计量经济学(英文版).
伍德里奇计量经济学英文题库
伍德里奇计量经济学英文题库The Econometrics Exam Bank of WoodridgeEconometrics is a field of study that combines economic theory, mathematics, and statistics to analyze and interpret economic data. It is a crucial tool for policymakers, researchers, and analysts who seek to understand the complex relationships between economic variables and make informed decisions. One of the pioneers in this field is Jeffrey Woodridge, whose contributions to econometrics have been widely recognized and celebrated.Woodridge's work has had a profound impact on the way we approach and analyze economic data. His expertise in panel data analysis, time series econometrics, and microeconometrics has been instrumental in shaping the field of econometrics. Woodridge's textbook "Econometric Analysis of Cross Section and Panel Data" has become a standard reference for students and researchers in the field, and his research has been published in numerous prestigious academic journals.One of the key areas of Woodridge's work is the development of econometric models and techniques that can be used to analyzecomplex economic phenomena. For example, his research on panel data analysis has provided researchers with powerful tools for studying the behavior of individuals, firms, or countries over time. By incorporating both the cross-sectional and time-series dimensions of data, panel data analysis allows for a more nuanced understandingof the factors that drive economic outcomes.Woodridge has also made significant contributions to the field of time series econometrics. His work on topics such as unit root testing, cointegration analysis, and vector autoregressive (VAR) models has helped researchers to better understand the dynamic relationships between economic variables over time. These techniques are particularly important in areas such as macroeconomics, where policymakers need to understand the long-term trends and short-term fluctuations in key economic indicators.In addition to his research, Woodridge has also been a dedicated educator, sharing his knowledge and insights with students and colleagues around the world. His textbooks and course materials have been widely adopted by universities and research institutions, and he has mentored countless graduate students and young researchers.One of the key features of Woodridge's approach to econometrics is his emphasis on practical applications and real-world relevance. Hehas always been committed to ensuring that his work has a direct impact on the lives of people and the decisions of policymakers. Whether it's analyzing the effects of government policies on economic outcomes or exploring the drivers of consumer behavior, Woodridge's work is grounded in a deep understanding of the practical challenges and concerns that shape the economic landscape.Moreover, Woodridge's contributions to econometrics have extended beyond the academic realm. He has served as a consultant and advisor to various government agencies, international organizations, and private sector firms, providing his expertise and insights to help inform decision-making and policy development.In conclusion, the econometrics exam bank of Woodridge is a