精馏塔控制方案设计
精馏塔温度控制系统设计
精馏塔温度控制系统设计精馏塔是一种常见的化工设备,用于分离液体混合物中的成分。
精馏塔温度控制系统的设计是确保精馏塔能够稳定运行,提高产品质量和产量的关键。
下面将详细介绍精馏塔温度控制系统的设计原理和步骤。
精馏塔温度控制系统的设计原理是根据精馏塔内部的物料性质和工艺要求,通过控制介质的流量和温度来实现温度的稳定控制。
精馏塔内部通常分为多个段落,每个段落都有一个特定的温度要求。
温度的控制涉及到对塔釜的加热和冷却以及介质的流量调节。
1.确定控制目标:根据工艺要求和产品规格,确定需要控制的温度范围和偏差,以及控制精度要求。
2.确定控制方法:根据工艺特点和实际情况,选择适合的控制方法。
常见的控制方法包括比例控制、比例积分控制、比例积分微分控制等。
3.确定传感器:选择合适的温度传感器,用于测量精馏塔内部的温度。
常见的温度传感器包括热电偶、热敏电阻等。
4.确定执行器:根据控制目标和方法,选择合适的执行器。
常见的执行器包括电动调节阀、蒸汽控制阀等。
5.设计控制回路:根据控制方法和控制器的性能,设计控制回路。
控制回路包括传感器、控制器和执行器。
6.参数整定:根据实际情况和反馈调整,优化控制回路的参数。
参数整定通常包括比例增益、积分时间和微分时间等。
7.验证和优化:通过实际运行验证控制系统的性能,并根据实际情况进行反馈调整和优化。
总之,精馏塔温度控制系统的设计是确保精馏塔能够稳定运行,提高产品质量和产量的关键。
设计步骤包括确定控制目标、控制方法、传感器和执行器的选择、设计控制回路、参数整定以及验证和优化。
合理的设计能够使温度控制更加稳定和可靠。
精馏塔塔底温度控制方案
精馏塔塔底温度控制方案精馏塔是化工生产中常用的一种分离设备,主要用于将混合物中的各组分按照其沸点的不同进行分离。
在精馏过程中,塔底温度的控制是非常重要的,因为它直接影响到产品的纯度和收率。
本文将对精馏塔塔底温度控制方案进行详细的介绍。
一、精馏塔塔底温度控制的重要性1. 保证产品质量:精馏塔塔底温度的稳定与否直接关系到产品的质量。
如果塔底温度过高,会导致产品中轻组分的损失,降低产品的纯度;反之,如果塔底温度过低,会导致产品中重组分的残留,影响产品的性能。
2. 提高生产效率:合理的塔底温度控制可以提高精馏过程的效率,减少能源消耗,降低生产成本。
3. 保证生产安全:精馏塔塔底温度的波动可能导致操作不稳定,甚至引发安全事故。
因此,对塔底温度进行有效的控制是非常必要的。
二、精馏塔塔底温度控制方案1. 串级控制方案串级控制是一种常见的温度控制方案,它通过将主控制器的输出作为副控制器的设定值,实现对温度的精确控制。
具体实施步骤如下:(1)选择主控制器和副控制器:根据精馏塔的特点和工艺要求,选择合适的控制器类型,如PID控制器、模糊控制器等。
(2)设定主控制器的参数:根据工艺要求和实际操作经验,设定主控制器的比例、积分和微分参数。
(3)设定副控制器的参数:根据主控制器的输出和塔底温度的变化趋势,设定副控制器的比例、积分和微分参数。
(4)实施串级控制:将主控制器的输出作为副控制器的设定值,实现对塔底温度的精确控制。
2. 前馈控制方案前馈控制是一种基于模型的控制方案,它通过预测塔底温度的变化趋势,提前调整控制参数,以实现对塔底温度的快速响应。
具体实施步骤如下:(1)建立精馏塔的温度模型:根据精馏塔的工作原理和操作条件,建立精馏塔的温度模型。
(2)设计前馈控制器:根据温度模型,设计前馈控制器,实现对塔底温度的预测和控制。
(3)实施前馈控制:将前馈控制器的输出与主控制器的输出相结合,实现对塔底温度的快速响应和精确控制。
精馏塔控制系统设计
精馏塔控制系统设计精馏塔控制系统是指用于控制精馏装置运行的自动化系统。
精馏塔是化工过程中常用的一种分离设备,用于将混合物按照不同组分进行分离,并获得精馏产品。
精馏塔控制系统设计的目标是实现对塔内温度、压力、流量等参数的自动调节,以保持塔的稳定运行和达到设定的产品品质和产量要求。
1.系统的安全性:由于精馏塔操作涉及到高温高压的条件,系统的安全性是首要考虑因素。
安全系统应该能及时发现并处理可能的危险情况,如超压、超温等,确保塔内的操作条件始终处于安全范围内。
2.过程控制策略:根据塔的物料性质和操作要求,设计合理的控制策略。
常见的控制策略包括温度控制、压力控制、流量控制等。
需要根据塔内的反应动力学特性和传热传质特性来优化控制策略,比如采用多变量控制或者模型预测控制等。
3.仪表设备选型:根据控制策略选择合适的仪表设备,如温度传感器、压力传感器、流量计等。
仪表设备应具有高精度、稳定性好和耐高温高压等特点,以满足精馏塔操作的要求。
4.控制系统架构设计:根据控制策略和仪表设备的选择,设计控制系统的架构。
控制系统通常包括传感器、执行器、控制器和通信网络等部分。
传感器用于测量塔内的物理参数,执行器用于调节塔内的操作条件,控制器用于处理传感器的测量信号并确定下一步的控制策略,通信网络用于传输和共享数据。
5.监控系统设计:精馏塔的操作过程需要实时监控,及时发现和处理异常情况。
监控系统应能对塔内各项参数进行实时显示和记录,并提供报警、故障诊断和数据分析等功能。
监控系统可以采用人机界面、数据采集系统、故障诊断系统等多种形式。
在精馏塔控制系统的设计中,需要充分考虑各种可能的操作变量、工艺的稳定性、产量和能耗等方面的要求。
通过合理的控制系统设计,可以实现对精馏塔的准确控制,提高产品质量和产量,降低能耗和运行成本。
精馏塔常用控制方案简介
精馏塔常用控制方案简介1.1.2 精馏塔常用控制方案简介a)传统控制方案1)按物料平衡关系控制精馏塔物料平衡控制方式并不对塔顶或塔底产品质量进展直接的控制,而依据精馏塔的物料平衡及能量平衡关系进展间接控制。
其根本原理是,当进料成分不变和进料温度一定时,在持全塔物料平衡的前提下,保持进料量F、再沸器加热量、塔顶产品量D一定;或者说保持D/F和B/F一定,就可保证塔顶、塔底产品质量指标一定。
2)质量指标控制精馏塔质量指标由精馏塔产品的纯度表达,精馏塔产品的纯度直接影响因素为精馏段灵敏板温度与提馏段灵敏板温度。
因此,精馏塔质量指标控制方案与温度控制有直接联系。
