x = ,HG GC y == 则2,DC AD x ==+ ,6HG y coc H EH ∴∠== 菱形ABCD , ,//,B D AB CD ∴∠=∠ ,B ECH ∴∠=∠ ,AFE B ∠=∠,AFE B D ECH H ∴∠=∠=∠=∠=∠ cos ,6EF y coc AFE H AF ∴∠==∠= ,AFH AFE EFH D DAF ∠=∠+∠=∠+∠ ,EFH DAF ∴∠=∠,FEH AFD ∴∽ ,EH HF EF DF AD AF ∴== 622,26y y x x +∴==+ 361012xy xy y =⎧∴⎨=+⎩,解得:15,2.4x y =⎧⎨=⎩经检验:152.4x y =⎧⎨=⎩是原方程组的解,217,CD x ∴=+= 即菱形ABCD 的边长为:17. 【点睛】本题考查的是三角形全等的判定与性质,线段垂直平分线的性质,勾股定理的应用,菱形,正方形的性质,相似三角形的判定与性质,解直角三角形,解分式方程组,掌握以上知识是解题的关键. 5.(2021·上海杨浦区·九年级一模)如图,已知在Rt ABC 中,90ACB ∠=︒,4AC BC ==,点D 为边BC 上一动点(与点B 、C 不重合),点E 为边AB 上一点,EDB ADC ∠=∠,过点E 作EF AD ⊥,垂足为点G ,交射线AC 于点F .(1)如果点D 为边BC 的中点,求DAB ∠的正切值;(2)当点F 在边AC 上时,设CD x =,CF y =,求y 关于x 的函数解析式及定义域;(3)联结DF 如果CDF 与AGE 相似,求线段CD 的长.【答案】(1)1tan 3DAB ∠=;(2)()2402y x x =-+<≤;(3)-4、8-. 【分析】(1))过点D 作DH AB ⊥于H ,在Rt ACB 中,利用勾股定理解得AD 、AB 的长,再结合等积法,解得DH 、AH 的长即可解题;(2)根据相似三角形对应边成比例的性质,表示()444x EH x -=+, 再证明AFE BDE 由AF AE DB BE =即)4444x y x x --=-+得到与x 的关系; (3)根据相似三角形对应边成比例的性质,结合(2)中y 关于x 的函数解析式联立方程组,继而解得x 、y 的值即可解题.【详解】(1)过点D 作DH AB ⊥于H ,在Rt ACB 中,AD =AB ==142ADB S DB AC ∴=⋅=12ADB S AB DH =⋅DH ∴=AH == 1tan 3DH DAB AH ∴∠==; (2)过E 作EH∠CB 于H∠EDB ADC ∠=∠,90C EHD ∠=∠=︒∠ACD EHD .∠AC EH CD DH = 即44EH x x EH=--.∠()444x EH x -=+ .∠EH∠CB ,90ACB ∠=︒,4AC BC ==∠)44x EB x -==+ ,AB =∠)44x AE x -=+∠EF AD ⊥,90C ∠=︒∠AFG ADC ∠=∠ .∠EDB ADC ∠=∠ ∠AFG EDB ∠=∠.∠45FAE B ∠=∠=︒∠AFE BDE .∠AF AE DB BE =即)4444x y x x --=-+()2402y x x =-+<≤; (3)在Rt∠MDB 中,DB=4-x,所以MD=MB=(4).2x - 在Rt∠ADM 中,AM=AB 一MB=)(4).22x x -=+所以tan∠DAB=44DM x AM x -=⋅+ 按照点F 的位置,分两种情况讨论∠CDF 与∠AGE 相似:①点F 在线段AC 上,此时y=4-2x.如图,如果∠FDC=∠DAB ,由tan∠FDC=tan∠DAB,得44y x x x-=⋅+结合y=4-2x ,整理,得x2+8x+16=0. 解得-4 或--4 (舍去),如果∠CFD=∠DAB ,由tan∠CFD=tan∠DAB ,得4.4x x y x-=+ 结合y=4- -2x,整理,得x 2-16x+16=0.解得8x =-8+②点F 在线段AC 的延长线上,此时y=2x-4如图如果∠FDC=∠DAB,由44y x x x -=+结合y=2x -4,整理,得23160.x -=解得或3-(舍去) 如果∠CFD=∠DAB, 44x x y x-=+与y=2x -4整理,得238160.x x -+=此方程无解.综上,CD 的值为-4、8- 【点睛】本题考查勾股定理、相似三角形的性质,涉及解二元一次方程组等知识,解题关键是根据题意利用相似三角形性质构造方程.6.(2021·上海青浦区·九年级一模)在ABC 中,90C ∠=︒,2AC =,BC =D 为边AC 的中点(如图),点P 、Q 分别是射线BC 、BA 上的动点,且2BQ BP =,联结PQ 、QD 、DP .(1)求证:PQ AB ⊥;(2)如果点P 在线段BC 上,当PQD △是直角三角形时,求BP 的长;(3)将PQD △沿直线QP 翻折,点D 的对应点为点'D ,如果点'D 位于ABC 内,请直接写出BP 的取值范围.【答案】(1)见解析;(2或6;(3)33BP << 【分析】(1)证明∠BPQ∠∠BAC 即可;(2)由∠PQD<90︒,只需要讨论两类情况,当90DPQ ∠=︒时,利用tan3AC B BC ===,求出∠B=30,30DPC ∠=︒,计算tan 30CD CP ︒===,根据BP=BC -CP 求值;当90PDQ ∠=︒时,过Q 作QE∠AC 交AC 于E ,则∠QED=∠PDQ=90C ∠=︒,证明∠EQD∠∠CDP ,得到QE ED CD CP=,设BP t =,过点Q 作QF∠BC 于F ,则四边形CEQF 是矩形,求出1344t QE F t t C +===,1CD =,CP t =,14DE CE CD =-=-,代入比例式求出t 的值; (3)只需考虑BP 的极限情况:①当'D 正好在BC 上时,如图3,设BP=m ,由'30DD C B ∠=∠=︒求出'CD =,'DP D P =,列得()'2CP D P CP DP m m +=+=+=计算求值即可;②另外一个极限情况时,如图4,当PQ 经过点D 时,求出PC=tan 602CD =︒,即可得到3BP =【详解】解:(1)在ABC 中,90C ∠=︒,2AC =,BC =∠4AB ==,∠BC AB ==,∠BQ BP =,∠BQ BP =∠BQ BC BP AB =,∠QBP CBA ∠=∠, BPQBAC ∴,∠90BQP BCA ∠=∠=︒,PQ AB ∴⊥;(2)90PQD ∠<︒,所以只需要讨论两类情况,当90DPQ ∠=︒时,如图1,在Rt∠ABC中,tan 3AC B BC ===,∠∠B=30, ∠9060QPB B ∠=︒-∠=︒,30DPC ∴∠=︒, ∠2AC =,点D 为边AC 的中点,∠CD=1,∠tan 30CD CP ︒===,BP BC CP ∴=-= 当90PDQ ∠=︒时,如图2,过Q 作QE∠AC 交AC 于E ,则∠QED=∠PDQ=90C ∠=︒,∠∠EQD+∠EDQ=∠EDQ+∠CDP=90︒,EQD CDP ∴,QE ED CD CP∴=, 设BP t =,过点Q 作QF∠BC 于F ,则四边形CEQF 是矩形,∠∠B=30,∠BQP=90︒, ∠PQ=12t ,∠60QPB ∠=︒,∠cos 6014PF PQ t =⋅︒=,sin 60QF PQ =⋅︒=,∠1344t QE F t t C +===,1CD =,CP t =,14DE CE CD t =-=-,134t -∴=t ∴=或t =(舍去), 综上,BP或6;(3)只需考虑BP 的极限情况:①当'D 正好在BC 上时,如图3,设BP=m ,'DD PQ ⊥,'30DD C B ∴∠=∠=︒,'CD ∴=30CDP ∠=︒,又'DP D P =,()'2CP D P CP DP m m ∴+=+=+=3m ∴=; ②另外一个极限情况时,如图4,当PQ 经过点D 时,∠60P ∠=︒,90DCP ∠=︒,CD=1, ∠PC=tan 603CD =︒,∠3BP =BP <<. .【点睛】此题考查相似三角形的判定及性质,锐角三角函数,直角三角形30度角所对的直角边等于斜边的性质,矩形的判定及性质,熟记各定理是解题的关键.7. (2021黄浦一模)如图,四边形ABCD 中,4AB AD ==,3CB CD ==,90ABC ADC ∠=∠=︒,点M 、N 是边AB 、AD 上的动点,且12MCN BCD ∠=∠,CM 、CN 与对角线BD 分别交于点P 、Q .(1)求sin MCN ∠的值:(2)当DN DC =时,求CNM ∠的度数;(3)试问:在点M 、N 的运动过程中,线段比PQ MN的值是否发生变化?如不变,请求出这个值;如变化,请至少给出两个可能的值,并说明点N 相度的位置.【答案】(1)45;(2)45°;(3)不会发生变化,35. 【分析】(1)连接AC,利用垂直平分线性质,构造Rt △ABC ,由正弦三角函数即可求得;(2)证明 △BCG ≌△DCN ,得到角相等,再由角相等,得△GMC ≌△NMC ,由DN DC =解答即可; (3)由D 、C 、N 、P 四点共圆,得到∠CPD=∠CND=∠MNC ,再得△CPQ ∽△CNM ,由此解答即可.【详解】解:(1)连接AC ∵4AB AD ==,3CB CD ==∴AC 垂直平分BD∴∠ACB=∠ACD=12∠BCD=∠MCN 在Rt △ABC 中,AB=4,AC=3∴5== ∴sin MCN ∠=sin ∠ACB=45AB AC = (2)延长AB 至G 点,使BG=DN ,连接CG ,∵CB=CD ∠CBG=∠CBN=90°∴△BCG ≌△DCN ∴∠G=∠CND ,CN=CG ,∠BCG=∠DCN∴∠MCN=12∠BCD ∴∠MCB+∠NCD=12∠BCD ∴∠GCM=∠GCB+∠GCM=12∠BCD=∠MCN ∵CM=CM , ∠G=∠CND,∴△GMC ≌△NMC ∴∠G=∠MNC=∠DNC当DN=NC时∠DNC=∠DCN=45°∴∠DNC=∠CNM=45°(3)连接NP, ∵∠ADC=∠ADO+∠CDO=90°∠ADO+∠CDO=90°∴∠ADO=∠COD=12∠BCD=∠MCN∴∠NDP=∠NCP∴D、C、N、P四点共圆,∴∠NPC+∠NDC=180°∵∠NDC=90°∴∠NPC=90°∴∠CPD=∠CND=∠MNC∴△CPQ∽△CNM∴PQ CP MN CN=在Rt△CPN中,CPCN=cos∠MCN=cos∠ACB=35∴不会发生变化35PQMN=【点睛】本题考查了线段垂直平分线的性质,三角形全等性质与判断,三角形相似等知识点,解题的关键是掌握性质与判定.8.(2021·上海静安区·九年级一模)已知∠MAN是锐角,点B、C在边AM上,点D在边AN上,∠EBD=∠MAN,且CE∠BD,sin∠MAN=35,AB=5,AC=9.(1)如图1,当CE与边AN相交于点F时,求证:DF·CE=BC·BE;(2)当点E在边AN上时,求AD的长;(3)当点E在∠MAN外部时,设AD=x,∠BCE的面积为y,求y与x之间的函数解析式,并写出定义域.【答案】(1)证明见解析;(2)AD=4±(3)224825x y x x =-+.定义域为:44x <<+. 【分析】(1)根据CE∠BD ,得出∠CEB=∠DBE ,∠DBA=∠BCE 结合题干证明出∠ABD∠∠ECB ,进而得到AD EBAB EC=,再等量代换即可得到DF·CE=BC·BE .(2)过点B 作BH∠AN ,垂足为H .根据条件先证明出∠CEB∠∠CAE ,得到2CE =CB CA ⋅,代入求出CE ,再根据BD ABCE AC=求出BD ,利用三角函数求出BH ,根据勾股定理即可求出AD . (3)过点B 作BH∠AN ,垂足为H .BH=4,AH=3,DH=4x -根据∠ECB∠∠ABD 得到22EBC ADB S BC S BD △△=,代入化简为224825xy x x =-+即可求解.【详解】解:(1)∠CE∠BD ,∠∠CEB=∠DBE ,∠DBA=∠BCE .∠∠A=∠DBE ,∠∠A=∠BEC .∠∠ABD∠∠ECB ,∠AD EB AB EC =.∠AD DF AB BC=,∠EB DFEC BC =,∠DF·CE=BC·BE .(2)过点B 作BH∠AN ,垂足为H .∠CE∠BD,∠∠CEB=∠EBD=∠A,又∠∠BCE=∠ECA,∠∠CEB∠∠CAE,∠CE CACB CE=,∠2CE=CB CA⋅.∠AB=5,AC=9,∠BC=4,∠24936CE==⨯,∠CE=6.∠BD ABCE AC=,∠561093AB CEBD==AC⋅⨯=.在Rt∠ABH中,3sin535BH AB A=⋅=⨯=,∠AH=224AB BH-=.==.AD=4±(3)过点B作BH∠AN,垂足为H.BH=4,AH=3,DH=4x-.2222224)3825BD=DH+BH x x x=-+=-+(.∠∠ECB∠∠ABD,∠22EBCADBS BCS BD△△=.∠1322ABDS AD BH x=⋅△=,∠21638252yx xx=-+,∠224825xyx x=-+.定义域为44x<.【点睛】此题属于平面几何的综合应用,主要利用三角形相似,找到相似比,根据相似比求值,计算量较大,有一定难度.9.(2021·上海崇明区·九年级一模)如图,Rt ABC中,90ACB∠=︒,6AC=,8BC=,点D为斜边AB 的中点,ED AB⊥,交边BC于点E,点P为射线AC上的动点,点Q为边BC上的动点,且运动过程中始终保持PD QD⊥.(1)求证:ADP EDQ △△;(2)设AP x =,BQ y =,求y 关于x 的函数解析式,并写出该函数的定义域; (3)连接PQ ,交线段ED 于点F ,当PDF 为等腰三角形时,求线段AP 的长.【答案】(1)证明见解析;(2)253250443y x x ⎛⎫=-≤≤ ⎪⎝⎭;(3)256或53 【分析】(1)根据ED AB ⊥,PD QD ⊥得A DEQ ∠=∠,ADP EDQ ∠=∠,即可得ADP EDQ △△.(2)先根据相似三角形的性质、中点性质以及锐角三角函数的概念得出tan EQ ED EDB AP AD BD===,求出34EQ x =,再根据BQ BE EQ =-,列出函数关系式,化简即可. (3)先证PDFBDQ △△,再分3种情况讨论,分别求出AP 的长.【详解】解:(1)PD QD ⊥,ED AB ⊥∠A DEQ ∠=∠,ADP EDQ ∠=∠,∠ADP EDQ △△.(2)ADP EDQ △△,∠EQ EDAP AD= 又点D 为斜边AB 的中点,∠AD BD = , EQ ED EDAP AD BD==又ED AB ⊥在Rt BDE 中tan =ED ED EQB BD AD AP==,又6tan =8AC BC DE B BD ==,由勾股定理得:BC =10D 为AB 中点, ∠BD =5, DE =154,由勾股定理得:BE =254AP x =,可得34EQ x =,BQ BE EQ =-, 253250443y x x ⎛⎫=-≤≤ ⎪⎝⎭. (3)tan tan DQ ED EDFPD B DP AD BD∠====,∠FPD B ∠=∠,又∠PDF BDQ ∠=∠, ∠PDFBDQ △△,∠PDF 为等腰三角形时,BDQ △亦为等腰三角形.若DQ BQ =,12cos BD B BQ=,542253544x =-,解得256x .若BD BQ =, 253544x -=,解得53x =. ③若DQ BD =,2180B DQB BDQ B BDQ ︒∠+∠+∠=∠+∠<,此种情况舍去.【点睛】本题主要考查了相似三角形的判定和性质,等腰三角形的性质和判定,三角函数,正确和熟练应用相似三角形的性质得到各线段之间的数量关系是解决本题的关键.10.(2021·上海闵行区·九年级一模)如图,在矩形ABCD 中,2AB =,1AD =,点E在边AB 上(点E与端点A 、B 不重合),联结DE ,过点D 作DF DE ⊥,交BC 的延长线于点F ,连接EF ,与对角线AC 、边CD 分别交于点G 、H .设AE x =,DH y =.(1)求证:ADE CDF ∽△△,并求EFD ∠的正切值; (2)求y 关于x 的函数解析式,并写出该函数的定义域; (3)连接BG ,当BGE △与DEH △相似时,求x 的值.【答案】(1)证明见解析;12;(2)222(02)21x y x x +=<<+;(3)45x =或45x =【分析】(1)根据垂直关系得到ADE CDF ∠=∠,根据AA 即可证明ADE CDF ∽△△,得到12DE AD DF CD ==,再根据正切的定义即可求解tan EFD ∠; (2)先证明FCH FBE △∽△,得到FC CH FB BE =,代入得到22212x yx x-=+-,故可求解; (3)根据题意分BEG DHE △∽△和EGB HDE △∽△,分别列出比例式求出x 的值即可求解. 【详解】解:(1)∠90ADE CDE ︒∠+∠=,90CDF CDE ︒∠+∠=∠ADE CDF ∠=∠在Rt EAD 和Rt FCD 中90ADE CDFEAD FCD ∠=∠⎧⎨∠=∠=︒⎩90EAD FCD ︒∠=∠=∠FAD FCD △∽△∠2AB DC ==,1AD =,∠12DE AD DF CD == ∠1tan 2DE EFD DF ∠== (2)由(1)可知ADE CDF ∽△△∠12EA DE AD FC DF CD ===∠22FC EA x ==∠AB //CD∠FCH FBE △∽△,∠FC CH FB BE =∠22212x y x x -=+-∠222(02)21x y x x +=<<+, (3)∠AE x =,DH y =,过点E 作EM∠CD 于M 点,∠四边形AEMD 为矩形∠MH=DH -DM=DH -AE=y -x ,∠2BE x =-,DE =EH =∠AB //CD∠AEG CHG △∽△∠EG AE HG CH =∠EG AE EH AE CH =+∠AEEG EH AE CH=⋅+∠BEG DHE ∠=∠, 若BEG DHE △∽△, ∠BE EG DH HE =∠BE AEDH AE CH =+即22x x y x y -=+- 化简得2240x y +-=∠22221x y x +=+∠222212240x x x +⨯-++=化简得22508x x +=-解得x =45x =若EGB HDE △∽△∠BE EG EH HD = ∠2AE BE HD HE AE CH⋅=⋅+即2(2)1()2x x y y x x y ⎡⎤-=⋅+-⎣⎦+- ∠22221x y x +=+代入化简得22637200x x ++=∠=372-4×26×20=-711<0,∠方程无解综上,45x =和x =BGE △与DEH △相似.【点睛】本题考查了矩形的性质、函数关系式、正切的定义、相似三角形的判定和性质等知识点,解题的关键是灵活运用所学知识解决问题,用分类讨论的思想思考问题,属于中考压轴题.11.(2021·上海奉贤区·九年级一模)已知圆O 的直径4AB =,点P 为弧AB 上一点,联结PA PO 、,点C 为劣弧AP 上一点(点C 不与点A 、P 重合),联结BC 交PA PO 、于点D E 、()1如图,当78cos CBO ∠=时,求BC 的长;()2当点C 为劣弧AP 的中点,且EDP ∆与AOP ∆相似时,求ABC ∠的度数; ()3当2AD DP =,且BEO ∆为直角三角形时.求四边形AOED 的面积.【答案】(1)72;(2)18°;(3)53【分析】(1)方法一:作OG BC ⊥,利用垂径定理和余弦即可求得;方法二:连接AC ,根据直径所对的圆周角等于90°可得∠ACB=90°,利用余弦解直角三角形即可;(2)先根据已知条件确定两个相似三角形的对应角,得出P PED PAO OEB ∠=∠=∠=∠,设ABC α∠=,利用等腰三角形等边对等角和弧与圆心角的关系,圆周角定理分别表示∠AOP 和∠OEB ,利用三角形外角的性质即可求得α即ABC ∠;(3)分当90EOB ∠=和当90OEB ∠=时两种情况讨论,画出对应图形,利用相似三角形和解直角三角形的知识求解即可.【详解】解析:方法一: 作OG BC ⊥,∠BC=2BG,7cos 4BG BO CBO =⋅∠=,722BC BG ∴==;方法二: 连接AC ,∠AB 为直径,90ACB ∴∠=7cos 2BC AB CBO ∴=⋅∠=; (2)∠AO=OP ,∠∠PAO=∠P ,∠P P ∠=∠,EDP ∆与AOP ∆相似,,DPEOPA ∴∆∆P PED PAO OEB ∴∠=∠=∠=∠,C 是AP 中点,CO ∴平分AOP ∠, CO BO =,设,ABC α∠=2,4AOC AOP αα∴∠=∠=,18049022PAO OEB αα-∴∠==-=∠,AOP OEB ABC ∴∠=∠+∠, 即4902a a a =-+,18a ABC ∴=∠=;()3 I .当90EOB ∠=时,作DH AB ⊥∠DH//OP ,∠∠ADH∠∠APO ,∠23AH DH AD AD AO OP AP AD DP ====+, 23AH AO ∴=,∠AB=4,∠OA=OB=2,428,,333AH HO BH ∴===, 2,AO OP ==43AH DH ∴==,∠DH//OP ,∠∠BOE∠∠BHD , 28433EO OB EODH HB ∴===,1EO ∴=, AHD AOED HOEDS S S ∆∴=+四边形梯形21414251232333⎛⎫⎛⎫=⨯+⨯+⨯= ⎪ ⎪⎝⎭⎝⎭; II .当90OEB ∠=时连接,AC由()1得//AC DP ,∠∠ACD∠∠PED ,∠ACB∠∠OEB ,2AD DP =,∠2CD AC ADDE PE DP===,2AC EP ∴=,又,AO BO =∠=2CB AC ABBE OE BO==,2,AC EO ∴=2,30AC OP ABC ∴==∠=,60,EOB CAO ∴∠=∠=∠AO=OP ,∠∠PAO=∠APO ,∠PAO+∠APO=∠EOB=60°,∠30CAD AP O O PA ∠=∠==∠,ABC OEB ACD AOED S S S S ∆∆∆∴=--四边形111222AC BC OE BE CD AC =⋅-⋅-⋅4,AB =2,AC BC BE ∴===1OE =,CD =111212222AOED S ∴=⨯⨯⨯=四边形综上所述,四边形AOED 的面积为53 【点睛】本题考查圆周角定理、垂径定理、相似三角形的性质和判定,解直角三角形,等腰三角形的性质等.(1)中能借助定理构造直角三角形是解题关键;(2)能借助相似三角形以及圆周角定理表示相关角是解题关键;(3)中注意分类讨论和正确构造图形.12.(2021·上海普陀区·九年级一模)如图,矩形ABCD 中,1AB =,3BC =,点E 是边BC 上一个动点(不与点B 、C 重合),AE 的垂线AF 交CD 的延长线于点F .点G 在线段EF 上,满足:1:2FG GE =.设BE x =.(1)求证:AD DFAB BE=; (2)当点G 在ADF 的内部时,用x 的代数式表示ADG ∠的余切; (3)当FGD AFE ∠=∠时,求线段BE 的长.。
2021年上海中考数学母题讲次13 动态几何题-(教师版)
专题13动态几何题【母题来源1】(2019•上海中考真题)如图,在正方形ABCD中,E是边AD的中点.将△ABE沿直线BE翻折,点A落在点F处,联结DF,那么△EDF的正切值是.【答案】由折叠可得AE=FE,△AEB=△FEB,由折叠的性质以及三角形外角性质,即可得到△AEB=△EDF,进而得到tan△EDF=tan△AEB==2.【解析】解:如图所示,由折叠可得AE=FE,△AEB=△FEB=△AEF,△正方形ABCD中,E是AD的中点,△AE=DE=AD=AB,△DE=FE,△△EDF=△EFD,又△△AEF是△DEF的外角,△△AEF=△EDF+△EFD,△△EDF=△AEF,△△AEB=△EDF,△tan△EDF=tan△AEB==2.故答案为:2.【母题来源2】(2017•上海中考真题)一副三角尺按如图的位置摆放(顶点C与F重合,边CA与边FE叠合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180 ),如果EF△AB,那么n的值是.【答案】分两种情形讨论,分别画出图形求解即可.【解析】解:△如图1中,EF△AB时,△ACE=△A=45°,△旋转角n=45时,EF△AB.△如图2中,EF△AB时,△ACE+△A=180°,△△ACE=135°△旋转角n=360﹣135=225,△0<n<180,△此种情形不合题意,故答案为45【母题来源3】(2016•上海中考真题)如图所示,梯形ABCD中,AB△DC,△B=90°,AD=15,AB=16,BC=12,点E是边AB上的动点,点F是射线CD上一点,射线ED和射线AF交于点G,且△AGE=△DAB.(1)求线段CD的长;(2)如果△AEG是以EG为腰的等腰三角形,求线段AE的长;(3)如果点F在边CD上(不与点C、D重合),设AE=x,DF=y,求y关于x的函数解析式,并写出x的取值范围.【答案】(1)作DH△AB于H,如图1,易得四边形BCDH为矩形,则DH=BC=12,CD=BH,再利用勾股定理计算出AH,从而得到BH和CD的长;(2)分类讨论:当EA=EG时,则△AGE=△GAE,则判断G点与D点重合,即ED=EA,作EM△AD于M,如图1,则AM=AD=,通过证明Rt△AME△Rt△AHD,利用相似比可计算出此时的AE长;当GA=GE 时,则△AGE=△AEG,可证明AE=AD=15,(3)作DH△AB于H,如图2,则AH=9,HE=|x﹣9|,先利用勾股定理表示出DE=,再证明△EAG△△EDA,则利用相似比可表示出EG=,则可表示出DG,然后证明△DGF△△EGA,于是利用相似比可表示出x和y的关系.【解析】解:(1)作DH△AB于H,如图1,易得四边形BCDH为矩形,△DH=BC=12,CD=BH,在Rt△ADH中,AH===9,△BH=AB﹣AH=16﹣9=7,△CD=7;(2)△EA=EG时,则△AGE=△GAE,△△AGE=△DAB,△△GAE=△DAB,△G点与D点重合,即ED=EA,作EM△AD于M,如图1,则AM=AD=,△△MAE=△HAD,△Rt△AME△Rt△AHD,△AE:AD=AM:AH,即AE:15=:9,解得AE=;△GA=GE时,则△GAE=△AEG,△△AGE=△DAB,而△AGE=△ADG+△DAG,△DAB=△GAE+△DAG,△△GAE=△ADG,△△AEG=△ADG,△AE=AD=15.综上所述,△AEC是以EG为腰的等腰三角形时,线段AE的长为或15;(3)作DH△AB于H,如图2,则AH=9,HE=|x﹣9|,在Rt△HDE中,DE==,△△AGE=△DAB,△AEG=△DEA,△△EAG△△EDA,△EG:AE=AE:ED,即EG:x=x:,△EG=,△DG=DE﹣EG=﹣,△DF△AE,△△DGF△△EGA,△DF:AE=DG:EG,即y:x=(﹣):,△y=(9<x<).1、抓住图形运动后角度和长度等性质的特点;2、寻找几何模型突破点;3、主要有以下几点思路:数量关系突破:1、勾股定理(比较初级,实用);2、锐角三角比;3、相似;角度关系突破:平行,全等,相似,其他几何性质;4、分类讨论多种情况(可以以某一种情况切入),记得验证是否均满足题意,有些需要舍去;5、综合分析法,从已知和结果同时出发往中间靠(也就是寻找第3点的突破点)。
【2021年上海市初中一模数学卷】2021年上海市金山区初中毕业生学业模拟考试试卷九年级数学及答案