testament to his enduring legacy and the profound impact of his work. Through his groundbreaking research, innovative teaching, and tireless efforts to bridge the gap between theory and practice, Woodridge has made an indelible mark on the field of econometrics. His contributions have not only advanced our understanding of economic phenomena but have also equipped generations of researchers and policymakers with the tools and insights they need to tackle the complex challenges of the modern world.。
常用学科的英文名称
学科、专业名称中英文互译及相关词汇哲学Philosophy 逻辑学Logic 伦理学EthiCS 美学AeSthetiCS 宗教学SCie nce Of ReligiO n 科学技术哲学Philosophy of SCie nce and TeCh no logy 经济学ECOnO mics 理论经济学TheOretiCaI ECOnOmics 政治经济学Political ECOnOmy 经济思想史HiStOry of ECOnOmic ThOUght 经济史HiStOry of Econo mic 西方经济学WeStern Economics 世界经济World EconOmiCSS 国民经济学NatiOnalEConomics 区域经济学RegiOnalEConomics 计量经济学Quantitative Economics 应用经济学APPIied Economic 财政学(含税收学)P UbIiC FinanCe (i ncludi ng TaXatiO n)金融学(含保险学)FinanCe (in clud ing In SUra nce)统计学StatiStiCS (注意也可能为“统计数据”)法学LaW / SCie nce of Law/ Legal SCie nce 法律史Legal HiStOry 宪法学与行政法学ConStitUtional LaW and Administrative LaW 刑法学Criminal JUriSPrUde nce 民商法学(含劳动法学、社会保障法学)Civil LaW and COmmerCiaI LaW (in clud ing SCienCe of LabOUr LaW and SCie nce of Social SeCUrity LaW )诉讼法学SCienCe of PrOCedUre LaWS 经济法学SCienCe of Economic LaW 国际法学(含国际公法学、国际私法学、国际经济法学、)International law(in clud ing Intern atio nal PUbIiC law, I nternatio nal PriVate LaW and Intern ati onal Econo mic LaW)军事法学SCience of MiIitary LaW 政治学Political SCienCe 国际政治学International Politics 政治制度Political In StitUtiO n 外交学Diplomacy (注意diplomatism 外交手段,外交手腕)国际关系学International ReIations 社会学Sociology 人口学DemOgraPhy 人类学An thropology 教育学EdUCatiO n/ EdUCati on SCie nce教育学原理Educational Principle 心理学Psychology 应用心理学Applied Psychology 行为学behaviorism 文学Literature 语言学Linguistics 应用语言学Applied Linguistics 新闻传播学Journalism and Communication 电影学Film 历史学History 专门史History of Particular Subjects 近现代史Modern and Contemporary History 世界史World History 考古学Archaeology 博物馆学Museology 数学Mathematics 应用数学Applied Mathematics 概率论与数理统计Probability and Mathematical Statistics 运筹学与控制论Operational Research and Cybernetics 物理学Physics 理论物理Theoretical Physics 粒子物理与原子核物理Particle Physics and Nuclear Physics 原子与分子物理Atomic and Molecular Physics 等离子体物理学Plasma Physics 凝聚态物理学Condensed Matter Physics 声学Acoustics 光学Optics 化学Chemistry 无机化学Inorganic Chemistry 有机化学Organic Chemistry 天文学Astronomy 天体物理学Astrophysics 天体测量学Astrometry 地球物理学Geophysics 大气科学Atmospheric Sciences 气象学Meteorology 大气物理学与大气环境Atmospheric Physics and Atmospheric Environment 海洋科学Marine Sciences (另:oceanology 海洋资源开发研究,海洋地理研究)地质学Geology构造地质学Structural Geology 生物学Biology 微生物学Microbiology 植物学Botany动物学Zoology 生理学Physiology 遗传学Genetics 生物化学与分子生物学Biochemistry and Molecular Biology 生物物理学Biophysics 生态学Ecology 系统科学Systems Science 力学Mechanics 固体力学Solid Mechanics 流体力学Fluid Mechanics 理学Natural Science 工学Engineering 机械工程Mechanical Engineering 机械制造及其自动化Mechanical Manufacture and Automation 测试计量技术及仪器Measuring and Testing Technologies and Instruments 材料学Materialogy 材料加工工程Materials Processing Engineering 电气工程Electrical Engineering 信息与通信工程Information and Communication Engineering 计算机科学与技术Computer Science and