3)温度控制当为了生产两种合格的产品,只有塔顶、塔底两种。
而没有侧线产品时,常用的控制方案是:利用回流量来控制顶部塔板的温度,改变通往再沸器加热蒸汽量来控制底部塔板的温度。
b)先进控制方案1)自适应解耦控制一些学者将自适应控制应用于精馏塔的不同组分控制。
但是.没有考虑控制回路之问耦合的影响。
目前已提出的多变量自适应解耦控制算法,只能对最小相位系统实现动态解耦,对非最小相位系统实现近似动态解耦,近来,有人根据精馏塔的特点提出了一种可以对闭环系统实现动静态解耦的自适应控制器,并在精馏塔上进展了实验。
2)多变量预测控制预测控制是一类以对象模型为根底的计算机控制算法,依据对象模型的不同,预测算法可粉为模型算法(MAC)、动态矩阵控制算法(DMC)、广义预测控制(GPC)等详细实现形式。
工业上应用说明:多变量预测控制到达了期望的效果,实现了常压塔的平稳操作,提高了装置适应处理量与原料性质变化的能力;并简化了控制过程,减少了劳动强度及人工干预,显著提高了产品的合格率。
1.2 问题的提出及解决问题的途径对于精馏过程中的温度控制系统,当只有塔顶、塔底两种产品,而没有侧线产品时,常用的控制方案是:利用回流量来控制顶部塔板的温度,改变通往再沸器加热蒸汽量来控制底部塔板的温度。
基于经典控制的精馏塔温度控制系统设计
基于经典控制的精馏塔温度控制系统设计
精馏塔温度控制系统是用于控制精馏塔内的温度,以确保塔内的操作温度保持在期望的设定值上的一种系统。
在这个系统中,温度传感器测量塔内的温度,并将测量值反馈给控制器。
控制器根据测量值与设定值之间的误差,通过调节加热或冷却装置的输出来控制塔内的温度。
设计一个基于经典控制的精馏塔温度控制系统需要以下几个步骤:
1. 系统建模:首先,需要对精馏塔温度控制系统进行建模,以了解系统的动态特性和行为。
这可以通过分析物理方程和系统传递函数来完成。
2. 控制器选择:根据系统的特性和要求,选择合适的经典控制器。
常见的经典控制器包括比例(P)、积分(I)和微分(D)控制器,以及它们的组合形式,如PID控制器。
3. 控制器参数调整:对选择的控制器进行参数调整,以确保系统的稳定性和性能。
参数调整的目标是使系统的响应快速而稳定,同时尽量减小超调和振荡。
4. 控制器实现:将调整好的控制器实现在硬件或软件上,使其能够读取温度传感器的测量值,并根据设定值和测量值之间的误差来控制加热或冷却装置的输出。
5. 系统测试和优化:对控制系统进行实际测试,并根据测试结果进行优化。
通过观察系统的响应,调整控制器的参数,以达到更好的控制效果。
总结起来,设计一个基于经典控制的精馏塔温度控制系统需要进行系统建模、控制器选择、参数调整、实现和系统测试等步骤。
通过这些步骤,可以设计出一个能够准确控制精馏塔温度的控制系统,并满足系统性能要求。
精馏塔典型控制方案
FC 103
FT 103
F
LT
101
LC 101
Vs
H
LR
分
FT
101
馏
FC 101
塔
LT 102 LC 102
D
FT FC 103 103
B
3 按精馏段指标控制方案
当符合以下条件时,可选择按精馏段指标控制: (1) 对塔顶馏出液的纯度要求比塔底产品较高; (2) 全部为汽相进料; (3) 塔底、提馏段塔板上的温度不能很好反映产品成分变化。
被控变量:精馏段某点成分或温度 操纵变量:塔顶回流量LR、塔顶馏出液流量D、 再沸器加热蒸汽量VS 优点: ➢ 保证塔顶产品成分; ➢ 扰动不大时,塔底产品成分波动较小;
采用这种控制方案时,在LR、D、VS和B四者中选择一种作为控制产品质量的手段,选择另一种保持 流量恒定,其余两者则按回流罐和再沸器的物料平衡,由液位控制器加以控制。常采用以下两种控制 方案:
FC
罐容积适当。
102 Vs
FT
102
LR
分
TT 101
馏
塔
LT 102
H
LC 102
LT LC 101 101
D
TC 101
B
4 按提馏段指标控制方案
当符合以下条件时,可选择按提馏段指标控制: (1) 塔底馏出液的成分要求较高; (2) 进料全部为液相(因为进料先影响馏出液); (3) 塔顶或精馏段塔板温度不能很好反映成分的变化。 (4) 实际操作回流比较最小回流比大好多倍。
被控变量:提馏段塔板温度 操纵变量:塔顶回流量LR、塔顶馏出液流量D、 再沸器加热蒸汽量VS
4 按提馏段指标控制方案
1、间接物料平衡控制
精馏塔精馏段温度控制设计方案
精馏塔精馏段温度控制设计方案1.课题研究的背景和意义石油化工生产常需将液体混合物分离以达到提纯或回收有用组分的目的。
分离互溶液体混合物有许多种方法,精馏是在炼油、化工等众多生产过程中广泛应用的一个传质过程。
精馏过程通过反复的汽化与冷凝,使混合物料中的各组分分离,分别达到规定的纯度。
精馏塔的控制直接影响到产品质量、产量和能量消耗,因此精馏塔的自动控制问题长期以来一直受到人们的高度重视[1]。
精馏过程是由精馏装置来实现的,精馏装置一般是由精馏塔、再沸器(重沸器)、冷凝冷却器、回流罐及回流泵等组成。
实际生产过程中,精馏操作可分为间歇精馏和连续精馏两种。
石油化工等大型生产过程主要采用的连续精馏。
精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。
有板式塔与填料塔两种主要类型。
根据操作方式又可分为连续精馏塔与间歇精馏塔。
蒸溜的原理是蒸气由塔底进入。
蒸发出的气相与下降液进行逆流接触,两相接触中,下降液中的易挥发(低沸点)组分不断地向气相中转移,气相中的难挥发(高沸点)组分不断地向下降液中转移,气相愈接近塔顶,其易挥发组分浓度愈高,而下降液愈接近塔底,其难挥发组分则愈富集,从而达到组分分离的目的。
由塔顶上升的气相进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。
塔底流出的液体,其中的一部分送入再沸器,加热蒸发成气相返回塔中,另一部分液体作为釜残液取出。
精馏塔是一个多输入多输出的多变量过程,其在机理复杂,动态响应迟缓,变量之间相互关联,不同的塔工艺结构差别很大,而工艺对控制提出的要求又较高,所以确定精馏塔的控制方案是一个极为重要的课题[1]。