金山区2020学年第一学期期末质量检测初三数学试卷(满分150分,考试时间100分钟)(2021.1)一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1.已知二次函数()122−−=x y ,那么该二次函数图像的对称轴是()(A )直线2=x ; (B )直线2−=x ; (C )直线1=x ; (D )直线1−=x .2.下列各点在抛物线22x y =上的是()(A )()2,2;(B )()42,;(C ))(8,2;(D )()16,2.3.在ABC Rt ∆中, 90=∠C ,那么锐角A 的正弦等于( )(A )的邻边锐角的对边锐角A A ;(B )斜边的对边锐角A ;(C )斜边的邻边锐角A ;(D )的对边锐角的邻边锐角A A .4.若α是锐角,()2215sin =+α,那么锐角α等于( )(A ) 15;(B ) 30;(C ) 45;(D ) 60.5.如图,已知点D 、E 分别在ABC ∆的边AB 、AC 上,BC DE //,2=AD ,3=BD ,a BC =,那么ED 等于()(A )a 32; (B )a 32−;(C )a 52; (D )a 52−.6.如图,已知ABC Rt ∆中, 90=∠C ,3=AC ,4=BC ,如果以点C 为圆心的圆与斜边AB 有公共点,那么⊙C 的半径r 的取值范围是( )(A )5120≤≤r ; (B )3512≤≤r ; (C )4512≤≤r ; (D )43≤≤r . 二、填空题:(本大题共12题,每题4分,满分48分) 【请直接将结果填入答题纸的相应位置】第6题图BCAA第5题图7.计算:=⎪⎭⎫⎝⎛−+b a a 232.8.已知()x x x f 32+=,那么()=−2f .9.抛物线22x y −=沿着x 轴正方向看,在y 轴的左侧部分是.(填“上升”或“下降”)10.正十边形的中心角等于度.11.已知⊙1O 和⊙2O 的半径长分别为3和4,若⊙1O 和⊙2O 内切,那么圆心距21O O 的长等于.12.在ABC Rt ∆中, 90=∠C ,15=AB ,54in =A s ,那么=BC .13.在ABC ∆中,5:2:1::=BC AC AB ,那么=B tan .14.已知:如图,ABC ∆的中线AE 与BD 交于点G ,AE DF //交BC 于F ,那么=AGDF.15.如图,在梯形ABCD 中,BC AD //,AD BC 2=,设a AB =,b AD =,那么向量CD 用向量a 、b 表示为.16.如图,已知⊙O 中, 120=∠AOB ,弦18=AB ,那么⊙O 的半径长等于.17.如图,在□ABCD 中,点E 在边BC 上,DE 交对角线AC 于F ,若BE CE 2=,ABC ∆的面积等于15,那么FEC ∆的面积等于 .18.已知在ABC Rt ∆中,90=∠C ,1=BC ,2=AC ,以点C 为直角顶点的DCE Rt ∆的顶点D 在BA 的延长线上,DE 交CA 的延长线于点G ,若21tan =∠CED ,GE CE =,那么BD 的长等于 .第17题图BACDEF第16题图ABOAGDCBEF第14题图第15题图ACB第18题图三、解答题(本大题共7题,满分78分) 19.(本题满分10分)如图,已知在ABC Rt ∆中,90=∠C ,3=AC ,4=BC .求:30tan 4tan cos 1sin tan 2AB A B +−+⋅的值.20.(本题满分10分,每小题满分5分)已知:如图,⊙1O 与⊙2O 外切于点T ,经过点T 的直线与⊙1O 、⊙2O 分别相交于点A 和点B .(1)求证:B O A O 21//;(2)若21=A O ,32=B O ,7=AB ,求AT 的长. 21.(本题满分10分,每小题满分5分)已知抛物线c bx x y ++−=22经过点()1,0A 、()5,1−B .(1)求抛物线的表达式;(2)把表达式化成()k m x y ++−=22的形式,并写出顶点坐标与对称轴.22.(本题满分10分,每小题满分5分)如图,在距某输电铁塔GH (GH 垂直地面)的底部点H 左侧水平距离60米的点B 处有一个山坡,山坡AB 的坡度3:1=i ,山坡坡底点B 到坡顶A 的距离AB 等于40米,在坡顶A 处测得铁塔顶点G 的仰角为 30(铁塔GH 与山坡AB 在同一平面内).(1)求山坡的高度;(2)求铁塔的高度GH .(结果保留根号)23.(本题满分12分,每小题满分6分)已知:如图,四边形ABCD 是菱形,点M 、N 分别在边BC 、CD 上,联结AM 、AN 交对角线BD 于E 、F 两点,且ABD MAN ∠=∠. (1)求证:DE BF AB ⋅=2;(2)若DCDNDE BE =,求证:MN EF //. C第19题图BAT 第20题图BAO 1 O 2G第22题图ABHABF E C第23题图DMN第24题图第25题备用图24.(本题满分12分,每小题满分4分)在平面直角坐标系xoy 中,直线243+−=x y 与直线321−=x y 相交于点A ,抛物线)0(12≠−+=a bx ax y 经过点A .(1)求点A 的坐标;(2)若抛物线12−+=bx ax y 向上平移两个单位后, 经过点()2,1−,求抛物线12−+=bx ax y 的表达式;(3)若抛物线c x b x a y +'+'=2()0<'a 与2+=ax y 对称,且这两条抛物线的顶点分别是点P '与点P ,当S 求抛物线12−+=bx ax y 的表达式.25.(本题满分14分,第(1)分4分,第(2)分6分,第(3)分4分)定理:一条弧所对的圆周角等于这条弧所对的圆心角的一半.如图1中,O A ∠=∠21. 已知:如图2,AC 是⊙O 的一条弦,点D 在⊙O 上(与A 、C 不重合),联结DC 交射线AO 于点E ,联结OD ,⊙O 的半径为5,43tan =∠OAC .(1)求弦AC 的长.(2)当点E 在线段OA 上时,若DOE ∆与AEC ∆相似,求DCA ∠的正切值.(3)当1=OE 时,求点A 与点D 之间的距离(直接写出答案).ABCO第25题图1第25题图2参考答案和评分标准一.选择题: 1.A ; 2.C ; 3.B ; 4.B ; 5.D ; 6.C .二.填空题: 7.b a 24−; 8.2−; 9.上升;10.36;11.1;12.12;13.2; 14.43;15.b a −−;16.36;17.4;18.52+. 19.解:在ABC Rt ∆中, 90=∠C ,3=AC ,4=BC ,由勾股定理得,222BC AC AB +=, ∴5432222=+=+=BC AC AB ;……………………………………(2分)∴43tan ==BC AC B ;54sin ==AB BC A ;54cos ==AB BC B ;34tan ==AC BC A ……(4分)∴原式2334345415443⎪⎪⎭⎫⎝⎛⨯+−+⨯=;……………………(2分)59154=+=.………………(2分) 20.(1)证明:联结21O O ,即21O O 为连心线,又∵⊙1O 与⊙2O 外切于点T ,……(1分) ∴21O O 经过点T ;………………………………………(1分)∵T O B O T O A O 2211,==;∴TB O B TA O A 21,∠=∠∠=∠;……………………(1分) ∵TB O TA O 21∠=∠; ∴B A ∠=∠;……………(1分) ∴B O A O 21//.……………………(1分) (2)∵B O A O 21// ∴BTATBO AO =21;……………………………(2分) ∵21=A O ,32=B O ,7=AB ; ∴AT AT −=732,解得:514=AT .……………(3分) 21.解:(1)由抛物线c bx x y ++−=22经过点()1,0A 、()5,1−B 两点可得:⎩⎨⎧−=++−=521c b c ………………(2分)解得:⎩⎨⎧=−=14c b ;…………………(2分) ∴抛物线的解析式为:1422+−−=x x y .……………………(1分) (2)1422+−−=x x y ()3122++−=x ;……………(3分)∴()3122++−=x y ,顶点坐标为:()3,1−,对称轴为:直线1−=x .……………(1+1分)22.解:(1)过点A 作AD 垂直HB ,交HB 的延长线于点D .……………(1分) 即 90=∠ADB ;由题意得:3:1=i ,60=AB (米);∴31=BD AD ,即AD BD 3=;………(1分) 又∵222BD AD AB +=,即()222340AD AD +=……………(1分)∴20=AD (米).……………(1分)答:山坡的高度为20米.…………………(1分) (2)作BH AE //交GH 于点E .………………(1分) ∵BH AD ⊥,BH GH ⊥;∴GH AD //; 即:四边形ADHE 是平行四边形;由题意可知: 30=∠GAE ,60=BH (米); ∵3203==AD BD (米); ∴30260+==DH AE (米);……………(1分)在AGE R ∆t 中,AEGEGAE =∠tan ; ∴32020+=GE (米).……………(1分) 又∵20==AD EH (米);∴32040+=+=EH GE GH (米);……………(1分)答:铁塔的高度GH 为)(32040+米.……………(1分)23.证明:(1)∵四边形ABCD 是菱形; ∴AD AB =;……………(1分) ∴ADB ABD ∠=∠;……………(1分)∵BAE ABD AED ∠+∠=∠,BAE MAN BAF ∠+∠=∠; 又∵ABD MAN ∠=∠;∴BAF AED ∠=∠;……………(1分) ∴AED ∆∽FAB ∆;……………(1分) ∴ABDEBF AD =,即DE BF AB AD ⋅=⋅;……………(1分) ∴DE BF AB ⋅=2.……………(1分)(2)∵四边形ABCD 是菱形;∴BC AD =,BC AD //;……………(1分) ∴AD BM DE BE =;……………(2分) ∵DC DNDE BE =; ∴DC DN AD BM =,……………(1分)∴DCDN BC BM =;……………(1分) ∴BD MN //,即MN EF //.……………(1分) 24.解:(1)∵直线243+−=x y 与直线321−=x y 相交于点A , ∴⎪⎪⎩⎪⎪⎨⎧−=+−=321243x y x y ,解得:⎩⎨⎧−==14y x ;……………(3分)∴点A 的坐标为()14−,.……………(1分)(2)∵抛物线)0(12≠−+=a bx ax y 经过点A ()14−,,∴11416−=−+b a 即a b 4−=……………(1分)∴142−−=ax ax y ∴平移后的抛物线的表达式是142+−=ax ax y ;……………(1分)∴142+−=−a a ,解得:1=a ………………(1分)∴抛物线12−+=bx ax y 的表达式是:142−−=x x y .……………(1分)(3)∵142−−=ax ax y ()1422−−−=a x a ∴()142−−a P ,……………(1分)∵抛物线()02<'+'+'=a c x b x a y 与142−−=ax ax y ∴()142+'a P ,……………(1分)∵0<'a ,∴0>a ; ∴28+='a P P ; 又∵2=OD ,P P OD S P OP '⋅⋅='∆21;∴()328221=+⨯⨯a ,解得:81=a .………(1分) ∴抛物线12−+=bx ax y 的表达式是121812−−=x x y .………………(1分)25.(1)解:作AC OH ⊥垂足为点H ,OH 过圆心, 由垂径定理得:AC CH AH 21==;……………………………(1分) ∵在OAH R ∆t 中43tan ==∠AH OH OAC ,设x AH x OH 4,3==,……………(1分)∴在OAH R ∆t 中,可得:222OA AH OH =+,由⊙O 的半径为5可得:()()222543=+x x , 解得:1±=x ,(1−=x 舍去)∴4,3==AH OH ,………………………(1分) ∴82==AH AC .………………………(1分) (2)∵AEC DEO ∠=∠,∴当DOE ∆与AEC ∆相似时可得:A DOE ∠=∠或者ACD DOE ∠=∠; 由定理:一条弧所对的圆周角等于这条弧所对的圆心角的一半.可知:DOE ACD ∠=∠21, ∴DOEACD ∠≠∠∴当DOE ∆与AEC ∆相似时不存在ACD DOE ∠=∠情况.………………………(1分) ∴当DOE ∆与AEC ∆相似时,A DOE ∠=∠,∴AC OD //,∴AEOEAC OD =;……………(1分) ∵8,5===AC OA OD ,得AE AE −=585,∴1340=AE ;…………………(1分) 作AC EG ⊥垂足为G ,可得: 90=∠=∠AHO AGE ,∴OH GE //,∴AHAGOH EG AO AE ==即4351340AG EG ==,∴1324=EG ,……………(1分) 1332=AG ,137213328=−=CG ,…………(1分)∴在CEG R ∆t 中,3113721324tan ===∠CG EG DCA .…………………………(1分)(3)当1=OE 时,AD 的长是52或1452918.……………………………(2+2分)。
2020-2021学年上海市浦东新区九年级中考一模数学试卷(含解析)
2020-2021学年上海市浦东新区九年级一模数学试卷一、选择题(共6小题).1.A、B两地的实际距离AB=250米,如果画在地图上的距离A′B′=5厘米,那么地图上的距离与实际距离的比为()A.1:500B.1:5000C.500:1D.5000:12.已知在Rt△ABC中,∠C=90°,∠B=α,AC=2,那么AB的长等于()A.B.2sinαC.D.2cosα3.下列y关于x的函数中,一定是二次函数的是()A.y=(k﹣1)x2+3B.y=+1C.y=(x+1)(x﹣2)﹣x2D.y=2x2﹣7x4.已知一个单位向量,设、是非零向量,那么下列等式中正确的是()A.||=B.||=C.=D.=5.如图,在△ABC中,点D、F是边AB上的点,点E是边AC上的点,如果∠ACD=∠B,DE∥BC,EF∥CD,下列结论不成立的是()A.AE2=AF•AD B.AC2=AD•AB C.AF2=AE•AC D.AD2=AF•AB 6.已知点A(1,2)、B(2,3)、C(2,1),那么抛物线y=ax2+bx+1可以经过的点是()A.点A、B、C B.点A、B C.点A、C D.点B、C二、填空题(共12小题).7.如果线段a、b满足=,那么的值等于.8.已知线段MN的长为4,点P是线段MN的黄金分割点,那么较长线段MP的长是.9.计算:2sin30°﹣tan45°=.10.如果从某一高处甲看低处乙的俯角为36度,那么从低处乙看高处甲的仰角是度.11.已知AD、BE是△ABC的中线,AD、BE相交于点F,如果AD=3,那么AF=.12.如图,已知平行四边形ABCD的对角线AC与BD相交于点O,设=,=,那么向量关于、的分解式为.13.如果抛物线y=(m+4)x2+m经过原点,那么该抛物线的开口方向.(填“向上”或“向下”)14.如果(2,y1)(3,y2)是抛物线y=(x+1)2上两点,那么y1y2.(填“>”或“<”)15.如图,矩形DEFG的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知△ABC的边BC长60厘米,高AH为40厘米,如果DE=2DG,那么DG=厘米.16.秦九韶的《数书九章》中有一个“峻积验雪”的例子,其原理为:如图,在Rt△ABC 中,∠C=90°,AC=12,BC=5,AD⊥AB,AD=0.4,过点D作DE∥AB交CB的延长线于点E,过点B作BF⊥CE交DE于点F,那么BF=.17.如果将二次函数的图象平移,有一个点既在平移前的函数图象上又在平移后的函数图象上,那么称这个点为“平衡点”.现将抛物线C1:y=(x﹣1)2﹣1向右平移得到新抛物线C2,如果“平衡点”为(3,3),那么新抛物线C2的表达式为.18.如图,△ABC中,AB=10,BC=12,AC=8,点D是边BC上一点,且BD:CD=2:1,联结AD,过AD中点M的直线将△ABC分成周长相等的两部分,这条直线分别与边BC、AC相交于点E、F,那么线段BE的长为.三、解答题(共7小题).19.已知向量关系式()=,试用向量、表示向量.20.已知抛物线y=x2+2x+m﹣3的顶点在第二象限,求m的取值范围.21.如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C和点D、E、F,且AB =6,BC=8.(1)求的值;(2)当AD=5,CF=19时,求BE的长.22.如图,燕尾槽的横断面是等腰梯形ABCD,现将一根木棒MN放置在该燕尾槽中,木棒与横断面在同一平面内,厚度等不计,它的底端N与点C重合,且经过点A.已知燕尾角∠B=54.5°,外口宽AD=180毫米,木棒与外口的夹角∠MAE=26.5°,求燕尾槽的里口宽BC(精确到1毫米).(参考数据:sin54.5°≈0.81,cos54.5°≈0.58,tan54.5°≈1.40,sin26.5°≈0.45,cos26.5°≈0.89,tan26.5°≈0.50)23.Rt△ABC中,∠ACB=90°,点D、E分别为边AB、BC上的点,且CD=CA,DE⊥AB.(1)求证:CA2=CE•CB;(2)联结AE,取AE的中点M,联结CM并延长与AB交于点H,求证:CH⊥AB.24.二次函数y=ax2+bx+c(a≠0)的图象经过点A(2,4)、B(5,0)和O(0,0).(1)求二次函数的解析式;(2)联结AO,过点B作BC⊥AO于点C,与该二次函数图象的对称轴交于点P,联结AP,求∠BAP的余切值;(3)在(2)的条件下,点M在经过点A且与x轴垂直的直线上,当△AMO与△ABP 相似时,求点M的坐标.25.四边形ABCD是菱形,∠B≤90°,点E为边BC上一点,联结AE,过点E作EF⊥AE,EF与边CD交于点F,且EC=3CF.(1)如图1,当∠B=90°时,求S△ABE与S△ECF的比值;(2)如图2,当点E是边BC的中点时,求cos B的值;(3)如图3,联结AF,当∠AFE=∠B且CF=2时,求菱形的边长.参考答案一、选择题(共6小题).1.A、B两地的实际距离AB=250米,如果画在地图上的距离A′B′=5厘米,那么地图上的距离与实际距离的比为()A.1:500B.1:5000C.500:1D.5000:1解:取米作为共同的长度单位,那么AB=250米,A'B'=5厘米=0.05米,所以==,所以地图上的距离与实际距离的比为1:5000.故选:B.2.已知在Rt△ABC中,∠C=90°,∠B=α,AC=2,那么AB的长等于()A.B.2sinαC.D.2cosα解:∵sin B=sinα=,AC=2,∴AB==,故选:A.3.下列y关于x的函数中,一定是二次函数的是()A.y=(k﹣1)x2+3B.y=+1C.y=(x+1)(x﹣2)﹣x2D.y=2x2﹣7x解:A、当k=1时,不是二次函数,故此选项不合题意;B、含有分式,不是二次函数,故此选项不合题意;C、化简后y=﹣x﹣2,不是二次函数,故此选项不合题意;D、是二次函数,故此选项符合题意;故选:D.4.已知一个单位向量,设、是非零向量,那么下列等式中正确的是()A.||=B.||=C.=D.=解:A、||=计算正确,故本选项符合题意.B、||与的模相等,方向不一定相同,故本选项不符合题意.C、与的模相等,方向不一定相同,故本选项不符合题意.D、与的模相等,方向不一定相同,故错误.故选:A.5.如图,在△ABC中,点D、F是边AB上的点,点E是边AC上的点,如果∠ACD=∠B,DE∥BC,EF∥CD,下列结论不成立的是()A.AE2=AF•AD B.AC2=AD•AB C.AF2=AE•AC D.AD2=AF•AB 解:∵DE∥BC,EF∥CD,∴∠AEF=∠ACD,∠ADE=∠B,又∵∠ACD=∠B,∴∠AEF=∠ADE,∴△AEF∽△ADE,∴,∴AE2=AF•AD,故选项A不合题意;∵∠ACD=∠B,∠DAC=∠BAC,∴△ACD∽△ABC,∴,∴AC2=AB•AD,故选项B不合题意;∵DE∥BC,EF∥CD,∴,,∴,∴AD2=AB•AF,故选项D不合题意;由题意无法证明AF2=AE•AC,故选项C符合题意,故选:C.6.已知点A(1,2)、B(2,3)、C(2,1),那么抛物线y=ax2+bx+1可以经过的点是()A.点A、B、C B.点A、B C.点A、C D.点B、C解:∵B、C两点的横坐标相同,∴抛物线y=ax2+bx+1只能经过A,C两点或A、B两点,把A(1,2),C(2,1),代入y=ax2+bx+1得.解得,;把A(1,2),B(2,3),代入y=ax2+bx+1得.解得,(不合题意);∴抛物线y=ax2+bx+1可以经过的A,C两点,故选:C.二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】7.如果线段a、b满足=,那么的值等于.解:∵=,∴可设a=5k,则b=2k,∴==.故答案为:.8.已知线段MN的长为4,点P是线段MN的黄金分割点,那么较长线段MP的长是2﹣2.解:∵线段MN的长为4,点P是线段MN的黄金分割点,MP>NP,∴MP=MN=×4=2﹣2,故答案为:2﹣2.9.计算:2sin30°﹣tan45°=0.解:原式=2×﹣1=0.10.如果从某一高处甲看低处乙的俯角为36度,那么从低处乙看高处甲的仰角是36度.解:如图所示:∵甲处看乙处为俯角36°,∴乙处看甲处为:仰角为36°,故答案为:36.11.已知AD、BE是△ABC的中线,AD、BE相交于点F,如果AD=3,那么AF=2.解:连接DE,∵AD、BE是△ABC的中线,∴DE是△ABC的中位线,∴DE=AB,DE∥AB,∴△AFB∽△DFE,∴==2,∴AF=2FD,∵AD=3,∴AF=2,故答案为:2.12.如图,已知平行四边形ABCD的对角线AC与BD相交于点O,设=,=,那么向量关于、的分解式为﹣.解:如图所示,=,=,则=﹣=﹣.故答案是:﹣.13.如果抛物线y=(m+4)x2+m经过原点,那么该抛物线的开口方向向上.(填“向上”或“向下”)解:∵抛物线y=(m+4)x2+m经过原点,∴m=0,∴a=4>0,∴该抛物线的开口方向向上.故答案为:向上.14.如果(2,y1)(3,y2)是抛物线y=(x+1)2上两点,那么y1<y2.(填“>”或“<”)解:∵y=(x+1)2,∴a=1>0,∴抛物线开口向上,∵抛物线y=(x+1)2对称轴为直线x=﹣1,∵﹣1<2<3,∴y1<y2.故答案为<.15.如图,矩形DEFG的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知△ABC的边BC长60厘米,高AH为40厘米,如果DE=2DG,那么DG=15厘米.解:∵四边形DEFG是矩形,∴DG∥BC,AH⊥BC,DG=EF,∴AP⊥DG.设DG=EF=x,则GF=DE=2x,∵DG∥BC,∴△ADG∽△ABC,∴=,∵AH=40厘米,BC=60厘米,∴=,解得x=15.∴DG=15厘米,故答案为:15.16.秦九韶的《数书九章》中有一个“峻积验雪”的例子,其原理为:如图,在Rt△ABC 中,∠C=90°,AC=12,BC=5,AD⊥AB,AD=0.4,过点D作DE∥AB交CB的延长线于点E,过点B作BF⊥CE交DE于点F,那么BF=.解:如图,作CH⊥AB,BG⊥DE于点H,G,∵DE∥AB,∴BG⊥AB,∵AD⊥AB,∴∠DAB=∠ABG=∠BGD=90°,∴四边形ADGB是矩形,∴BG=AD=0.4,在Rt△ABC中,∠C=90°,AC=12,BC=5,∴AB===13,∵S△ABC=BC•AC=AB•CH,∴CH===,∵DE∥AB,∴∠E=∠ABC,∵∠FBE=∠ACB=90°,∴△FBE∽△ACB,∵CH⊥AB,BG⊥DE,∴=,∴=,∴BF=.故答案为:.17.如果将二次函数的图象平移,有一个点既在平移前的函数图象上又在平移后的函数图象上,那么称这个点为“平衡点”.现将抛物线C1:y=(x﹣1)2﹣1向右平移得到新抛物线C2,如果“平衡点”为(3,3),那么新抛物线C2的表达式为y=(x﹣3)2﹣1或y=(x﹣7)2﹣1.解:设将抛物线C1:y=(x﹣1)2﹣1向右平移m个单位,则平移后的抛物线解析式是y =(x﹣1﹣m)2﹣1,将(3,3)代入,得(3﹣1﹣m)2﹣1=3.整理,得4﹣m=±2解得m1=2,m2=6.故新抛物线C2的表达式为y=(x﹣3)2﹣1或y=(x﹣7)2﹣1.故答案是:y=(x﹣3)2﹣1或y=(x﹣7)2﹣1.18.如图,△ABC中,AB=10,BC=12,AC=8,点D是边BC上一点,且BD:CD=2:1,联结AD,过AD中点M的直线将△ABC分成周长相等的两部分,这条直线分别与边BC、AC相交于点E、F,那么线段BE的长为2.解:如图,∵点D是BC的中点,BC=12,∴BD:CD=2:1,∴BD=8,CD=4,过点M作MH∥AC交CD于H,∴△DHM∽△DAC,∴==,∴点M是AD的中点,∴AD=2DM,∵AC=8,∴==,∴MH=4,DH=2,过点M作MG∥AB交BD于G,同理得,BG=DE=4,∵AB=10,BC=12,AC=8,∴△ABC的周长为10+12+8=30,∵过AD中点M的直线将△ABC分成周长相等的两部分,∴CE+CF=15,设BE=x,则CE=12﹣x,∴CF=15﹣(12﹣x)=3+x,EH=CE﹣CH=CE﹣(CD﹣DH)=12﹣x﹣2=10﹣x,∵MH∥AC,∴△EHM∽△ECF,∴,∴,∴x=2或x=9,当x=9时,CF=12>AC,点F不在边AC上,此种情况不符合题意,即BD=x=2,故答案为:2.三、解答题:(本大题共7题,满分78分)19.已知向量关系式()=,试用向量、表示向量.解:由()=,得=2,所以7=﹣2.所以=(﹣2).20.已知抛物线y=x2+2x+m﹣3的顶点在第二象限,求m的取值范围.解:∵y=x2+2x+m﹣3=(x+1)2+m﹣4,∴抛物线的顶点坐标为(﹣1,m﹣4),∵抛物线y=x2+2x+m﹣3顶点在第二象限,∴m﹣4>0,∴m>4.故m的取值范围为m>4.21.如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C和点D、E、F,且AB =6,BC=8.(1)求的值;(2)当AD=5,CF=19时,求BE的长.解:(1)∵AD∥BE∥CF,∴===;(2)过D点作DM∥AC交CF于M,交BE于N,如图,∵AD∥BN∥CM,AC∥DM,∴四边形ABND和四边形ACMD都是平行四边形,∴BN=AD=5,CM=AD=5,∴MF=CF﹣CM=19﹣5=14,∵NF∥MF,∴==,∴NE=MF=×14=6,∴BE=BN+NE=5+6=11.22.如图,燕尾槽的横断面是等腰梯形ABCD,现将一根木棒MN放置在该燕尾槽中,木棒与横断面在同一平面内,厚度等不计,它的底端N与点C重合,且经过点A.已知燕尾角∠B=54.5°,外口宽AD=180毫米,木棒与外口的夹角∠MAE=26.5°,求燕尾槽的里口宽BC(精确到1毫米).(参考数据:sin54.5°≈0.81,cos54.5°≈0.58,tan54.5°≈1.40,sin26.5°≈0.45,cos26.5°≈0.89,tan26.5°≈0.50)解:如图,过点B作BG⊥DE于G,过点C作CH⊥AD于H.∵四边形ABCD是等腰梯形,∴AB=DC,∠BAD=∠CDA,∴∠BAG=∠CDH,∵∠BGA=∠CHD=90°,∴△BGA≌△CHD(AAS),∴AG=DH,设AG=DH=x毫米,CH=y毫米,则有,解得,∴BC=GH=AG+AD+DH=100+180+100=380(毫米).23.Rt△ABC中,∠ACB=90°,点D、E分别为边AB、BC上的点,且CD=CA,DE⊥AB.(1)求证:CA2=CE•CB;(2)联结AE,取AE的中点M,联结CM并延长与AB交于点H,求证:CH⊥AB.【解答】证明:(1)∵DE⊥AB,∴∠EDB=∠ACB=90°,∴∠A+∠B=90°=∠B+∠DEB,∴∠A=∠DEB,∵CA=CD,∴∠A=∠CDA,∴∠CDA=∠DEB,∴∠CDB=∠CED,又∵∠DCE=∠DCB,∴△DCE∽△BCD,∴=,∴CD2=CE•CB,∴CA2=CE•CB;(2)如图,∵∠ACE是直角三角形,点M是AE中点,∴AM=ME=CM,∴∠MCE=∠MEC,∵∠ACB=∠ADE=90°,∴点A,点C,点E,点D四点共圆,∴∠AEC=∠ADC,∴∠AEC=∠MCE=∠ADC=∠CAD,又∵∠MCE+∠ACH=90°,∴∠CAD+∠ACH=90°,∴CH⊥AB.24.二次函数y=ax2+bx+c(a≠0)的图象经过点A(2,4)、B(5,0)和O(0,0).(1)求二次函数的解析式;(2)联结AO,过点B作BC⊥AO于点C,与该二次函数图象的对称轴交于点P,联结AP,求∠BAP的余切值;(3)在(2)的条件下,点M在经过点A且与x轴垂直的直线上,当△AMO与△ABP 相似时,求点M的坐标.解:(1)二次函数y=ax2+bx+c(a≠0)的图象经过点B(5,0)和O(0,0),∴设二次函数的解析式为y=ax(x﹣5),将点A(2,4)代入y=ax(x﹣5)中,得4=a×2(2﹣5),∴a=﹣,∴二次函数的解析式为y=﹣x(x﹣5)=﹣x2+x;(2)如图1,连接OP,过点P作PD⊥x轴于D,∴∠ODP=90°,∵A(2,4)、B(5,0)和O(0,0),∴OB=5,AB==5,∴OB=AB,∵BC⊥OA,∴AC=OC,∠OBC=∠ABC,∵BP=BP,∴△OBP≌△ABP(SAS),∴∠BOP=∠BAP,∵AC=OC,A(2,4),∴点C(1,2),∴直线BC的解析式为y=﹣x+①,由(1)知,二次函数的解析式为y=﹣x2+x②,联立①②解得,或,∴P(,),∴OD=,PD=,∴cot∠BAP=cot∠BOP===;(3)设M(2,m),∵A(2,4),B(5,0),P(,),∴AM=|m﹣4|.OA=2,AB=5,BP==,∵BC⊥OA,∴∠ACP=∠BCP=90°,∴∠ABP<90°,∠APC<90°,∵∠BOP<90°,∴∠BAP<90°,∴△ABP是锐角三角形,∵△AMO与△ABP相似,∴△AMO为锐角三角形,∴点M在点A的下方,∴AM=4﹣m,如图2,AM与x轴的交点记作点E,与BC的交点记作点F,∵AM⊥x轴,∴∠AEB=90°,∴∠OBP+∠BFE=90°,∵∠AFP=∠BFE,∴∠OBP+∠AFP=90°,∵BC⊥OA,∴∠AFP+∠OAE=90°,∴∠OAE=∠OBP,由(2)知,∠OBP=∠ABP,∴∠OAE=∠ABP,∵△AMO与△ABP相似,∴①当△OAM∽△ABP时,∴,∴,∴m=﹣,∴M(2,﹣),②当△MAO∽△ABP时,∴,∴,∴m=﹣,∴M(2,﹣),即满足条件的点M的坐标为(2,﹣)或(2,﹣).25.四边形ABCD是菱形,∠B≤90°,点E为边BC上一点,联结AE,过点E作EF⊥AE,EF与边CD交于点F,且EC=3CF.(1)如图1,当∠B=90°时,求S△ABE与S△ECF的比值;(2)如图2,当点E是边BC的中点时,求cos B的值;(3)如图3,联结AF,当∠AFE=∠B且CF=2时,求菱形的边长.解:(1)∵四边形ABCD是菱形,∠B=90°,∴四边形ABCD是正方形,∴∠B=∠C=90°,∵EF⊥AE,∴∠AEB+∠CEF=∠AEB+∠BAE=90°,∴∠BAE=∠CEF,∴△ABE≌△CEF,∴,∵EC=3CF,设CF=x,AB=a,则EC=3x,BE=a﹣3x,∴,解得,a=4.5x,∴;(2)过点A作AM⊥BC于点M,过点F用FN⊥BC于点H,如图2,则∠AME=∠CNF=90°,∵四边形ABCD是菱形,∴AB=BC,AB∥CD,∴∠B=∠FCN,设CF=x,则CE=3x,∵E是BC的中点,∴BE=CE=3x,AB=BC=2CE=6x,∴BM=AB•cos B=6x cos B,AM=AB•sin B=6x sin B,CN=CF•cos∠FCN=x cos B,FN=CF•sin∠FCN=x sin B,∴ME=BE﹣BM=3x﹣6x cos B,EN=EC+CN=3x+x cos B,∵∠AEF=90°,∴∠AEM+∠NEF=∠AEM+∠MAE=90°,∴∠MAE=∠NEF,∴△AME∽△ENF,∴,即,即,整理得,2sin2B=3﹣5cos B﹣2cos2B,∴2=3﹣5cos B,∴cos B=;(3)过点A作AM⊥BC于点M,过点F用FN⊥BC于点H,如图3,则∠AME=∠CNF=90°,∵四边形ABCD是菱形,∴AB=BC,AB∥CD,∴∠B=∠FCN,∵∠AEF=90°,∴∠AEM+∠NEF=∠AEM+∠MAE=90°,∴∠MAE=∠NEF,∴△AME∽△ENF,∴=,∵∠AFE=∠B,tan B=,tan∠AFE=,∴,∴,∴BM=EN,设菱形ABCD的边长为a,则AB=BC=a,∴BM=a cos B,CN=CF•cos∠FCN=CF•cos B,∴a cos B=EC+CF•cos B,∵CF=2,EC=3CF,∴EC=6,∴a cos B=6+2cos B,∴cos B=,∵,AM=AB•sin B=a sin B,EN=6+2cos B,ME=a﹣a cos B﹣6,NF=CF•sin∠FCN=2sin B,∴,化简得,2a(sin2B+cos2B)=6a﹣4a cos B﹣12cos B﹣36,2a=6a﹣4a cos B﹣12cos B﹣36,a﹣a cos B﹣3cos B﹣9=0,∵cos B=,∴a﹣﹣﹣9=0,解得,a=17,或a=0(舍),∴菱形的边长为17.。