Technology 计算机应用技术Computer Applied Technology 建筑学Architecture 城市规划与设计Urban Planning and Design 水利工程Hydraulic Engineering 矿业工程Mineral Engineering 采矿工程Mining Engineering 石油与天然气工程Oil and Natural Gas Engineering 油气井工程Oil-Gas Well Engineering 油气田开发工程Oil-Gas Field Development Engineering 交通运输工程Communication and Transportation Engineering 航空宇航科学与技术Aeronautical and Astronautical Science and Technology 核科学与技术Nuclear Science and Technology 核技术及应用Nuclear Technology and Applications 农业工程Agricultural Engineering 农业机械化工程Agricultural Mechanization Engineering 兽医学Veterinary Medicine 临床兽医学Clinical Veterinary Medicine 林学Forestry 水土保持Soil and Water Conservation 荒漠化防治Desertification Combating 医学Medicine 基础医学Basic Medicine临床医学Clinical Medicine 免疫学Immunology 内科学Internal medicine 外科学Surgery 老年医学Geriatrics 神经病学Neurology 精神病学Psychiatry 护理学Nursing 康复医学与理疗学Rehabilitation Medicine & Physical Therapy 运动医学Sports Medicine 急诊医学Emergency Medicine 公共卫生Public Health 营养与食品卫生学Nutrition and Food Hygiene 中医学Chinese Medicine 方剂学Formulas of Chinese Medicine 药学Pharmaceutical Science 管理学Management Science 工商管理学Science of Business Administration 会计学Accounting 情报学Information Science 通用前缀:比较-comparative 应用-applied 临床-clinic 后-post 相关:广义general 狭义restricted/ special 辩证法/ 辩证法的,辩证的dialectic 悖论paradox 谬论fallacy 边缘学科/ 交叉学科interdisciplinary 跨学科cross-disciplinary 实地研究/ 现场研究field study 理论研究theoretical study 文献研究literary study/research 评论criticism 方法论methodology 女权主义feminism 现代主义modernism 后现代主义post-modernism 现实主义realism 唯物主义materialism 唯心主义idealism (有时为理想主义)内涵connotation(文化内蕴)/ intension外延denotation (字面意义) /extension 归纳induction演绎deduction人本主义,人文主义humanism人道主义,博爱主义humanitarianism相对主义(注意不等于物理学中的“相对论”!)relativism 例如: A theory that conceptions of truth and moral values are not absolute but are relative to the persons or groups holding them. (相对主义:认为真理的概念及道德价值不是绝对的而是相对于持有它们的人或集团的理论)相对论(物理学名词)relativity百科全书Encyclopedia 文艺复兴(时期的) Renaissance 各种学位名称B.A. or BA 文学士 (Bachelor of Arts )B.S. or BS 理学士 (Bachelor of Science )M.A. or MA 文科硕士 ( Master of Arts )M.S. or MS 理科硕士 ( Master of Science )M.B.A. 工商管理硕士 ( Master of Business Administration )Ph.D 哲学博士D.S. 理学博士M. D. 医学博士Eng.D 工学博士Doctor of PhilosophyDoctor of Science )(Doctor of Medicine )(Doctor of Engineering(注意并非所有的博士都是)Ph. D )。
经济计量学
学的发展 。
14
第一章
经典经济计量学和非经典经济计量学
经典经济计量学(Classical Econometrics)一般指20世 纪70年代以前发展并广泛应用的经济计量学。
贝尔经济学奖得主挪威经济学家R.Frisch(佛里希 给定X和Z值,预测Y值
城市劳动力参与率除受城市失业率的影响之外,还受真实的小时平均工资等因素的影响。
)在1926年模仿“Biometrics”(生物计量学)提 Y = B1+ B2X
(2)利用次级资料数据(统计数据) 假设用失业率(UNR)来度量经济形势,用劳动力参与率(LFPR)来度量劳动力的参与,两数据由政府按时公布,我们依据上面步骤
15
第一章
非经典经济计量学一般指20世纪70年代以来发展的 经济计量学理论、方法及应用模型,也称为现代 经济计量学。
非经典经济计量学主要包括:微观经济计量学、非 参数经济计量学、时间序列经济计量学和动态经 济计量学等。
16
第一章
简·丁伯根——经济 计量学模式建造者 之父
拉格纳·弗里希 (RAGNAR FRISCH) 经济计量学的奠基人
AHE82(美元)
7.78 7.69 7.68 7.79 7.80 7.77 7.81 7.73 7.69 7.64 7.52 7.45 7.41 7.39 7.40 7.40 7.43 7.55 7.75 7.86 7.89 7.99 8.14
28
第一章 表1-1(新) 1980~2007年间城市劳动力参与率(CLFPR)、城市 失业率(CUNR)与真实的小时平均工资(AHE82)资料
计量经济学(英文)重点知识点考试必备汇编