2.课题研究的现状随着生产过程向着大型、连续和强化方面发展,对操作条件要求更加严格,参数间相互关系更加复杂,对控制系统的精度和功能提出许多新的要求,对能源消耗和环境污染也有明确的限制,采用传统的单回路PID控制往往不能达到控制要求,为此,需要在简单控制系统的基础上,采取其他设施,组成复杂控制系统,也称多回路控制系统。
精馏塔压力控制方案
引言精馏塔是化工过程中常用的设备,用于将混合物进行分馏,以获得所需的纯净组分。
在精馏过程中,精馏塔压力的控制非常重要,因为压力的变化会影响到馏出液的组分和品质。
本文将介绍精馏塔压力控制的方案。
1. 压力控制方法在精馏塔中,常见的压力控制方法有以下几种:1.1 开关控制开关控制是最简单的一种控制方法。
通过开关控制,可以将塔底排出液或塔顶进料的流量进行开关控制,以维持精馏塔内部的压力。
当塔底压力过高时,开关控制会打开塔底排出液的流量,从而降低塔底压力;当塔底压力过低时,开关控制会关闭塔底排出液的流量,从而增加塔底压力。
1.2 比例控制比例控制是一种根据压力偏差的大小,来控制进料或排出液流量的控制方法。
比例控制可以根据压力变化的幅度来调整进料或排出液的流量,以保持精馏塔内部的压力稳定。
比例控制常用于对精馏塔进行精确控制的情况。
1.3 PID控制PID控制是一种通过比例、积分和微分三个控制参数来实现对压力的精确控制的方法。
通过调整PID控制器的参数,可以使得进料或排出液的流量能够根据压力的变化情况进行自适应调整,从而实现对精馏塔压力的精确控制。
2. 压力控制方案选择选择合适的压力控制方案取决于以下几个方面:2.1 精度要求对于某些精细化工过程,需要对压力进行高精度的控制,这时可以选择PID控制或比例控制来实现。
而对于一些要求不高的一般过程,开关控制也可以满足要求。
2.2 过程的稳定性对于一些稳定性要求较高的过程,如需要对进料液的成分进行精确控制的情况,应选择PID控制方法。
PID控制可以根据压力变化的反馈信号来自适应调整进料或排出液的流量,从而保持精馏塔内部的压力稳定。
2.3 控制的复杂度不同的压力控制方法对操作人员的要求也有所不同。
开关控制是最简单的一种控制方法,对操作人员的要求较低。
而PID控制则需要操作人员对PID控制器的参数进行调整和优化,对操作人员的要求较高。
综合考虑上述因素,可以选择合适的压力控制方案。
精馏塔控制系统课程设计
精馏塔控制系统课程设计精馏塔控制系统课程设计一、概述精馏塔是化学工业中重要的分离设备之一,广泛应用于化工、石油、食品等领域。
精馏塔的主要功能是将混合液进行分离,得到高纯度的产品。
在生产过程中,精馏塔的控制系统对于保证产品质量、降低能耗、提高生产效率等方面具有重要作用。
因此,本课程设计旨在设计一个精馏塔的控制系统,以实现对混合液的分离过程进行精确控制。
二、设计要求1.了解精馏塔的工作原理及流程;2.分析精馏塔的工艺参数和控制要求;3.设计精馏塔的控制系统方案;4.选择合适的控制仪表和设备;5.完成控制系统的硬件和软件设计;6.进行系统调试和性能评估。
三、工作原理及流程精馏塔是一种基于蒸馏原理的分离设备。
在蒸馏过程中,混合液在精馏塔内被加热和冷却,使得不同成分的液体在特定温度下达到气液平衡状态。
通过这种方式,高纯度的产品可以从混合液中分离出来。
精馏塔的主要组成部分包括:原料液进料口、蒸汽加热器、分离器、冷凝器、产品收集器等。
四、工艺参数和控制要求精馏塔的主要工艺参数包括:进料流量、蒸汽流量、回流比、塔顶温度、塔底温度等。
控制要求包括:1.稳定进料流量,以保证原料液的供应;2.控制蒸汽流量,以维持所需的加热温度;3.调节回流比,以改变产品的纯度和产量;4.控制塔顶和塔底温度,以保证产品的质量和分离效果。
五、控制系统方案设计根据工艺参数和控制要求,可以采用以下控制系统方案:1.进料流量控制:采用流量计测量进料流量,通过调节阀控制进料流量;2.蒸汽流量控制:采用蒸汽压力传感器测量蒸汽压力,通过调节阀控制蒸汽流量;3.回流比控制:采用流量计测量回流比,通过调节阀控制回流比;4.塔顶温度控制:采用温度传感器测量塔顶温度,通过调节阀控制蒸汽流量,以维持温度稳定;5.塔底温度控制:采用温度传感器测量塔底温度,通过调节阀控制加热器的加热功率,以维持温度稳定。
六、控制仪表和设备选择根据控制系统方案,可以选择以下控制仪表和设备:1.流量计:用于测量进料流量和回流比;2.压力传感器:用于测量蒸汽压力;3.温度传感器:用于测量塔顶和塔底温度;4.调节阀:用于控制进料流量、蒸汽流量和回流比;5.加热器:用于加热原料液;6.PLC控制器:用于实现控制逻辑和数据处理。
精馏塔控制方案设计
精馏塔控制方案设计安徽理工大学课程设计(论文)任务书机械工程学院设计题目精馏塔控制方案设计精馏塔控制系统的设计本课程设计为加压精镏操作,原料液为脱丙烷塔塔釜的混合液 14056kg/h ,分离后镏出液为高纯度的 C4产品,釜液主要是 C5以上组分。
87.8摄氏度的原料 液从精镏塔的第16块塔板(全塔共32块塔板)进料,塔顶蒸气经全凝器冷凝为液体后进入回流罐,回流罐内的液体由泵抽出 (液位要求为 54.2%),一部分作为回流液送回精镏塔第 32块塔板,另一部分作为产品送出 塔釜中液体的一部分经再沸器后回精镏塔, 另一部分作为塔底采出产品(7349kg/h )。
再沸器由加热蒸气加热。
灵敏板温度要求保持为 89.3摄氏度,塔釜温 度要求为 109摄氏度,液位要求为 98%,另工艺中FA414要求液位保持为 88%另附精镏塔工艺流程图。
1. 到图书馆查找相关资料,对被控对象进行分析,确定系统控制结构方案,完成 控制系统原理方框图。
2. 画精馏塔带控制点的工艺流程图。
3.仪表选型,根据有关仪表目录或网站的仪表性能参数,进行仪表选型。
4. 精馏塔控制系统调节器参数的整定。
5. 编写设计说明书: (1) 提出控制系统的基本任务和要求。
(2) 被控对象动态特性分析。
(3) 选择控制系统控制结构,画控制原理方框图。
(4) 精馏塔带控制点的工艺流程图。
(5) 控制器参数整定。
(6) 编制出控制设备表或仪表数据表等有关仪表信息的设计文件。
过控教研室 学生姓名专业(班级) 过控09-2班 设 计 技 术参数设计要求 (6707kg/h)。
(7)设计总结。