【2021年上海市初中一模数学卷】2021年上海市虹口区初中毕业生学业模拟考试试卷九年级数学及答案
虹口区2020学年度第一学期期终学生学习能力诊断测试初三数学 试卷2021.1一、选择题1.在ABC 中,∠C =90°,如果BC =3,AC =4,那么tanA 的值是( )A . 34B . 43C . 35D . 452.如果向量a 和b 是单位向量,那么下列等式中,成立的是( )A .a b =B . a b =C .2a b +=D .0a b −=3.下列函数中,属于二次函数的是( )A . 212y x =−B . y =C . 22y x =−D .()222y x x =−−4.将抛物线23y x =−向右平移2个单位后得到的新抛物线表达式是()A . 21y x =−B . 25y x =−C .()223y x =+−D .()223y x =−−5.如图1,传送带和地面所成斜坡的坡度i =1:2.4,如果它把某物体从地面送到离地面10米高的地方,那么该物体所经过的路程是( )A .10米B .24米C .25米D .26米6.如图2,在Rt ABC 中,∠ACB =90°,D 是边AB 上一点,过D 作DF AB ⊥交边BC 于点E ,交AC 的延长线于点F ,联结AE ,如果1tan 3EAC ∠=,1CBF S =,那么ABC S 的值是( ) A .3B .6C .9D .12二、填空题7.如果:2:3a b =,那么a ab =+____________ 8.计算:()13242a a b −−=____________ 9.如果抛物线2y x a =−经过点(2,0),那么a 的值是____________10.如果抛物线()21y k x =+有最高点,那么k 的取值范围是____________ 11.如果抛物线l 经过点()2,0A −和B (5,0),那么该抛物线的对称轴是直线____________12.沿着x 轴正方向看,抛物线22y x =−在y 轴左侧的部分是____________的(填“上升”或“下降”)13.点P 是线段AB 上的一点,如果2AP BP AB =⋅,那么AP AB的值是____________ 14.已知'''ABC A B C ,顶点A 、B 、C 分别与顶点',','A B C 对应,,''AD A D 分别是BC 、''B C 边 上的中线,如果BC =3,AD =2.4,''2B C =,那么''A D 的长是____________15.如图3,AB //CD ,AD 、BC 相交于点E ,过E 作EF //CD 交BD 于点F ,如果AB =3,CD =6,那么EF的长是____________16.如图4,在梯形ABCD 中,AD //BC ,∠A =90°,∠BDC =90°,AD =4,BC =9,那么BD =____________17.如图5,图中提供了一种求cot 15°的方法,作Rt ABC ,使∠C =90°,∠ABC =30°,再延长CB 到点D ,使BD =BA ,联结AD ,即可得∠D =15°,如果设AC =t ,则可得(2CD t =,那么cot15cot 2CD D AC︒===cot 22.5°的值是____________18.如图6,在Rt ABC 中,∠C =90°,AC =6,BC =8,D 是BC 的中点,点E 在边AB 上,将BDE 沿直线DE 翻折,使得点B 落在同一平面内的点'B 处,线段'B D 交边AB 于点F ,联结'AB ,当'AB F 是直角三角形时,BE 的长为____________三、解答题19.计算:2tan 452sin 60cot 302cos 45︒−︒︒−︒20.已知二次函数的解析式为2122y x x =−. (1)用配方法把该二次函数的解析式化为()2y a x m k =++的形式;(2)选取适当的数据填入下表,并在图7所示的平面直角坐标系xOy 内描点,画出该函数的图像.21.如图8,在ABC 中,点G 是ABC 的重心,联结AG ,联结BG 并延长交边AC 于点D ,过点G 作GE //BC 交边AC 于点E .(1)如果,AB a AC b ==,用,a b 表示向量BG ;(2)当AG BD ⊥,BG =6,∠GAD =45°时,求AE 的长.22.图9-1是一款家用落地式取暖器,如图9-2是其放置在地面上时的侧面示意图,其中矩形ABCD 是取暖器的主体,等腰梯形BEFC 是底座,烘干架连杆GH 可绕边CD 上一点H 旋转,以调节角度,已知CD =50cm ,BC =8cm ,EF =20cm ,DH =12cm ,GH =15cm ,∠CFE =30°,当∠GHD =53°时,求点G 到地面的距离(精确到0.1cm )(参考数据:sin530.80,cos530.60,tan53 1.73︒≈︒≈︒≈≈)23.如图10,在ABC 中,点D 、G 在边AC 上,点E 在边BC 上,DB =DC ,EG //AB ,AE 、BD 交于点F ,BF =AG .(1)求证:BFE CGE ;(2)当∠AEG =∠C 时,求证:2AB AG AC =⋅.24.如图11,在平面直角坐标系xOy 中,已知点()()()1,0,3,0,0,3A B C −,抛物线2y ax bx c =++经过A 、B 两点.(1)当该抛物线经过点C 时,求该抛物线的表达式;(2)在(1)题的条件下,点P 为该抛物线上一点,且位于第三象限,当∠PBC =∠ACB 时,求点P 的坐 标;(3)如果抛物线2y ax bx c =++的顶点D 位于BOC 内,求a 的取值范围.25.如图12,在ABC 中,∠ABC =90°,AB =3,BC =4,过点A 作射线AM //BC ,点D 、E 是射线AM上的两点(点D 不与点A 重合,点E 在点D 右侧),联结BD 、BE 分别交边AC 于点F 、G ,∠DBE =∠C .(1)当AD =1时,求FB 的长;(2)设,AD x FG y ==,求y 关于x 的函数关系式,并写出x 的取值范围;(3)联结DG 并延长交边BC 于点H ,如果DBH 是等腰三角形,请直接写出AD 的长.参考答案一、选择题1.A2. B3. C4. D5. D6.C二、填空题7. 358.22a b +9. 4 10. 1k <− 11. 32x =12.下降 13.1214.1.6 15. 216.61+18.2或4017三、解答题19.原式20.(1)()21222y x =−−(2)x :2,0,2,9,6−y :6,0,2,0,6−;作图略21.(1)2133BG a b=−+(2)22.50.5cm23.(1)证明略(2)证明略24.(1)223y x x =−++ (2)413,39P ⎛⎫−− ⎪⎝⎭(3)102a −<<25.(1(2)()243604520x y x x +=<<+ (3)78。
2021年上海市中考数学考点必杀500题专练13(二次函数压轴题)(30题)(原卷版)
2021中考考点必杀500题专练13(二次函数压轴题)(30道)1.(2021·上海九年级二模)在平面直角坐标系xOy 中,抛物线2y x mx n =-++经过点(5,0)A ,顶点为点B ,对称轴为直线3x =,且对称轴与x 轴交于点C .直线y kx b =+,经过点A ,与线段BC 交于点E . (1)求抛物线2y x mx n =-++的表达式;(2)联结BO 、EO .当BOE △的面积为3时,求直线y kx b =+的表达式;(3)在(2)的条件下,设点D 为y 轴上的一点,联结BD 、AD ,当=BD EO 时,求DAO ∠的余切值.2.(2021·上海虹口区·九年级一模)如图,在平面直角坐标系xOy 中,已知点()1,0A -、()3,0B 、()0,3C ,抛物线2y ax bx c =++经过A 、B 两点.(1)当该抛物线经过点C 时,求该抛物线的表达式;(2)在(1)题的条件下,点P 为该抛物线上一点,且位于第三象限,当PBC ACB ∠=∠时,求点P 的坐标;(3)如果抛物线2y ax bx c =++的顶点D 位于BOC 内,求a 的取值范围.3.(2021·上海金山区·九年级一模)在平面直角坐标系xoy 中,直线324y x =-+与直线132y x =-相交于点A ,抛物线21(0)y ax bx a =+-≠经过点A .(1)求点A 的坐标; (2)若抛物线21y ax bx =+-向上平移两个单位后,经过点()1,2-,求抛物线21y ax bx =+-的表达式; (3)若抛物线2y a x b x c =+'+'()0a '<与21y ax bx =+-关于x 轴对称,且这两条抛物线的顶点分别是点P '与点P ,当3OPP S ∆'=时,求抛物线21y ax bx =+-的表达式.4.(2021·上海徐汇区·九年级一模)已知二次函数224(0)y ax ax a a =-++<的大致图像如图所示,这个函数图像的顶点为点 D .(1)求该函数图像的开口方向、对称轴及点D 的坐标;(2)设该函数图像与y 轴正半轴交于点C ,与x 轴正半轴交于点B ,图像的对称轴与x 轴交于点A ,如果DC BC ⊥,1tan 3DBC ∠=,求该二次函数的解析式; (3) 在(2)的条件下,设点M 在第一象限该函数的图像上,且点M 的横坐标为(1)t t >,如果 ACM ∆的面积是258,求点M 的坐标.5.(2021·上海九年级专题练习)在平面直角坐标系xOy 中,如果抛物线2y ax bx c =++上存在一点A ,使点A 关于坐标原点O 的对称点A '也在这条抛物线上,那么我们把这条抛物线叫做回归抛物线,点A 叫做这条抛物线的回归点.(1)已知点M 在抛物线224y x x =-++上,且点M 的横坐标为2,试判断抛物线224y x x =-++是否为回归抛物线,并说明理由;(2)已知点C 为回归抛物线22y x x c =--+的顶点,如果点C 是这条抛物线的回归点,求这条抛物线的表达式;(3)在(2)的条件下,所求得的抛物线的对称轴与x 轴交于点D .连接CO 并延长,交该抛物线于点E .点F 是射线CD 上一点,如果CFE DEC ∠=∠,求点F 的坐标.6.(2021·上海九年级专题练习)如图,在平面直角坐标系xOy 中,抛物线212y x bx c =-++与x 轴正半轴交于点()4,0A ,与y 轴交于点()0,2B ,点C 在该抛物线上且在第一象限.()1求该抛物线的表达式;()2将该抛物线向下平移m 个单位,使得点C 落在线段AB 上的点D 处,当13AD BD =时,求m 的值; ()3联结BC ,当2CBA BAO ∠=∠时,求点C 的坐标.7.(2021·上海九年级专题练习)在平面直角坐标系xOy 中(如图).已知点()1,2A -,点()1,6B ,点()1,4C .如果抛物线()230y ax bx a =++≠恰好经过这三个点之中的两个点.(1)试推断抛物线23y ax bx =++经过点A 、B 、C 之中的哪两个点?简述理由;(2)求常数a 与b 的值:(3)将抛物线23y ax bx =++先沿与y 轴平行的方向向下平移2个单位长度,再与沿x 轴平行的方向向右平移0t t 个单位长度,如果所得到的新抛物线经过点()1,4C .设这个新抛物线的顶点是D .试探究ABD △的形状.8.(2021·上海九年级专题练习)我们已经知道二次函数()20y ax bx c a =++≠的图像是一条抛物线.研究二次函数的图像与性质,我们主要关注抛物线的对称轴、抛物线的开口方向、抛物线的最高点(或最低点)的坐标、抛物线与坐标轴的交点坐标、抛物线的上升或下降情况(沿x 轴的正方向看).已知一个二次函数()20y ax bx c a =++≠的大致图像如图所示.(1)你可以获得该二次函数的哪些信息?(写出四条信息即可)(2)依据目前的信息,你可以求出这个二次函数的解析式吗?如果可以,请求出这个二次函数的解析式;如果不可以,请补充一个条件,并求出这个二次函数的解析式.9.(2021·上海九年级专题练习)如图,已知对称轴为直线1x =-的抛物线23y ax bx =++与x 轴交于A 、B 两点,与y 轴交于点C ,其中点A 的坐标为()1,0.(1)求点B 的坐标及抛物线的表达式;(2)记抛物线的顶点为P ,对称轴与线段BC 的交点为Q ,将线段PQ 绕点Q ,按顺时针方向旋转120︒,请判断旋转后点P 的对应点P '是否还在抛物线上,并说明理由;(3)在x 轴上是否存在点M ,使MOC △与BCP 相似?若不存在,请说明理由;若存在请直接写出点M 的坐标(不必书写求解过程).10.(2021·上海黄浦区·九年级一模)如图,平面直角坐标系内直线4y x =+与x 轴、y 轴分别交于点A 、B ,点C 是线段OB 的中点.(1)求直线AC 的表达式:(2)若抛物线2y ax bx c =++经过点C ,且其顶点位于线段OA 上(不含端点O 、A ).①用含b 的代数式表示a ,并写出1b的取值范围; ②设该抛物线与直线4y x =+在第一象限内的交点为点D ,试问:DBC △与DAC △能否相似?如果能,请求此时抛物线的表达式:如果不能,请说明由.11.(2021·上海浦东新区·九年级一模)二次函数2y ax bx c =++(0a ≠)的图像经过点A(2,4)、B(5,0)和O(0,0).(1)求二次函数的解析式;(2)联结AO ,过点B 作BC⊥AO 于点C ,与该二次函数图像的对称轴交于点P ,联结AP ,求⊥BAP 的余切值;(3)在(2)的条件下,点M 在经过点A 且与x 轴垂直的直线上,当AMO 与ABP 相似时,求点M 的坐标.12.(2021·上海静安区·九年级一模)如图,在平面直角坐标系xOy 中,直线1(0)2y x m m =-+>与x 轴、y 轴分别交于点A 、B .抛物线24y ax bx =++(a ≠0)经过点A ,且与y 轴相交于点C ,⊥OCA =⊥OAB . (1)求直线AB 的表达式;(2)如果点D 在线段AB 的延长线上,且AD =AC .求经过点D 的抛物线24y ax bx =++的表达式; (3)如果抛物线24y ax bx =++的对称轴与线段AB 、AC 分别相交于点E 、F ,且EF =1,求此抛物线的顶点坐标.13.(2021·上海宝山区·九年级一模)已知抛物线()20y ax bx a =+≠经过 ()4,0A ,()1,3B -两点,抛物线的对称轴与x 轴交于点C ,点 D 与点B 关于抛物线的对称轴对称,联结BC 、BD .(1)求该抛物线的表达式以及对称轴;(2)点E 在线段BC 上,当CED OBD =∠∠时,求点 E 的坐标;(3)点M 在对称轴上,点N 在抛物线上,当以点O 、A 、M 、N 为顶点的四边形是平行四边形时,求这个平行四边形的面积.14.(2021·上海九年级一模)如图,在平面直角坐标系xOy 中,抛物线24y ax bx =+-与x 轴交于点()4,0A -和点()2,0B ,与y 轴交于点C .(1)求该抛物线的表达式及点C 的坐标:(2)如果点D 的坐标为()8,0-,联结AC 、DC ,求ACD ∠的正切值;(3)在(2)的条件下,点P 为抛物线上一点,当OCD CAP ∠=∠时,求点P 的坐标.15.(2021·上海普陀区·九年级一模)在平面直角坐标系xOy 中(如图),已知抛物线21y ax bx =++与y 轴交于点A ,顶点B 的坐标为(2,1)-.(1)直接写出点A 的坐标,并求抛物线的表达式;(2)设点C 在x 轴上,且90CAB ∠=︒,直线AC 与抛物线的另一个交点为点D.①求点C 、D 的坐标;②将抛物线21y ax bx =++沿着射线BD 的方向平移;平移后的抛物线顶点仍在线段BD 上;点A 的对应点为点P .设线段AB 与x 轴的交点为点Q ,如果ADP △与CBQ △相似,求点P 的坐标.16.(2021·上海松江区·九年级一模)如图,在平面直角坐标系xOy 中,抛物线22y ax bx =+-经过点()2,0A 和(1,1)B --与y 轴交于点C .(1)求这个抛物线的表达式;(2)如果点P 是抛物线位于第二象限上一点,PC 交x 轴于点D ,23PD DC =.①求P 点坐标;②点Q 在x 轴上,如果QCA PCB ∠=∠,求点Q 的坐标.17.(2021·上海杨浦区·九年级一模)已知在平面直角坐标系xOy 中,抛物线()24y x m =--+与y 轴交于点B ,与x 轴交于点C 、D (点C 在点D 左侧),顶点A 在第一象限,异于顶点A 的点()1,P n 在该抛物线上.(1)如果点P 与点C 重合,求线段AP 的长;(2)如果抛物线经过原点,点Q 是抛物线上一点,tan 3OPQ ∠=,求点Q 的坐标;(3)如果直线PB 与x 轴的负半轴相交,求m 的取值范围.18.(2021·上海九年级其他模拟)抛物线21y=x +x+m 4的顶点在直线y=x+3上,过点F (-2,2)的直线交该抛物线于点M 、N 两点(点M 在点N 的左边),MA⊥x 轴于点A ,NB⊥x 轴于点B .(1)先通过配方求抛物线的顶点坐标(坐标可用含m 的代数式表示),再求m 的值;(2)设点N 的横坐标为a ,试用含a 的代数式表示点N 的纵坐标,并说明NF =NB ;(3)若射线NM 交x 轴于点P ,且PA×PB =1009,求点M 的坐标.19.(2020·上海浦东新区·九年级三模)在平面直角坐标系xOy 中,已知抛物线2y x bx c =-++与x 轴交于点A (−3,0)和点B ,与y 轴相交于点C (0,3),抛物线的顶点为点D .(1)求抛物线的表达式及顶点D 的坐标;(2)联结AD 、AC 、CD ,求⊥DAC 的正切值;(3)如果点P 是原抛物线上的一点,且⊥PAB =⊥DAC ,将原抛物线向右平移m 个单位(m >0),使平移后新抛物线经过点P ,求平移距离.20.(2020·上海宝山区·九年级二模)如图,在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A、B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k、b用含a的式子表示);(2)点E是直线l上方的抛物线上的动点,若⊥ACE的面积的最大值为54,求a的值;(3)设P是抛物线的对称轴上的一点,点Q在抛物线上,当以点A、D、P、Q为顶点的四边形为矩形时,请直接写出点P的坐标.21.(2020·上海普陀区·九年级二模)在平面直角坐标系xOy中(如图),已知点A在x轴的正半轴上,且与原点的距离为3,抛物线y=ax2﹣4ax+3(a≠0)经过点A,其顶点为C,直线y=1与y轴交于点B,与抛物线交于点D(在其对称轴右侧),联结BC、CD.(1)求抛物线的表达式及点C的坐标;(2)点P是y轴的负半轴上的一点,如果⊥PBC与⊥BCD相似,且相似比不为1,求点P的坐标;(3)将⊥CBD绕着点B逆时针方向旋转,使射线BC经过点A,另一边与抛物线交于点E(点E在对称轴的右侧),求点E的坐标.22.(2020·上海虹口区·九年级二模)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+3经过点A(﹣1,0)和点B(3,0),该抛物线对称轴上的点P在x轴上方,线段PB绕着点P逆时针旋转90°至PC(点B对应点C),点C恰好落在抛物线上.(1)求抛物线的表达式并写出抛物线的对称轴;(2)求点P的坐标;(3)点Q在抛物线上,联结AC,如果⊥QAC=⊥ABC,求点Q的坐标.23.(2020·上海青浦区·九年级二模)如图,在平面直角坐标系xOy中,二次函数y=ax2﹣4ax+3的图象与x 轴正半轴交于点A、B,与y轴相交于点C,顶点为D,且tan⊥CAO=3.(1)求这个二次函数的解析式;(2)点P是对称轴右侧抛物线上的点,联结CP,交对称轴于点F,当S⊥CDF:S⊥FDP=2:3时,求点P的坐标;(3)在(2)的条件下,将⊥PCD沿直线MN翻折,当点P恰好与点O重合时,折痕MN交x轴于点M,交y轴于点N,求OMON的值.(﹣3,0)和点B(3,2),与y轴相交于点C.(1)求这条抛物线的表达式;(2)点P是抛物线在第一象限内一点,联结AP,如果点C关于直线AP的对称点D恰好落在x轴上,求直线AP的截距;(3)在(2)小题的条件下,如果点E是y轴正半轴上一点,点F是直线AP上一点.当⊥EAO与⊥EAF全等时,求点E的纵坐标.25.(2020·上海奉贤区·)如图,在平面直角坐标系xOy中,抛物线y=x2+bx经过点A(2,0).直线y=1 2x﹣2与x轴交于点B,与y轴交于点C.(1)求这条抛物线的表达式和顶点的坐标;(2)将抛物线y=x2+bx向右平移,使平移后的抛物线经过点B,求平移后抛物线的表达式;(3)将抛物线y=x2+bx向下平移,使平移后的抛物线交y轴于点D,交线段BC于点P、Q,(点P在点Q 右侧),平移后抛物线的顶点为M,如果DP⊥x轴,求⊥MCP的正弦值.的正半轴分别交于A 、B 两点,且OA =OB ,抛物线的顶点为M ,联结AB 、AM .(1)求这条抛物线的表达式和点M 的坐标;(2)求sin⊥BAM 的值;(3)如果Q 是线段OB 上一点,满足⊥MAQ =45°,求点Q 的坐标.27.(2020·上海嘉定区·九年级二模)在平面直角坐标系xOy 中(如图),已知经过点A (﹣3,0)的抛物线y =ax 2+2ax ﹣3与y 轴交于点C ,点B 与点A 关于该抛物线的对称轴对称,D 为该抛物线的顶点. (1)直接写出该抛物线的对称轴以及点B 的坐标、点C 的坐标、点D 的坐标;(2)联结AD 、DC 、CB ,求四边形ABCD 的面积;(3)联结AC .如果点E 在该抛物线上,过点E 作x 轴的垂线,垂足为H ,线段EH 交线段AC 于点F .当EF =2FH 时,求点E 的坐标.28.(2020·上海长宁区·九年级二模)如图,在平面直角坐标系xOy 中,已知抛物线2y x mx n =++经过点()2,2A -,对称轴是直线1x =,顶点为点B ,抛物线与y 轴交于点C .(1)求抛物线的表达式和点B 的坐标;(2)将上述抛物线向下平移1个单位,平移后的抛物线与x 轴正半轴交于点D ,求BCD ∆的面积; (3)如果点P 在原抛物线上,且在对称轴的右侧,联结BP 交线段OA 于点Q ,15BQ PQ =,求点P 的坐标.29.(2020·上海崇明区·九年级二模)已知抛物线24y ax bx =+-经过点(1,0),(4,0)A B -,与y 轴交于点C ,点D 是该抛物线上一点,且在第四象限内,连接AC BC CD BD 、、、.(1)求抛物线的函数解析式,并写出对称轴;(2)当4BCD AOC S S ∆∆=时,求点D 的坐标;(3)在(2)的条件下,如果点E 是x 轴上一点,点F 是抛物线上一点,当以点A D E F 、、、为顶点的四边形是平行四边形时,请直接写出点E 的坐标.30.(2020·上海浦东新区·九年级二模)在平面直角坐标系xOy 中,已知抛物线2y x bx c =-++与x 轴交于点A 和点B (点A 在点B 的左侧),与y 轴交于点(0,3)C ,对称轴是直线1x =.(1)求抛物线的表达式;(2)直线MN 平行于x 轴,与抛物线交于M 、N 两点(点M 在点N 的左侧),且34MN AB =,点C 关于直线MN 的对称点为E ,求线段OE 的长;(3)点P 是该抛物线上一点,且在第一象限内,联结CP 、EP ,EP 交线段BC 于点F ,当:1:2CPF CEF S S =△△时,求点P 的坐标.。
上海市徐汇区位育中学2021-2022学年九年级上学期12月月考数学试题
A.点A在⊙O内;B.点A在⊙O上;
C.点A在⊙O外;D.不能确定.
6.如图,已知 是 中的边 上的一点, , 的平分线交边 于 ,交 于 ,那么下列结论中错误的是()
A.△BAC∽△BDAB.△BFA∽△BEC
25.已知Rt△ABC中,∠ACB=90°,AB=10,tan∠A= ,点D是射线AB上的一动点,联结DC,过点C作DC⊥CE,垂足为C,联结DE使得∠CDE=∠A,联结BE;设AD=x,△BDE面积为y.
(1)如图1,求证:△ACD∽△BCE;
(2)当D在AB延长线上时,求y关于x的函数解析式及x的取值范围;
10.
【分析】
由二次函数y=x2−(2m−1)x+m的图像顶点在y轴上知,该二次函数的对称轴是直线x=0,即可求解
【详解】
∵二次函数y=x2−(2m−1)x+m的图像顶点在y轴上,
又∵二次函数对称轴x=− ,
∴ =0,
∴2m=1,
∴m= .
故答案为: .
【点睛】
本题考查了二次函数的性质,根据顶点的坐标列出等式是解题的关键.
斜坡高为4米
斜坡水平距离为12米.
由勾股定理可得:斜坡长为 米.
故答案为: .
【点睛】
本题主要是考察了坡度的定义以及勾股定理求边长,熟练掌握坡度定义,求解斜坡水平距离是解决此类问题的关键.
14. ##
【分析】
利用平行线分线段成比例定理列出比例式,计算即可.
【详解】
解:∵a∥b∥c,
∴ ,即 ,
解得: ,
14.如图,已知直线a∥b∥c,直线m、n截a、b、c分别于点A、C、E和B、D、F,如果AC=2,AE=8,DF=5,那么BD=_________________.
2021年九年级一模数学试题(含解析)
8.D
【分析】
由AB∥CD,利用“两直线平行,内错角相等”可得出∠EHD的度数,利用邻补角互补可求出∠CHG的度数,结合角平分线的定义可求出∠CHM的度数,由AB∥CD,利用“两直线平行,内错角相等”可得出∠GMH=∠CHM=65°,此题得解.
【详解】
【详解】
解: ,
,
又 , ,
,
,
故答案为: .
【点睛】
本题考查了平行四边形的性质,直角三角形斜边上中线的性质;掌握好相关的基础知识是解决本题的关键.
16.
【分析】
连接OC,根据同样只统计得到▱ODCE是矩形,由矩形的性质得到∠ODC=90°.根据勾股定理得到OC=10,根据扇形的面积公式和矩形的面积公式即可得到结论.
二、填空题(共7小题,每小题4分,共28分)
11.分解因式:x2y2-4x2=____.
12.已知一条弧所对的圆周角的度数是 ,则它所对的圆心角的度数是______.
13.已知:一个正数的两个平方根分别是2a﹣2和a﹣4,则a的值是_______.
14.已知a、b满足(a﹣1)2+ =0,则a+b=_____.
解:∵AB∥CD,
∴∠EHD=∠EGB=50°,
∴∠CHG=180°﹣∠EHD=180°﹣50°=130°.
∵HM平分∠CHG,
∴∠CHM=∠GHM= ∠CHG=65°.
∵AB∥CD,
∴∠GMH=∠CHM=65°.
故选D.
【点睛】
本题考查了平行线的性质,牢记“两直线平行,内错角相等”是解题的关键.