计量经济学(英文)重点知识点考试必备汇编第一章1.Econometrics(计量经济学):the social science in which the tools of economic theory, mathematics, and statistical inference are applied to the analysis of economic phenomena.the result of a certain outlook on the role of economics, consists of the application of mathematical statistics to economic data to lend empirical support to the models constructed by mathematical economics and to obtain numerical results.2.Econometric analysis proceeds along the following lines计量经济学分析步骤1)Creating a statement of theory or hypothesis.建立一个理论假说2)Collecting data.收集数据3)Specifying the mathematical model of theory.设定数学模型4)Specifying the statistical, or econometric, model of theory.设立统计或经济计量模型5)Estimating the parameters of the chosen econometric model.估计经济计量模型参数6)Checking for model adequacy : Model specification testing.核查模型的适用性:模型设定检验7)Testing the hypothesis derived from the model.检验自模型的假设8)Using the model for prediction or forecasting.利用模型进行预测●Step2:收集数据T hree types of data三类可用于分析的数据1)Time series(时间序列数据):Collected over a period of time,are collected at regular intervals.按时间跨度收集得到2)Cross-sectional截面数据:Collected over a period of time, are collected at regular intervals.按时间跨度收集得到3)Pooled data合并数据(上两种的结合)●Step3:设定数学模型1.plot scatter diagram or scattergram2.write the mathematical model●Step4:设立统计或经济计量模型C LFPR is dependent variable应变量C UNR is independent or explanatory variable独立或解释变量(自变量)W e give a catchall variable U to stand for all these neglected factorsI n linear regression analysis our primary objective is to explain the behavior of the dependent variable in relation to the behavior of one or more other variables, allowing for the data that the relationship between them is inexact.线性回归分析的主要目标就是解释一个变量(应变量)与其他一个或多个变量(自变量)只见的行为关系,当然这种关系并非完全正确●Step5:估计经济计量模型参数I n short, the estimated regression line gives the relationship between average CLFPR and CUNR 简言之,估计的回归直线给出了平均应变量和自变量之间的关系T hat is, on average, how the dependent variable responds to a unit change in theindependent variable.单位因变量的变化引起的自变量平均变化量的多少。
高级经济学书籍
提高级别:计量经济学板块:1、中文名:《计量经济学》林文夫(理论计量经济学经典教材)英文名:Econometrics by Fumio Hayashi2、中文名:《计量经济学分析》格林(应用计量经济学经典教材)英文名:Econometric Analysis by Greene3、中文名:《横截面与面板数据的计量经济学分析》伍德里奇(上面两本的补充)英文名:Econometric Analysis of Cross Section and Panel Databy Wooldridge微观经济学板块:4、中文名:《高级微观经济理论》杰里/瑞尼(高微入门教材)没货英文名:Advanced Microeconomic Theoryby Geoffrey A. Jehle / Philip J. Reny5、中文名:《微观经济学高级教程》范里安(高微基础教材)英文名:Microeconomics Analysis by Hal R. Varian6、中文名:《微观经济学》安德鲁.马斯-科莱尔等(哈佛教材,高微最顶尖教材)英文名:Microeconomic Theoryby Andreu Mas-Colell Michael D. Whinston Jerry R.Green (MWG)宏观经济学板块:7、中文名:《高级宏观经济学》戴维.罗默(高宏入门教材)英文名:Advanced Macroeconomics by David Romer8、中文名:《动态宏观经济理论》萨金特(高宏基础教材)英文名:Recursive Macroeconomic Theoryby Lars Ljungqvist Thomas I. Sargent9、中文名:《经济动态的递归方法》卢卡斯(高宏最顶尖教材)英文名:recursive method in economics dynamics by Robert E. Lucas。
计量经济学英文课件 (22)
Comparing fits of regressions
Make sure the denominator in R2 is the same - i.e., same left hand side variable. Example, linear vs. loglinear. Loglinear will almost always appear to fit better because taking logs reduces variation.
o What are the practical implications of this result?
n Transformation does not affect the fit of a model to a body of
data.
n Transformation does affect the “estimates.” If b is an estimate
Dropping a variable(s) cannot improve the fit - that is, reduce the sum of squares.
Adding a variable(s) cannot degrade the fit - that is, increase the sum of squares.