安徽理工大学毕业设计(论文)成绩评定表学生姓名:学号:专业班级:过控09-2毕业设计题目:_______ 精馏塔控制方案设计__________________________指导教师评语:XX同学能够按时参加综合设计,基本上能做到不旷课、迟到、早退,也能遵守实验室纪律;能够按照本次综合设计任务书的要求完成了大部分任务,并较好地演示了其完成的设计内容;在检查设计时,该生能对其设计内容进行了介绍,并能就指导教师提出的问题进行了回答。
精馏塔控制方案
精馏塔控制方案引言精馏塔是一种常用的化工设备,广泛应用于石油、化工、制药等行业。
精馏塔的控制是保证塔内蒸汽、冷凝液、流体等流动的关键,能够有效地提高产品纯度和产量。
本文将介绍一种精馏塔控制方案,以提高塔的稳定性和效率。
1. 控制策略1.1 温度控制精馏塔的温度控制是塔内液体和蒸汽相平衡的关键。
通过控制塔顶和塔底的温度,可以调节塔内液位和物料的分离。
常见的控制策略有:•温度比例控制:根据塔顶温度的偏差与目标温度之间的比例关系,调整塔底的回流液流量。
•迭代控制:根据塔底液位的变化,通过反馈调整塔顶温度控制器的参数,以逐步达到温度的稳定。
1.2 压力控制精馏塔的压力控制主要是为了控制蒸汽流量和流体的分布。
压力控制可以通过以下策略实现:•PID控制:利用压力变送器测量塔内压力,并通过PID控制器调节废气量或提升风扇的转速,以保持塔内压力稳定。
•模型预测控制:利用塔内流体的数学模型,预测下一时刻的压力,然后通过调节控制器输出,实现精确的压力控制。
1.3 液位控制精馏塔的液位控制是控制塔内液体高度的重要环节,液位控制的好坏影响着塔内液体的扩散和分离效果。
常见的控制策略有:•PID控制:通过测量塔内液位高度,并根据设定的目标值进行反馈调节,保持液位稳定。
•前馈控制:通过预先计算液位的变化趋势,利用前馈信号及时调整液位,以提高液位的控制精度。
2. 性能评估为了评估控制方案的有效性和稳定性,需要对精馏塔的控制系统进行性能评估。
常用的评估指标有:•稳态误差:指控制系统在稳定状态下与目标值之间的偏差,稳态误差越小,说明控制系统越稳定。
•动态响应:指控制系统对于输入信号的响应速度和抑制扰动的能力。
动态响应越快,说明控制系统的响应速度越高。
•系统稳定性:通过计算系统的闭环传递函数,判断系统是否稳定。
如果传递函数的特征根都具有负实部,说明系统稳定。
3. 控制优化为了进一步提高精馏塔的控制效果,可以采用控制优化的方法。
常见的控制优化技术有:•模型预测控制:利用精馏塔的数学模型,预测未来一段时间内的塔内流体状态,并根据预测结果进行控制器的调整。
过程控制课程设计——精馏塔的均匀控制系统设计
- --目录1 精馏塔控制系统介绍 (1)1.1精馏塔原理 (1)1.2控制要求及干扰因素 (1)2 设计任务及要求 (2)3 均匀控制系统 (2)3.1均匀控制概念 (2)3.2均匀控制系统特点 (4)4设计方案选择 (5)4.1方案一简单均匀控制 (5)4.2方案二串级均匀控制 (5)5 系统各器件选型 (7)5.1检测转换元件的选择、性能参数 (7)5.2调节阀气开气关式选择 (9)6.系统仿真与分析 (11)7.小结与体会 (12)参考文献 (13)精馏塔的均匀控制系统设计1 精馏塔控制系统介绍1.1 精馏塔原理精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。
有板式塔与填料塔两种主要类型。
根据操作方式又可分为连续精馏塔与间歇精馏塔。
蒸汽由塔底进入,与下降液进行逆流接触,两相接触中,下降液中的易挥发(低沸点)组分不断地向蒸汽中转移,蒸汽中的难挥发(高沸点)组分不断地向下降液中转移,蒸汽愈接近塔顶,其易挥发组分浓度愈高,而下降液愈接近塔底,其难挥发组分则愈富集,达到组分分离的目的。
由塔顶上升的蒸汽进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。
塔底流出的液体,其中的一部分送入再沸器,热蒸发后,蒸汽返回塔中,另一部分液体则作为釜残液取出。
蒸馏的基本原理是将液体混合物部分气化,利用其中各组份挥发度不同(相对挥发度)的特性,实现分离目的的单元操作。
蒸馏按照其操作方法可分为:简单蒸馏、闪蒸、精馏和特殊精馏等。
1.2 控制要求及干扰因素为了保证精馏生产工序安全、高效持续进行,改造生产工艺提出如下控制要求:(1) 保证产品质量。
以塔顶产品的纯度作为质量参数进行控制,构建质量控制系统。
(2) 保证平稳生产。
首先要使精馏塔的进料参数保持稳定;其次为了维持塔的物料平衡,要控制塔顶和塔底产品采出量,使其和等于进料量;再次塔内的储液量应保持在限定的范围内;最后要控制塔内压力稳定。
精馏塔的控制方案
羊膜腔内穿刺术操作流程## Amniocentesis Procedure Steps.Informed Consent.Obtain written informed consent from the patient.Explain the procedure, its risks, benefits, and alternatives.Ultrasound Preparation.Position the patient comfortably on the exam table.Clean the abdomen with an antiseptic solution.Apply a sterile drape.Perform an ultrasound to locate the placenta, amniotic fluid, and fetus.Needle Insertion.Insert a local anesthetic into the skin and deeper tissues.Use a spinal needle or amniocentesis needle to puncture the skin and amniotic sac.Advance the needle into the amniotic cavity under ultrasound guidance.Amniotic