9.A
(1)①AB的长为;
②PN的长用含t的代数式表示为;
2021年中考一模考试《数学卷》含答案解析
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项是正确的)1.实数4的相反数是( ) A. 14-B. -4C.14D. 42.如图是由4个相同的小正方体组成的一个立体图形,其主视图是( )A. B. C. D.3.2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为( ) A. 38×104B. 3.8×104C. 3.8×105D. 0.38×1064.(2018乌鲁木齐)在平面直角坐标系xOy 中,将点()12N --,绕点O 旋转180°,得到的对应点的坐标是( )A. ()12, B. ()12-, C. ()12--, D. ()12-, 5.不等式组12220360x x -<⎧⎨-≤⎩的解集是( )A. 46x -<≤B. 4x ≤-或2x >C. 42x -<≤D. 24x ≤<6.下列图形,既是轴对称图形又是中心对称图形的是( ) A 正三角形B. 正五边形C. 等腰直角三角形D. 矩形7.化简()22x 的结果是( ) A. x 4B. 2x 2C. 4x 2D. 4x8.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为( ) A.16B.13C.12D.239.如图,将矩形纸片ABCD 沿直线EF 折叠,使点C 落在AD 边的中点C′处,点B 落在点B′处,其中AB=9,BC=6,则FC′的长为( )A.103B. 4C. 4.5D. 510.二次函数2y ax bx c =++的图象如图,且,OA OC =则( )A. 1ac b +=B. 1ab c += C. 1bc a +=D. 以上都不是二、填空题(本题共6小题,每小题3分,共18分)11.如图,EABC ∆边CA 延长线上一点,过点E 作//ED BC .若070BAC ∠=,050CED ∠=,则B ∠=________°.12.如图,∠AOE =∠BOE =15°,EF ∥OB ,EC ⊥OB 于C ,若EC =1,则OF =_____.13.为了建设“书香校园”,某校七年级的同学积极捐书,下表统计了七(1)班40名学生的捐书情况: 捐书(本) 3 4 5 7 10 人数 5710117该班学生平均每人捐书______本.14.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为_____________.15.如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45,测得该建筑底部C 处的俯角为17.若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为__m .(参考数据:sin170.29≈,cos170.96≈,tan170.31≈)16.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是______米.三.解答下列各题(本题共4小题,其中17、18、19题9分、20题12分,共39分)17.计算:1332)182+18.化简: 2212(1)244x x xx x x +--÷--+ 19.如图,EF=BC ,DF=AC ,DA=EB .求证:∠F=∠C .20.某校为了解九年级学生每天参加体育锻炼的时间,从该校九年级学生中随机抽取20名学生进行调查,得到如下数据(单位:分钟):306070103011570607590,,,,,,,,,,157040751058060307045,,,,,,,,,对以上数据进行整理分析,得到下列表一和表二:根据以上提供的信息,解答下列问题:()1填空:①a=,b=;②c=,d=;()2如果该校现有九年级学生200名,请估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16m,宽(AB)9m的矩形场地ABCD上修建三条同样宽的小路,其中两条与AB平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为1122m,则小路的宽应为多少?22.如图,函数12y x=的图象与函数kyx=(x>0)的图象相交于点P(4,m).(1)求m,k的值;(2)直线y=3与函数12y x =的图象相交于点A ,与函数k y x=(x >0)的图象相交于点B ,求线段AB 长.23.如图,△ABC 中,AB =AC ,以AC 为直径的⊙O 交BC 于点D ,点E 为AC 延长线上一点,且DE 是⊙O 的切线.(1)求证:∠CDE =12∠BAC ; (2)若AB =3BD ,CE =4,求⊙O 的半径.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.如图,在平面直角坐标系xOy 中,直线112y x =+与y 轴,x 轴分别相交于点A B 、.点D 是x 轴上动点,点D 从点B 出发向原点O 运动,点E 在点D 右侧,2DE BD =.过点D 作DH AB ⊥于点,H 将DBH △沿直线DH 翻折,得到,DCH 连接CE .设,BD t =DCH 与AOB 重合部分面积为.S 求:(1)求线段BC 的长(用含t 的代数式表示);(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围. 25.阅读下面材料,完成()()13-题. 数学课上,老师出示了这样一道题:如图1,在ABC 中,,.BA BC AB kAC ==点F 在AC 上,点E 在BF 上,2BE EF =.点D 在BC 延长线上,连接,180AD AE ACD DAE ∠+∠=、.探究线段AD 与AE 的数量关系并证明.同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现CAD ∠与EAB ∠相等.” 小亮:“通过观察和度量,发现FAE ∠与D ∠也相等.”小伟:“通过边角关系构造辅助线,经过进一步推理, 可以得到线段AD 与AE数量关系.”老师:“保留原题条件,延长图1中的,AE 与BC 相交于点H (如图2),若知道DH 与AH 的数量关系,可以求出ABCH的值.”(1)求证:CAD EAB ∠=∠; (2)求ADAE的值(用含k 的式子表示); (3)如图2,若,DH AH =则ABCH的值为 (用含k 的式子表示). 26.已知抛物线2y x bx c =++过点A(m-2,n), B (m+4,n ),C (m ,53n -). (1)b=__________(用含m 的代数式表示); (2)求△ABC 的面积; (3)当1222m x m ≤≤+时,均有6y m -≤≤,求m 的值.答案与解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项是正确的)1.实数4的相反数是()A.14B. -4C.14D. 4【答案】B【解析】【分析】根据相反数的定义即可解答.【详解】∵符号相反,绝对值相等的两个数互为相反数,∴4的相反数是﹣4;故选B.【点睛】本题考查了相反数的定义,熟知只有符号不同的两个数互为相反数是解决问题的关键.2.如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A. B. C. D.【答案】A【解析】【分析】根据三视图的概念即可快速作答.【详解】解:立体图形的主视图,即正前方观察到的平面图,即选项A符合题意;故答案为A.【点睛】本题考查了三视图的概念及正确识别主视图,解题的关键在于良好的空间想象能力.3.2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为()A. 38×104B. 3.8×104C. 3.8×105D. 0.38×106【答案】C 【解析】 【分析】对于一个绝对值较大的数,用科学记数法写成10n a ⨯ 的形式,其中110a ≤<,n 是比原整数位数少1的数.【详解】380000=3.8×105. 故选C.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.(2018乌鲁木齐)在平面直角坐标系xOy 中,将点()12N --,绕点O 旋转180°,得到的对应点的坐标是( )A. ()12, B. ()12-, C. ()12--, D. ()12-, 【答案】A 【解析】【详解】点N 绕着点O 旋转180°,恰好关于原点对称,点(1,2)N --的中心对称点为(1,2),故选A .5.不等式组12220360x x -<⎧⎨-≤⎩的解集是( )A. 46x -<≤B. 4x ≤-或2x >C. 42x -<≤D. 24x ≤<【答案】C 【解析】 【分析】分别求出每一个不等式的解集,再确定出解集的公共部分即可得解. 【详解】解不等式12220x -<,得:4x >-, 解不等式360x -≤,得:2x ≤, 则不等式组的解集为42x -<≤, 故选C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 6.下列图形,既是轴对称图形又是中心对称图形的是( )A. 正三角形B. 正五边形C. 等腰直角三角形D. 矩形【答案】D【解析】【分析】根据轴对称图形与中心对称图形的概念逐一进行分析判断即可得.【详解】A.正三角形是轴对称图形,不是中心对称图形;B.正五边形是轴对称图形,不是中心对称图形;C.等腰直角三角形是轴对称图形,不是中心对称图形;D.矩形是轴对称图形,也是中心对称图形,故选D.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.化简()22x的结果是()A. x4B. 2x2C. 4x2D. 4x【答案】C【解析】【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘即可.【详解】(2x)²=2²·x²=4x²,故选C.【点睛】本题考查了积的乘方,解题的关键是掌握积的乘方的运算法则.8.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A. 16B.13C.12D.23【答案】A【解析】【分析】直接利用概率公式计算可得.【详解】解:从中任意抽取1张,是“红桃”的概率为16,故选A.【点睛】本题主要考查概率公式,随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数.9.如图,将矩形纸片ABCD 沿直线EF 折叠,使点C 落在AD 边的中点C′处,点B 落在点B′处,其中AB=9,BC=6,则FC′的长为( )A. 103B. 4C. 4.5D. 5【答案】D【解析】【分析】设FC ′=x ,则FD=9-x ,根据矩形的性质结合BC=6、点C ′为AD 的中点,即可得出C ′D 的长度,在Rt △FC ′D 中,利用勾股定理即可找出关于x 的一元一次方程,解之即可得出结论.【详解】设FC′=x ,则FD=9﹣x ,∵BC=6,四边形ABCD 为矩形,点C′为AD 的中点,∴AD=BC=6,C′D=3,在Rt △FC′D 中,∠D=90°,FC′=x ,FD=9﹣x ,C′D=3,∴FC′2=FD 2+C′D 2,即x 2=(9﹣x )2+32,解得:x=5,故选D .【点睛】本题考查了矩形的性质以及勾股定理,在Rt △FC′D 中,利用勾股定理找出关于FC′的长度的一元二次方程是解题的关键.10.二次函数2y ax bx c =++的图象如图,且,OA OC =则( )A. 1ac b +=B. 1ab c +=C. 1bc a +=D. 以上都不是【答案】A【解析】【分析】 根据题意可知,本题考察二次函数图像与系数的关系,根据图像与坐标轴的交点,运用两边相等求出交点坐标,代入坐标进行求解.【详解】∵OA OC =∴点A 、C 的坐标为(-c ,0),(0,c)∴把点A 的坐标代入2y ax bx c =++得∴2=0ac bc c -+∴()10c ac b -+=∵0c ≠∴10ac b -+=∴1ac b +=故选A【点睛】本题考察二次函数图像与系数关系,解题关键是根据图像得出系数取值范围,再代入点的坐标进行解决. 二、填空题(本题共6小题,每小题3分,共18分)11.如图,E 为ABC ∆边CA 延长线上一点,过点E 作//ED BC .若070BAC ∠=,050CED ∠=,则B ∠=________°.【答案】60【解析】【分析】利用平行线的性质,即可得到∠CED=∠C=50°,再根据三角形内角和定理,即可得到∠B 的度数.【详解】解:∵ED ∥BC ,∴∠CED=∠C=50°,又∵∠BAC=70°,∴△ABC中,∠B=180°-50°-70°=60°,故答案为60.【点睛】本题主要考查了平行线的性质,解题时注意运用两直线平行,内错角相等.12.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB于C,若EC=1,则OF=_____.【答案】2【解析】【分析】作EH⊥OA于H,根据角平分线的性质求出EH,根据直角三角形的性质求出EF,根据等腰三角形的性质解答即可.【详解】作EH⊥OA于H.∵∠AOE=∠BOE=15°,EC⊥OB,EH⊥OA,∴EH=EC=1,∠AOB=30°.∵EF∥OB,∴∠EFH=∠AOB=30°,∠FEO=∠BOE,∴EF=2EH=2,∠FEO=∠FOE,∴OF=EF=2.故答案2.【点睛】本题考查了等腰三角形的判定、角平分线的性质、平行线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.13.为了建设“书香校园”,某校七年级的同学积极捐书,下表统计了七(1)班40名学生的捐书情况:捐书(本) 3 4 5 7 10人数 5 7 10 11 7该班学生平均每人捐书______本.【答案】6【解析】【分析】利用加权平均数公式进行求解即可得. 【详解】该班学生平均每人捐书3547510711107640⨯+⨯+⨯+⨯+⨯=(本), 故答案为6.【点睛】本题考查了加权平均数,熟练掌握加权平均数的计算公式是解题的关键.14.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为_____________.【答案】46483538x y x y +=⎧⎨+=⎩【解析】【分析】直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,分别得出方程得出答案.【详解】解:设马每匹x 两,牛每头y 两,根据题意可列方程组为: 46483538x y x y +=⎧⎨+=⎩ 故答案是:46483538x y x y +=⎧⎨+=⎩【点睛】此题主要考查了二元一次方程组的应用,正确得出等式是解题关键.15.如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45,测得该建筑底部C 处的俯角为17.若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为__m .(参考数据:sin170.29≈,cos170.96≈,tan170.31≈)【答案】262【解析】【分析】作AE BC ⊥于E ,根据正切的定义求出AE ,根据等腰直角三角形的性质求出BE ,结合图形计算即可.【详解】作AE BC ⊥于E ,则四边形ADCE 为矩形,62EC AD ∴==,在Rt AEC ∆中,tan EC EAC AE ∠=, 则62200tan 0.31EC AE EAC =≈=∠, 在Rt AEB ∆中,45BAE ∠=,200BE AE ∴==,20032262()BC m ∴=+=,则该建筑的高度BC 为262m ,故答案为262.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.16.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是______米.【答案】175【解析】试题解析:根据题意得,甲的速度为:75÷30=2.5米/秒,设乙的速度为m 米/秒,则(m -2.5)×(180-30)=75,解得:m =3米/秒,则乙的速度为3米/秒, 乙到终点时所用的时间为:15003=500(秒), 此时甲走的路程是:2.5×(500+30)=1325(米),甲距终点的距离是1500-1325=175(米).【点睛】本题考查了一次函数的应用,读懂题目信息,理解并得到乙先到达终点,然后求出甲、乙两人所用的时间是解题的关键.三.解答下列各题(本题共4小题,其中17、18、19题9分、20题12分,共39分)17.计算:2)+【答案】-1.【解析】【分析】先利用平方差公式简便运算乘法,同时化简二次根式,再合并同类二次根式即可.【详解】解:2)+=3-4+=-1.【点睛】本题考查的是二次根式的混合运算,二次根式的化简,掌握利用平方差公式进行简便运算是解题的关键.18.化简: 2212(1)244x x x x x x +--÷--+ 【答案】3x . 【解析】【分析】先通分,计算括号内的减法,把除法转化为乘法,约分后得到结论. 【详解】解:原式=212(2)122()22(2)2x x x x x x x x x x x x+--+-+--÷=•----323.2x x x x-=•=- 【点睛】本题考查的是分式的化简,考查了分式的加减法,分式的除法,掌握以上运算是解题的关键. 19.如图,EF=BC ,DF=AC ,DA=EB .求证:∠F=∠C .【答案】见解析.【解析】【分析】欲证明∠F =∠C ,只要证明△ABC ≌△DEF(SSS)即可.【详解】证明:DA BE =,DE AB ∴=,在ABC ∆和DEF ∆中,AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩,()ABC DEF SSS ∴∆≅∆,C F ∴∠=∠.【点睛】本题主要考查全等三角形的判定与性质.20.某校为了解九年级学生每天参加体育锻炼的时间,从该校九年级学生中随机抽取20名学生进行调查,得到如下数据(单位:分钟):306070103011570607590,,,,,,,,,,157040751058060307045,,,,,,,,,对以上数据进行整理分析,得到下列表一和表二:根据以上提供的信息,解答下列问题:()1填空:①a=,b=;②c=,d=;()2如果该校现有九年级学生200名,请估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数.【答案】(1)①5,3;②65,70;(2)130人.【解析】【分析】(1)①根据数据统计出a、b;②根据中位数和众数的定义求出c,d即可;(2)先求出样本用样本达到平均水平及以上的学生的概率,然后用九年级学生数×样本达到平均水平及以上的学生的概率即可.【详解】解:()1①经统计:该组数据处于30≤t<60的数据有5个, 处于90≤t<120的数据有3个,∴a=5;b=3故答案为:5;3②将这组数据从小到大排序,位于第10个的数据是60,第11个的数据是70∴中位数为(60+70)÷2=65这组数据中出现次数最多的是70 ∴众数为70 ∴6570,c d==故答案为:65;70.()132********⨯=(人),答:估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数为130人.【点睛】本题考查中位数、众数、平均数、样本估计总体的思想等知识,掌握中位数、众数、平均数等基本知识是解答本题的关键.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16m,宽(AB)9m的矩形场地ABCD上修建三条同样宽的小路,其中两条与AB平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为1122m,则小路的宽应为多少?【答案】小路的宽应为1m .【解析】【分析】设小路的宽应为x 米,那么草坪的总长度和总宽度应该为(16-2x ),(9-x );那么根据题意得出方程,解方程即可.【详解】解:设小路的宽应为x 米,根据题意得:(162)(9)112x x --=,解得:11x =,216x =.∵169>,∴16x =不符合题意,舍去,∴1x =.答:小路的宽应为1米.【点睛】本题考查一元二次方程的应用,弄清“草坪的总长度和总宽度”是解决本题的关键. 22.如图,函数12y x =的图象与函数k y x=(x >0)的图象相交于点P (4,m ). (1)求m ,k 的值;(2)直线y=3与函数12y x =的图象相交于点A ,与函数k y x=(x >0)的图象相交于点B ,求线段AB 长.【答案】(1)m=2,k=8;(2)103.【解析】【分析】(1)将点P(4,m)代入y=x,求出m=2,再将点P(4,2)代入kyx=即可求出k的值;(2) 分别求出A、B两点的坐标,即可得到线段AB的长.【详解】(1)∵函数12y x=的图象过点P(4,m),∴m=2,∴P(4,2),∵函数kyx=(x>0)的图象过点P,∴k=4×2=8;(2)将y=3代入12y x=,得x=6,∴点A(6,3).将y=3代入8yx=,得x=83,∴点B(83,3).∴AB=6﹣83=103.【点睛】本题主要考查了利用待定系数法求函数解析式以及函数图象上点的坐标特征,解题时注意:点在图象上,点的坐标就一定满足函数的解析式.23.如图,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为AC延长线上一点,且DE是⊙O 的切线.(1)求证:∠CDE=12∠BAC;(2)若AB=3BD,CE=4,求⊙O的半径.【答案】(1)见解析;(2)14.【解析】【分析】(1)根据圆周角定理得出∠ADC=90°,按照等腰三角形的性质和已知的2倍角关系,证明∠ODE为直角即可得到答案;(2)通过证得△CDE∽△DAE,根据相似三角形的性质即可求得.【详解】(1)如图,连接OD,AD,∵AC是直径,∴∠ADC=90°,-∴AD⊥BC,∵AB=AC,∴∠CAD=∠BAD=12∠BAC,∵DE是⊙O的切线;∴OD⊥DE∴∠ODE=90°∴∠ADC=∠ODE∴∠CDE=∠ADO ∵OA=OD,∴∠CAD=∠ADO,∴∠CDE=∠CAD,∠CAD=12∠BAC,∴∠CDE=12∠BAC.(2)解:∵AB=AC,AD⊥BC,∴BD=CD,∵AB=3BD,∴AC=3DC,设DC=x,则AC=3x,∴AD2222,AC DC x-=∵∠CDE=∠CAD,∠DEC=∠AED,∴△CDE∽△DAE,∴CE DC DE DE AD AE∴==,即43422DE DE xx==+∴DE=82,,x=283,∴AC=3x=28,∴⊙O的半径为14.【点睛】本题考查了圆的切线的判定定理、圆周角定理、等腰三角形的性质、三角形相似的判定和性质,解题的关键是作出辅助线构造直角三角形或等腰三角形.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.如图,在平面直角坐标系xOy 中,直线112y x =+与y 轴,x 轴分别相交于点A B 、.点D 是x 轴上动点,点D 从点B 出发向原点O 运动,点E 在点D 右侧,2DE BD =.过点D 作DH AB ⊥于点,H 将DBH △沿直线DH 翻折,得到,DCH 连接CE .设,BD t =DCH 与AOB 重合部分面积为.S 求:(1)求线段BC 的长(用含t 的代数式表示);(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围.【答案】(1)55t BC =;(2)222420536224825357734288523334t t S t t t t t t ⎧⎛⎫<≤ ⎪⎪⎝⎭⎪⎪⎛⎫=-+-<≤⎨ ⎪⎝⎭⎪⎪⎛⎫-+<≤⎪ ⎪⎝⎭⎩ 【解析】【分析】(1)先根据直线112y x =+求得点A 、B 的坐标,利用勾股定理求得AB 的长,进而可求得5555sin ABO cos ABO ∠=∠=,由翻折知DB DC t ==,12BH CH BC ==,最后根据255BH cos ABO BD ∠==求得55t BH =,即可求得BC 的长; (2)分类讨论:当203t <≤时,当2534t <≤时,当524t <≤时,分别画出相应图形,然后利用相似三角形的性质分别表示出对应的底和高,进而可得S 关于t 的函数解析式即可. 【详解】解:()1∵直线112y x =+与y 轴,x 轴分别相交于点A B 、, ∴点()()012,0A B -,,,∴由勾股定理得22125AB =+=∴在直角AOB 中,525,55sin ABO cos ABO ∠=∠=, 由翻折知:DB DC t ==,12BH CH BC ==, 255BH cos ABO BD∠==, 255t BH ∴=, 455t BC ∴=, ()2当203t <≤时, 过点C 做CG BO ⊥于点G ,45CG t ∴=, 55CG sin ABO BC∴∠==, 45GC t ∴=, 14225S t t ∴=⨯⨯ 245t = 当2534t <≤时, 设OA 交CE 于点F ,45CD BD t GC t ===,, ∴由勾股定理得35GD t =,37255GE t t t ∴=-=, 382255GO t t t =--=-, 78 23255OE EG OG t t t ∴=-=-+=-, //OF CG ,EOFCGE ∴, OF OE CG OG∴=, ()4327OF t ∴=-, 12OFE S OE OF =⋅ ()()14323227t t =⋅-⋅- 222(73)t -= , DCE OFE S S S =-∴2622483577t t =-+-, 当524t <≤时, 设CD 交OA 于点P ,//,OP CG,DOP DGC ∴OP OD CG DG∴=, 2OD t =-,()423OP OP t ∴==-,12S OD OP =⋅⋅∴ 2288333t t =-+, ∴综上所述,222420536224825357734288523334t t S t t t t t t ⎧⎛⎫<≤ ⎪⎪⎝⎭⎪⎪⎛⎫=-+-<≤⎨ ⎪⎝⎭⎪⎪⎛⎫-+<≤⎪ ⎪⎝⎭⎩ 【点睛】本题考查了一次函数的图像与性质,解直角三角形、相似三角形的判定及性质,根据点D 的位置画出相应的图形然后运用分类讨论思想以及相似三角形的性质是解决本题的关键.25.阅读下面材料,完成()()13-题.数学课上,老师出示了这样一道题:如图1,在ABC 中,,.BA BC AB kAC ==点F 在AC 上,点E 在BF 上,2BE EF =.点D 在BC 延长线上,连接,180AD AE ACD DAE ∠+∠=、.探究线段AD 与AE 的数量关系并证明.同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现CAD ∠与EAB ∠相等.”小亮:“通过观察和度量,发现FAE ∠与D ∠也相等.”小伟:“通过边角关系构造辅助线,经过进一步推理, 可以得到线段AD 与AE 的数量关系.” 老师:“保留原题条件,延长图1中的,AE 与BC 相交于点H (如图2),若知道DH 与AH 的数量关系,可以求出AB CH的值.”(1)求证:CAD EAB ∠=∠;(2)求AD AE的值(用含k 的式子表示); (3)如图2,若,DH AH =则AB CH 的值为 (用含k 的式子表示). 【答案】(1)证明见解析;(2)3AD AE k =;(3)2115AB k CH ++= 【解析】【分析】(1)由BA BC =可知BAC BCA ∠=∠,再通过180ACD DAE ∠+∠=以及平角为180°,可以得到CAD EAB ∠=∠;(2)方法一:过点C 做ACM ABE ∠=∠,交AD 于点M ,通过AEB AMC 可知AC AM CM AB AE BE ==,通过DCM AFE 可知DM CM AE EF =,通过比例关系可推导出AD AE的值;方法二:过点B 做//BN AC 交AE 延长线于点N ,通过AHC DHA 和ACD ABN 相似得到的比例关系即可可推导出AD AE的值; (3)同方法二辅助线,通过证明AHC DHA ,AFE NBE ,然后由对应边成比例即可推导出结论.【详解】()1BA BC =,BAC BCA ∴∠=∠180,ACD DAE ∠+∠=180,ACD ACB ∠+∠=∴∠=∠ADE ACB,∴∠=∠DAE BAC,∴∠=∠DAC BAE,()2方法一:∠=∠,交AD于点M 过点C做ACM ABE∠=∠,DAC BAE∴AEB AMCAC AM CM∴==AB AE BE=AB kAC1∴=AM AEk1=CM BEk=2BE EF2∴=CM FEk∠=∠+∠AEF EAB ABE∠=∠+∠DMC MAC ACM∴∠=∠DMC AEFACB D DAC∠=∠+∠∠=∠+∠DAE DAC FAEDAE ACB∠=∠∴∠=∠D FAE∴DCM AFEDM CM∴=AE EF2∴=DM AEk3∴=+=AD AM DM AEkAD3∴=AE k方法二:BN AC交AE延长线于点,N 过点B做//,∴∠=∠N FAE∠=∠,AFE EBN∴,AFE NBEAE EF∴=NE BE=BE EF2,∴=NE EA2,NA EA∴=3,∠=∠+∠ACB D DAC,DAE DAC FAE∠=∠+∠,DAE ACB∠=∠,∴∠=∠,D FAE,DAC BAE ∴∠=∠ ACD ABN ∴ AC AD AB AN ∴= ,AB kAC = ,AN kAD ∴= 3,AE kAC ∴= 3AD AE k ∴= ()3同方法二辅助线,D CAH ∠=∠ ,AHC DHA ∠=∠ AHC DHA ∴ 2AH HC DH ∴=⋅ 23AH AC DH AD == 23AD AC ∴= AB kAC = 32AD AB k ∴= 3AD AE k =12AE AB ∴= 设2AH a AB BC b ===,13,2DH a AE b ∴== 2NE AE =NE b ∴=EH AH AE EN NH =-=-322NH b a ∴=- 2AH HC DH =⋅43CH a ∴= 53CD a ∴= ∴由方法二相似得53BN ak = ADHNBH ' AD DH NB NH∴= 33253232b a k ak b a ∴=- 222912200b ab a k ∴--=(123a b -∴=(舍),(223ab +=12AB CH +∴= 【点睛】本题考查了相似三角形的判定和性质,正确作出辅助线是解题的关键.26.已知抛物线2y x bx c =++过点A(m-2,n), B (m+4,n ),C (m ,53n -).(1)b=__________(用含m 的代数式表示);(2)求△ABC 的面积;(3)当1222m x m ≤≤+时,均有6y m -≤≤,求m 的值.【答案】(1)b=-2m-2;(2)24;(3)m =. 【解析】【分析】(1)根据A(m-2,n), B (m+4,n )纵坐标一致,结合对称轴即可求解;(2)先用含m 的代数式表示c ,再带入A 点坐标即可求出n=3,最后利用铅锤法即可求出△ABC 的面积; (3)先用只含m 的代数式表示二次函数解析式,再结合带取值范围的二次函数最值求法分类讨论即可.【详解】(1)∵2y x bx c =++过点A(m-2,n), B (m+4,n ), ∴对称轴2422b m m x -++=-= ∴22b m =--(2)∵22b m =--∴2(22)y x m x c =-++把C (m ,53n -)代入2(22)y x m x c =-++ ∴2523c m m n =+-∴225(22)23y x m x m m n =-+++-把A(m-2,n)代入225(22)23y x m x m m n =-+++-得583n n =-∴n=3∴A(m-2,3), B (m+4,3),C (m ,5-)∴AB=6C 点到x 轴的距离为:3﹣(-5)=8,∴S △ABC=12×6×8=24 (3)∵n=3∴22(22)25y x m x m m =-+++-∴2(1)6y x m =---∴当1x m =+时-6y =最小∵6y m -≤≤ ∴由函数增减性知11222m m m ≤+≤+ 即1m ≥-∴当10m -≤<时 由函数增减性知12x m =时,y m =最大 ∴21(1)62m m m =---∴m =±当0m ≥时由函数增减性知22x m =+时,y m =最大∴2(221)6m m m =+---∴1m =(舍)2m =∴12m -+=【点睛】本题考查二次函数综合运用,当参数比较多时可以带入解析式,利用解方程消元法消去多余的参数,在最后一问中对于带取值范围的二次函数最值需要根据对称轴与取值范围的关系确定范围内的最值.。
【2021年上海市初中一模数学卷】2021年上海市黄浦区初中毕业生学业模拟考试试卷九年级数学及答案