Then, uu = (y - Xd)(y-Xd) = [y - Xb - X(d - b)][y - Xb - X(d - b)] = [e - X(d - b)] [e - X(d - b)]
Expand to find uu = ee + (d-b)XX(d-b) > ee
Dropping a Variable
计量经济学
学习方法
与一般的数学方法相比,计量经济学方法有十分重要的特点和意义:
研究对象发生了较大变化。即从研究确定性问题转向非确定性问题,其对象的性质和意义将发生巨大的变化。 因此,在方法的思路上、方法的性质上和方法的结果上,都将出现全新ห้องสมุดไป่ตู้变化。
研究方法发生根本变化。计量经济学方法的基础是概率论和数理统计,是一种新的数学形式。学习中要十分 注意其基本概念和方法思路的理解和把握,要充分认识其方法与其它数学方法的根本不同之处。
计量经济学基础据说在经济学中,应用数学方法的历史可追溯到三百多年前的英国古典政治经济学的创始人 威廉·配第的《政治算术》的问世(1676年)。
“计量经济学”一词,是挪威经济学家弗里希(R. Frisch)在1926年仿照“生物计量学”一词提出的。随 后1930年成立了国际计量经济学学会,在1933年创办了《计量经济学》杂志。
后来美国著名计量经济学家克莱因也认为:计量经济学是数学、统计技术和经济分析的综合。
特点
模型类型:采用随机模型。模型导向:以经济理论为导向建立模型。模型结构:变量之间的关系表现为线性 或者可以化为线性,属于因果分析模型,解释变量具有同等地位,模型具有明确的形式和参数。数据类型:以时 间序列数据或者截面数据为样本,被解释变量为服从正态分布的连续随机变量。估计方法:仅利用样本信息,采 用最小二乘法或者最大似然法估计变量。非经典计量经济学一般指20世纪70年代以后发展的计量经济学理论、方 法及应用模型,也称现代计量经济学。
计量经济学课后习题答案
第一章1.计量经济学是一门什么样的学科?答:计量经济学的英文单词是Econometrics,本意是“经济计量”,研究经济问题的计量方法,因此有时也译为“经济计量学”。
将Econometrics译为“计量经济学”是为了强调它是现代经济学的一门分支学科,不仅要研究经济问题的计量方法,还要研究经济问题发展变化的数量规律。
可以认为,计量经济学是以经济理论为指导,以经济数据为依据,以数学、统计方法为手段,通过建立、估计、检验经济模型,揭示客观经济活动中存在的随机因果关系的一门应用经济学的分支学科。
2.计量经济学与经济理论、数学、统计学的联系和区别是什么?答:计量经济学是经济理论、数学、统计学的结合,是经济学、数学、统计学的交叉学科(或边缘学科)。
计量经济学与经济学、数学、统计学的联系主要是计量经济学对这些学科的应用。
计量经济学对经济学的应用主要体现在以下几个方面:第一,计量经济学模型的选择和确定,包括对变量和经济模型的选择,需要经济学理论提供依据和思路;第二,计量经济分析中对经济模型的修改和调整,如改变函数形式、增减变量等,需要有经济理论的指导和把握;第三,计量经济分析结果的解读和应用也需要经济理论提供基础、背景和思路。
计量经济学对统计学的应用,至少有两个重要方面:一是计量经济分析所采用的数据的收集与处理、参数的估计等,需要使用统计学的方法和技术来完成;一是参数估计值、模型的预测结果的可靠性,需要使用统计方法加以分析、判断。
计量经济学对数学的应用也是多方面的,首先,对非线性函数进行线性转化的方法和技巧,是数学在计量经济学中的应用;其次,任何的参数估计归根结底都是数学运算,较复杂的参数估计方法,或者较复杂的模型的参数估计,更需要相当的数学知识和数学运算能力,另外,在计量经济理论和方法的研究方面,需要用到许多的数学知识和原理。
计量经济学与经济学、数学、统计学的区别也很明显,经济学、数学、统计学中的任何一门学科,都不能替代计量经济学,这三门学科简单地合起来,也不能替代计量经济学。
(完整版)计量经济学Econometrics专业词汇中英文对照
Econometrics 专业词汇中英文对照(按课件顺序)Ch1-3Causal effects:因果影响,指的是当x变化时,会引起y的变化;Elasticity:弹性;correlation (coefficient) 相关(系数),相关系数没有单位,unit free;estimation:估计;hypothesis testing:假设检验;confidence interval:置信区间;difference-in-means test:均值差异检验,即检验两个样本的均值是否相同;standard error:标准差;statistical inference:统计推断;Moments of distribution:分布的矩函数;conditional distribution (means):条件分布(均值);variance:方差;standard deviation:标准差(指总体方差的平方根);standard error:标准误差,指样本方差的平方根;skewness:偏度,度量分布的对称性;kurtosis:峰度,度量厚尾性,即度量离散程度;joint distribution:联合分布;conditional expectation:条件期望(指总体);randomness:随机性i.i.d., independently and identically distributed:独立同分布的;sampling distribution:抽样分布,指的是当抽取不同的随机样本时,统计量的取值会有所不同,而当取遍所有的样本量为n的样本时,统计量有一个取值规律,即抽样分布,即统计量的随机性来自样本的随机性consistent (consistency):相合的(相合性),指当样本量趋于无穷大时,估计量依概率收敛到真实值;此外,在统计的语言中,还有一个叫模型选择的相合性,指的是能依概率选取到正确的模型Central limit theory:中心极限定理;unbiased estimator:无偏估计量;uncertainty:不确定性;approximation:逼近;least squares estimator:最小二乘估计量;provisional decision:临时的决定,用于假设检验,指的是,我们现在下的结论是基于现在的数据的,如果数据变化,我们的结论可能会发生变化significance level:显著性水平,一般取0.05或者0.01,0.1,是一个预先给定的数值,指的是在原假设成立的假设下,我们可能犯的错误的概率,即拒绝原假设的概率;p-value:p-值,指的是观测到比现在观测到的统计量更极端的概率,一般p-值很小的时候要拒绝原假设,因为这说明要观测到比现在观测到的统计量更极端的情况的概率很小,进而说明现在的统计量很极端。
计量经济学英文课件 (3)
Z
b2 2
2
xi x
2
~ N 0,1
(3.1)
The standardized random variable Z is normally distributed with mean 0 and variance 1.
Slide 3-4
Principles of Econometrics, 3rd Edition
and its standard error
se(b2 ) var(b2 ) 4.38 2.09
Principles of Econometrics, 3rd Edition
