对数的概念及其运算

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.4 对数概念及其运算(1)

一、教学内容解析

《对数概念及其运算(1)》是沪教版高中数学课本,高一年级第二学期第四章(下)第一节,属概念性知识,承接第四章(上)指数函数,对数概念及运算是在学习了“指数幂x a的意义及运算性质”、“指数函数的性质”基础上进行的,同时本节也是学习对数函数的准备知识.

对数既可以看作是一个算式,又可以看作是一个数值. 与指数幂具有共同的本质——指数(对数)与幂(真数)之间的对应关系. 对数作为重要而简便的计算技术,被恩格斯誉为17世纪三大重要数学成就之一,在数学和其他许多知识领域都有广泛的应用. 虽然随着计算工具的飞速发展,它的地位已由计算机(器)逐步代替,但对数函数在数学中的地位是不可动摇的.

对数概念及其运算性质的学习过程,可以提升学生的数学抽象、数学运算、直观想象等核心素养,可以融合数学史的发展过程提升数学课堂的人文情怀.

【教学重点】

理解和掌握对数的概念,掌握对数式与指数式的互化.

二、教学目标设置

理解对数的意义,掌握底数、真数、对数的允许值范围;

知道常用对数、自然对数的概念;

掌握对数式与指数式的互化,理解同底的对数式与指数式之间的关系;

经历计算-观察-猜想-论证的过程,掌握对数的常用性质;

会使用计算器计算对数的值;

经历“由具体到抽象”、“从特殊到一般”的研究过程,提升数学抽象、数学运算、直观想象等核心素养.

三、学生学情分析

本节课为借班上课,课前未与学生有过接触.授课对象为上海市一所普通高中的高一普通班,该年级经过入学前的分流,资优生集中在两个“特色班”,普通班学生相对底子比较薄,对待抽象的数学概念往往接受起来比较困难. 授课学

段为高一学年上学期,学生曾利用暑假复习了幂指数的运算性质,已经知道指数幂()x a x Q ∈的意义及其运算性质,但并不理解指数幂()x a x R ∈的意义,不知道指数函数(01)x y a a a =>≠且 的性质,这些不足可能导致学生难以理解对数的意义,以及难以掌握底数、真数、对数的允许值范围. 学生缺乏以函数知识为载体的学习 “对应关系”的经历,缺乏运用“观察-归纳-猜想-论证”的学习经验.

【教学重点】

理解和掌握对数的概念.

四、教学策略分析

张奠宙先生曾提出“概念教学要揭示数学的本质”、“数学概念教学的核心是它的价值、意义和作用”. 本节课是一节概念课,教学策略的制定也是遵循以上基本原则.

1. 基于知识本原的问题设计

对数的发明并非来源于指数,而是源于数学家对简化大数运算的有效工具的追求. 其关键是利用对应关系k q k →:

[]012,,,,,0,1,2,,,n q q q q n ⎡⎤→⎣⎦

并建立起如下对应法则:

(1)m n q q m n ⋅→+;(2)m n q q m n ÷→-;

(3)()n m q m n →⋅;(4)m n

→. 利用上述对应法则降低运算层级,达到简化运算的目的.

以“对应关系k q k →”(而不是运算)为依据引入对数概念,虽然观点高,但“自然度”不够,难度大.

因而,本节课的引入借助历史发展背景——“简化大数运算”的需求——创设情境,但在生成对数概念的过程中,通过数学内外的发展需要,先抽象出数学问题“一般地,我们要找到x ,使得x a N =成立,这样的x 存在吗?”;

再类比为了解决“在n x a = 中,已知,n a ,如何表示x ?”而引入引入符号log a N 表示()0,1b a N a a =>≠且中的b ,从而得到一个数学的研究对

象;接下来从“对应”、“指数幂的逆运算”、“数的表示”这三个角度设计问题,深化理解对数的概念;再通过计算-观察-猜想-论证的过程,应用对数的概念,得出对数的基本性质;最后再回到对数产生的历史,站在现代的视角下,体会对数的应用及其意义.

其中驱动课堂活动的问题设计,遵循以下思维导图:

2.符合学生认知规律的教学活动

一个新概念的生成和掌握不是一蹴而就的,是在充分激发学生探究的兴趣的前提下,不断启发学生对知识的理解,以旧引新,以新强旧,层层递进,体现的是理性思维的作用.

本节课借鉴已有经验,抽象出“对数”这一数学研究对象,发现和提出对数的研究内容,构建研究路径,得出结论,并用于解决问题. 学生经历“现实背景——定义——性质——应用”过程,鼓励学生采用独立思考、自主探究、合作交流等方式展开学习. 具体来说,在充分尊重学生的认知规律下,本节课设置以下四个教学环节:

【环节1:创设情境引入问题】

在环节1中,为了充分激发学生研究的兴趣,借助“光年”计算引入“简化大数运算”的实际需求,但考虑到若是以“对应关系”为依据引入对数概念而不是从运算体系出发而得到,与中学生的认知水平不适应. 故而“简化大数运算”只作为历史背景,在引例中从特殊问题出发,例如28192x =则13x =;一般地,当0M N >、时,满足方程2,10x x M N ==,x =?再抽象出数学问题:01,0,?x a a a N a N x >≠>==当且时,已知方程中,

在环节2中,考虑到学生缺少必要的指数函数作为前继知识,但要回答上述问题,就必须要承认事实:

010,.x a a N a N >≠>=在且时,只要方程总有唯一解

本节课设计了两个具体的教学活动,目的是用比较生动、具象的方式让学生体会结论的正确性. 一个是在研究例子“102018,?x x ==”时用“逐步细分”的想法,借助表格,初步体会x 的存在性;另一个是用几何画板展示指数函数的图像性质.

在这一部分,学生经历从具体到抽象的过程,对培养发现和提出数学问题的能力,发展数学抽象素养都有作用.

【环节2:对数概念的初步认识】

在环节2中,通过类比根号这一数学符号的引入,自然的引入对数这一新的数学符号, 一方面降低了新的数学符号给学生带来的陌生感;另一方面让学生能从对数符号的引入中初步体会对数也是指数幂的逆运算. 此时教师介绍《算法精蕴》中对数、真数名称的由来,从“对应”的角度,让学生初步理解对数概念.

例1及其变式是从“对数是指数幂的逆运算”这个角度让学生理解对数的概念,通过指数到对数、对数到指数的改写,使学生逐渐认识到:01a a >≠当且时,指数式b a N =与对数式log a N b =只是对同一个事实的不同表示形式而已. 例1的前3小题来源自课本例题,第4小题为自编题,除了引出常用对数的概念,还恰好与引入对数概念时所举的例子相同,既解决了

相关文档
最新文档