Fluid Collection.Withdraw 20-30 mL of amniotic fluid using a syringe or vacuum pump.Send the fluid sample to the laboratory for analysis.Needle Removal.Slowly remove the needle from the amniotic sac.Apply pressure to the puncture site using a sterile gauze pad.Post-Procedure Care.Instruct the patient to rest and avoid strenuous activity for 24 hours.Monitor the patient for signs of infection or amniotic fluid leakage.Schedule a follow-up appointment to review the test results.## 羊膜腔内穿刺术操作流程。
精馏塔精馏段温度比值控制方案设计
目录1. 精馏塔控制系统介绍 01.1精馏塔原理 02. 精馏塔精馏段控制分析 (1)2.1精馏塔精馏段的控制要求 (1)2.2精馏塔精馏段的扰动分析 (2)2.3精馏塔被控变量的选择 (5)3. 比值控制系统 (6)3.1 比值控制系统简介 (6)3.2 比值控制系统的设计 (6)4. 精馏塔精馏段温度比值控制系统设计 (8)4.1精馏塔精馏段比值控制系统参数的选择 (8)4.2控制参数的确定 (8)4.3现场仪表选型,编制有关仪表信息的设计文件 (8)4.4系统方块图 (9)5. 分析被控对象特性,选择控制算法(调节器控制规律的确定) (10)5.1比值系数的确定 (10)6. 精馏塔精馏段温度控制分析 (11)7. 系统仿真与参数整定 (13)7.1 控制系统的Simulink仿真框图 (13)7.2 PID参数整定 (13)8. 课程设计总结 (17)9. 参考文献 (18)1.精馏塔控制系统介绍1.1精馏塔原理精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。
有板式塔和填料塔两种主要类型。
根据操作方式又可分为连续精馏塔和间歇精馏塔。
蒸汽由塔底进入,与下降液进行逆流接触,两相接触中,下降液中的易挥发组分不断地向蒸汽中转移,蒸汽中的难会发组分不断地向下降液中转移,蒸汽越接近塔顶,其易挥发组分浓度越高,而下降液越接近塔底,其难挥发组分则越富集,达到组分分离的目的。
由塔顶上升的蒸汽进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。
塔底流出的液体,其中的一部分送入再沸器,热蒸发后,蒸汽返回塔中,另一部分液体则作为釜残液取出。
蒸馏的基本原理是将液体混合物部分气化,利用其中各组分挥发度不同的特性,实现分离目的的单元操作。
蒸馏按照其操作方式可分为:简单蒸馏,闪蒸,精馏,特殊精馏等。
1.2精馏装置的作用(1)精馏段的作用加料版以上的塔段为精馏段,其作用是逐板增加上升气相中的易挥发组分的浓度。
精馏塔塔釜温度控制设计
封面目录1.概述 (1)2.工艺说明 (2)2.1. 工艺概述 (2)2.1.1.精馏工艺 (2)2.1.2.典型设备及工艺参数 (2)2.2. 工艺流程图 (3)2.3. 工艺对自动控制的要求 (3)3.设计 (4)3.1. 控制系统 (4)3.1.1.控制系统的确定 (4)3.1.2.控制系统参数的选择 (4)3.2. 控制规律确定 (4)3.3. 正反作用的确定 (4)3.3.1.执行器正、反作用的选择 (4)3.3.2.控制器正、反作用的选择 (5)3.4. 控制方案 (5)3.4.1.方块图 (5)3.4.2.抗干扰控制说明 (5)3.4.3.测量点选取 (6)3.5. 带控制点工艺流程图 (6)4.设备选型 (7)4.1. 设备一览表 (7)4.2. 仪表的选择 (7)4.2.1.温度计及温度变送器的选择 (7)4.2.2.蒸汽流量仪表的选择 (7)4.3. 执行器的选择 (8)5.安装、运行及注意事项 (9)5.1. 热电阻 (9)5.2. 温度变送器 (9)5.3. 流量检测仪表(蒸汽流量计) (10)6.总结 (11)参考文献 (11)高沸塔塔釜温度控制1.概述精馏操作是炼油、化工生产过程中的一个十分重要的环节。
精馏塔的控制直接影响到产品质量、产量和能量的消耗,因此精馏塔的自动控制设计长期以来一直受到人们的高度重视。
精馏塔是一个多输入和多输出的对象,它由很多级塔板组成,内在机理复杂,对控制作用响应缓慢,参数间相互关联严重,而控制要求又大多较高。
这些都给自动控制的实施带来一定困难。
同时各塔工艺结构特点又千差万别,这就更需要深入分析工艺特性,进行自动控制方案的设计和研究。
精馏过程是一个复杂的传质传热过程,表现为:“过程变量多,被控变量多,可操纵的变量也多;过程动态和机理复杂”,这些给自动控制设计带来了不小的麻烦。
作为化工生产中应用最广的分离过程,精馏也是耗能较大的一种化工单元操作。
精馏塔提馏段温度控制方案
精馏塔提馏段温度控制方案
精馏塔的提馏段温度控制方案可以通过以下几个步骤实施:
1. 设置目标温度:根据产品的蒸汽化温度和沸点等物理性质,确定塔顶的目标温度。
这个温度应该足够高,使得目标组分能够从原料中蒸发出来。
2. 监测温度:在塔顶和其他关键位置安装温度传感器,监测塔内各个位置的温度变化,并将数据传输给温度控制系统。
3. 确定控制策略:根据温度传感器的监测数据,控制系统分析和计算,确定合适的控制策略。
常见的策略包括比例控制、比例积分控制和比例积分微分控制等。
4. 调节操作:根据控制策略的结果,控制系统会输出相应的控制信号,调节塔顶的加热或降温装置,以达到目标温度。
5. 反馈调整:监测实际温度和目标温度之间的偏差,并根据调整的结果进行反馈调整,进一步优化控制策略。
需要注意的是,精馏塔提馏段温度控制方案还需要考虑其他因素,如进料流量、冷却介质温度等。