Slide 3-12
A “95% confidence interval estimate” for 2:
The critical value tc for degrees of freedom m is the percentile value t1 2,m .
Principles of Econometrics, 3rd Edition
Slide 3-9
Figure 3.1 Critical Values from a t-distribution
Principles of Econometrics, 3rd Edition
Slide 3-16
The Null Hypothesis
parameter.
The null hypothesis, which is denoted H0 (H-naught), specifies a value for a regression The null hypothesis is stated H 0 : k c, where c is a constant, and is an important value in the context of a specific regression model.
计量经济学stata英文论文
Graduates to apply for the quantitative analysis of changes in number of graduatestudents一Topics raisedIn this paper, the total number of students from graduate students (variable) multivariate analysis (see below) specific analysis, and collect relevant data, model building, this quantitative analysis. The number of relations between the school the total number of graduate students with the major factors, according to the size of the various factors in the coefficient in the model equations, analyze the importance of various factors, exactly what factors in changes in the number of graduate students aspects play a key role in and changes in the trend for future graduate students to our proposal.The main factors affect changes in the total number of graduate students for students are as follows:Per capita GDP - which is affecting an important factor to the total number of students in the graduate students (graduate school is not a small cost, and only have a certain economic base have more opportunities for post-graduate)The total population - it will affect the total number of students in graduate students is an important factor (it can be said to affect it is based on source)The number of unemployed persons - this is the impact of adirect factor of the total number of students in the graduatestudents (it is precisely because of the high unemployment rate,will more people choose Kaoyan will be their own employment weights)Number of colleges and universities - which is to influenceprecisely because of the emergence of more institutions of higherlearning in the school the total number of graduate students is nota small factor (to allow more people to participate in Kaoyan)二 Establish ModelY=α+β1X1+β2X2+β3X3+β4X4 +uAmong them, theY-in the total number of graduate students (variable)X1 - per capita GDP (explanatory variables)X2 - the total population (explanatory variables)X3 - the number of unemployed persons (explanatory variables)X4 - the number of colleges and universities (explanatory variables)三、Data collection1.date ExplainHere, using the same area (ie, China) time-series data were fitted2.Data collectionTime series data from 1986 to 2005, the specific circumstances are shown in Table 1Table 1:Y X1X2X3X41986110371963107507264.4105419871201911112109300276.6106319881127761366111026296.2107519891013391519112704377.910751990930181644114333383.210751991881281893115823352.210751992941642311117171363.9105319931067712998118517420.1106519941279354044119850476.4108019951454435046121121519.6105419961633225846122389552.8103219971763536420123626576.81020199819888567961247615711022199923351371591257865751071200030123978581267435951041200139325686221276276811225200250098093981284537701396200365126010542129227800155220048198961233612998882717312005978610140401307568391792四、Model