黄浦区2020学年度第一学期九年级期终调研测试数学试卷2021.1一、选择题1.已知ABC 与DEF 相似,又∠A =40°,∠B =60°,那么∠D 不可能是( )A .40°B .60°C .80°D .100°2.抛物线243y x x =−+−不经过( )A .第一象限B .第二象限C .第三象限D .第四象限3.对于锐角α,下列等式中成立的是( )A .sin cos tan ααα=⋅B .cos tan cot ααα=⋅C .tan cot sin ααα=⋅D .cot sin cos ααα=⋅ 4.已知向量a 与非零向量e 方向相同,且其模为e 的2倍;向量b 与e 方向相反,且其模为e 的3倍,则下列等式中成立的是( )A . 23a b =B . 23a b =−C . 32a b =D . 32a b =−5.小明准备画一个二次函数的图像,他首先列表(如下),但在填写函数值时,不小心把其中一个蘸上了墨水(表中),那么这个被蘸上了墨水的函数值是( )C .4D .06.如图1,在直角梯形ABCD 中,AB //CD ,∠BAD =90°,对角线的交点为点O ,如果梯形ABCD 的两底边长不变,而腰长发生变化,那么下列量中不变的是( )A .点O 到边AB 的距离B .点O 到边BC 的距离C .点O 到边CD 的距离D .点O 到边DA 的距离二、填空题7.已知三角形的三边长为,,a b c ,满足234a b c ==,如果其周长为36,那么该三角形的最大边长为____________8.已知线段MN 的长为4,点P 是线段MN 的黄金分割点,则其较长线段MP 的长是____________9.已知一个直角三角形的两条直角边长分别为3和6,则该三角形的重心到其直角顶点的距离是____________10.已知一个锐角的正切值比余切值大,且两者之和是133,则这个锐角的正切值为____________ 11.在ABC 中,AB =5,BC =8,∠B =60°,则ABC 的面积是____________12.已知点P 位于第二象限内,OP =5,且OP 与x 轴负半轴夹角的正切值为2,则点P 的坐标是____________13.如果视线与水平线之间的夹角为36°,那么该视线与铅垂线之间的夹角为____________度14.已知二次函数图像经过点(3,4)和(7,4),那么该二次函数图像的对称轴是直线____________15.如图2,一个管道的截面图,其内径(即内圆半径)为10分米,管壁厚为x 分米,假设该管道的截面(阴影)面积为y 平方分米,那么y 关于x 的函数解析式是____________(不必写定义域)16.如图3,点D 、E 、F 分别位于ABC 的三边上,且DE //BC ,EF //AB ,如果ADE 的面积为2,CEF的面积为8,那么四边形BFED 的面积是____________17.如果抛物线()232y x b x c =+++的顶点为(b ,c ),那么该抛物线的顶点坐标是____________18.已知一个矩形的两邻边长之比为1:2.5,一条平行于边的直线将该矩形分为两个小矩形,如果所得两小矩形相似,那么这两个小矩形的相似比为____________三、解答题19.计算:222sin 603tan 301cot 301cos 45︒︒−+−︒−︒20.将二次函数223y x x =++的图像向右平移3个单位,求所得图像的函数解析式;请结合以上两个函数图像,指出当自变量x 在什么取值范围内,上述两个函数中恰好其中一个的函数图像是上升的,而另 一个的函数图像是下降的21.如图4,一个33⨯的网格,其中点A 、B 、C 、D 、M 、N 、P 、Q 均为网格点.(1)在点M 、N 、P 、Q 中,哪个点和点A 、B 所构成的三角形与ABC 相似? 请说明理由;(2)设,AB a BC b ==,写出向量AD 关于,a b 的分解式.22.如图5,是小明家房屋的纵截面图,其中线段AB 为屋内地面,线段AE 、BC 为房屋两侧的墙,线段CD 、DE 为屋顶的斜坡,已知AB =6米,AE =BC =3.2米,斜坡CD 、DE 的坡比均为1:2.(1)求屋顶点D 到地面AB 的距离;(2)已知在墙AE 距离地面1.1米处装有窗ST ,如果阳光与地面的夹角53MNP β∠==︒,为了防止阳光通过窗ST 照射到屋内,所以小明请门窗公司在墙AE 端点E 处安装一个旋转式遮阳棚(如图中线段EF ),公司设计的遮阳棚可作90°旋转,即090FET α︒<∠=≤︒,长度为1.4米,即EF =1.4米,试问:公司设计的遮阳棚是否能达到小明的要求? 说说你的理由1.41 3.16,sin530.8,cos530.6,≈≈≈≈︒=︒=4tan 533︒=)23.某班级的“数学学习小组心得分享课”上,小智跟同学们分享了关于梯形的两个正确的研究结论:①如图6,在梯形ABCD 中,AD //BC ,过对角线交点O 的直线与两底分别交于点M 、N ,则AM CN DM BN=; ②如图7,在梯形ABCD 中,AD //BC ,过两腰延长线交点P 的直线与两底分别交于点K 、L ,则AK BL DK CL=.接着小明也跟同学们分享了关于梯形的一个推断:过梯形对角线交点且平行于底边的直线被梯形两腰所截,截得的线段被梯形对角线的交点平分.(1)经讨论,大家都认为小明所给出的推断是正确的,请你结合图示(见答题卷)写出已知、求证,并给出你的证明;(2)小组还出了一个作图题考同学们:只用直尺将图8中两条平行的线段AB 、CD 同时平分,请保留作 图过程痕迹,并说明你作图方法的正确性(可以直接运用小智和小明得到的正确结论)(注意:请务必在试卷的图示中完成作图草稿,在答题卷上直接用2B 铅笔或水笔完成作图,不要涂改)24.如图9,平面直角坐标系内直线4y x =+与x 轴、y 轴分别交于点A 、B ,点C 是线段OB 的中点.(1)求直线AC 的表达式;(2)若抛物线2y ax bx c =++经过点C ,且其顶点位于线段OA 上(不含端点O 、A ).①用含b 的代数式表示a ,并写出1b的取值范围; ②设该抛物线与直线4y x =+在第一象限内的交点为点D ,试问:DBC 与DAC 能否相似? 如果能,请求此时抛物线的表达式;如果不能,请说明理由.25.如图10,四边形ABCD中,AB=AD=4,CB=CD=3,∠ABC=∠ADC=90°,点M、N是边AB、AD上的动点,且12MCN BCD∠=∠,CM、CN与对角线BD分别交于点P、Q.(1)求sin∠MCN的值;(2)当DN=DC时,求∠CNM的度数;(3)试问:在点M、N的运动过程中,线段比PQMN的值是否发生变化? 如不变,请求出这个值;如变化,请至少给出两个可能的值,并说明点N相应的位置.参考答案一、选择题1.D2. B3. A4. B5. D6. D二、填空题7.16 8. 2 10. 3 11.12. (13.54° 14. 5x = 15.220y x x ππ=+16. 8 17.()1,1−18.12或1或2 三、解答题19.原式=5220.12x −<<21.(1)点N ,说明略(2)23AD a b=−22.(1)4.7米(2)符合要求,说明略23.(1)略 (2)作图略24.(1)122y x =+(2)①28b a =,101b <<②能,表达式为(()2742y x x =−++25.(1)45(2)45°(3)不变,值为35。
2021-2022学年上海市黄浦区九年级(上)期末数学试卷(一模)(含答案解析)
2021-2022学年上海市黄浦区九年级(上)期末数学试卷(一模)1.4和9的比例中项是( )A. 6B. ±6C. 169D. 8142.如果两个相似三角形的周长比为1:4,那么它们的对应角平分线的比为( )A. 1:4B. 1:2C. 1:16D. 1:√23.已知a⃗,b⃗ ,c⃗是非零问量,下列条件中不能判定a⃗//b⃗ 的是( )A. a⃗//c⃗,b⃗ //c⃗B. a⃗=3b⃗C. |a⃗|=|b⃗ |D. a⃗=12c⃗,b⃗ =−2c⃗4.已知Rt△ABC中,∠C=90∘,AC=2,BC=3,那么下列各式中正确的是( )A. sinA=23B. cosA=23C. tanA=23D. cotA=235.如图,D、E分别是△ABC的边AB、AC上的点,下列各比例式不一定能推得DE//BC的是( )A. ADBD =AECEB. ADAB =AEACC. ADAB =DEBCD. ABBD =ACCE6.二次函数y=ax2+bx+c的图象如图所示,那么点P(b,ac)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.计算:如果xy =23,那么x−yy=______.8.如图,已知AB//CD//EF,它们依次交直线l1、l2于点A,D,F和点B,C,E.如果ADDF =23,BE=20,那么线段BC的长是______.9. 如图,D 、E 分别是△ABC 的边BA 、CA 延长线上的点,DE//BC ,EA :AC =1:2,如果ED ⃗⃗⃗⃗⃗ =a ⃗ ,那么向量BC ⃗⃗⃗⃗⃗ =______(用向量a ⃗ 表示).10. 在Rt △ABC 中,∠C =90∘,如果ACAB =√32,那么∠B =______.11. 已知一条抛物线经过点(0,1),且在对称轴右侧的部分是下降的,该抛物线的表达式可以是______(写出一个即可).12. 如果抛物线y =−x 2+bx −1的对称轴是y 轴,那么顶点坐标为______.13. 已知某小山坡的坡长为400米,山坡的高度为200米,那么该山坡的坡度i =______. 14. 如图,△ABC 是边长为3的等边三角形,D 、E 分别是边BC 、AC 上的点,∠ADE =60∘,如果BD =1,那么CE =______.15. 如图,在Rt △ABC 中,∠ACB =90∘,CD 是AB 边上的中线,若CD =5,BC =6,则cos∠ACD 的值是______.16. 如图,在△ABC 中,中线AD 、BE 相交于点O ,如果△AOE 的面积是4,那么四边形OECD 的面积是______.17. 如图,在△ABC 中,AB =4,AC =5,将△ABC 绕点A 旋转,使点B 落在AC 边上的点D 处,点C 落在点E 处,如果点E 恰好在线段BD 的延长线上,那么边BC 的长等于______.18. 若抛物线y 1=ax 2+b 1x +c 1的顶点为A ,抛物线y 2=−ax 2+b 2x +c 2的顶点为B ,且满足顶点A 在抛物线y 2上,顶点B 在抛物线y 1上,则称抛物线y 1与抛物线y 2互为“关联抛物线”, 已知顶点为M 的抛物线y =(x −2)2+3与顶点为N 的抛物线互为“关联抛物线”,直线MN 与x 轴正半轴交于点D ,如果tan∠MDO =34,那么顶点为N 的抛物线的表达式为______.19. 计算:tan30∘2cos30∘+cot 245∘−sin 245∘.20. 已知二次函数y =x 2+bx +c 的图象经过A(2,−3)、B(5,0)两点. (1)求二次函数的解析式;(2)将该二次函数的解析式化为y =a(x +m)2+k 的形式,并写出该二次函数图象的开口方向、顶点坐标和对称轴.21. 已知:如图,在△ABC 中,DE//BC ,AFDF=AD DB. (1)求证:EF//CD ;(2)如果EFCD =45,AD =15,求DF 的长.22. 已知:如图,在四边形ABCD 中,AB//CD ,过点D 作DF//CB ,分别交AC 、AB 点E 、F ,且满足AB ⋅AF =DF ⋅BC. (1)求证:∠AEF =∠DAF ;(2)求证:AFAB=DE 2CD 2.23.如图,在东西方向的海岸线l上有一长为1千米的码头MN,在距码头西端M的正西方向58千米处有一观测站O,现测得位于观测站O的北偏西37∘方向,且与观测站O相距60千米的小岛A处有一艘轮船开始航行驶向港口MN.经过一段时间后又测得该轮船位于观测站O的正北方向,且与观测站O相距30千米的B处.(1)求AB两地的距离;(结果保留根号)(2)如果该轮船不改变航向继续航行,那么轮船能否行至码头MN靠岸?请说明理由.(参考数据:sin37∘≈0.60,cos37∘≈0.80,tan37≈0.75.)24.如图,在平面直角坐标系xOy中,抛物线y=ax2−3ax−4a(a<0)与x轴交于A(−1,0)、B两点,与y轴交于点C,点M是抛物线的顶点,抛物线的对称轴l与BC交于点D,与x轴交于点E.(1)求抛物线的对称轴及B点的坐标;(2)如果MD=15,求抛物线y=ax2−3ax−4a(a<0)的表达式;8(3)在(2)的条件下,已知点F是该抛物线对称轴上一点,且在线段BC的下方,∠CFB=∠BCO,求点F的坐标.25.如图,在Rt△ABC与Rt△ABD中,∠ACB=∠DAB=90∘,AB2=BC⋅BD,AB=3,过点A作AE⊥BD,垂足为点E,延长AE、CB交于点F,连接DF.(1)求证:AE=AC;(2)设BC=x,AE=y,求y关于x的函数关系式及其定义域;EF(3)当△ABC与△DEF相似时,求边BC的长.答案和解析1.【答案】B【解析】解:根据比例中项的概念结合比例的基本性质得:两外项之积等于两内项之积,设它们的比例中项是x,则x2=4×9,解得x=±6.故选:B.本题考查了比例中项的概念:当比例式中的两个内项相同时,即叫比例中项,求比例中项根据比例的基本性质进行计算.根据比例的基本性质:两外项之积等于两内项之积求解.2.【答案】A【解析】解:∵两个相似三角形的周长比为1:4,∴两个相似三角形的相似比为1:4,∴它们的对应角平分线的比为1:4.故选:A.本题主要考查相似三角形的性质,解答的关键是熟记相似三角形的性质并灵活运用.利用相似三角形的性质:相似三角形的对应周长的比等于相似比,对应角平分线的比等于相似比,据此作答即可.3.【答案】C【解析】解:∵a⃗//c⃗,b⃗ //c⃗,∴a⃗//b⃗ ,故A能;∵a⃗=3b⃗ ,∴a⃗//b⃗ ,故B能;∵|a⃗|=|b⃗ |,不能判断a⃗与b⃗ 方向是否相同或相反,故C不能;∵a⃗=1c⃗,b⃗ =−2c⃗,2b⃗ ,∴a⃗=−14∴a⃗//b⃗ ,故D能.故选:C.本题考查了平面向量,熟练掌握平面向量的定义与性质是解题的关键. 根据平面向量的定义与性质逐一判断即可.4.【答案】D【解析】解:如图:由勾股定理得:AB =√AC 2+BC 2=√22+32=√13, 所以sinA =BC AB=3√13=3√1313,cosA =AC AB=2√13=2√1313,tanA =BC AC=32,cotA =AC BC=23,所以只有选项D 正确,选项A 、B 、C 都错误. 故选:D.本题考查了锐角三角函数的定义的应用,能熟记锐角三角函数的定义是解此题的关键,注意:在Rt △ACB 中,∠C =90∘,则sinA =∠A 的对边斜边,cosA =∠A 的邻边斜边,tanA =∠A 的对边∠A 的邻边,cotA =∠A 的邻边∠A 的对边.根据勾股定理求出AB ,根据锐角三角函数的定义求出各个三角函数值,即可得出答案.5.【答案】C【解析】解:∵ADBD =AEEC , ∴DE//BC ,故A 正确; ∵AD AB=AE AC, ∴DE//BC ,故B 正确; 由ADAB =DEBC ,不能得出DE//BC , 故C 错误; ∵ABDB =AC EC ,∴DE//BC ,故D 正确. 故选:C.本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键. 根据平行线分线段成比例定理判断即可.6.【答案】C【解析】解:∵抛物线开口向上, ∴a >0,∵抛物线对称轴在y 轴右侧,∴−b 2a>0,即b <0,∵抛物线与y 轴交点在x 轴下方, ∴c <0, ∴a c<0,∴点P 在第三象限. 故选:C.本题考查二次函数的图象性质,解题关键是掌握二次函数图象与系数的关系.根据抛物线开口方向,对称轴位置及抛物线与y 轴交点位置确定a ,b ,c 的符号,进而求解.7.【答案】−13【解析】解:∵x y=23,∴x −y y =x y −1=23−1=−13. 故答案为:−13.本题考查了比例的性质,解题的关键是把x−yy 化成xy −1. 先把x−yy 化成xy −1,再把xy =23代入进行计算即可得出答案.8.【答案】8【解析】解:∵AB//CD//EF , ∴ADDF =BC CE=23,∴23=BC20−BC, ∴BC =8.故答案为:8.本题主要考查平行线分线段成比例定理,掌握平行线分线段所得线段对应成比例是解题的关键. 根据平行线分线段成比例定理解答即可.9.【答案】2a ⃗【解析】解:∵DE//BC , ∴△DEA ∽△BCA , ∴EAAC =EDBC =12,∴ED =12BC ,则BC =2ED , ∵ED ⃗⃗⃗⃗⃗ =a ⃗ ,∴BC ⃗⃗⃗⃗⃗ =2ED ⃗⃗⃗⃗⃗ =2a ⃗ .故答案为:2a ⃗ .本题考查了相似三角形的判定与性质,平面向量等知识,熟练掌握相似三角形判定与性质是解题的关键.根据相似三角形的判定与性质求出BC =2ED 即可求解.10.【答案】60∘【解析】解:在Rt △ABC 中,∠C =90∘,AC AB =√32, 那么sinB =ACAB =√32,∴∠B =60∘.故答案为:60∘.本题考查了特殊角的三角函数值,熟练掌握特殊角的函数值是解题的关键. 根据∠B 的正弦值即可判断.11.【答案】y =−x 2+2x +1(答案不唯一)【解析】解:∵对称轴右侧的部分是下降的, ∴开口向下,∵抛物线经过点(0,1),∴抛物线的表达式可以是y =−x 2+2x +1(答案不唯一). 故答案为:y =−x 2+2x +1(答案不唯一).本题考查了二次函数性质、二次函数图象上点的坐标特征,掌握三个知识点的应用,根据已知得到开口方向及递增情况是解题关键.根据对称轴右侧的部分是下降的,可得开口向下,再根据抛物线经过点(0,1),可得解析式.12.【答案】(0,−1)【解析】解:∵抛物线y =−x 2+bx −1的对称轴是y 轴, ∴对称轴x =−b2×(−1)=0,解得b =0,∴函数为y =−x 2−1, ∴顶点坐标为(0,−1). 故答案为:(0,−1).本题考查二次函数的性质,掌握对称轴的公式求得b 的值是解决问题的关键.由抛物线的对称轴x=−b−2=0,求得b=0,得到抛物线的顶点式即可.13.【答案】1:√3【解析】解:∵小山坡的坡长为400米,山坡的高度为200米,∴坡角为30∘,∴山坡的坡度i=tan30∘=√3:3=1:√3.故答案为:1:√3.本题考查的是解直角三角形的应用-坡度坡角问题,掌握坡度是坡面的垂直高度h和水平距离l的比是解题的关键.根据题意求出坡角,根据坡度的概念计算即可.14.【答案】23【解析】解:∵△ABC为等边三角形,∴∠B=∠C=60∘,AB=BC=3,∴CD=BC−BD=3−1=2,∵∠ADC=∠B+∠BAD,∠ADE=60∘,即∠ADE+∠CDE=∠B+∠BAD,∴∠CDE=∠BAD,而∠B=∠C,∴△CDE∽△BAD,∴CE BD =CDAB,即CE1=23,∴CE=23.故答案为:23.本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,灵活运用相似三角形的性质进行几何运算,也考查了等边三角形的性质.根据等边三角形的性质得到∠B=∠C=60∘,AB=BC=3,再证明∠CDE=∠BAD,然后可判断△CDE∽△BAD,从而利用相似比可求出CE.15.【答案】45【解析】解:∵∠ACB=90∘,CD是AB边上的中线,CD=5,∴CD=AD=12AB,∴AB=10,∴AC=√AB2−BC2=√102−62=8,∴cosA=ACAB =810=45,∵CD=AD,∴∠A=∠ACD,∴cos∠ACD=4 5.故答案为:45.本题考查了解直角三角形,直角三角形斜边上的中线,利用等边对等角,把cos∠ACD转化为cosA是解题的关键.根据直角三角形斜边上的中线等于斜边长的一半,证明CD=AD,求出AB的长,从而得∠CAD=∠ACD,然后进行计算即可解答.16.【答案】8【解析】解:在△ABC中,中线AD、BE相交于点O,∴点O是△ABC的重心,∴AO:OD=2:1,BO:OE=2:1,∵△AOE的面积是4,∴△AOB的面积=2×△AOE的面积=8,∴△BOD的面积=12×△AOB的面积=4,∴△ABD的面积=△AOB的面积+△BOD的面积=12,∴△ADC的面积=△ABD的面积=12,∴四边形OECD的面积=△ADC的面积−△AOE的面积=12−4=8.故答案为:8.本题考查了三角形重心的定义及性质,重心是三角形三边中线的交点,重心到顶点的距离与重心到对边中点的距离之比为2:1,也考查了三角形的面积.由重心的定义得出点O是△ABC的重心,根据重心的性质求出AO:OD=2:1,BO:OE=2:1,根据等高的两个三角形面积之比等于底边之比得出△AOB的面积=2×△AOE的面积=8,△BOD的面积=12×△AOB的面积=4,再求出△ABD的面积=△AOB的面积+△BOD的面积=12,△ADC 的面积=△ABD的面积=12,进而得到四边形OECD的面积=△ADC的面积−△AOE的面积=8.17.【答案】√5【解析】解:∵将△ABC 绕点A 旋转,使点B 落在AC 边上的点D 处,点C 落在点E 处,AB =4,AC =5,∴AD =AB =4,AE =AC =5,∠BAC =∠DAE ,∴△BAC ≌△DAE(SAS),∴∠C =∠E ,DE =BC ,∵∠BDC =∠ADE ,∴△ADE ∽△BDC , ∴BC AE =CD DE , ∴BC5=5−4BC, ∴BC =√5.故答案为:√5.本题考查了旋转的性质,全等三角形的判定和性质,相似三角形的判定和性质,熟练掌握旋转的性质定理是解题的关键.根据旋转的性质得到AD =AB =4,AE =AC =5,∠BAC =∠DAE ,根据全等三角形的性质得到∠C =∠E ,DE =BC ,根据相似三角形的性质即可得到结论.18.【答案】y =−(x −54)2+5716【解析】解:∵y =(x −2)2+3,∴M(2,3),如图所示,过点M 作MH ⊥x 轴,垂足为H ,∴tan∠MDO =MH HD =34,易得MH =3,∴HD =4,则OD =6,∴D(6,0),设MD 所在直线函数解析式为y =kx +b (k ≠0),解得:{k =−34b =92, ∴MD 所在直线函数解析式为y =−34x +92,∴设N(n,−34n +92),∵点N 在抛物线y =(x −2)2+3上,∴(n −2)2+3=−34n +92,解得:n =54或n =2(舍去),∴N(54,5716), 由互为“关联抛物线”的定义知,点N 所在抛物线的二次项系数为−1,∴顶点为N 的抛物线的表达式为y =−(x −54)2+5716.故答案为:y =−(x −54)2+5716.本题考查二次函数的性质,掌握“关联抛物线”是解题关键.根据已知抛物线可以得出顶点M 的坐标,过点M 作MH ⊥x 轴,垂足为H ,根据tan∠MDO =34,可以求出点D 坐标,再用待定系数法求直线MD 的函数解析式,设点N(n,−34n +92),再把点N 坐标代入y =(x −2)2+3,可解出n ,得出点N 的坐标为(54,5716),再根据互为“关联抛物线”的定义得出a =−1,然后写出以点N 为顶点的函数解析式.19.【答案】解:tan30∘2cos30∘+cot 245∘−sin 245∘=√332×√321−(√22)2 =13+1−12=56. 【解析】本题考查了特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键. 把特殊角的三角函数值代入进行计算即可.20.【答案】解:(1)把x =2,y =−3;x =5,y =0,分别代入y =x 2+bx +c ,得{4+2b +c =−325+5b +c =0,∴二次函数的解析式为:y=x2−6x+5;(2)y=x2−6x+5=x2−6x+9−4=(x−3)2−4,则该二次函数图象的开口向上,顶点坐标为(3,−4),对称轴是直线x=3.【解析】本题考查了待定系数法求二次函数的解析式、二次函数的性质、二次函数的三种形式,掌握这几个知识点的综合应用,用配方法把二次函数的一般式化为顶点式是解题关键.(1)把x=2,y=−3;x=5,y=0,分别代入y=x2+bx+c列出方程组求出解集,写出二次函数的解析式;(2)用配方法把y=x2−6x+5化为顶点式,并写出对应的二次函数图象的开口方向、顶点坐标和对称轴.21.【答案】解:(1)证明:∵DE//BC,∴AD DB =AEEC,∵AF DF =ADDB,∴AE EC =AFDF,∴AE AC =AFAD,∵∠FAE=∠DAC,∴△AEF∽△ACD,∴∠AEF=∠ACD,∴EF//CD;(2)∵△AEF∽△ACD,∴AF AD =EFCD=45,∴AF=45AD=45×15=12,∴DF=AD−AF=15−12=3.【解析】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,灵活运用相似三角形的性质进行几何运算.(1)先根据平行线分线段成比例定理得到ADDB =AEEC,则AEEC=AFDF,利用比例的性质得到AEAC=AFAD,则可证明△AEF∽△ACD,利用相似三角形的性质得到∠AEF=∠ACD,从而得到结论;(2)根据相似三角形的性质得到AF AD =EF CD =45,则AF =12,然后计算AD −AF 即可. 22.【答案】(1)证明:∵AB//CD ,DF//CB ,∴四边形FBCD 是平行四边形,∴DC =FB ,DF =CB ,∵AB ⋅AF =DF ⋅BC ,∴AB DF =BC AF ,∵DF//CB ,∴∠B =∠AFD ,∴△ABC ∽△DFA ,∴∠ACB =∠DAF ,∵DF//CB ,∴∠AEF =∠ACB ,∴∠AEF =∠DAF ;(2)证明:∵AB//CD ,∴△DCE ∽△FAE ,∴DC AF =DE EF ,∴DE CD =EF AF , ∴DE 2CD 2=EF 2AF 2,∵∠AEF =∠DAF ,∠AFE =∠DFA ,∴△AFE ∽△DFA ,∴EF AF =AF DF ,∴AF 2=EF ⋅DF ,∴DE 2CD 2=EF 2AF 2=EF 2EF⋅DF =EF DF =EF BC , ∵DF//CB ,∴△AEF ∽△ACB ,∴EF BC =AF AB , ∴AF AB =DE 2CD 2.【解析】本题考查了相似三角形的判定与性质,解决本题的关键是掌握相似三角形的判定与性质.(1)根据DF//CB ,可得∠B =∠AFD ,根据AB ⋅AF =DF ⋅BC ,证明△ABC ∽△DFA ,进而可以解决问题;(2)由△DCE ∽△FAE ,可得DE CD =EF AF ,所以DE 2CD 2=EF 2AF 2,再由△AFE ∽△DFA ,可得AF 2=EF ⋅DF ,由△AEF ∽△ACB ,得EF BC =AF AB ,进而可得结论.23.【答案】解:(1)过点A 作AC ⊥OB 于点C ,由题意,得OA =60千米,OB =30千米,∠AOC =37∘,∴在Rt △AOC 中,AC =OAsin37∘≈60×0.60=36(千米),OC =OA ⋅cos∠AOC ≈60×0.8=48(千米),∴BC =OC −OB =48−30=18(千米),在Rt △ABC 中,AB =√AC 2+BC 2=√362+182=18√5(千米),故AB 两地的距离为18√5千米;(2)如果该轮船不改变航向继续航行,不能行至码头MN 靠岸,理由:延长AB 交l 于点D ,∵∠ABC =∠OBD ,∠ACB =∠BOD =90∘,∴△ABC ∽△DBO ,∴BC AC =OB OD , ∴1836=30OD, ∴OD =60(千米),∵60>58+1,∴该轮船不改变航向继续航行,不能行至码头MN 靠岸.【解析】本题考查了解直角三角形的应用,此题结合方向角,考查了阅读理解能力、解直角三角形的能力,计算出相关特殊角和作出辅助线构造相似三角形是解题的关键.(1)过点A 作AC ⊥OB 于点C.可知△ABC 为直角三角形.根据勾股定理解答;(2)延长AB 交l 于点D ,比较OD 与OM +MN 的大小即可得出结论.24.【答案】解:(1)∵抛物线解析式为y =ax 2−3ax −4a(a <0),∴抛物线的的对称轴是直线x =−−3a 2a =32,∵抛物线y =ax 2−3ax −4a(a <0)与x 轴交于A(−1,0)、B 两点,∴点B(4,0);(2)当x =32时,y =94a −92a −4a =−254a ,∴点M(32,−254a),∵抛物线y =ax 2−3ax −4a(a <0),与y 轴交于点C ,∴点C(0,−4a),又∵点B(4,0),∴直线BC 的解析式为y =ax −4a ,当x =32时,y =32a −4a =−52a ,∴点D(32,−52a),∵MD =158, ∴158=−254a +52a ,∴a =−12,∴抛物线的解析式为y =−12x 2+32x +2;(3)如图,易得点B(4,0),点A(−1,0),点C(0,2),∴OA =1,OC =2,OB =4,AB =5,∴AO OC =OCOB ,又∵∠AOC =∠BOC =90∘,∴△AOC ∽△COB ,∴∠CAO =∠BCO ,∵∠CFB =∠BCO ,∴∠CAO =∠CFB ,∴点A ,点C ,点B ,点F 四点共圆,∵∠CAO +∠ACO =90∘,∴∠BCO +∠ACO =90∘,∴∠ACB =90∘,∴AB 是直径,∴点E是圆心,∴EF=AE=BE=52,∴点F(32,−52).【解析】本题是二次函数综合题,考查了待定系数法,相似三角形的判定和性质,圆的有关知识,灵活运用这些性质解决问题是解题的关键.(1)先求出抛物线的对称轴,由抛物线的对称性可求点B坐标;(2)先求出点M,点D坐标,由MD=158可列等式,可求a的值,即可求解;(3)通过证明△AOC∽△COB,可得∠CAO=∠BCO,可证点A,点C,点B,点F四点共圆,即可求解.25.【答案】解:(1)证明:∵AB2=BC⋅BD,∴AB BD =BCAB,∴AB 2BD2=BC2AB2,∴AB 2BD2−AB2=BC2AB2−BC2,∵∠ACB=∠DAB=90∘,∴AB 2AD2=BC2AC2,∴AB AD =BCAC,∵∠C=∠BAD=90∘,∴△ABC∽△DBA,∴∠ADB=∠BAC,∵∠BAD=90∘,∴∠ADB+∠ABD=90∘,∵AE⊥BD,∴∠AEB=90∘,∴∠EAB+∠ABD=90∘,∴∠BAE=∠ADB,∴∠BAE=∠BAC,∵∠AEB=∠C=90∘,AB=AB ∴△BAE≌△BAC(AAS),∴AE=AC;(2)如图1,作AG//BE交BC的延长线于点G,作GH⊥AB交AB于点H,∴△FBE∽△FGA,∠ABE=∠BAG,∴AF EF =AGBE,由(1)△BAE≌△BAC(AAS)得,∠EAB=∠BAC,BC=BE,∠ABE=∠ABC,∴∠ABC=∠BAG,∴AG=BG,∴△BAG是等腰三角形,∴BH=AH=12AB=32,∵cos∠ABC=BCAB =BHBG,∴x 3=32BG,∴BG=92x,∴AG=92x,∴AF EF =92xx,∴AF EF =92x2,∴AF−EFEF =9−2x22x2,∴AE EF =9−2x22x2,∴y=9−2x22x2(0<x<3√22);(3)如图2,当△ACB∽△DEF时,∠EDF=∠BAC,由(1)知∠ADB =∠BAC ,∴∠EDF =∠ADE ,∵∠DEF =∠DEA ,DE =DE , 在△DEF 和△DEA 中,{∠FDE =∠ADE DE =DE ∠DEF =∠DEA,∴△DEF ≌△DEA(ASA),∴EF =AE ,∴y =1, ∴9−2x 22x 2=1,∴x 1=32,x 2=−32(舍去),∴BC =32;如图3,当△ACB ∽△FED 时,∠BAC =∠DFE , ∵∠BAE =∠BAC ,∴∠DFE =∠BAE ,∴DF//AB ,∴AEEF =BE DE, ∵∠AEB =∠DAB =90∘,∠ABE =∠DBA , ∴△ABE ∽△DBA ,∴AB BD=BE AB , ∴3BD =x 3,∴BD =9x,∴DE =BD −BE =9x −x ,∴AE EF =9−2x 22x 2=x 9x−x , ∴x 1=√3,x 2=−√3(舍去),∴BC=√3.综上所述:BC=32或√3.【解析】本题考查了相似三角形的判定和性质,全等三角形判定和性质,等腰三角形的判定和性质等知识,解决问题的关键是作辅助线和正确分类,计算能力也很关键.(1)将AB2=BC⋅BD转化为ABBD =BCAB,进而根据勾股定理和比例性质推出ABAD=BCAC,进而△ABC∽△DBA,进一步证明△BAE≌△BAC,从而命题得证;(2)作AG//BE交BC的延长线于点G,作GH⊥AB交AB于点H,推出△FBE∽△FGA和cos∠ABC=BC AB =BHBG,再根据比例性质求得结果;(3)两种情形:△ACB∽△DEF和△ACB∽△FED,当△ACB∽△DEF时,由y=1求得结果;当△ACB∽△FED时,推出DF//AB,从而AEEF =BEDE,根据△ABE∽△DBA,推出BD=9x,进而可求得结果.第21页,共21页。
上海市徐汇区2021-2022学年九年级上学期期中考试数学试题(解析版)
【详解】根据比例尺=图上距离:实际距离,列出比例式,求解即可得出两地的图上距离.
解:设图上距离为x厘米,则
1:5000000=x:35000000,
所以x=7(厘米).
上海与南京的图上距离约7厘米.
故答案为7.
9.将二次函数 图象向左平移 个单位后,所得图象的解析式是________.
【答案】
14.已知 为线段 上一点,且 为 、 比例中项,若 ,则 ________.
【答案】 ##
【分析】根据比例中项的定义“如果作为比例内项的是两条相同的线段,即 或 ,那么线段b是a和c的比例中项”得出 ,再把 代入,即可求出答案.
【详解】解: 为 、 比例中项,
∴ ,
即 ,
,
,
,
,
解得: 或 (舍去),
【详解】解:把原点 代入解析式,得 ,
,
,
故答案为: .
【点睛】本题考查了二次函数的性质,解题的关键是掌握二次函数的性质.
12.计算: ________.
【答案】0
【分析】直接利用特殊角的三角函数值代入进而计算得出答案.
【详解】解:2cos30°+tan45°−2sin30°−cot30°
.
故答案为: .
即 ,
故答案为: .
【点睛】本题考查了比例的性质,解题的关键是熟记比例中项的定义.
15.如图,△ABC中,∠BAC=90°,点G是△ABC的重心,如果AG=4,那么BC=______.
【答案】12
【详解】试题分析:本题主要考查的是三角形的重心.延长AG交BC于点D,根据重心的性质可知点D为BC的中点,且AG=2DG=4,则AD=6,再根据直角三角形斜边的中线等于斜边的一半即可求解.延长AG交BC于点D.∵点G是△ABC的重心,AG=4,∴点D为BC的中点,且AG=2DG=4,∴DG=2,∴AD=AG+DG=6,∵△ABC中,∠BAC=90°,AD是斜边的中线,∴BC=2AD=12.
【2021年上海市初中一模数学卷】2021年上海市普陀区初中毕业生学业模拟考试试卷九年级数学及答案
一、选择题1.下列函数中,y 关于x 的二次函数是( )A .2y ax bx c=++B . 211y x =+C .()1y x x =+D .()222y x x =+−2.如果点A (3,m )在x 轴上,那么点B (m +2,m -3)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限3.已知在Rt ABC 中,∠C =90°,AB =3,BC =2,那么tanB 的值等于( )A .23B.3C.2D.54.在下列对抛物线()21y x =−−的描述中,正确的是( )A .开口向上B .顶点在x 轴上C . 对称轴是直线1x =−D .与y 轴的交点是(0,1)5.已知a 是非零向量,2b a =−,下列说法中错误的是( )A .b 与a 平行 B .b 与a 互为相反向量 C . 2b a=D . 12a b =−6.如图1,四边形ABCD 的对角线AC 与BD 相交于点O ,OA ODOB OC=,由此推得的正确结论是( ) A . OA AB OD CD =B . OA AD OC BC =C . OB AB OD CD =D . AB ADCD BC=二、填空题7.已知52x y =,那么x yx y+=−____________ 8.如果正比例函数y kx =的图像经过第一、三象限,那么y 的值随着x 的值增大而____________(填“增大”或“减小”)普陀区2020 学年度第一学期初三质量调研数学试卷9.沿着x 轴正方向看,如果抛物线()22y a x =−在对称轴左侧的部分是下降的,那么a 的取值范围是____________10.二次函数224y x x =+图像的的顶点坐标为____________11.如图2,已知二次函数2y ax bx c =++的图像经过点A (1,0),那么()1f −____________0(填“>”、“<”或“=”)12.在ABC 中,AB CA BC ++=____________13.如图3,D 、E 分别是ABC 的边AB 、AC 上的点,且∠AED =∠B ,如果AB =12,AE =6,EC =2, 那么AD 的长等于____________14.如图4,在Rt ABC 中,∠ACB =90°,点D 、E 分别在边BC 、AB 上,CD =BD ,12CE AB =,AD 与CE 交于点F ,如果AB =6,那么CF 的长等于____________15.如图5,小明在教学楼AB 的楼顶A 测得:对面实验大楼CD 的顶端C 的仰角为α,底部D 的俯角为β,如果教学楼AB 的高度为m 米,那么两栋教学楼的高度差CH 为____________米16.如图6,ABC 为等边三角形,点D 、E 分别在边BC 、AC 上,∠ADE =60°,如果BD :DC =1:2,AD =2,那么DE 的长等于____________17.勾股定理是世界文明宝库中的一棵璀璨明珠,我国汉代数学家赵爽将四个全等的直角三角形拼成了一个大正方形ABCD ,同时留下一个小正方形EFGH 的空隙(如图7),利用面积证明了勾股定理,如果小正方形EFGH 的面积是4,sin 10GBC ∠=,那么大正方形ABCD 的面积等于____________18.如图8,在平行四边形ABCD 中,点E 在边BC 上,将ABE 沿着直线AE 翻折得到AFE ,点B 的对应点F 恰好落在线段DE 上,线段AF 的延长线交边CD 于点G ,如果BE :EC =3:2,那么AF :FG 的值等于____________三、解答题19. 计算:22cos302sin 452sin 60tan 45︒−︒+︒+︒20.如图9,已知点B 、E 、C 、F 在同一条直线上,AB //DE ,AC //DF ,AC 与DE 相交于点G ,12AG DG GC GE ==,BE =2. (1)求BF 的长;(2)设,EG a BE b ==,那么BF =______,DF =______(用向量,a b 表示).21.在平面直角坐标系xOy 中,反比例函数6y x=的图像与一次函数1y kx =−的图像相交于横坐标为3的点A .(1)求这个一次函数的解析式;(2)如图10,已知点B 在这个一次函数图像上,点C 在反比例函数6y x=的图像上,直线BC //x 轴,且在点A 上方,并与y 轴相交于点D ,如果点C 恰好是BD 的中点,求点B 的坐标.22.如图11,在ABC 中,BC 上的一点D 在边AB 的垂直平分线上,2AB BD BC =⋅. (1)求证:∠B =∠C ;(2)如果AB =,BC =10,求cos ADC ∠的值.23.已知:如图12,AD //BC ,∠ABD =∠C ,,AE BD DF BC ⊥⊥,点E 、F 分别为垂足.(1)求证:AE BDDF BC=; (2)联结EF ,如果∠ADB =∠BDF ,求证:DF DC EF BC ⋅=⋅.24.在平面直角坐标系xOy 中(如图13),已知抛物线21y ax bx =++与y 轴交于点A ,顶点B 的坐标为()2,1−.(1)直接写出点A 的坐标,并求抛物线的表达式;(2)设点C 在x 轴上,且∠CAB =90°,直线AC 与抛物线的另一个交点为D .①求点C 、D 的坐标;②将抛物线21y ax bx =++沿着射线BD 的方向平移,平移后的抛物线顶点仍在线段BD 上;点A 的对应点为P , 设线段AB 与x 轴的交点为Q ,如果ADP 与CBQ 相似,求点P 的坐标.25.如图14,矩形ABCD 中,AB =1,BC =3,点E 是边BC 上一个动点(不与点B 、C 重合),AE 的垂线AF 交CD 的延长线于点F ,点G 在线段EF 上,满足FG :GE =1:2,设BE x =.(1)求证:=AD DFAB BE; (2)当点G 在ADF 的内部时,用x 的代数式表示∠ADG 的余切; (3)当∠FGD =∠AFE 时,求线段BE 的长.参考答案一、选择题1.C2. D3. C4. B5. B6. A 二、填空题7.738.增大 9.2a > 10. ()1,2−− 11. >12.013. 414.2 15. tan cot m αβ⋅⋅ 16.4317.1018.214三、解答题19.原式220.(1)8 (2)4b ;332a b −+21.(1)1y x =− (2)B (4,3)22.(1)证明略 (2)1423.(1)证明略 (2)证明略24.(1)A (0,1);抛物线的表达式为21212y x x =−+(2)①()()1,0,6,7C D −②1229,55P ⎛⎫⎪⎝⎭25.(1)证明略 (2)3cot 61x ADG x −∠=−(3)92。