此外,不同的塔设计和操作条件可能需要不同的控制策略,因此具体的温度控制方案应根据具体情况进行定制。
精馏塔过程控制方案
(1)VCM低沸点塔
1扰动观测器的设计
为克服进料流量、组分及温度波动带来的扰动,取进料口附近塔板(灵敏板)的温度与塔釜上较稳定一块塔板的温度之差△T1作为扰动观测器。其原理是:当进料流量增大时,温差增大;轻组分增高时,温差增大;进料温度降低时,温差也增大。反之,则相反。同时,取此两点的温差又不易受到系统压组分及温度的变化。
为防止液泛和漏液现象,可以把约束条件加在再沸器上,这可以通过对加热流量或阀位设置上、下限幅来实现。
2产量与质量是相互矛盾的,这又与能耗相关联。精馏塔的选择性控制任务是,使塔尽量操作在约束条件内,即正常下的最大负荷生产,获得最多的合格产品。
在上述的控制方案中,可根据生产中的具体情况调整某些调节通道的系数或正反特性来满足实际生产的要求,甚至在塔盘加热能力充裕的条件下,低沸塔采用全回流操作。实际上,精馏塔的能耗比较小,精馏塔的操作在能耗上的权衡是有余地的。
4控制系统的效果
实际运行表明,该控制方案具有很强的适应能力,系统能够迅速地克服各种干扰带来的扰动,恢复平衡的能力特别强。产品纯度能够稳定地保证在99.99%以上。
②多变量解耦控制方案框图
③控制方案可行性分析
在高沸塔控制方案中,选择塔顶温度T2作为产品质量指标的道理同低沸塔,在此基础上同样采用解耦控制,协调加热量与回流量,有效解除各通道间的关联,并充分利用扰动观测器及时调整加热量与回流量,确保塔顶VCM的产品纯度。
(3)精馏塔的选择性控制
1塔不能出现液泛,某些类型的塔(如筛板塔等)也不应出现漏液现象。当塔出现液泛时,塔的压差将超过一个限值。当塔出现漏液时,塔的压差将降到一个下限值。
②多变量解耦控制方案框图
③控制方案可行性分析
在低沸塔控制方案中,选择塔顶温度T1和温度梯度△T1(后者起辅助作用)作为产品质量指标的依据是:在一定的压力下,沸点和产品成分之间有单独的函数关系。因此,如果压力恒定,塔板温度就反映了成分。塔顶压力P1的通道时间常数很小,采用单参数调节就能达到压力的恒定。
精馏塔的控制
F,ቤተ መጻሕፍቲ ባይዱi
Fo,T T*
FFC
t
QA
QF
前馈控制特别适用于调节通道时间常数或 纯滞后很大的场合。 纯滞后很大的场合。调节及时是前馈控制 的突出优点。 的突出优点。 它的控制结构是由干扰变量决定的,与被 它的控制结构是由干扰变量决定的, 控变量无关。然而, 控变量无关。然而,前馈控制往往是基于 不甚完善的过程模型获得的, 不甚完善的过程模型获得的,故干扰对过 程的扰动并不能被完全补偿, 即存在残( 程的扰动并不能被完全补偿 即存在残(余) 差(offset)。 )。 解决方案之二: 解决方案之二:前馈 + 反馈控制 特点:响应快、无残差,效果见下图。 特点:响应快、无残差,效果见下图。
F,Ti T*
TC
t 调节不及时所致
QA
QF
PI控制优于手动控制且能消除余差。但调节不够及时, 控制优于手动控制且能消除余差。但调节不够及时, 控制优于手动控制且能消除余差 表现在第一个波峰较低,这意味着, 表现在第一个波峰较低,这意味着,低温原油一度流 进了分馏塔。 进了分馏塔。反馈控制是当过程干扰影响到被控变量 以后,才根据偏差去改变操纵变量。 以后,才根据偏差去改变操纵变量。这里的干扰可以 是F, Ti,PF , λF。 解决方案之二: 前馈控制)。 解决方案之二:Feedforward Control (前馈控制 。这 前馈控制 里前馈是指,一旦测得干扰变量的大小, 里前馈是指,一旦测得干扰变量的大小,就适量改变 操纵变量,使干扰对过程的影响得到快速抑制。 操纵变量,使干扰对过程的影响得到快速抑制。那么 如何实现呢? 干扰通道模型。 如何实现呢?→ 干扰通道模型。 以稳态模型为例: 其中Q 以稳态模型为例:QF λF =F/M CP (T*-Ti ). 其中 F 、F 均为质量流量, 均为质量流量,CP、M分别为原油的热容 (单位: 分别为原油的热容 单位 J/oK/mole)和分子量 和分子量. 和分子量 → QF λF = [F/M CP (T*-Ti )]
精馏塔的工艺控制方案设计分析
工艺控制方案设计
1、确定设计目标和控制指标
精馏塔工艺控制方案的设计目标通常是实现高效、稳定、节能和环保的生产。 为实现这些目标,需要确定以下控制指标:
1、产品质量:精馏塔应能够生产出符合规格要求的高纯度产品。
2、能源效率:工艺控制应尽可能降低能源消耗,提高能源利用效率。
3、设备可靠性:控制方案应确保设备运行稳定可靠,降低故障率。
谢谢观看
4、精馏塔内部过程研究:加强精馏塔内部物理和化学过程的研究,为工艺控 制提供更加科学的依据。结论
Байду номын сангаас
精馏塔的工艺控制方案设计是保证其高效、稳定、节能和环保生产的关键。在 确定设计目标和控制指标的基础上,需要选择合适的控制策略、仪表选型及安 装方式,并考虑各种工况下的应对措施。随着技术的发展,精馏塔的工艺控制 将朝着更加智能化、绿色化和可持续化的方向发展。为进一步优化精馏塔的工 艺控制,需要新型传感器和测量技术、智能控制、绿色环保和精馏塔内部过程 研究等方向的研究和实践。
目前,精馏塔的工艺控制已经较为成熟,但仍存在一些问题。例如,对于复杂 的多组分混合物,精确的组分控制较为困难;对于高温、高压、高粘度等特殊 工况,测量和控制的精度往往受到限制;此外,现有的控制方案通常基于经验 设计,缺乏对精馏塔内部物理和化学过程的深入理解。
3、分析精馏塔工艺控制的研究 方向和趋势
分析
1、分析精馏塔工艺控制的历史 发展情况
精馏塔的工艺控制自其应用以来一直受到广泛。随着自动化技术和计算机技术 的发展,精馏塔的工艺控制也在不断进步。从早期的人工控制到现代的计算机 控制,从简单的单变量控制到复杂的多元变量控制,精馏塔的工艺控制经历了 从简单到复杂的发展过程。
2、分析精馏塔工艺控制的现状 和存在的问题
精馏塔控制系统设计