parameter estimation, inspection and correction1.Model parameter estimation and its economic significance, statistical inference test. twoway(scatter Y X1)2000004000006000008000001.0e +06twoway(scatter Y X2)2000004000006000008000001.0e +06twoway(scatter Y X3)2000004000006000008000001.0e +06twoway(scatter Y X4)2000004000006000008000001.0e +0graph twoway lfit y X1200000400000600000800000F i t t e d v a l u e sgraph twoway lfit y X2-20000020000040000060000F i t t e d v a l u e sgraph twoway lfit y X3200000400000600000800000F i t t e d v a l u e sgraph twoway lfit y X42000004000006000008000001000000F i t t e d v a l u e s_cons 270775.2 369252.9 0.73 0.475 -516268.7 1057819 X4 621.3348 46.72257 13.30 0.000 521.748 720.9216 X3 -366.8774 157.9402 -2.32 0.035 -703.5189 -30.23585 X2 -7.158603 3.257541 -2.20 0.044 -14.10189 -.2153182 X1 59.22455 6.352288 9.32 0.000 45.68496 72.76413 Y Coef. Std. Err. t P>|t| [95% Conf. Interval] Total 1.3040e+12 19 6.8631e+10 Root MSE = 18535 Adj R-squared = 0.9950 Residual 5.1533e+09 15 343556320 R-squared = 0.9960 Model 1.2988e+12 4 3.2471e+11 Prob > F = 0.0000 F( 4, 15) = 945.14 Source SS df MS Number of obs = 20. reg Y X1 X2 X3 X4Y = 59.22454816*X1- 7.158602346*X2- 366.8774279*X3+621.3347694*X4(6.352288) (3.257541) (157.9402) (46.72256)t= (9.323341)(-2.197548)(-2.322889)(13.29839)+ 270775.151(369252.8)(0.733306)R2=0.996048 Adjusted R-squared=0.994994 F=945.1415DW=1.596173Visible, X1, X2, X3, X4 t values are significant, indicating that the per capita GDP, the total population of registered urban unemployed population, the number of colleges and universities are the main factors affecting the total number of graduate students in school. Model coefficient of determination for 0.996048 amendments coefficient of determination of 0.994994, was relatively large, indicating high degree of model fit, while the F value of 945.1415, indicating that the model overall is significant。
计量经济学中英文词汇对照
Controlled experiments Conventional depth Convolution Corrected factor Corrected mean Correction coefficient Correctness Correlation coefficient Correlation index Correspondence Counting Counts Covaห้องสมุดไป่ตู้iance Covariant Cox Regression Criteria for fitting Criteria of least squares Critical ratio Critical region Critical value
Asymmetric distribution Asymptotic bias Asymptotic efficiency Asymptotic variance Attributable risk Attribute data Attribution Autocorrelation Autocorrelation of residuals Average Average confidence interval length Average growth rate BBB Bar chart Bar graph Base period Bayes' theorem Bell-shaped curve Bernoulli distribution Best-trim estimator Bias Binary logistic regression Binomial distribution Bisquare Bivariate Correlate Bivariate normal distribution Bivariate normal population Biweight interval Biweight M-estimator Block BMDP(Biomedical computer programs) Boxplots Breakdown bound CCC Canonical correlation Caption Case-control study Categorical variable Catenary Cauchy distribution Cause-and-effect relationship Cell Censoring