2021年上海市16区中考数学一模考点分类汇编专题01 数与式、方程与不等式(逐题详解版)
2021年上海市16区中考数学一模汇编专题01 数与式、方程与不等式一、单选题1.(2021·上海静安区·九年级一模)如果0a ≠,那么下列计算正确的是( )A .0()0a =-B .0()1a -=-C .01a -=D .01a =--2.(2021·上海静安区·九年级一模)下列多项式中,是完全平方式的为( )A .214x x -+B .21124x x++C .21144x x +-D .21144x x -+ 二、填空题3.(2021·上海长宁区·九年级一模)已知12x y =,那么+-x y x y的值为_______________. 4.(2021·上海静安区·九年级一模)32的相反数是____. 5.(2021·上海松江区·九年级一模)计算sin30cot 60︒⋅︒=____.6.(2021·上海奉贤区·九年级一模)已知点Р是线段AB 上一点,且2BP AP AB =⋅,如果2AP =厘米,那么BP =________________ (厘米).7.(2021·上海浦东新区·九年级一模)如图,ABC 中,AB=10,BC=12,AC=8,点D 是边BC 上一点,且BD :CD=2:1,联结AD ,过AD 中点M 的直线将ABC 分成周长相等的两部分,这条直线分别与边BC 、AC 相交于点E 、F ,那么线段BE 的长为______.8.(20212x -的根为____.9.(2021·上海奉贤区·九年级一模)如图,用一段篱笆靠墙围成一个大长方形花圃(靠墙处不用篱笆),中间用篱笆隔开分成两个小长方形区域,分别种植两种花草,篱笆总长为17米(恰好用完),围成的大长方形花圃的面积为24平方米,设垂直于墙的一段篱筐长为x 米,可列出方程为________________________.10.(2021·上海宝山区·九年级一模)某公司10月份的产值是100万元,如果该公司第四季度每个月产值的增长率相同,都为0)x x >(,12月份的产值为y 万元,那么y 关于x 的函数解析式是______. 三、解答题11.(2021·上海闵行区·九年级一模)计算:24sin 452cos 60cot 30tan 601︒︒︒︒-+-12.(2021·上海静安区·九年级一模)已知线段x 、y 满足2x y x x y y +=-,求x y的值.13.(2021·上海杨浦区·九年级一模)如图,已知在Rt ABC 中,90ACB ∠=︒,4AC BC ==,点D 为边BC 上一动点(与点B 、C 不重合),点E 为边AB 上一点,EDB ADC ∠=∠,过点E 作EF AD ⊥,垂足为点G ,交射线AC 于点F .(1)如果点D 为边BC 的中点,求DAB ∠的正切值;(2)当点F 在边AC 上时,设CD x =,CF y =,求y 关于x 的函数解析式及定义域;(3)联结DF 如果CDF 与AGE 相似,求线段CD 的长.2021年上海市16区中考数学一模汇编专题01 数与式、方程与不等式一、单选题1.(2021·上海静安区·九年级一模)如果0a ≠,那么下列计算正确的是( )A .0()0a =-B .0()1a -=-C .01a -=D .01a =--【答案】D【分析】利用零指数幂的定义分别得出结果即可求解【详解】A 选项0()a =1-,故错误,B 选项0()a =1-,故错误C 选项01a -=-,故错误,D 选项01a -=-,故正确,故选:D【点睛】熟记任何非零次幂的零次幂等于1是解决本题的关键2.(2021·上海静安区·九年级一模)下列多项式中,是完全平方式的为( )A .214x x -+B .21124x x++C .21144x x +-D .21144x x -+ 【答案】A【分析】利用配方法分别转化为完全平方式的形式即可求解.【详解】A 选项214x x -+=212x ⎛⎫- ⎪⎝⎭,故正确,B 选项21124x x++=213416x ⎛⎫++ ⎪⎝⎭,故错误 C 选项21144x x +-=216516256x ⎛⎫+- ⎪⎝⎭,故错误,D 选项21144x x -+=216316256x ⎛⎫-+ ⎪⎝⎭,故错误 故选:A【点睛】本题考查配方法的运用,熟练添加常数项,即一次项系数一半的平方是解决问题的关键,添加之后要注意再减去添加的常数项,进行等价转化.二、填空题3.(2021·上海长宁区·九年级一模)已知12x y =,那么+-x y x y的值为_______________. 【答案】3-【分析】根据已知得到2y x =,代入所求式子中计算即可. 【详解】解:∵12x y =,∴ 2y x =,∴2332x y x x x x y x x x ++===----:故答案为:-3. 【点睛】本题考查了求分式的值,利用已知得到2y x =后再整体代入是解题的关键.4.(2021·上海静安区·九年级一模)32的相反数是____. 【答案】32- 【分析】只有符号不同的两个数叫互为相反数,根据定义解答. 【详解】32的相反数是32-,故答案为:32-. 【点睛】此题考查互为相反数的定义,掌握定义是解题的关键.5.(2021·上海松江区·九年级一模)计算sin30cot 60︒⋅︒=____.【分析】先代入特殊角的三角函数值,然后再进行计算即可.【详解】1sin 30cot 60=236︒⋅︒=⨯,故答案为:6. 【点睛】本题考查了特殊角的三角函数值、实数乘法运算,熟记特殊角的三角函数值是解题关键.6.(2021·上海奉贤区·九年级一模)已知点Р是线段AB 上一点,且2BP AP AB =⋅,如果2AP =厘米,那么BP =________________ (厘米).【答案】1+【分析】设BP x =厘米,得2AB x =+厘米,根据题意得()222x x =⨯+,通过求解方程,即可得到答案. 【详解】设BP x =厘米,根据题意得:2AB AP BP x =+=+厘米∵2BP AP AB =⋅,∴()222x x =⨯+ ,∴1x =±10-,故舍去;∴15x ,即1BP =1+.【点睛】本题考查了一元二次方程、二次根式、线段的知识;解题的关键是熟练掌握一元二次方程、二次根式的性质,从而完成求解.7.(2021·上海浦东新区·九年级一模)如图,ABC 中,AB=10,BC=12,AC=8,点D 是边BC 上一点,且BD :CD=2:1,联结AD ,过AD 中点M 的直线将ABC 分成周长相等的两部分,这条直线分别与边BC 、AC 相交于点E 、F ,那么线段BE 的长为______.【答案】2【分析】如图,过A 作//AN BC 交EF 于N ,设,,BE a AF b == 由三角形的周长关系可得:5,a b +=再证明:,ANM DEM ∽利用相似三角形的性质求解8,AN a =-再证明:,ANF CEF ∽可得:10432,b a ab +-=再解方程组可得答案.【详解】解:如图,过A 作//AN BC 交EF 于N ,设,,BE a AF b ==()1,2AB BE AF AB BC AC ∴++=++ ()1101012815,2a b ∴++=++= 5,a b ∴+=:2:112BD CD BC ==,,84BD CD ∴==,, 8,DE a ∴=- M 为AD 的中点,,AM MD ∴= //AN BC ,,ANM DEM ∴∽ 1AN AM DE DM ∴==, 8,AN a ∴=- //AN BC ,,ANF CEF ∴∽ ,AN AF CE CF ∴= 即:8,848a b a b -=-+- ∴ 10432,b a ab +-= 510432a b b a ab +=⎧∴⎨+-=⎩解得:23a b =⎧⎨=⎩或94a b =⎧⎨=-⎩,经检验:94a b =⎧⎨=-⎩不合题意,舍去, 2.BE ∴= 故答案为:2.【点睛】本题考查的是三角形的相似的判定与性质,二元方程组的解法,一元二次方程的解法,掌握以上知识是解题的关键.8.(20212x =-的根为____.【答案】x 1=【分析】方程两边同时平方,得到一个一元二次方程,解出x 的值,再进行检验即可得出结果.【详解】解:方程两边同时平方得:()2322x x -=-,∴2210x x -+=,即()210x -=,∴x 1=x 2=1,经检验,x=1是原方程的根,故答案为:x=1.【点睛】本题考查了无理方程求解,先平方得到一元二次方程求解再验证根,掌握基本概念和解法是解题的关键.9.(2021·上海奉贤区·九年级一模)如图,用一段篱笆靠墙围成一个大长方形花圃(靠墙处不用篱笆),中间用篱笆隔开分成两个小长方形区域,分别种植两种花草,篱笆总长为17米(恰好用完),围成的大长方形花圃的面积为24平方米,设垂直于墙的一段篱筐长为x 米,可列出方程为________________________.【答案】()17324x x -=【分析】垂直于墙的一段篱筐长为x 米,共有三段垂直于墙的篱笆,所以垂直于墙的篱笆总长度为3x ,又因为篱笆总长为17米(恰好用完),所以大长方形花圃的长为()173x -米,最后根据长方形的面积公式即可求解.【详解】解:由题意可得:()17324x x -=.故答案为:()17324x x -=.【点睛】本题考查了一元二次方程的应用,解题的关键是注意大长方形花圃的宽有三段都是篱笆.10.(2021·上海宝山区·九年级一模)某公司10月份的产值是100万元,如果该公司第四季度每个月产值的增长率相同,都为0)x x >(,12月份的产值为y 万元,那么y 关于x 的函数解析式是______. 【答案】()21001y x =+; 【分析】根据:现有量=原有量×(1+增长率)n,即可列方程求解. 【详解】依题意得:()21001y x =+,故答案为:()21001y x =+【点睛】考查了一元二次方程的应用,可直接套公式:原有量×(1+增长率)n =现有量,n 表示增长的次数. 三、解答题11.(2021·上海闵行区·九年级一模)计算:24sin 452cos 60cot 30tan 601︒︒︒︒-+-【答案】2【分析】分别把特殊角的三角函数值代入,再分别计算,结合分母有理化,合并化简即可解题.【详解】解:原式14122⨯=⨯1= 2=.【点睛】本题考查特殊角的三角函数值,分母有理化等知识,是重要考点,难度较易,掌握相关知识是解题关键.12.(2021·上海静安区·九年级一模)已知线段x 、y 满足2x y x x y y +=-,求x y的值.. 【分析】利用比例性质化比例式化为整式,再移项两边同除以y 2,化为22310x x y y --=,然后解一元二次方程,即可求解.【详解】解:222xy y x xy +=-,2230x xy y --=.∵0y ≠,∴22310x x y y --=,∴x y = ∵x 、y表示线段,∴负值不符合题意,∴x y = 【点睛】本题考查比例的性质、解一元二次方程,利用整体换元的思想方法解方程是解答的关键,注意x 、y 的非负性.13.(2021·上海杨浦区·九年级一模)如图,已知在Rt ABC 中,90ACB ∠=︒,4AC BC ==,点D 为边BC 上一动点(与点B 、C 不重合),点E 为边AB 上一点,EDB ADC ∠=∠,过点E 作EF AD ⊥,垂足为点G ,交射线AC 于点F .(1)如果点D 为边BC 的中点,求DAB ∠的正切值;(2)当点F 在边AC 上时,设CD x =,CF y =,求y 关于x 的函数解析式及定义域;(3)联结DF 如果CDF 与AGE 相似,求线段CD 的长.【答案】(1)1tan 3DAB ∠=;(2)()2402y x x =-+<≤;(3)-4、8-3. 【分析】(1))过点D 作DH AB ⊥于H ,在Rt ACB 中,利用勾股定理解得AD 、AB 的长,再结合等积法,解得DH 、AH 的长即可解题;(2)根据相似三角形对应边成比例的性质,表示()444x EH x -=+, 再证明AFE BDE 由AF AE DB BE =即)4444x y x x --=-+得到与x 的关系; (3)根据相似三角形对应边成比例的性质,结合(2)中y 关于x 的函数解析式联立方程组,继而解得x 、y 的值即可解题.【详解】(1)过点D 作DH AB ⊥于H ,在Rt ACB 中,AD =AB ∴==142ADB S DB AC ∴=⋅=,12ADB S AB DH =⋅,DH ∴=AH ==1tan 3DH DAB AH ∴∠==; (2)过E 作EH ⊥CB 于H∵EDB ADC ∠=∠,90C EHD ∠=∠=︒,∴ACD EHD .∴AC EH CD DH = 即44EH x x EH =--.∴()444x EH x -=+ .∵EH ⊥CB ,90ACB ∠=︒,4AC BC ==,∴)44x EB x -==+ ,AB =∴)44x AE x -=+,∵EF AD ⊥,90C ∠=︒,∴AFG ADC ∠=∠ .∵EDB ADC ∠=∠,∴AFG EDB ∠=∠.∵45FAE B ∠=∠=︒,∴AFE BDE . ∴AF AE DB BE =即)4444x y x x --=-+.整理得,()2402y x x =-+<≤; (3)在Rt △MDB 中,DB=4-x,所以).x - 在Rt △ADM 中,AM=AB 一MB=)(4).22x x -=+ 所以tan ∠DAB=44DM x AM x-=⋅+按照点F 的位置,分两种情况讨论△CDF 与△AGE 相似: ①点F 在线段AC 上,此时y=4-2x.如图,如果∠FDC=∠DAB ,由tan ∠FDC=tan ∠DAB,得44y x x x-=⋅+ 结合y=4-2x ,整理,得x2+8x+16=0.解得-4 或-4 (舍去),如果∠CFD=∠DAB ,由tan ∠CFD=tan ∠DAB ,得4.4x x y x-=+ 结合y=4- -2x,整理,得x 2-16x+16=0.解得8x =-8+②点F 在线段AC的延长线上,此时y=2x-4如图如果∠FDC=∠DAB,由44y xx x-=+结合y=2x-4,整理,得23160.x-=解得或3-(舍去)如果∠CFD=∠DAB,44x xy x-=+与y=2x-4,整理,得238160.x x-+=此方程无解.综上,CD的值为、8-或3.【点睛】本题考查勾股定理、相似三角形的性质,涉及解二元一次方程组等知识,解题关键是根据题意利用相似三角形性质构造方程.。
2021-2022学年上海市松江区九年级(上)期末数学试卷(一模)(含答案解析)
2021-2022学年上海市松江区九年级(上)期末数学试卷(一模)1.已知sinα=√32,那么锐角α的度数是( )A. 30∘B. 45∘C. 60∘D. 75∘2.已知在Rt△ABC中,∠C=90∘,AB=c,AC=b,那么下列结论一定成立的是( )A. b=ctanAB. b=ccotAC. b=csinAD. b=ccosA3.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,那么下列判断正确的是( )A. b>0,c>0B. b>0,c<0C. b<0,c>0D. b<0,c<0.4.已知a⃗=2b⃗ ,那么下列判断错误的是( )A. a⃗−2b⃗ =0B. b⃗ =12a⃗ C. |a⃗|=2|b⃗ | D. a⃗//b⃗5.如图,已知点G是△ABC的重心,那么S△BCG:S△ABC等于( )A. 1:2B. 1:3C. 2:3D. 2:56.下列四个命题中,真命题的个数是( )(1)底边和腰对应成比例的两个等腰三角形相似;(2)底边和底边上的高对应成比例的两个等腰三角形相似;(3)底边和一腰上的高对应成比例的两个等腰三角形相似;(4)腰和腰上的高对应成比例的两个等腰三角形相似.A. 1B. 2C. 3D. 47.已知xy =2,那么2x−yx+2y=______.8.把抛物线y=x2+1向右平移1个单位,所得新抛物线的表达式是______.9.已知两个相似三角形面积的比是4:9,那么这两个三角形周长的比是______.10.已知,AB=8,P是AB黄金分割点,PA>PB,则PA的长为______.11.在平面直角坐标系xOy中,已知点A的坐标为(2,3),那么直线OA与x轴夹角的正切值是______.12. 如果一个二次函数图象的对称轴是直线x =2,且沿着x 轴正方向看,图象在对称轴左侧部分是上升的,请写出一个符合条件的函数解析式______.13. 一位运动员投掷铅球,如果铅球运行时离地面的高度为y(米)关于水平距离x(米)的函数解析式为y =−112x 2+23x +53,那么铅球运动过程中最高点离地面的距离为______米. 14. 如图,码头A 在码头B 的正东方向,它们之间的距离为10海里.一货船由码头A 出发,沿北偏东45∘方向航行到达小岛C 处,此时测得码头B 在南偏西60∘方向,那么码头A 与小岛C 的距离是______海里(结果保留根号).15. 如图,已知在梯形ABCD 中,AB//CD ,AB =2CD ,设AB ⃗⃗⃗⃗⃗ =a ⃗ ,AD ⃗⃗⃗⃗⃗⃗ =b ⃗ ,那么AE ⃗⃗⃗⃗⃗ 可以用a ⃗ ,b ⃗ 表示为______.16. 如图,某时刻阳光通过窗口AB 照射到室内,在地面上留下4米宽的“亮区”DE ,光线与地面所成的角(如∠BEC)的正切值是12,那么窗口的高AB 等于______米.17. 我们知道:四个角对应相等,四条边对应成比例的两个四边形是相似四边形.如图,已知梯形ABCD 中,AD//BC ,AD =1,BC =2,E 、F 分别是边AB 、CD 上的点,且EF//BC ,如果四边AEFD 与四边形EBCF 相似,那么AEEB的值是______.18. 如图,已知矩形ABCD 中,AD =3,AB =5,E 是边DC 上一点,将△ADE 绕点A 顺时针旋转得到△AD′E′,使得点D 的对应点D′落在AE 上,如果D′E′的延长线恰好经过点B ,那么DE 的长度等于______.19.已知一个二次函数图象的顶点为(1,0),与y轴的交点为(0,1).(1)求这个二次函数的解析式;(2)在所给的平面直角坐标系xOy中,画出这个二次函数的图象.20.如图,已知平行四边形ABCD中,G是AB延长线上一点,联结DG,分别交AC、BC于点E、F,且AE:EC=3:2.(1)如果AB=10,求BG的长;(2)求EF的值.FG,AP⊥AB,交BC于点P.21.如图,已知△ABC中,AB=AC=12,cosB=34(1)求CP的长;(2)求∠PAC的正弦值.22.某货站沿斜坡AB将货物传送到平台BC.一个正方体木箱沿着斜坡移动,当木箱的底部到达点B时的平面示意图如图所示.已知斜坡AB的坡度为1:2.4,点B到地面的距离BE=1.5米,正方体木箱的棱长BF=0.65米,求点F到地面的距离.23.已知:如图,梯形ABCD中,DC//AB,AC=AB,过点D作BC的平行线交AC于点E.(1)如果∠DEC=∠BEC,求证:CE2=ED⋅CB;(2)如果AD2=AE⋅AC,求证:AD=BC.24.如图,已知直线y=−23x+2与x轴交于点A,与y轴交于点B,抛物线y=−23x2+bx+c经过A、B两点.(1)求这条抛物线的表达式;(2)直线x=t与该抛物线交于点C,与线段AB交于点D(点D与点A、B不重合),与x轴交于点E,联结AC、BC.①当DECD =AEOE时,求t的值;②当CD平分∠ACB时,求△ABC的面积.25.如图,已知△ABC中,∠ACB=90∘,AB=6,BC=4,D是边AB上一点(与点A、B不重合),DE平分∠CDB,交边BC于点E,EF⊥CD,垂足为点F.(1)当DE⊥BC时,求DE的长;(2)当△CEF与△ABC相似时,求∠CDE的正切值;(3)如果△BDE的面积是△DEF面积的2倍,求这时AD的长.答案和解析1.【答案】C【解析】解:∵sin60∘=√32,∴∠A=60∘,故选:C.根据sin60∘=√32解答.本题考查的是特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.2.【答案】D【解析】解:在Rt△ABC中,∠C=90∘,AB=c,AC=b,则cosA=ACAB =bc,∴b=ccosA,故选:D.根据余弦的定义解答即可.本题考查的是锐角三角函数的定义,掌握锐角A的邻边b与斜边c的比叫做∠A的余弦是解题的关键.3.【答案】D【解析】解:∵抛物线开口向上,∴a>0,∵抛物线对称轴在y轴右侧,∴−b2a>0,∴b<0,∵抛物线与y轴交点在x轴下方,∴c<0.故选:D.通过函数图象开口方向,对称轴位置及抛物线与y轴交点位置可确定a,b,c的符号,进而求解.本题考查二次函数的图象,解题关键是掌握二次函数的图象与系数的关系.4.【答案】A【解析】解:A、由a⃗=2b⃗ 知,a⃗−2b⃗ =0⃗,符合题意;B、由a⃗=2b⃗ 知,b⃗ =12a⃗,不符合题意;C、由a⃗=2b⃗ 知,|a⃗|=2|b⃗ |,不符合题意;D、由a⃗=2b⃗ 知,a⃗//b⃗ ,不符合题意.故选:A.根据平行向量以及模的定义的知识求解即可求得答案.本题考查了平面向量,注意,平面向量既有大小,又有方向.5.【答案】B【解析】解:连接AG延长交BC于点D,∵G是△ABC的重心,∴D是BC的中点,∴S△ABD=S△ACD,S△BCG=S△CDG,∵AG=2GD,∴2S△BCD=S△ABG,∴3S△BCD=S△ABD,∴3S△BCG=S△ABC,∴S△BCG:S△ABC=1:3,故选:B.连接AG延长交BC于点D,由G是重心可得D是BC的中点,所以S△ABD=S△ACD,S△BCG=S△CDG,又由重心定理可AG=2GD,则2S△BCD=S△ABG,进而得到3S△BCG=S△ABC,即可求解.本题考查三角形的重心,熟练掌握三角形重心定理,利用等底、等高三角形面积的特点求解是解题的关键.6.【答案】C【解析】解:(1)∵两个等腰三角形的底角不一定相等,∴底边和腰对应成比例的两个等腰三角形不一定相似,本小题说法是假命题;(2)如图,△ABC和△A′B′C′是等腰三角形,AD⊥BC,A′D′⊥B′C′,则BD=12BC,B′D′=12B′C′,∵AD A′D′=BCB′C′,∴AD A′D′=BDB′D′,∵∠ADC=∠A′D′C′=90∘,∴△ADB∽△A′D′B′,∴∠B=∠B′,∴△ACB∽△A′C′B′,∴底边和底边上的高对应成比例的两个等腰三角形相似,本小题说法是真命题;(3)同理,底边和一腰上的高对应成比例的两个等腰三角形相似,本小题说法是真命题;(4)腰和腰上的高对应成比例的两个等腰三角形相似,本小题说法是真命题;故选:C.根据等腰三角形的性质、相似三角形的判定定理判断即可.本题考查的是命题的真假判断,掌握相似三角形的判定定理和性质定理是解题的关键.7.【答案】34【解析】解:∵xy=2,∴x=2y,∴2x−y x+2y=4y−y 2y+2y=3y 4y=34,故答案为:34.根据比例的性质求出x=2y,再把x=2y代入2x−yx+2y,即可求出答案.本题考查了比例的性质,能根据比例的性质求出x=2y是解此题的关键,注意:如果ab=cd,那么ac =db,反之亦然.8.【答案】y=x2−2x+2【解析】解:∵抛物线y=x2+1的顶点坐标为(0,1),∴抛物线向右平移1个单位后,所得新抛物线的表达式为y=(x−1)2+1,即y=x2−2x+2.故答案为:y=x2−2x+2.根据平移规律得到新抛物线顶点坐标,即可得的新抛物线的表达式.本题主要考查的是二次函数图象的平移,掌握平移规律:“左加右减,上加下减”是解决问题的关键.【解析】解:∵两个相似三角形面积的比是4:9,∴两个相似三角形相似比是2:3,∴这两个三角形周长的比是2:3,故答案为:2:3.根据相似三角形的性质求出相似比,再求出周长比.本题考查的是相似三角形的性质,相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方.10.【答案】4√5−4【解析】解:由于P为线段AB=8的黄金分割点,且PA>PB,则PA=8×√5−12=4√5−4.故答案为:4√5−4.根据黄金分割点的定义,知PA是较长线段;则PA=√5−12AB,代入数据即可.理解黄金分割点的概念.熟记黄金比的值进行计算.11.【答案】32【解析】解:由A坐标知,直线OA与x轴夹角的正切值=y Ax A=32,故答案为:32.由A坐标知,直线OA与x轴夹角的正切值=y Ax A=32.本题主要考查三角函数的定义,根据坐标值求夹角正切值是解题的关键.12.【答案】y=−x2+4x+5,答案不唯一【解析】解:∵二次函数的图象在对称轴x=2的左侧部分是上升的,∴这个二次函数的二次项系数为负数,∴符合条件的函数有y=−x2+4x+5,答案不唯一.答案为:y=−x2+4x+5,答案不唯一.由于二次函数的图象在对称轴x=2的左侧部分是上升的,由此可以确定二次函数的二次项系数为负数,由此可以确定函数解析式不唯一.此题主要考查了二次函数的性质,解题的关键是会利用函数的性质确定解析式的各项系数.【解析】解:由题意可得:y=−112x2+23x+53=−112(x2−8x)+53=−112(x−4)2+3,故铅球运动过程中最高点离地面的距离为:3m.故答案为:3.直接利用配方法求出二次函数最值即可.此题主要考查了二次函数的应用,正确利用配方法求出最值是解题关键.14.【答案】(5√6+5√2)【解析】解:过C作CD⊥BA于D,如图:则∠CDB=90∘,由题意得:∠BCD=60∘,∠CAD=90∘−45∘=45∘,∴△ACD是等腰直角三角形,∴CD=AD,AC=√2CD,设CD=AD=x海里,则AC=√2x海里,在Rt△BCD中,tan∠BCD=BDCD=tan60∘=√3,∴BD=√3CD=√3x(海里),∵BD=AD+AB,∴√3x=x+10,解得:x=5√3+5,∴√2x=√2×(5√3+5)=5√6+5√2,即AC=(5√6+5√2)海里,故答案为:(5√6+5√2).过C作CD⊥BA于D,证△ACD是等腰直角三角形,得CD=AD,AC=√2CD,设CD=AD=x海里,则AC=√2x海里,再由锐角三角函数定义得BD=√3CD=√3x(海里),然后由BD=AD+AB 得√3x=x+10,解得:x=5√3+5,即可解决问题.本题考查了解直角三角形的应用,正确作出辅助线构造直角三角形是解题的关键.15.【答案】23b⃗ +13a⃗【解析】解:∵AB ⃗⃗⃗⃗⃗ =a ⃗ ,AD ⃗⃗⃗⃗⃗⃗ =b ⃗ ,∴BD ⃗⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =b ⃗ −a ⃗ .∵AB//CD ,AB =2CD , ∴△ECD ∽△EAB , ∴CDAB=DE BE =12,∴BE ⃗⃗⃗⃗⃗ =23BD ⃗⃗⃗⃗⃗⃗ =23(b ⃗ −a ⃗ ),∴AE ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ =a ⃗ +23(b ⃗ −a ⃗ )=23b ⃗ +13a ⃗ . 故答案为:23b ⃗ +13a ⃗ .由AB//CD ,即可证得△PCD ∽△PAB ,又由AB =2CD ,即可求得BE ⃗⃗⃗⃗⃗ 与BD ⃗⃗⃗⃗⃗⃗ 的关系,利用三角形法则,求得BD ⃗⃗⃗⃗⃗⃗ ,即可求得AE ⃗⃗⃗⃗⃗ .此题考查向量的知识与相似三角形的判定与性质.解题的关键是数形结合思想的应用,还要注意向量是有方向的.16.【答案】2【解析】解:由题意知tan∠BEC =BC CE=AC CD=12,DE =4,∴CE =2BC ,CD =2AC , ∴CD =DE +CE =4+2BC , ∵AD//BE , ∴△BCE ∽△ACD , ∴BCAC =CECD , ∴BCBC+AB =2BC 4+2BC=BC2+BC, ∴BC +AB =2+BC , ∴AB =2, 故答案为:2.由题意知CE =2BC ,CD =2AC ,进而得到CD =DE +CE =4+2BC ,由BE//AD 得到△BCE ∽△ACD ,根据相似三角形的性质得到BCBC+AB =2BC4+2BC =BC2+BC ,化简即可求出AB.本题考查的是相似三角形的应用,熟知相似三角形的对应边成比例是解答此题的关键.17.【答案】√22【解析】【分析】本题考查相似多边形的性质,能根据相似多边形的性质得出比例式是解此题的关键. 根据相似多边形的性质得出AD EF=EFBC,把AD =1和BC =2代入求出EF ,再根据相似多边形的性质得出AEEB =ADEF ,再求出答案即可. 【解答】解:∵四边AEFD 与四边形EBCF 相似, ∴AD EF=EF BC, ∵AD =1,BC =2, ∴1EF=EF 2, 解得:EF =√2,∵四边AEFD 与四边形EBCF 相似, ∴AEEB =ADEF =1√2=√22.18.【答案】94【解析】解:如图,连接BE 、BE′, ∵矩形ABCD 中,AD =3,AB =5, ∴∠D =90∘,由旋转知,△AD′E′≌△ADE , ∴AD′=AD =3,∠AD′E =∠D =90∘, ∵D′E′的延长线恰好经过点B , ∴∠AD′B =90∘,在Rt △ABD′中,BD′=√AB 2−AD′2=√52−32=4, ∵AB ⋅AD =AE ⋅BD′, ∴AE =AB⋅ADBD′=5×34=154,在Rt △ADE 中,DE =√AE 2−AD 2=√(154)2−32=94, 故答案为:94.如图,连接BE 、BE′,根据矩形的性质和旋转变换的性质可得:AD′=AD =3,∠AD′E =∠D =90∘,利用勾股定理可得BD′=4,再运用面积法可得:AB ⋅AD =AE ⋅BD′,求出AE =154,再运用勾股定理即可求得答案.本题考查了矩形的性质,旋转变换的性质,勾股定理,三角形面积等,解题关键是运用面积法求得AE.19.【答案】解:(1)设抛物线解析式为y=a(x−1)2,将(0,1)代入y=a(x−1)2得1=a,∴y=(x−1)2.(2)如图,【解析】(1)设抛物线解析式为y=a(x−1)2,将(0,1)代入解析式求解.(2)根据二次函数解析式作图.本题考查求二次函数解析式及二次函数图象的性质,解题关键是掌握待定系数法求函数解析式,掌握二次函数图象与系数的关系.20.【答案】解:(1)∵四边形ABCD是平行四边形,∴AB//CD,∴∠GAE=∠CDE,∠AGE=∠CDE,∴△AGE∽△CDE,∴AG CD =AECE=32,又∵AB=CD=10,∴AG=32CD=32×10=15,∴BG=AG−AB=15−10=5;(2)∵四边形ABCD是平行四边形,∴AD//BC,即AD//CF,∴∠ADE=∠CFE,∠DAE=∠FCE,∴△ADE∽△CFE,∴DE EF =AEEC=32,又∵△AGE∽△CDE,∴DE GE =ECAE=23,∴EF GE =EFDE×DEGE=23×23=49,∴EF FG =EFGE−EF=45.【解析】(1)由平行四边形的性质证明△AGE∽△CDE,再根据AE:EC=3:2求出BG=15,从而得出结论;(2)利用△ADE∽△CFE和△AGE∽△CDE得出DEEF =AEEC=32和DEGE=ECAE=23,从而得出结论.本题考查平行四边形的性质、相似三角形的判定与性质,解题的关键是熟练掌握基本知识.21.【答案】解:(1)过点A作AD⊥BC于D,在Rt△ABD中,AB=12,cosB=34,∴BD=cosB⋅AB=9,∵AB=AC,∴BD=CD=9,∠B=∠C,∵AP⊥AB,∴∠PAB=90∘,在Rt△ABP中,AB=12,cosB=34,∴BP=ABcosB=16,∴PC=BC−BP=9×2−16=2;(2)过点P作PE⊥AC于E,在Rt△PCE中,PC=2,cosC=cosB=34,∴CE=cosC⋅PC=2×34=32,∴PE=√PC2−CE2=√72,AP=√AD2+DP2=√AB2−BD2+PD2=√144−81+49=4√7,∴sin∠PAC=PEAP =18.【解析】(1)通过作底边上的高AD,在直角三角形ABD和直角三角形ABP中分别求出BD、BP,由等腰三角形的性质求出BC,进而求出PC的长;(2)作高构造直角三角形,求出AE、PE后,由锐角三角函数的定义进行计算即可.本题考查解直角三角形,等腰三角形,掌握直角三角形的边角关系以及等腰三角形的性质是正确解答的前提.22.【答案】解:过点F作FG⊥AD于G,延长CB交FG于H,则四边形HGEB为矩形,∴HG=BE=1.5米,∠HBE=90∘,∵∠EBA=90∘,∴∠BFH=∠HBA=∠A,∴BH:FH=1:2.4,由勾股定理得:BF2=BH2+FH2,即0.652=BH2+(2.4BH)2,解得:BH=0.25,∴FH=0.25×2.4=0.6(米),∴FG=FH+HG=2.1(米),答:点F到地面的距离为2.1米.【解析】过点F作FG⊥AD于G,延长CB交FG于H,根据坡度的概念、勾股定理求出BH,进而求出FH,计算即可.本题考查的是解直角三角形的应用-坡度坡角问题,掌握坡度的概念、熟记锐角三角函数的定义是解题的关键.23.【答案】证明:(1)∵AC=AB,∴∠ACB=∠ABC,∵DC//AB,∴∠DCE=∠CAB,∵DE//BC,∴∠DEC=∠BCE,∵∠DEC=∠BEC,∴∠DEC=∠BCE=∠BEC=∠ABC,∴∠BAC=∠CBE=∠DCE,BE=BC,∴△DEC∽△CEB,∴CE DE =BECE,∴CE2=DE⋅BE=DE⋅CB;(2)∵∠BAC=∠CBE,∠ACB=∠BCE,∴△BCE∽△ACB,∴BC AC =CEBC,∵△DEC∽△CEB,∴DE CE =CEBC,∠CDE=∠BCE=∠CED=∠BEC,∴BC AC=DECE,CD =CE ,∵AD 2=AE ⋅AC , ∴AD AE=AC AD, 又∵∠DAE =∠DAC , ∴△ADE ∽△ACD , ∴AD AC =DE CD =DE CE, ∴ADAC =BCAC , ∴AD =BC.【解析】(1)通过证明△DEC ∽△CEB ,可得CE DE=BECE,可得结论; (2)通过证明△BCE ∽△ACB ,可得BC AC =CE BC ,由相似三角形的性质可得DE CE =CE BC ,可得BC AC=DECE,通过证明△ADE ∽△ACD ,可得AD AC=DE CD=DECE,可得结论. 本题考查了相似三角形的判定和性质,熟练运用相似三角形的判定是解题的关键.24.【答案】解:(1)由y =−23x +2可得:当x =0时,y =2;当y =0时,x =3, ∴A(3,0),B(0,2),把A 、B 的坐标代入y =−23x 2+bx +c 得: {−23×9+3b +c =0c =2, 解得:{b =43c =2,∴抛物线的解析式为:y =−23x 2+43x +2; (2)①如图1,∵DE//OB , ∴AEOE =ADBD , ∵AEOE =DE CD ,∴AD BD=DE CD, 又∵∠ADE =∠BDC , ∴△ADE ∽△BDC , ∴∠DAE =∠DBC , ∴AE//BC , ∴C 点的纵坐标为2, ∴2=−23x 2+43x +2, ∴x =0或x =2, ∴C(2,2), ∴t =2;②如图2,设C(t,−23t 2+43t +2),过点B 作BH ⊥CE 于点H , ∵∠BCH =∠ACE , ∴tan∠BCH =tan∠ACE , ∴BH CH=AE CE, ∴t−23t 2+43t=3−t−23t 2+43t+2,∴t =12, ∴C(12,52),∴S △ACB =S △ACE +S 梯形BOCE −S △ABO =12×52×52+12×(2+52)×12−12×2×3=54. 【解析】(1)先求出点A ,点B 坐标,利用待定系数法可求解析式;(2)证明△ADE ∽△BDC ,由相似三角形的性质得出∠DAE =∠DBC ,证出AE//BC ,得出C 点的纵坐标为2,则可求出答案;(3)设C(t,−23t 2+43t +2),过点B 作BH ⊥CE 于点H ,得出tan∠BCH =tan∠ACE ,则BHCH =AECE ,解方程求出t 的值,则可求出答案.本题是二次函数综合题,考查了待定系数法求解析式,平行线的判定和性质,相似三角形的判定和性质,二次函数的性质等知识,灵活运用这些性质解决问题是解题的关键.25.【答案】解:(1)在Rt△ABC中,∠ACB=90∘,AB=6,BC=4,∴AC=√AB2−BC2=√62−42=2√5,∵DE平分∠CDB,∴∠CDE=∠BDE,∵DE⊥BC,∴∠DEC=∠DEB=90∘,在△DCE和△DBE中,{∠CDE=∠BDE DE=DE∠DEC=∠DEB,∴△DCE≌△DBE(ASA),∴CE=BE,∵CE+BE=BC=4,∴CE=BE=2,∵DE BE =tan∠B=ACBC,∴DE2=2√54,∴DE=√5;(2)∵EF⊥CD,∴∠CFE=90∘=∠ACB,∵△CEF与△ABC相似,∴△CEF∽△ABC或△CEF∽△BAC,①当△CEF∽△ABC时,则∠ECF=∠BAC,∵∠ACB=90∘,∴∠BAC+∠ABC=90∘,∴∠ECF+∠ABC=90∘,∴∠CDB=90∘,∵DE平分∠CDB,∴∠CDE=12∠CDB=12×90∘=45∘,∴tan∠CDE=tan45∘=1;②当△CEF∽△BAC时,则∠ECF=∠ABC,∴DC=DB,∵DE平分∠CDB,∴DE⊥BC,∴∠CDE+∠ECF=90∘,∵∠BAC+∠ABC=90∘,∴∠CDE=∠BAC,∴tan∠CDE=tan∠BAC=BCAC =42√5=2√55,综上所述,∠CDE的正切值为1或2√55;(3)如图,过点E作EG⊥AB于点G,∵DE平分∠CDB,EF⊥CD,EG⊥AB,∴EF=EG,∵DE=DE,∴Rt△DEF≌Rt△DEG(HL),∴DF=DG,∵△BDE的面积是△DEF面积的2倍,∴BD=2DF,∴DG=BG,∵EG⊥BD,∴DE=BE,设BE=x,则DE=x,CE=BC−BE=4−x,BG=BE⋅cosB=23x,∴BD=2BG=43x,DG=DF=BG=23x,∴AD=AB−BD=6−43x,∵DE平分∠CDB,∴∠CDE=∠BDE,∵DE=BE,∴∠BDE=∠B,∴∠CDE=∠B,∵∠DCE=∠BCD,∴△CDE∽CBD,∴CD CB =CECD=DEBD,即CD4=4−xCD=x43x,解得:CD=3,x=74,∴AD=6−43x=6−43×74=113,故这时AD的长为113.【解析】(1)证明△DCE≌△DBE(ASA),可得CE=BE=2,根据DEBE =tan∠B=ACBC,即可求得答案;(2)分两种情况:①当△CEF∽△ABC时,可证得∠CDB=90∘,再根据DE平分∠CDB,可得∠CDE= 45∘,再由特殊角的三角函数值即可求得答案;②当△CEF∽△BAC时,则∠ECF=∠ABC,得出DC= DB,再由DE平分∠CDB,可得DE⊥BC,推出∠CDE=∠BAC,利用三角函数定义即可求得答案;(3)如图,过点E作EG⊥AB于点G,根据角平分线性质可得出EF=EG,推出DF=DG,再由△BDE 的面积是△DEF面积的2倍,可得出BD=2DF,进而推出DE=BE,设BE=x,则DE=x,CE=BC−BE=4−x,BG=BE⋅cosB=23x,BD=2BG=43x,DG=DF=BG=23x,AD=AB−BD=6−43x,根据△CDE∽CBD,得出CDCB=CECD=DEBD,建立方程求解即可.本题是几何综合题,考查了直角三角形性质,勾股定理,全等三角形判定和性质,相似三角形的判定和性质,角平分线性质,三角形面积,三角函数等知识,解题关键是熟练掌握相似三角形的判定和性质等相关知识,运用分类讨论思想和方程思想解决问题.。