Hefei University《化工仪表及自动化》过程考核之三——设计题目:精馏塔控制系统设计,系别:班级:姓名:学号:教师:日期:目录Hefei University (1)化工班:《化工仪表及自动化》 (1)过程考核之三——设计 (1)一、概述 (3)二、内容 (3)三、说明 (3)1、工作要求 (3)2、物料 (3)3、精馏过程的控制方案设计 (4)四、设备选型 (5)1、测控仪表选型 (5)2、执行机构选型 (5)五、总结 (5)六、参考文献 (5)精馏塔控制系统设计一、概述精馏塔是化工生产中分离互溶液体混合物的典型分离设备。
它是依据精馏原理对液体进行分离,即在一定压力下,利用互溶液体混合物各组分的沸点或饱和蒸汽压不同,使轻组份(即沸点较低或饱和蒸汽压较高的组分)汽化。
经多次部分液相汽化和部分气相冷凝,使气相中的轻组分和液相中的重组分浓度逐渐升高,从而实现分离的目的,满足化工连续化生产的需要。
精馏塔塔釜温度控制的稳定与否直接决定了精馏塔的分离质量和分离效果,控制精馏塔的塔釜温度是保证产品高效分离,进一步得到高纯度产品的重要手段。
维持正常的塔釜温度,可以避免轻组分流失,提高物料的回收率,也可减少残余物料的污染作用。
影响精馏塔温度不稳定的因素主要是来自外界来的干扰。
二、内容蒸馏的基本原理是将液体混合物部分气化,利用其中各组份挥发度不同(相对挥发度)的特性,实现分离目的的单元操作。
蒸馏按照其操作方法可分为:简单蒸馏、闪蒸、精馏和特殊精馏等。
本文主要内容是结合课本所学仪表自动化知识,掌握测控仪表,了解二元精馏系统流程仪表的位号和特点,仔细研究二元精馏的工艺流程图,熟悉工艺流程依次设计一套完整的控制方案,使系统能对二元精馏的工艺过程进行有效地控制。
三、说明1、工作要求精馏塔控制系统主要分为三部分控制:塔釜温度控制精馏塔塔釜温度是产品成分的间接质量指标,要求温度检测点在系统受到干扰时温度变化灵敏,因此塔内测温点设置在灵敏板上,通过控制再沸器蒸汽流量来实现温度的稳定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精馏塔控制方案设计安徽理工大学课程设计(论文)任务书机械工程学院过控教研室学号学生姓名专业(班级)过控09-2班设计题目精馏塔控制方案设计设计技术参数精馏塔控制系统的设计本课程设计为加压精镏操作,原料液为脱丙烷塔塔釜的混合液14056kg/h,分离后镏出液为高纯度的C4产品,釜液主要是C5以上组分。
87.8摄氏度的原料液从精镏塔的第16块塔板(全塔共32块塔板)进料,塔顶蒸气经全凝器冷凝为液体后进入回流罐,回流罐内的液体由泵抽出(液位要求为54.2%),一部分作为回流液送回精镏塔第32块塔板,另一部分作为产品送出(6707kg/h)。
塔釜中液体的一部分经再沸器后回精镏塔,另一部分作为塔底采出产品(7349kg/h)。
再沸器由加热蒸气加热。
灵敏板温度要求保持为89.3摄氏度,塔釜温度要求为109摄氏度,液位要求为98%,另工艺中FA414要求液位保持为88%。
另附精镏塔工艺流程图。
设计要求1. 到图书馆查找相关资料,对被控对象进行分析,确定系统控制结构方案,完成控制系统原理方框图。
2. 画精馏塔带控制点的工艺流程图。
3.仪表选型,根据有关仪表目录或网站的仪表性能参数,进行仪表选型。
4. 精馏塔控制系统调节器参数的整定。
5. 编写设计说明书:(1)提出控制系统的基本任务和要求。
(2)被控对象动态特性分析。
(3)选择控制系统控制结构,画控制原理方框图。
(4)精馏塔带控制点的工艺流程图。
(5)控制器参数整定。
(6)编制出控制设备表或仪表数据表等有关仪表信息的设计文件。
(7) 设计总结。
年月日安徽理工大学毕业设计(论文)成绩评定表工艺流程图课程设计说明书精馏塔控制方案设计DESIGN OF THE COLUMN CONTROL SCHEME学院:机械工程学院专业班级:过控09—2学号:学生姓名:指导教师:讲师2012年6月28日精馏塔控制方案设计摘要脱丙烷塔的主要任务是利用混合液中各组分挥发度的不同分离丙烷和丁二烯组分,并达到规定的纯度要求。
塔顶轻组分主要是丙烷,塔低重组分主要是丁二烯。
本文主要围绕选脱丙烷塔为研究对象,在分析其工艺流程和系统构成的基础上,结合实际系统,进行了压力、温度、液位、和流量等影响因素方面的控制系统设计,详细设计了精馏过程的控制方案,包括单回路控制、串级控制、分程控制等。
使精馏塔控制系统达到工业生产的要求。
关键词:脱丙烷塔,单回路控制系统,串级控制,分程控制DESIGN OF THE COLUMN CONTROL SCHEMEABSTRACTThe depropanizer tower 's main task is to use the mixture of volatile components in different degrees of separation of propane and butadiene components, and achieves the designated purity requirements. Top light component is mainly propane tower, low recombination is mainly butadiene.This paper, focusing on choose butanol tower as the research object, the analysis of the process flow and system components on the basis of the practical system, the temperature, flow, liquid level, and stress factors as the control system design, detailed design the distillation process control plan, including cascade control, process control points. Make the column to industrial control system of production requirements. Keywords: Distillation. Control system. Cascade control. Process control