计量经济学(Econometrics)
课程学分:3学分
课程概述:计量经济学是一门以经济理论为基础
以统计数据为依据
以数学为方法
定量研究具有随机特征的经济现象及经济变量之间数量关系的一门经济学科
是经济学研究常用的一种方法
是当前经济学研究的一个重要分支
其研究方法主要以回归分析方法为基础
主要包括单方程计量经济模型
2005
[10] 于俊年.计量经济学.对经济贸易大学出版社
2000
[11] 袁建文.经济计量学实验.科学出版社
2002
[12] 易丹辉.数据分析与eviews应用.中国统计出版社
2002
[13] 高铁梅.计量经济分析方法与建模--Eviews应用及实例.清华大学出版社
2006
其他说明:课程中所有的例子和问题我们使用EVIEWS4.1来计算
2.异方差的检验 第五章
第一~三节 11. 异方差II
自相关I 1.异方差的解决方法
2.自相关的概念及后果 第五章
第四节
第六章
第一、二节 12. 上机实验3 多元线性回归模型的参数估计与假设检验 上机实验指导书3 13. 自相关II 1.自相关的检验
2.自相关的解决方法 第六章
联立方程模型
向量自回归模型
时间序列分析等
本课程是一门为本科生开设的入门性质的计量经济学课程
主要讲述:(1)单方程计量经济模型:a)经典线性回归模型b)违背经典假设的回归c)线性回归模型的扩展d)模型设定误差(2)联立方程模型:a)基本概念;b)模型识别;c)参数估计
时间:周二上午8:00-9:50
周四上午8:00-9:50
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Xi’An Institute of Post & Telecommunication Dept of Economic & Management Prof. Long
Simple Linear Regression Model y t = b1 + b 2 x t + e t
b1 + b2 x t
Assumptions of the Simple Linear Regression Model yt = b1 + b2x t + e t 2. E(e t) = 0 <=> E(yt) = b1 + b2x t
1.
3. var(e t)
4.3
=
4.
5.
cov(e i,e j)
x t c for every observation
= cov(yi,yj)
s 2 = var(yt)
= 0
6.
e t~N(0,s 2) <=> yt~N(b1+ b2x t,
The population parameters b1 and b2 are unknown population constants.
4.2
yt = household weekly food expenditures
x t = household weekly income
For a given level of x t, the expected level of food expenditures will be: E(yt|x t) =
Eb1 = b1
4.11
Equivalent expressions for b2:
S(xi - x )(yi - y ) b2 = 2 S(xi - x )
(4.3a)
Expand and by n:
b2 =
nSxiyi - Sxi Syi nSxi -(Sxi)
2 2
(4.3b)
Variance of b2
4.12
Given that both yi and ei have variance s 2, the variance of the estimator b2 is:
var(b2) =
S(x i - x)
s2
2
4.4
The formulas that produce the sample estimates b1 and b2 are called the estimators of b1 and
b2.
When b0 and b1 are used to represent the formulas rather than specific values, they are called estimators of b1 and b2 which are random variables because they are different from sample to
4.5
Estimators are Random Variables ( estimates are not )
• If the least squares estimators b0 and b1 are random variables, then what are their means, variances, covariances and probability distributions? • Compare the properties of alternative estimators to the properties of the
b1 = y - b2x
where
y = Syi / n and x = Sx i / n
Substitute in to get:
yi = b1 + b2xi + e i
4.7
nSxiei - Sxi Sei b2 = b2 + 2 2 nSxi -(Sxi)
The mean of b2 is:
4.9
4.10
Unbiased Estimator of the Intercept
In a similar manner, the estimator b1 of the intercept or constant term can be shown to be an unbiased estimator of b1 when the model is correctly specified.
4.6
The Expected Values of b1 and b2
The least squares formulas (estimators) in the simple regression case:
b2 =
nSxiyi - Sxi Syi
2 2 nSxi
-(Sxi)
2
(4.1a) (4.1b)
nSxiEei - Sxi SEei Eb2 = b2 + 2 2 nSxi -(Sxi)
Eei = 0, then Eb2 = b2 .
Since
An Unbiased Estimator
4.8
The result Eb2 = b2 means that the distribution of b2 is centered at b2.
Since the distribution of b2
is centered at b2 ,we say that b2 is an unbiased estimator of b2.
Wrong Model Specification
The unbiasedness result on the previous slide assumes that we are using the correct model. If the model is of the wrong form or is missing important variables, then Eei = 0, then Eb2 = b2 .