2021年上海市16区中考数学一模考点分类汇编专题07 相似图形的相关概念(解析版)
2021年上海市16区中考数学一模汇编专题07 相似图形的相关概念一、单选题1.(2021·上海青浦区·九年级一模)如图,已知BD 与CE 相交于点A ,DE BC //,如果2AD =,3AB =,6AC =,那么AE 等于( )A .125B .185C .4D .9【答案】C【分析】根据平行线分线段成比例即可得到结论.【详解】解:∵ED∵BC ,∵AB AC AD AE =,即362AE=,∵AE=4,故选:C . 【点睛】本题考查了平行线分线段成比例的运用,注意:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.2.(2021·上海长宁区·九年级一模)下列命题中,说法正确的是( )A .四条边对应成比例的两个四边形相似B .四个内角对应相等的两个四边形相似C .两边对应成比例且有一个角相等的两个三角形相似D.斜边与一条直角边对应成比例的两个直角三角形相似【答案】D【分析】根据三角形相似和相似多边形的判定解答.【详解】A、四个角对应相等,四条边对应成比例的两个四边形相似,原命题是假命题;B、四个内角对应相等,四条边对应成比例的两个四边形相似,原命题是假命题;C、两边对应成比例且其夹角相等的两个三角形相似,原命题是假命题;D、斜边与一条直角边对应成比例的两个直角三角形相似,是真命题;故选:D.【点睛】本题考查了命题与定理的知识,解题的关键是了解三角形相似和相似多边形,难度不大.3.(2021·上海杨浦区·九年级一模)在ABC中,点D、E分别在边AB、AC上,下列条件中,能判定//DE BC 的是()A.AD DEAB BC=B.AD AEDB EC=C.DB AEEC AD=D.AD AEAC AB=【答案】A【分析】根据对应线段成比例,两直线平行,可得出答案.【详解】A、AD DEAB BC=,可证明DE∵BC,故本选项正确;B、AD AEDB EC=,不可证明DE∵BC,故本选项错误;C、DB AEEC AD=,不可证明DE∵BC,故本选项不正确;D、AD AEAC AB=不可证明DE∵BC,故本选项不正确.故选A.【点睛】本题考查了平行线分线段成比例,对应线段成比例,两直线平行.4.(2021·上海浦东新区·九年级一模)A、B两地的实际距离AB=250米,如果画在地图上的距离A B''=5厘米,那么地图上的距离与实际距离的比为()A.1∵500B.1∵5 000C.500∵1D.5 000∵1【答案】B【分析】地图上距离与实际距离的比就是在地图上的距离A B ''与实际距离AB 的比值.【详解】解:∵250米=25000cm ,∵:A B AB ''=5:25000=1:5000.故选:B .【点睛】本题主要考查了比例尺,掌握比例尺的计算方法,注意在求比的过程中,单位要统一. 5.(2021·上海崇明区·九年级一模)已知线段a 、b 、c 、d 的长度满足等式ab cd =,如果某班四位学生分别将该等式改写成了如下四个比例式,那么其中错误的是( )A .a c b d =B .a d c b =C .b d c a =D .b c d a= 【答案】A【分析】根据比例的两内项之积等于两外项之积逐项排查即可.【详解】解:A.由a c b d=可得bc=ad ,故A 选项符合题意; B.由a d c b=可得ab=cd ,故B 选项不符合题意; C.由b d c a=可得ab=cd ,故C 选项不符合题意; D.由b c d a =可得ab=cd ,故D 选项不符合题意.故答案为A . 【点睛】本题主要考查了比例的基本性质,即掌握两内项之积等于两外项之积成为解答本题的关键. 6.(2021·上海闵行区·九年级一模)古希腊艺术家发现当人的头顶至肚脐的长度(上半身的长度)与肚脐至足底的长度(下半身的长度)的比值为“黄金分割数”时,人体的身材是最优美的,一位女士身高为154cm ,她上半身的长度为62cm ,为了使自己的身材显得更为优美,计划选择一双合适的高跟鞋,使自己的下半身长度增加,你认为选择鞋跟高为多少厘米的高跟鞋最佳( )A .4cmB .6cmC .8cmD .10cm【答案】C【分析】根据黄金分割的概念,列出方程直接求解即可.【详解】解:根据题意,设她穿的高跟鞋的高度是x cm ,则620.61815462x =+-, 解得:8.3x ≈,∵我认为选择鞋跟高为8厘米的高跟鞋最佳;故选:C .【点睛】本题主要考查了黄金分割的应用;关键是明确黄金分割所涉及的线段的比.7.(2021·上海奉贤区·九年级一模)下列两个图形一定相似的是( )A .两个菱形B .两个正方形C .两个矩形D .两个梯形【答案】B【分析】对应边成比例,对应角相等的两个四边形相似,根据定义逐一判断各选项即可得到答案.【详解】解:两个菱形满足对应边成比例,但是对应角不一定相等,所以两个菱形不一定相似,故A 不符合题意;两个正方形满足对应边成比例,对应角相等,所以两个正方形一定相似,故B 符合题意;两个矩形满足对应角相等,但是对应边不一定成比例,故C 不符合题意;两个梯形的对应边不一定成比例,对应角也不一定相等,故D 不符题意;故选:.B【点睛】本题考查的是四边形相似的判定,掌握多边形相似的判定是解题的关键. 8.(2021·上海嘉定区·九年级一模)如果实数a ,b ,c ,d 满足a c b d=,下列四个选项中,正确的是( ) A .a b c d b d++= B .a c a b c d =++ C .a c c b d d+=+ D .22a cb d = 【答案】A 【分析】根据比例的性质选出正确选项.【详解】A 选项正确,∵11a c b d+=+,∵a b c d b d ++=; B 选项,当0a b +=或0c d +=时, 不成立;C 选项,当0b d +=时,不成立;D 选项不成立,例如:当1224=时,221224≠;故选:A . 【点睛】本题考查比例的性质,解题的关键是掌握比例的性质.9.(2021·上海松江区·九年级一模)如果两个相似多边形的面积之比为1:4,那么它们的周长之比是( ) A .1:2B .1:4C .1:8D .1:16【答案】A【分析】根据相似多边形周长的比等于相似比,面积的比等于相似比的平方进行解答即可.【详解】解:∵两个相似多边形面积的比为1:4,∵两个相似多边形周长的比等于1:2,∵这两个相似多边形周长的比是1:2.故选:A .【点睛】本题考查的是相似多边形的性质,即相似多边形周长的比等于相似比,面积的比等于相似比的平方.10.(2021·上海青浦区·九年级一模)已知点P 是线段AB 的黄金分割点()AP BP >,若2AB =,则AP 的长为A 1B 1CD .3【答案】A【分析】利用黄金分割点的定义即可求AP 的长度【详解】利用黄金分割点的定义, AP AB = 111.(2021·上海徐汇区·九年级一模)下列说法中,正确的是( )A .两个矩形必相似B .两个含45︒角的等腰三角形必相似C .两个菱形必相似D .两个含30角的直角三角形必相似【答案】D 【分析】根据相似多边形、相似三角形的判定逐项判断即可得.【详解】A 、两个矩形的对应角相等,但对应边不一定成比例,则不一定相似,此项错误;B 、如果一个等腰三角形的顶角是45︒,另一等腰三角形的底角是45︒,则不相似,此项错误;C 、两个菱形的对应边成比例,但四个内角不一定对应相等,则不一定相似,此项错误;D 、两个含30角的直角三角形必相似,此项正确;故选:D .【点睛】本题考查了相似多边形、相似三角形的判定,熟练掌握相似图形的判定方法是解题关键. 12.(2021·上海九年级一模)如图,在ABC 中,点D 在边AB 上,DE BC //,DF AC //,联结BE ,BE 与DF 相交于点G ,则下列结论一定正确的是( )A .AD DE DB BC = B .AE BF AC BC = C .BD BF AD DE = D .DG BF GF FC= 【答案】C【分析】根据相似三角形的判定和平行线分线段成比例进行判断即可.【详解】解:∵DE∵BC ,DF∵AC ,∵四边形DFCE 是平行四边形,∵DE=CF ,DF=CE ,∵DE∵BC ,DF∵AC ,∵∵ADE∵∵ABC ,∵BFD∵∵BAC ,∵AD DE AB BC=,故A 错误;AE AD AC AB BC CF ==,即AE CF AC BC=,故B 错误; ∵DF∵AC ,∵BD BF BF AD CF DE==,故C 正确; ∵DE∵BC ,∵DG DE CF GF BF BF ==,故D 错误,故选:C . 【点睛】本题考查了相似三角形的判定与性质、平行线分线段成比例、平行四边形的判定与性质,熟练掌握相似三角形的性质和平行线分线段成比例是解答的关键.13.(2021·上海浦东新区·九年级一模)如图,在ABC 中,点D 、F 是边AB 上的点,点E 是边AC 上的点,如果∵ACD=∵B ,DE //BC ,EF //CD ,下列结论不成立的是( )A .2AE AF AD =⋅B .2AC AD AB =⋅C .2AF AE AC =⋅D .2AD AF AB =⋅【答案】C【分析】根据相似三角形的判定及性质以及平行线分线段成比例对每个选项逐个证明即可.【详解】解:∵DE //BC ,EF //CD ,∵∵ADE=∵B ,∵ACD=∵AEF ,又∵∵ACD=∵B ,∵∵ADE=∵AEF ,∵∵ADE=∵AEF ,∵A=∵A ,∵AEF∵ADE , ∵AE AD AF AE=,∵2AE AF AD =⋅,故选项A 正确; ∵∵ACD=∵B ,∵A=∵A ,∵ACD∵ABC ,∵AC AD AB AC=,∵2AC AD AB =⋅,故选项B 正确; ∵DE //BC ,∵AE AD AC AB =,∵EF //CD ,∵AE AF AC AD=,∵AF AD AD AB =,∵2AD AF AB =⋅,故选项D 正确;∵EF//CD,∵AE AFAC AD=,∵AF AC AE AD⋅=⋅,故选项C错误,故选:C.【点睛】本题考查了平行线分线段成比例以及相似三角形的判定及性质,熟练掌握相似三角形的判定及性质是解决本题的关键.14.(2021·上海静安区·九年级一模)在∵ABC中,点D、E分别在边BA、CA的延长线上,下列比例式中能判定DE∵BC的为()A.BC ABDE AD=B.AC ABAD AE=C.AC ABCE BD=D.AC BDAB CE=【答案】C【分析】根据平行线分线段成比例定理、平行线的判定定理判断即可.【详解】解:当BC ABDE AD=时,不能判定DE∵BC,A选项错误;AC ABAD AE=时,不能判定DE∵BC,B选项错误;AC ABCE BD=时,DE∵BC,C选项正确;AC BDAB CE=时,不能判定DE∵BC,D选项错误;故选:C.【点睛】本题考查了平行线分线段成比例定理、平行线的判定定理,掌握相关的判定定理是解题的关键.15.(2021·上海长宁区·九年级一模)已知P,Q是线段AB的两个黄金分割点,且AB=10,则PQ长为()A.1)B.C.2) - D.5(3【答案】C【分析】画出图像,根据黄金分割的概念写出对应线段的比值,求出AQ、PB的长度,再根据PQ=AQ+PB-AB即可求出PQ的长度.【详解】解:如图,根据黄金分割点的概念,可知PB AQ AB AB ==∴AQ =PB ,AB =10,∴AQ =PB =11052⨯=,∴PQ =AQ +PB -AB =5510202)+-==. 故选:C .【点睛】本题主要考查黄金分割的概念,熟记黄金分割的概念并根据黄金分割的比值列式是解题关键.二、填空题16.(2021·上海徐汇区·九年级一模)已知点P 在线段AB 上,如果2AP AB BP =⋅,4AB =,那么AP 的长是_____.【答案】2【分析】设AP=x ,则PB=4-x ,根据AP 2=AB•PB 列出方程求解即可,另外,注意舍去负数解.【详解】解:设AP=x ,则PB=4-x ,由题意,x 2=4(4-x ),解得x=2或2-(舍弃)故答案为:2.【点睛】本题考查的是比例线段与黄金分割的概念,把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值叫做黄金比.注意方程思想的应用是解题的关键.17.(2021·上海徐汇区·九年级一模)如图,////AB CD EF ,如果2AC =,3CE = , 1.5BD =,那么BF 的长是______.【答案】3.75【分析】直接根据平行线分线段成比例定理即可得出结论.【详解】解:∵直线////AB CD EF ,2AC =,3CE =, 1.5BD =, ∵AC BD AE BE = 22235==+,∵ 1.55=3.752BE ⨯=.故答案为:3.75. 【点睛】本题考查的是平行线分线段成比例定理,熟知三条平行线截两条直线,所得的对应线段成比例是解答此题的关键.18.(2021·上海松江区·九年级一模)如图,已知直线1l ,2l ,3l 分别交直线l 于点A ,B ,C ,交直线l 于点D ,E ,F ,且123////l l l ,4AB =,6AC =,10DF =,则DE =___.【答案】203【分析】根据平行线分线段成比例定理解答即可.【详解】∵123////l l l 4AB =,6AC =,10DF =,∵AB DE AC DF = 即4610DE =, 可得:DE=203,故答案为:203. 【点睛】本题考查了平行线分线段成比例定理的应用,能熟练地运用定理进行计算是解此题的关键. 19.(2021·上海奉贤区·九年级一模)如果4是a 与8的比例中项,那么a 的值为_______________________.【答案】2【分析】根据比例中项的概念:如果a 、b 、c 三个量成连比例,即::a b b c =,b 叫作a 和c 的比例中项,即可求解.【详解】4是a 与8的比例中项,∴:44:8a =,即248a =,∴2a =.故答案为:2.【点睛】本题考查了比例中项的概念,熟练掌握比例中项的概念是解题的关键.20.(2021·上海普陀区·九年级一模)已知52x y =,那么x y x y+=-__________. 【答案】73【分析】由52x y =,设()50x k k =≠,则2y k =,再把,x y 的值代入代数式即可得到答案. 【详解】解: 52x y =,∴ 设()50x k k =≠,则2y k =,52775233x y k k k x y k k k ++∴===--, 故答案为:7.3【点睛】本题考查的是比例的基本性质,掌握设参数法解决比例的问题是解题的关键.21.(2021·上海奉贤区·九年级一模)如果2a =5b (b ≠0),那么a b=_____. 【答案】52【分析】利用比例的基本性质可得答案.【详解】解:∵2a =5b (b ≠0),∵5.2a b = 故答案为:52【点睛】本题考查的是比例的基本性质,掌握基本性质是解题的关键.22.(2021·上海徐汇区·九年级一模)如果:2:3a b =,那么代数式b a a-的值是_____. 【答案】12【分析】根据比例的性质可得23a b =,则代入原代数式计算即可.【详解】由题意:23a b =,∵213223b b b a a b --==,故答案为:12. 【点睛】本题主要考查比例的性质,熟练根据比例的性质变形求解是解题关键.23.(2021·上海长宁区·九年级一模)如图,已知AC ∵EF ∵BD .如果AE :EB =2:3,CF =6.那么CD 的长等于_________.【答案】15【分析】根据平行线分线段成比例定理列出比例式首先求得CF 的长,再求得DC 的长.【详解】解:∵AC ∵EF ∵BD ,CF =6,23AE CF BE DF ==,∵DF=9, ∵CD=DF+CF=9+6=15.故答案是:15.【点睛】本题考查了平行线分线段成比例定理和比例的基本性质,解题的关键是注意数形结合思想的应用. 24.(2021·上海九年级一模)如果34a b =,那么b a b a -=+__________________. 【答案】17【分析】设a=3k ,得到b=4k ,代入b a b a -+化简即可求解. 【详解】解:设a=3k ,∵34a b =,∵b=4k ,∵4314377b a k k k b a k k k --===++.故答案为:17 【点睛】本题主要考查了比例化简求值,理解比例的意义,用含k 的式子分别表示a 、b 是解题关键. 25.(2021·上海黄浦区·九年级一模)已知三角形的三边长为a 、b 、c .满足234a b c ==,如果其周长为36,那么该三角形的最大边长为________.【答案】16 【分析】设234a b c ===k ,根据三角形的周长列出方程即可求出k 的值,从而求出结论. 【详解】解:设234a b c ===k∵a =2k ,b =3k ,c =4k 由题意可知:a +b +c=36∵2k +3k +4k=36解得:k=4∵该三角形的最大边长为4×4=16故答案为:16.【点睛】此题考查的是比例的性质,掌握设参法是解题关键.26.(2021·上海宝山区·九年级一模)已知线段2a =厘米,8c =厘米,那么线段a 和c 的比例中项b 的长度为______厘米.【答案】4【分析】根据线段的比例中项可直接进行列式求解.【详解】解:由题意可得:22816b ac ==⨯=,∵4b =cm ;故答案为4.【点睛】本题主要考查比例中项,熟练掌握比例中项是解题的关键.27.(2021·上海崇明区·九年级一模)已知线段6cm AB =,点C 是AB 的黄金分割点,且AC BC >,那么线段AC 的长为________.【答案】3,列式计算即可.【详解】∵点C 是线段AB 的黄金分割点,AC >BC ,∵AC AB =(3)cm ,故答案为3.【点睛】本题考查的是黄金分割的概念,把一条线段分成两部分,使其中较长的线段为全线段与较短线段叫做黄金比. 28.(2021·上海闵行区·九年级一模)如果23(0)a b b =≠,那么a b=__________. 【答案】32【分析】根据等式的性质解题即可,等式两边同时除以一个不为零的数,等式仍成立 【详解】323(0)2a ab b b =≠∴=故答案为:32. 【点睛】本题考查比例的性质,利用等式的性质解题即可.29.(2021·上海奉贤区·九年级一模)如图,已知点D 在ABC ∆的边BC 上,联结,AD P 为AD 上一点,过点Р分别作AB AC 、的平行线交BC 于点,,E F 如果3BC EF =,那么AP PD=_______________________.【答案】2 【分析】根据平行线分线段成比例性质可得PD DE DF AD BD CD ==,再由等比性质可得13PD AD =,即可得出2AP PD=. 【详解】解:∵PE∵AB ,PF∵AC , ∵PD DE AD BD =,PD DF AD CD =.∵DE DF BD CD=. ∵BC =3EF ,∵13DE DF EF BD CD BC +==+.∵13PD PD AD AP PD ==+.∵2AP PD=.答案:2. 【点睛】本题考查了平行线分线段成比例性质,掌握平行线分线段成比例性质定理及等比性质是解答此题的关键.30.(2021·上海虹口区·九年级一模)如果:3:2a b =,那么a a b=+________. 【答案】35【分析】设a=3k ,然后用k 表示出b ,最后代入a a b+计算即可. 【详解】解:设a=3k∵:3:2a b =∵3:3:2k b =,即3b=6k ,解得b=2k ∵3333255a k k a b k k k ===++.故答案为35. 【点睛】本题主要考查了比例化简求值,设出中间量、分别表示出a 、b 成为解答本题的关键. 31.(2021·上海嘉定区·九年级一模)正方形的边长与其对角线长的比为________.【答案】1【分析】设正方形的边长为1,计算即得结果.【详解】解:设正方形的边长为1,所以正方形的边长与其对角线长的比为1【点睛】此题主要考查对正方形的性质和线段比的定义的理解及运用.难度不大,属于基础题型. 32.(2021·上海杨浦区·九年级一模)已知线段AB 的长为4厘米,点P 是线段AB 的黄金分割点(AP BP <),那么线段AP 的长是______厘米.【答案】6-【分析】根据黄金比值可知AP BP BP AB ==,计算得出结果即可.【详解】解:点P 是线段AB 的黄金分割点(AP BP <),∴12AP BP BP AB ==,可知2BP AB ==(厘米),6AP BP ==-(厘米)故答案为:6-.【点睛】本题考查的是黄金分割比,属于基础题,掌握黄金比值12是解题的关键. 33.(2021·上海青浦区·九年级一模)如图,在ABC 中,点D 是边BC 的中点,直线DF 交边AC 于点F ,交AB 的延长线于点E ,如果::CF CA a b =,那么:BE AE 的值为____.(用含a 、b 的式子表示)【答案】a b a- 【分析】过点B 作BH∵AC 交EF 于点H ,先证明∵BDH∵∵CDF ,得出BH=CF ,再根据BE BH AE AF=得出=BE BH CF AE AF AF=即可得解. 【详解】解:过点B 作BH∵AC 交EF 于点H ,∵BE BH AE AF=,∵C=∵DBH, ∵点D 是边BC 的中点,∵BD=CD ,∵∵BDH=∵CDF ,∵∵BDH∵∵CDF ,∵BH=CF ,∵=BE BH CF AE AF AF =, ∵CF a CA b =,∵CF a AF b a =-,∵BE a AE b a=-,故答案为: a b a -..【点睛】本题考查了全等三角形的判定与性质及平行线分线段成比例定理,解题的关键是正确作出辅助线.34.(2021·上海黄浦区·九年级一模)已知一个矩形的两邻边长之比为1:2.5,一条平行于边的直线将该矩形分为两个小矩形,如果所得两小矩形相似,那么这两个小矩形的相似比为________.【答案】1或0.5或2【分析】根据题意,画出图形,然后分直线l∵AD和直线l∵AB两种情况,然后根据相似图形的性质列出比例式即可分别求出结论.【详解】解:如图所示,矩形ABCD中,AB:AD=1:2.5,∵AD=BC若直线l∵AD,交AB、CD于E、F根据题意和图形可知:矩形AEFD∵矩形BEFC此时这两个小矩形的相似比为AD:BC=1;根据相似图形的性质,两个相似图形中长边必定对应长边,故此时不存在其它情况;若直线l∵AB,交AD、BC于E、F此时存在两种情况:①若矩形ABFE∵矩形DCFE,如下图所示此时这两个小矩形的相似比为AB:DC=1;②若矩形BAEF∵矩形EDCF,如下图所示∵AB AEDE CD=设AB=CD=a,AE=x,则AD=2.5a,DE=2.5a x-∵2.5a xa x a=-解得:x=0.5a或x=2a当x=0.5a时,这两个小矩形的相似比为AE:CD=0.5a:a=0.5;当x=2a时,这两个小矩形的相似比为AE:CD=2a:a=2;综上:这两个小矩形的相似比为1或0.5或2.故答案为:1或0.5或2.【点睛】此题考查的是求相似图形的相似比,掌握相似多边形的性质和分类讨论的数学思想是解题关键.35.(2021·上海浦东新区·九年级一模)如果线段a、b满足52ab=,那么a bb-的值等于______.【答案】3 2【分析】根据1a b a b b -=-,再将52a b =代入计算即可. 【详解】解:∵52a b =,∵1a b a b b -=-512=-32=,故答案为:32. 【点睛】本题考查了比例的性质,将a b b-变形为1-a b 是解决本题的关键. 36.(2021·上海宝山区·九年级一模)如果线段AB 的长为2,点P 是线段AB 的黄金分割点,那么较短的线段AP =______.【答案】3【分析】设较短的线段AP x =,则BP AB AP =-,根据黄金分割点的性质列方程并求解,即可得到答案.【详解】设较短的线段AP x =∵AB 的长为2∵2BP AB AP x =-=- ∵BP AP AB BP= ∵222x x x-=- ∵()222x x -=∵3x =+3-32+>,故舍去∵(22310x -=-=≠∵3x =∵较短的线段3AP =3【点睛】本题考查了黄金分割点、分式方程、一元二次方程、二次根式的知识;解题的关键是熟练掌握黄金分割点、分式方程、一元二次方程、二次根式的性质,从而完成求解. 37.(2021·上海崇明区·九年级一模)已知53x y =,则x y y-=_____. 【答案】23 【分析】由53x y =得到53x y =,代入式子计算即可. 【详解】∵53x y =,∵53x y =,∵x y y -5233y y y -==,故答案为:23.【点睛】此题考查比例的性质,正确进行变形,熟练掌握和灵活运用相关运算法则是解题的关键.38.(2021·上海虹口区·九年级一模)点P 是线段AB 上的一点,如果2AP BP AB =⋅,那么AP AB的值是________.【分析】设AB=1,AP=x ,则BP=1-x ,代入AP 2=BP·AB 求出x 的值,最后代入AP AB即可. 【详解】解:设AB=1,AP=x ,则BP=1-x ,∵AP 2=BP·AB ∵x 2=(1-x )·1,即x 2+x -1=0,解得或(舍)∵21APAB ==. 【点睛】本题考查了成比例线段,设出合适的未知数、根据比例列式求出未知数成为解答本题的关键. 39.(2021·上海嘉定区·九年级一模)已知点P 是线段AB 的一个黄金分割点,且AP >BP ,那么AP :AB 的比值为______.【答案】12【分析】根据黄金分割的定义列即可得答案.【详解】∵点P 是线段AB 的一个黄金分割点,且AP BP >,∵AP :. 【点睛】题考查了黄金分割点的应用,把一条线段分割为两部分,使较大部分与全长的比值等于较小部分;理解黄金分割点的定义是解题的关键.40.(2021·上海宝山区·九年级一模)已知 ()2x 3y y 0=≠,那么x y y+=________. 【答案】52【分析】由已知得出比例式,表示出x ,y ,代入解答即可.【详解】由2x=3y (y≠0),可得:x y =32,所以x y y +=232+=52,故答案为52 【点睛】此题考查了比例的性质,熟练掌握比例的性质是解本题的关键.三、解答题41.(2021·上海浦东新区·九年级一模)如图,已知AD //BE //CF ,它们依次交直线1l 、2l 于点A 、B 、C 和点D 、E 、F ,且AB=6,BC=8.(1)求DE DF的值; (2)当AD=5,CF=19时,求BE 的长.【答案】(1)37;(2)11 【分析】(1)根据AD //BE //CF 可得DE AB DF AC =,由此计算即可; (2)过点A 作AG //DF 交BE 于点H ,交CF 于点G ,得出AD=HE=GF=5,由平行线分线段成比例定理得出比例式求出BH=6,即可得出结果.【详解】解:(1)∵AD //BE //CF ,∵DE AB DF AC =,∵AB=6,BC=8,∵63687DE DF ==+, 故DE DF 的值为37; (2)如图,过点A 作AG //DF 交BE 于点H ,交CF 于点G ,∵AG //DF ,AD //BE //CF ,∵AD=HE=GF=5,∵CF=19,∵CG=CF -GF=14,∵BE //CF ,∵BH AB CG AC =,∵3147BH =,解得BH=6,∵BE=BH+HE=11. 【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例;熟练掌握平行线分线段成比例,通过作辅助线运用平行线分线段成比例求出BH 是解决问题的关键.42.(2021·上海静安区·九年级一模)已知线段x 、y 满足2x y x x y y +=-,求x y的值.. 【分析】利用比例性质化比例式化为整式,再移项两边同除以y 2,化为22310x x y y--=,然后解一元二次方程,即可求解.【详解】解:222xy y x xy +=-,2230x xy y --=.∵0y ≠,∵22310x x y y --=,∵x y =.∵x 、y 表示线段,∵负值不符合题意,∵x y =. 【点睛】本题考查比例的性质、解一元二次方程,利用整体换元的思想方法解方程是解答的关键,注意x 、y 的非负性.43.(2021·上海奉贤区·九年级一模)已知:2:3,:3:4a b b c ==,且26a b c +-=,求,,a b c 的值【答案】4a =,6b =,8c =.【分析】根据比的性质,可得a ,b ,c 用k 表示,根据解方程,可得k 的值,即可得答案.【详解】∵:2:3a b =,:3:4b c =,∵设2a k =,3b k =,4c k =,∵()22346k k k ⋅+-=,整理得:36k = ,解得:2k =,∵24a k ==,36b k ==,48c k ==.【点睛】本题考查了比例的性质,利用比例的性质得出2a k =,3b k =,4c k =是解题关键.。
上海徐汇中学2020-2021年九年级上册期末数学试题(含答案)