points目录摘要 (I)ABSTRACT (II)1 控制系统的基本任务和要求 (1)1.1 控制系统的基本任务 (1)1.2 控制系统的要求 (1)2 被控对象动态特性分析 (2)2.1动态方程的建立 (2)2.2 动态影响分析 (2)3 控制系统设计与控制系统方框图 (4)3.1精馏塔塔顶压力分程控制系统 (4)3.2精馏塔塔釜温度与蒸汽流量组成串级控制 (5)3.3再沸器温度控制 (6)3.4 回流罐液位单回路控制系统 (7)3.5 塔釜液位单回路控制系统 (7)3.6冷却水缓冲罐液位控制系统 (8)3.7精馏塔流量控制系统 (9)3.8精馏过程总体控制系统 (9)4 精馏塔带控制点的工艺流程图 (12)5 控制器参数整定 (13)5.1 控制规律的选择 (13)5.2 调节器器和调节阀的正反作用选择 (13)5.2.1 调节阀的正反作用选择 (13)5.2.2 调节器器正反作用选择 (14)5.3 参数整定 (15)5.3.1 调节器的参数整定的方法 (15)5.3.2 调节器的参数整定的步骤 (16)6 仪表选型 (16)6.1 测控仪表选型 (16)6.1.1压力变送器 (17)6.1.2温度测量仪表 (18)6.1.3液位测量仪表 (19)6.1.4流量传感器 (20)6.2执行机构选型 (21)结论 (23)参考文献 (24)致谢 (25)1 控制系统的基本任务和要求1.1控制系统的基本任务脱丙烷塔的主要任务是利用混合液中各组分挥发度的不同分离丙烷和丁二烯组分,并达到规定的纯度要求。
塔顶轻组分主要是丙烷,塔低重组分主要是丁二烯。
1.2 控制系统的要求精馏塔的控制目标是:在保证产品质量合格的前提下,使塔的回收率最高、能耗最低,即使总收益最大,成本最小。
精馏过程是在一定约束条件下进行的。
因此,精馏塔的控制要求可从质量指标、产品产量、能量消耗和约束条件四方面考虑。
1.质量指标精馏塔的质量指标是指塔顶或塔底产品的纯度。
通常,满足一端的产品质量,即塔顶或塔底产品之一达到规定纯度,而另一端产品的纯度维持在规定范围内。
所谓产品的纯度,就二元精馏来说,其质量指标是指塔顶产品中轻组分含量和塔底产品中重组分含量,产品组分含量并非越纯越好,原因是,纯度越高,对控制系统的偏离度要求就越高,操作成本的提高和产品的价格并不成比例增加,因此纯度要求应与使用要求适应。
2. 物料平衡控制进出物料平衡,即塔顶、塔底采出量应和进料量相平衡,维持塔的正常平稳操作,以及上下工序的协调工作。
物料平衡的控制是以冷凝罐(回流罐)与塔釜液位一定(介于规定的上、下限之间)为目标的。
3.能量平衡和经济平衡性指标要保证精馏塔产品质量、产品产量的同时,考虑降低能量的消耗,使能量平衡,实现较好的经济性。
4.约束条件精馏过程是复杂传质传热过程。
为了满足稳定和安全操作的要求,对精馏塔操作参数有一定的约束条件。
2 被控对象动态特性分析2.1动态方程的建立精馏塔是一个多变量、时变、非线性对象。
对其动态特性的研究,人们已经做了不少工作。
要建立整塔的动态方程,首先要对精馏塔的各部分:精馏段、提留段各塔板,进料板,塔顶冷凝器,回流罐,塔釜、再沸器等分别建立各自得动态方程。
以图2-1所示二元精馏塔第j 块塔板为例说明如何建立单板动态方程。
总物料平衡:dtdM V V L L j j j j j =-+--+11 (2-1)轻组分平衡:dtx M d y V y V x L x L j j j j j j j j j j ][1111=-+---++(2-2)式中:L 表示回流量,下标指回流液来自哪块板;V 表示上升蒸汽量,下标指来自哪一块板的上升蒸汽;M 指液相的蓄存量;y x 、分别指液相和气相中轻组分的含量,同样下标指回流液及上升蒸汽来自哪块塔板。
由于各部分的动态方程。
可整理得到整塔的动态方程组。
对于整个精馏塔来说是一个多容量的,相互交叉连接的复杂过程,要整理出整塔的传递函数是相当复杂的。
2.2 动态影响分析通过上面的讨论,可知精馏塔动态方程的建立是复杂的,尤其建立一个精确而又实用的动态方程更是具有一定的难度。
因此从定性的角度来分析精馏塔的动态影响,对合理设计控制方案有积极的指导意义。
1)上升蒸汽和回流的影响在精馏塔内,由于上升蒸汽只需克服塔板上极薄覆盖的液相阻力,因此上升蒸汽量的变化几秒钟内就可影响到塔顶,也就是说上升蒸汽流量变化的影响是相当快的。
然而由塔板下流的液相有相当大的滞后。
当回流量增加时,必须先使积存在塔板上的液相蓄存量增加,然后在这增加的液体静压柱的作用下,才使离开塔板的液相速度增加,所以对回流量变化的响应存在着滞后。
由此可得出这样的结论:要使塔上的任何一处(除塔顶塔板外)的气液比发生变化,用再沸器的加热量作为控制手段,要比回流量的响应快。
2)组分滞后的影响V和L的变化,引起D x和B x的变化,都是通过每块塔板上组分之间的平衡施加影响的结果。
由于组分要达到静态平衡需要一定的时间,所以尽管V的变化可较快影响到塔顶,但要使塔顶组分浓度D x变化达到一个新的平衡仍要经过不少的时间。
同样D的变化也是一样。
且需花费更多的时间。
组分滞后的影响是由于塔板上的组分要等到影响组分的液相或气相流量稳定较长时间后才能建立平衡。
随着塔板上液相蓄存量的增加,组分滞后增加。
因此塔板数的增加及回流比的增加,均会造成塔板上液相蓄存量的增加,从而导致组分的滞后也增加。
当再沸器加热量Q的增加而引起V的增加,通过改善气、液接触,可以减少组分的滞后。
3)回流罐蓄液量和塔釜蓄液量引起的滞后影响由物料平衡关系可知:在F一定的情况下,改变D和B均能引起D x和B x的变化。
实际上D的变化是通过L的变化(在回流罐液位不变时)才能影响到塔内的气液平衡,从而控制产品的质量D x和B x。
然而,回流罐有一定的蓄液量,从D 变化到L的变化会产生滞后。
同样B的变化也是通过V的变化(在塔釜液位不变时)才能影响到塔内的气液平衡,从而控制产品的质量D x和B x。
塔釜的蓄液量也会使B的变化到V的变化产生滞后,通常塔釜截面积要比回流罐小得多,所以,由于塔釜蓄液量引起的滞后要比回流罐的蓄液量引起的滞后小。
3 控制系统设计与控制系统方框图3.1精馏塔塔顶压力分程控制系统压力点取在丁醇塔塔顶出口管线上。