上海徐汇中学2020-2021年九年级上册期末数学试题(含答案)一、选择题1.下列方程中,是关于x 的一元二次方程的为( )A .2210x x+= B .220x x --= C .2320x xy -= D .240y -= 2.关于x 的一元一次方程122a x m -+=的解为1x =,则a m -的值为( )A .5B .4C .3D .23.如图,在△ABC 中,DE ∥BC ,若DE =2,BC =6,则ADE ABC 的面积的面积=( )A .13B .14C .16D .194.若25x y =,则x y y+的值为( ) A .25 B .72C .57D .755.如图,△ABC 内接于⊙O ,连接OA 、OB ,若∠ABO =35°,则∠C 的度数为( )A .70°B .65°C .55°D .45°6.如图,在△ABC 中,点D 、E 分别在边BA 、CA 的延长线上,ABAD=2,那么下列条件中能判断DE ∥BC 的是( )A .12AE EC = B .2ECAC= C .12DE BC = D .2ACAE= 7.已知⊙O 的半径为1,点P 到圆心的距离为d ,若关于x 的方程x 2-2x+d=0有实数根,则点P ( )A .在⊙O 的内部B .在⊙O 的外部C .在⊙O 上D .在⊙O 上或⊙O 内部8.下列函数中属于二次函数的是( ) A .y =12x B .y =2x 2-1C .y =23x +D .y =x 2+1x+1 9.已知a 是方程x 2+3x ﹣1=0的根,则代数式a 2+3a+2019的值是( ) A .2020B .﹣2020C .2021D .﹣202110.在六张卡片上分别写有13,π,1.5,5,0,2六个数,从中任意抽取一张,卡片上的数为无理数的概率是( ) A .16B .13C .12D .5611.方程2210x x --=的两根之和是( ) A .2-B .1-C .12D .12-12.如图1,在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,点P 是对角线BD 上一动点,设PD 的长度为x ,PE 与PC 的长度和为y ,图2是y 关于x 的函数图象,其中H 是图象上的最低点,则a +b 的值为( )A .3B .234C 1433D 223313.点P 1(﹣1,1y ),P 2(3,2y ),P 3(5,3y )均在二次函数22y x x c =-++的图象上,则1y ,2y ,3y 的大小关系是( ) A .321y y y >>B .312y y y >=C .123y y y >>D .123y y y =>14.二次函数y=ax 2+bx+c 的y 与x 的部分对应值如下表: x…134 …y … 2 4 2 ﹣2…则下列判断中正确的是()A.抛物线开口向上B.抛物线与y轴交于负半轴C.当x=﹣1时y>0 D.方程ax2+bx+c=0的负根在0与﹣1之间15.“一般的,如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.——苏科版《数学》九年级(下册)P21”参考上述教材中的话,判断方程x2﹣2x=1x﹣2实数根的情况是()A.有三个实数根B.有两个实数根C.有一个实数根D.无实数根二、填空题16.已知tan(α+15°)=33,则锐角α的度数为______°.17.O的半径为4,圆心O到直线l的距离为2,则直线l与O的位置关系是______. 18.已知扇形的圆心角为90°,弧长等于一个半径为5cm的圆的周长,用这个扇形恰好围成一个圆锥的侧面(接缝忽略不计).则该圆锥的高为__________cm.19.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D是以点A为圆心2为半径的圆上一点,连接BD,M为BD的中点,则线段CM长度的最小值为__________.20.如图,由边长为1的小正方形组成的网格中,点,,,A B C D为格点(即小正方形的顶点),AB与CD相交于点O,则AO的长为_________.21.如图,在矩形ABCD中,AB=2,BC=4,点E、F分别在BC、CD上,若AE=5,∠EAF=45°,则AF的长为_____.22.一元二次方程x2﹣4=0的解是._________23.如图(1),在矩形ABCD中,将矩形折叠,使点B落在边AD上,这时折痕与边AD 和BC分别交于点E、点F.然后再展开铺平,以B、E、F为顶点的△BEF称为矩形ABCD 的“折痕三角形”.如图(2),在矩形ABCD中,AB=2,BC=4,当“折痕△BEF”面积最大时,点E 的坐标为_________________________.24.如图,P 为O 外一点,PA 切O 于点A ,若3PA =,45APO ∠=︒,则O 的半径是______.25.如图,直线y=12x ﹣2与x 轴、y 轴分别交于点A 和点B ,点C 在直线AB 上,且点C 的纵坐标为﹣1,点D 在反比例函数y=k x 的图象上,CD 平行于y 轴,S △OCD =52,则k 的值为________.26.如图,点C 是以AB 为直径的半圆上一个动点(不与点A 、B 重合),且AC+BC=8,若AB=m (m 为整数),则整数m 的值为______.27.如图,△ABC 中,AB =AC =5,BC =6,AD ⊥BC ,E 、F 分别为AC 、AD 上两动点,连接CF 、EF ,则CF +EF 的最小值为_____.28.已知二次函数2(0)y ax bx c a =++≠,y 与x 的部分对应值如下表所示:x… -1 0 1 2 3 4 … y…61-2-3-2m…下面有四个论断:①抛物线2(0)y ax bx c a =++≠的顶点为(23)-,; ②240b ac -=;③关于x 的方程2=2ax bx c ++-的解为12=13x x =,; ④=3m -.其中,正确的有___________________.29.有4根细木棒,它们的长度分别是2cm 、4cm 、6cm 、8cm .从中任取3根恰好能搭成一个三角形的概率是_____.30.若把一根长200cm 的铁丝分成两部分,分别围成两个正方形,则这两个正方形的面积的和最小值为_____.三、解答题31.某市2017年对市区绿化工程投入的资金是5000万元,为争创全国文明卫生城,加大对绿化工程的投入,2019年投入的资金是7200万元,且从2017年到2019年,两年间每年投入资金的年平均增长率相同.(1)求该市对市区绿化工程投入资金的年平均增长率;(2)若投入资金的年平均增长率不变,那么该市在2020年预计需投入多少万元? 32.某校七年级一班和二班各派出10名学生参加一分钟跳绳比赛,成绩如下表:(1)两个班级跳绳比赛成绩的众数、中位数、平均数、方差如下表:表中数据a = ,b = ,c = .(2)请用所学的统计知识,从两个角度比较两个班跳绳比赛的成绩.33.如图,分别以△ABC的边AC和BC为腰向外作等腰直角△DAC和等腰直角△EBC,连接DE.(1)求证:△DAC∽△EBC;(2)求△ABC与△DEC的面积比.34.某公司研发了一款成本为50元的新型玩具,投放市场进行试销售.其销售单价不低于成本,按照物价部门规定,销售利润率不高于90%,市场调研发现,在一段时间内,每天销售数量y(个)与销售单价x(元)符合一次函数关系,如图所示:(1)根据图象,直接写出y与x的函数关系式;(2)该公司要想每天获得3000元的销售利润,销售单价应定为多少元(3)销售单价为多少元时,每天获得的利润最大,最大利润是多少元?35.小亮晚上在广场散步,图中线段AB表示站立在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯的位置.(1)请你在图中画出小亮站在AB处的影子BE;(2)小亮的身高为1.6m,当小亮离开灯杆的距离OB为2.4m时,影长为1.2m,若小亮离开灯杆的距离OD=6m时,则小亮(CD)的影长为多少米?四、压轴题36.如图,在矩形ABCD中,AB=20cm,BC=4cm,点p从A开始折线A——B——C——D以4cm/秒的速度移动,点Q从C开始沿CD边以1cm/秒的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动,设运动的时间t(秒)(1)t为何值时,四边形APQD为矩形.(2)如图(2),如果⊙P和⊙Q的半径都是2cm,那么t为何值时,⊙P和⊙Q外切?37.【问题学习】小芸在小组学习时问小娟这样一个问题:已知α为锐角,且sinα=13,求sin2α的值.小娟是这样给小芸讲解的:构造如图1所示的图形,在⊙O中,AB是直径,点C在⊙O上,所以∠ACB=90°,作CD⊥AB于D.设∠BAC=α,则sinα=13BCAB=,可设BC=x,则AB=3x,….【问题解决】(1)请按照小娟的思路,利用图1求出sin2α的值;(写出完整的解答过程)(2)如图2,已知点M,N,P为⊙O上的三点,且∠P=β,sinβ=35,求sin2β的值.38.如图,在正方形ABCD中,P是边BC上的一动点(不与点B,C重合),点B关于直线AP的对称点为E,连接AE,连接DE并延长交射线AP于点F,连接BF(1)若BAPα∠=,直接写出ADF∠的大小(用含α的式子表示).(2)求证:BF DF⊥.(3)连接CF,用等式表示线段AF,BF,CF之间的数量关系,并证明.39.如图,已知抛物线234y x bx c=++与坐标轴交于A、B、C三点,A点的坐标为(1,0)-,过点C 的直线334y x t=-与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH OB ⊥于点H .若5PB t =,且01t <<.(1)点C 的坐标是________,b =________; (2)求线段QH 的长(用含t 的式子表示);(3)依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与COQ 相似?若存在,直接写出所有t 的值;若不存在,说明理由.40.如图,抛物线2y x bx c =-++与x 轴的两个交点分别为(1,0)A ,(30)B ,.抛物线的对称轴和x 轴交于点M .(1)求这条抛物线对应函数的表达式;(2)若P 点在该抛物线上,求当PAB △的面积为8时,求点P 的坐标.(3)点G 是抛物线上一个动点,点E 从点B 出发,沿x 轴的负半轴运动,速度为每秒1个单位,同时点F 由点M 出发,沿对称轴向下运动,速度为每秒2个单位,设运动的时间为t .①若点G 到AE 和MF 距离相等,直接写出点G 的坐标.②点C 是抛物线的对称轴上的一个动点,以FG 和FC 为边做矩形FGDC ,直接写出点E 恰好为矩形FGDC 的对角线交点时t 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】【分析】根据一元二次方程的定义,一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax 2+bx +c =0(a ≠0)的形式,则这个方程就为一元二次方程. 【详解】 解:A.2210x x+=,是分式方程, B.220x x --=,正确,C.2320x xy -=,是二元二次方程,D.240y -=,是关于y 的一元二次方程, 故选B 【点睛】此题主要考查了一元二次方程的定义,关键是掌握一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数; ②只含有一个未知数; ③未知数的最高次数是2.2.D解析:D 【解析】 【分析】满足题意的有两点,一是此方程为一元一次方程,即未知数x 的次数为1;二是方程的解为x=1,即1使等式成立,根据两点列式求解. 【详解】 解:根据题意得, a-1=1,2+m=2, 解得,a=2,m=0, ∴a-m=2. 故选:D. 【点睛】本题考查一元一次方程的定义及方程解的定义,对定义的理解是解答此题的关键.3.D解析:D 【解析】 【分析】由DE ∥BC 知△ADE ∽△ABC ,然后根据相似比求解. 【详解】 解:∵DE ∥BC ∴△ADE ∽△ABC.又因为DE=2,BC=6,可得相似比为1:3.即ADEABC的面积的面积=2213:=19.故选D.【点睛】本题主要是先证明两三角形相似,再根据已给的线段求相似比即可.4.D解析:D【解析】【分析】由已知可得x与y的关系,然后代入所求式子计算即可.【详解】解:∵25xy=,∴25x y =,∴2755y yx yy y++==.故选:D.【点睛】本题考查了比例的性质,属于基础题型,熟练掌握比例的性质是解题关键.5.C解析:C【解析】【分析】根据三角形的内角和定理和等腰三角形等边对等角求得∠O的度数,再进一步根据圆周角定理求解.【详解】解:∵OA=OB,∠ABO=35°,∴∠BAO=∠ABO=35°,∴∠O=180°-35°×2=110°,∴∠C=12∠O=55°.故选:C.【点睛】本题考查三角形的内角和定理、等腰三角形的性质,圆周角定理.能理解同弧所对的圆周角等于圆心角的一半是解决此题的关键.6.D【解析】【分析】 只要证明AC AB AE AD =,即可解决问题. 【详解】解:A.12AE EC = ,可得AE :AC=1:1,与已知2AB AD =不成比例,故不能判定 B. 2EC AC =,可得AC :AE=1:1,与已知2AB AD=不成比例,故不能判定; C 选项与已知的2AB AD =,可得两组边对应成比例,但夹角不知是否相等,因此不一定能判定;12DE BC = D. 2AC AB AE AD==,可得DE//BC , 故选D.【点睛】本题考查平行线的判定,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.7.D解析:D【解析】【分析】先根据条件x 2 -2x+d=0有实根得出判别式大于或等于0,求出d 的范围,进而得出d 与r 的数量关系,即可判断点P 和⊙O 的关系..【详解】解:∵关于x 的方程x 2 -2x+d=0有实根,∴根的判别式△=(-2) 2 -4×d ≥0,解得d ≤1,∵⊙O 的半径为r=1,∴d ≤r∴点P 在圆内或在圆上.故选:D.【点睛】本题考查了点和圆的位置关系,由点到圆心的距离和半径的数量关系对点和圆的位置关系作出判断是解答此题的重要途径,即当d>r 时,点在圆外,当d=r 时,点在圆上,当d<r 时,点在圆内.8.B解析:B【分析】根据反比例函数的定义,二次函数的定义,一次函数的定义对各选项分析判断后利用排除法求解.【详解】解:A. y=12x是正比例函数,不符合题意;B. y=2x2-1是二次函数,符合题意;C. yD. y=x2+1x+1不是二次函数,不符合题意.故选:B.【点睛】本题考查了二次函数的定义,解题关键是掌握一次函数、二次函数、反比例函数的定义.9.A解析:A【解析】【分析】根据一元二次方程的解的定义,将a代入已知方程,即可求得a2+3a的值,然后再代入求值即可.【详解】解:根据题意,得a2+3a﹣1=0,解得:a2+3a=1,所以a2+3a+2019=1+2019=2020.故选:A.【点睛】此题考查的是一元二次方程的解,掌握一元二次方程解的定义是解决此题的关键10.B解析:B【解析】【分析】无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.【详解】∵这组数中无理数有π共2个,∴卡片上的数为无理数的概率是21=63.故选B.【点睛】本题考查了无理数的定义及概率的计算. 11.C解析:C【解析】【分析】利用两个根和的关系式解答即可.【详解】两个根的和=1122b a , 故选:C.【点睛】此题考查一元二次方程根与系数的关系式, 1212,b c x x x x a a+=-=. 12.C解析:C【解析】【分析】由A 、C 关于BD 对称,推出PA =PC ,推出PC +PE =PA +PE ,推出当A 、P 、E 共线时,PE +PC 的值最小,观察图象可知,当点P 与B 重合时,PE +PC =6,推出BE =CE =2,AB =BC =4,分别求出PE +PC 的最小值,PD 的长即可解决问题.【详解】解:∵在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,∴易证AE ⊥BC ,∵A 、C 关于BD 对称,∴PA =PC ,∴PC +PE =PA +PE ,∴当A 、P 、E 共线时,PE +PC 的值最小,即AE 的长.观察图象可知,当点P 与B 重合时,PE +PC =6,∴BE =CE =2,AB =BC =4,∴在Rt △AEB 中,BE =∴PC +PE 的最小值为∴点H 的纵坐标a =∵BC ∥AD ,∴AD PD BE PB= =2, ∵BD= ∴PD=23⨯= ∴点H 的横坐标b, ∴a +b=33=; 故选C .【点睛】 本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.13.D解析:D【解析】试题分析:∵22y x x c =-++,∴对称轴为x=1,P 2(3,2y ),P 3(5,3y )在对称轴的右侧,y 随x 的增大而减小,∵3<5,∴23y y >,根据二次函数图象的对称性可知,P 1(﹣1,1y )与(3,2y )关于对称轴对称,故123y y y =>,故选D .考点:二次函数图象上点的坐标特征.14.D解析:D【解析】【分析】根据表中的对应值,求出二次函数2y ax bx c =++的表达式即可求解.【详解】解:选取02(,),14(,),32(,)三点分别代入2y ax bx c =++得 24932c a b c a b c =⎧⎪++=⎨⎪++=⎩解得:132a b c =-⎧⎪=⎨⎪=⎩∴二次函数表达式为232y x x =-++∵1a =-,抛物线开口向下;∴选项A 错误;∵2c =函数图象与y 的正半轴相交;∴选项B 错误;当x=-1时,2(1)3(1)220y =--+⨯-+=-<;∴选项C 错误;令0y =,得2320x x -++=,解得:13172x +=,23172x -= ∵31710--<<,方程20ax bx c ++=的负根在0与-1之间; 故选:D .【点睛】本题考查二次函数图象与性质,掌握性质,利用数形结合思想解题是关键.15.C解析:C【解析】试题分析:由得,,即是判断函数与函数的图象的交点情况.因为函数与函数的图象只有一个交点 所以方程只有一个实数根故选C.考点:函数的图象点评:函数的图象问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注意. 二、填空题16.15【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:tan (α+15°)=∴α+15°=30°,故答案是15【点睛】此题主要考查了特殊角的三角函数值,解析:15【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:tan(α+15°)∴α+15°=30°,∴α=15°故答案是15【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.17.相交【解析】【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的解析:相交【解析】【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的距离为2,∵4>2,即:d<r,∴直线L与⊙O的位置关系是相交.故答案为:相交.【点睛】本题考查知道知识点是圆与直线的位置关系,若d<r,则直线与圆相交;若d>r,则直线与圆相离;若d=r,则直线与圆相切.18.【解析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.【详解】解:设扇形半径为R,根据弧长公式得,∴R解析:【解析】【分析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.【详解】解:设扇形半径为R,根据弧长公式得,90=25180R∴R=20,225515 .故答案为:【点睛】本题考查弧长公式,及圆锥的高与母线、底面半径之间的关系,底面周长等于扇形的弧长这个等量关系和勾股定理是解答此题的关键.19.【解析】【分析】作AB的中点E,连接EM,CE,AD根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM和CE长,再根据三角形的三边关系确定CM长度的范围,从而确定CM的最小值.【解析:3 2【解析】【分析】作AB的中点E,连接EM,CE,AD根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM和CE长,再根据三角形的三边关系确定CM长度的范围,从而确定CM的最小值.【详解】解:如图,取AB的中点E,连接CE,ME,AD,∵E 是AB 的中点,M 是BD 的中点,AD=2,∴EM 为△BAD 的中位线,∴112122EM AD , 在Rt △ACB 中,AC=4,BC=3,由勾股定理得,AB=2222435AC BC +=+=∵CE 为Rt △ACB 斜边的中线,∴1155222CE AB , 在△CEM 中,551122CM ,即3722CM , ∴CM 的最大值为32 .故答案为:32. 【点睛】 本题考查了圆的性质,直角三角形的性质及中位线的性质,利用三角形三边关系确定线段的最值问题,构造一个以CM 为边,另两边为定值的的三角形是解答此题的关键和难点.20.【解析】【分析】如图所示,由网格的特点易得△CEF ≌△DBF ,从而可得BF 的长,易证△BOF ∽△AOD ,从而可得AO 与AB 的关系,然后根据勾股定理可求出AB 的长,进而可得答案.【详解】解:解析:8179【解析】【分析】如图所示,由网格的特点易得△CEF ≌△DBF ,从而可得BF 的长,易证△BOF ∽△AOD ,从而可得AO与AB的关系,然后根据勾股定理可求出AB的长,进而可得答案.【详解】解:如图所示,∵∠CEB=∠DBF=90°,∠CFE=∠DFB,CE=DB=1,∴△CEF≌△DBF,∴BF=EF=12BE=12,∵BF∥AD,∴△BOF∽△AOD,∴11248 BO BFAO AD===,∴89AO AB=,∵221417 AB=+=,∴8179 AO=.故答案为:817【点睛】本题以网格为载体,考查了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理等知识,属于常考题型,熟练掌握上述基本知识是解答的关键.21.【解析】分析:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,则NF=x,再利用矩形的性质和已知条件证明△AME∽△FNA,利用相似三角形的性质:对应边的比值相等可求出x的410【解析】分析:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,则2x,再利用矩形的性质和已知条件证明△AME∽△FNA,利用相似三角形的性质:对应边的比值相等可求出x的值,在直角三角形ADF中利用勾股定理即可求出AF的长.详解:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,∵四边形ABCD是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴2x,AN=4﹣x,∵AB=2,∴AM=BM=1,∵5AB=2,∴BE=1,∴222BM BE+=∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF,∴△AME∽△FNA,∴AM ME FN AN=,242xx=-,解得:x=4 3∴22410AD DF+=故答案为4103.点睛:本题考查了矩形的性质、相似三角形的判断和性质以及勾股定理的运用,正确添加辅助线构造相似三角形是解题的关键,22.x=±2【解析】移项得x2=4,∴x=±2.故答案是:x=±2.解析:x=±2【解析】移项得x2=4,∴x=±2.故答案是:x=±2.23.(,2).【解析】【分析】【详解】解:如图,当点B与点D重合时,△BEF面积最大,设BE=DE=x,则AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=解析:(32,2).【解析】【分析】【详解】解:如图,当点B与点D重合时,△BEF面积最大,设BE=DE=x,则AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=x2,∴x=52,∴BE=ED=52,AE=AD-ED=32,∴点E坐标(32,2).故答案为:(32,2).【点睛】本题考查翻折变换(折叠问题),利用数形结合思想解题是关键.24.3【解析】【分析】由题意连接OA,根据切线的性质得出OA⊥PA,由已知条件可得△OAP是等腰直角三角形,进而可求出OA的长,即可求解.【详解】解:连接OA,∵PA切⊙O于点A,∴OA解析:3【解析】【分析】由题意连接OA,根据切线的性质得出OA⊥PA,由已知条件可得△OAP是等腰直角三角形,进而可求出OA的长,即可求解.【详解】解:连接OA,∵PA切⊙O于点A,∴OA⊥PA,∴∠OAP=90°,∵∠APO=45°,∴OA=PA=3,故答案为:3.【点睛】本题考查切线的性质即圆的切线垂直于经过切点的半径.若出现圆的切线,连接过切点的半径,构造定理图,得出垂直关系.25.【解析】【分析】【详解】试题分析:把x=2代入y=x﹣2求出C的纵坐标,得出OM=2,CM=1,根据CD∥y 轴得出D的横坐标是2,根据三角形的面积求出CD的值,求出MD,得出D的纵坐标,把D解析:【解析】【分析】【详解】试题分析:把x=2代入y=12x﹣2求出C的纵坐标,得出OM=2,CM=1,根据CD∥y轴得出D的横坐标是2,根据三角形的面积求出CD的值,求出MD,得出D的纵坐标,把D的坐标代入反比例函数的解析式求出k即可.解:∵点C在直线AB上,即在直线y=12x﹣2上,C的横坐标是2,∴代入得:y=12×2﹣2=﹣1,即C(2,﹣1),∴OM=2,∵CD∥y轴,S△OCD=52,∴12CD×OM=52,∴CD=52,∴MD=52﹣1=32,即D的坐标是(2,32),∵D在双曲线y=kx上,∴代入得:k=2×32=3.故答案为3.考点:反比例函数与一次函数的交点问题.点评:本题考查了反比例函数与一次函数的交点问题、一次函数、反比例函数的图象上点的坐标特征、三角形的面积等知识点,通过做此题培养了学生的计算能力和理解能力,题目具有一定的代表性,是一道比较好的题目.26.6或7【解析】【分析】因为直径所对圆周角为直角,所以ABC的边长可应用勾股定理求解,其中,且AC+BC=8,即可求得,根据基本不等式,可得的范围,再根据题意要求AB 为整数及三角形三边关系,即可解析:6或7【解析】【分析】 因为直径所对圆周角为直角,所以ABC 的边长可应用勾股定理求解,其中222AB =AC BC +,且AC+BC=8,即可求得22AB =(AC+BC)2AC BC -⋅,根据基本不等式AC BC=AC+(8-AC)+≥2AB 的范围,再根据题意要求AB 为整数及三角形三边关系,即可得出AB 可能的长度.【详解】 解:∵直径所对圆周角为直角,故ABC 为直角三角形,∴根据勾股定理可得,222AB =AC BC +,即22AB =(AC+BC)2AC BC -⋅,又∵AC+BC=8,根据基本不等式AC BC=AC+(8-AC)+≥∴0<AC BC 16⋅≤,代入22AB =(AC+BC)2AC BC -⋅∴232AB 64≤≤,同时AB 要满足整数的要求,∴AB=6或7或8,但是三角形三边关系要求,任意两边之和大于第三边,故AB ≠8, ∴AB=6或7,故答案为:6或7.【点睛】本题主要考察了直径所对圆周角为直角、勾股定理、三角形三边关系、基本不等式,解题的关键在于找出AB 长度的范围. 27.【解析】【分析】作BM⊥AC 于M ,交AD 于F ,根据三线合一定理求出BD 的长和AD⊥BC,根据三角形面积公式求出BM ,根据对称性质求出BF =CF ,根据垂线段最短得出CF +EF≥BM,即可得出答案 解析:245【解析】【分析】作BM ⊥AC 于M ,交AD 于F ,根据三线合一定理求出BD 的长和AD ⊥BC ,根据三角形面积公式求出BM ,根据对称性质求出BF =CF ,根据垂线段最短得出CF +EF ≥BM ,即可得出答案.【详解】作BM ⊥AC 于M ,交AD 于F ,∵AB=AC=5,BC=6,AD是BC边上的中线,∴BD=DC=3,AD⊥BC,AD平分∠BAC,∴B、C关于AD对称,∴BF=CF,根据垂线段最短得出:CF+EF=BF+EF≥BF+FM=BM,即CF+EF≥BM,∵S△ABC=12×BC×AD=12×AC×BM,∴BM=642455 BC ADAC,即CF+EF的最小值是245,故答案为:245.【点睛】本题考查了轴对称−最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目.28.①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可. 【详解】由二次函数y=ax2+bx+c(a≠0),y与x的部分对应值可知:该函数图象是开口向上的抛解析:①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y=ax2+bx+c(a≠0),y与x的部分对应值可知:该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x轴有两个交点,一个在0与1之间,另一个在3与4之间;当y=-2时,x=1或x=3;由抛物线的对称性可知,m=1;∴①抛物线y=ax2+bx+c(a≠0)的顶点为(2,-3),结论正确;②b2﹣4ac=0,结论错误,应该是b2﹣4ac>0;③关于x的方程ax2+bx+c=﹣2的解为x1=1,x2=3,结论正确;④m=﹣3,结论错误,∴其中,正确的有. ①③故答案为:①③【点睛】本题考查了二次函数的图像,结合图表信息是解题的关键.29.【解析】【分析】根据题意列举出所有4种等可能的结果数,再根据题意得出能够构成三角形的结果数,最后根据概率公式即可求解.【详解】从中任取3根共有4种等可能的结果数,它们为2、4、6;2、4、解析:1 4【解析】【分析】根据题意列举出所有4种等可能的结果数,再根据题意得出能够构成三角形的结果数,最后根据概率公式即可求解.【详解】从中任取3根共有4种等可能的结果数,它们为2、4、6;2、4、8;2、6、8;、4、6、8,其中恰好能搭成一个三角形为4、6、8,所以恰好能搭成一个三角形的概率=14.故答案为14.【点睛】本题考查列表法或树状图法和三角形三边关系,解题的关键是通过列表法或树状图法展示出所有等可能的结果数及求出构成三角形的结果数.30.1250cm2【解析】【分析】设将铁丝分成xcm和(200﹣x)cm两部分,则两个正方形的边长分别是cm,cm,再列出二次函数,求其最小值即可.【详解】如图:设将铁丝分成xcm 和(200﹣解析:1250cm 2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是4x cm ,2004x -cm ,再列出二次函数,求其最小值即可. 【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分,列二次函数得:y =(4x )2+(2004x -)2=18(x ﹣100)2+1250, 由于18>0,故其最小值为1250cm 2, 故答案为:1250cm 2.【点睛】本题考查二次函数的最值问题,解题的关键是根据题意正确列出二次函数.三、解答题31.(1)20%;(2)8640万元.【解析】【分析】(1)设平均增长率为x,根据题意可得2018年投入的资金是5000(1+x)万元,2019年投入的资金是5000(1+x) (1+x)万元,由2019年投入的资金是7200万元即可列出方程.,求解即可.(2)相当于数字7200增长了20%,列式计算.【详解】解:(1)设两年间每年投入资金的平均增长率为x ,根据题意得,5000(1+x)2=7200解得,x 1=0.2=20%,x 2= -2.2(不符合题意,舍去)答:该市对市区绿化工程投入资金的年平均增长率为20%;(2)根据题意得,7200(1+20%)=8640万元.答:在2020年预计需投入8640万元.【点睛】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020学年第一学期徐汇区学习能力诊断卷
初三数学
试卷
2021.1
(时间100分钟
满分150分)
一、选择题(本大题共6题,每题4分,满分24分)
1.将抛物线2
)1(2+=x y 先向右平移3个单位,再向下平移2个单位后,所得抛物线的表达式是(A )2)2(22
--=x y ;(B )2)2(22
+-=x y ;(C )2)4(22-+=x y ;
(D )2)4(22
++=x y .
2.在ABC Rt ∆中,︒=∠90A ,6=AB ,10=BC ,那么下列结论正确的是(A )34tan =
C ;(B )54cot =C ;(C )43sin =C ;(
D )5
4cos =C .3.已知抛物线c x x y ++-=42
经过点)3,4(,那么下列各点中,该抛物线必经过的点是(A ))2,0(;
(B ))3,0(;
(C ))4,0(;
(D ))5,0(.
4.已知海面上一艘货轮A 在灯塔B 的北偏东︒30方向,海监船C 在灯塔B 的正东方向5海里处,此时海监船C 发
现货轮A 在它的正北方向,那么海监船C 与货轮A 的距离是(A )10海里;
(B )35海里;(C )5海里;
(D )
33
5
海里.5.下列说法中,正确的是(A )两个矩形必相似;(B )两个含︒45角的等腰三角形必相似;(C )两个菱形必相似;
(D )两个含︒30角的直角三角形必相似.
6.定义:[]x 表示不超过实数x 的最大整数.例如:[]17.1=,053=⎥⎦
⎤⎢⎣⎡,34
12-=⎥⎦
⎤⎢⎣
⎡-.根
据你学习函数的经验,下列关于函数[]x y =的判断中,正确的是
(A )函数[]x y =的定义域是一切整数;(B )函数[]x y =的图像是经过原点的一条直线;(C )点)2,5
2
2
(在函数[]x y =图像上;
(D )函数[]x y =的函数值y 随x 的增大而增大.二、填空题(本大题共12题,每题4分,满分48分)
7.如果3:2:=b a ,那么代数式
a
a
b -的值是__▲___.8.如图,EF CD AB ////,如果2=AC ,3=CE ,5.1=BD ,那么BF 的长是▲_.
9.已知点P 在线段AB 上,如果BP AB AP ⋅=2
,4=AB ,那么AP 的长是__▲___.10.已知二次函数123(2-+
=x a y 的图像在直线2
3
-=x 的左侧部分是下降的,那么a 的取值范围是__▲___.
11.如图,在ABC ∆中,点E D 、分别在边AC AB 、上,BC DE //,如果AED ∆和四边形DECB 的面积相等,
22=BC ,那么DE 的长是__▲___.
12.在坡度为3:1=i 的山坡上种树,要求株距(相邻两棵树间的水平距离)是6米,那么斜坡上相邻两棵树间的坡面距离是_▲_米.
13.已知甲、乙两楼相距30米,如果从甲楼底看乙楼顶,测得仰角为︒45,从乙楼顶看甲楼顶,测得俯角为︒30,
那么甲楼高是__▲___米.14.如图,点P 在线段BC 上,BC AB ⊥,AP DP ⊥,DP CD ⊥,如果10=BC ,2=AB ,2
1tan =
C ,那么DP 的长是__▲___.
15.如图,已知ABC ∆是边长为2的等边三角形,正方形DEFG 的顶点E D 、分别在边AB AC 、上,点G F 、在边BC 上,那么AD 的长是__▲__.
16.《周髀算经》中的“赵爽弦图”(如图),图中的四个直角三角形都全等,如果正方形ABCD 的面积是正方形
EFGH 面积的13倍,那么ABE ∠的余切值是__▲___.
17.如图,在ABC ∆中,点E D 、分别在边AB 、AC 上,BC DE //,将ADE ∆沿直线DE 翻折后与FDE ∆重合,DF 、EF 分别与边BC 交于点M 、N ,如果8=DE ,
3
2
=AB AD ,那么MN 的长是_▲__.18.如图,在ABC ∆中,︒=∠120ABC ,12=AB ,点D 在边AC 上,点E 在边BC 上,5
4
sin =∠ADE ,5=ED ,如果ECD ∆的面积是6,那么BC 的长是_▲.
三、(本大题共7题,第19—22题每题10分;第23、24题每题12分;第25题14分;
满分78分)19.(本题满分10分)
计算:︒-︒+︒-︒︒30cot 45cos 260tan 45cot 45sin .
(第17题图)
M
N A
B C
D E F
(第18题图)
A
B
C D
E (第16题图)
F E
G H
C
D
A B
A B C D E
F
(第8题图)
(第11题图)
A
B
C
E D D A B
C
P
(第14题图)
(第15题图)
A
B
C D E F G
如图,在□ABCD 中,AE 平分BAD ∠,AE 与BD 交于点F ,2.1=AB ,8.1=BC .(1)求DF BF :的值;
(2)设AB a = ,BC =b ,求向量DF (用向量a 、b
表示).
21.(本题满分10分)
已知抛物线c bx x y ++=2
与y 轴交于点)2,0(C ,它的顶点为M ,对称轴是直线1-=x .(1)求此抛物线的表达式及点M 的坐标;
(2)将上述抛物线向下平移)0(>m m 个单位,所得新抛物线经过原点O ,设新抛物线的顶点为N ,请判断MON ∆的形状,并说明理由.
(第20题图)
A
B
C
D
E F
为加强对市内道路交通安全的监督,王警官利用无人机进行检测.某高架路有一段限速每小时60千米的道路AB (如图所示),当无人机在限速道路的正上方C 处时,测得限速道路的起点A 的俯角是︒37,无人机继续向右水平飞行220米到达D 处,此时又测得起点A 的俯角是︒30,同时测得限速道路终点B 的俯角是︒45(注:即四边形ABDC 是梯形).
(1)求限速道路AB 的长(精确到1米);
(2)如果李师傅在道路AB 上行驶的时间是1分20秒,请判断他是否超速?并说明理由.(参考数据:60.037sin ≈︒,80.037cos ≈︒,75.037tan ≈︒,73.13≈)
23.(本题满分12分)
如图,在ACB ∆中,点D 、E 分别在边BC 、AC 上,AB AD =,CE BE =,AD 与BE 交于点F ,且EF BF DF AF ⋅=⋅.
求证:(1)BEC ADC ∠=∠;
(2)AC EF CD AF ⋅=⋅.
(第23题图)
F
A
B
C
D
E (第22题图)
C
D
A
B
已知二次函数)0(422
<++-=a a ax ax y 的大致图像如图所示,这个函数图像的顶点为点D .(1)求该函数图像的开口方向、对称轴及点D 的坐标;
(2)设该函数图像与y 轴正半轴交于点C ,与x 轴正半轴交于点B ,图像的对称轴与x 轴交于点A ,如果
BC DC ⊥,3
1
tan =
∠DBC ,求该二次函数的解析式;(3)在(2)的条件下,设点M 在第一象限该函数的图像上,且点M 的横坐标为)1(>t t ,如果ACM ∆的面积是
8
25
,求点M 的坐标.D
(第24题图)
O
x
y
25.(本题满分14分)
如图,在ABC Rt ∆中,︒=∠90ACB ,12=AC ,5=BC ,点D 是边AC 上的动点,以CD 为边在ABC ∆外作正方形CDEF ,分别联结AE 、BE ,BE 与AC 交于点G .
(1)当BE AE ⊥时,求正方形CDEF 的面积;
(2)延长ED 交AB 于点H ,如果BEH ∆和ABG ∆相似,求ABE ∠sin 的值;(3)当AE AG =时,求CD 的长.
(备用图)
B
A
C
(第25题图)
G
F
E D B
A
C。