二元一次方程组单元测试题
(完整版)二元一次方程组试题及答案
第八章二元一次方程组单元知识检测题(时间:90分钟满分:100分)一、选择题(每小题3分,共24分)1.方程2x-1y=0,3x+y=0,2x+xy=1,3x+y-2x=0,x2-x+1=0中,二元一次方程的个数是()A.1个B.2个C.3个D.4个2.二元一次方程组32325x yx y-=⎧⎨+=⎩的解是()A.3217...230122xx xxB C Dy yyy=⎧⎧===⎧⎧⎪⎪⎨⎨⎨⎨==-=⎩⎩⎪⎪=⎩⎩3.关于x,y的二元一次方程组59x y kx y k+=⎧⎨-=⎩的解也是二元一次方程2x+3y=6的解,则k的值是(• )A.k=-34B.k=34C.k=43D.k=-434.如果方程组1x yax by c+=⎧⎨+=⎩有唯一的一组解,那么a,b,c的值应当满足()A.a=1,c=1 B.a≠b C.a=b=1,c≠1 D.a=1,c≠1 5.方程3x+y=7的正整数解的个数是()A.1个B.2个C.3个D.4个6.已知x,y满足方程组45x my m+=⎧⎨-=⎩,则无论m取何值,x,y恒有关系式是()A.x+y=1 B.x+y=-1 C.x+y=9 D.x+y=97.如果│x+y-1│和2(2x+y-3)2互为相反数,那么x,y的值为()A.1122 ...2211 x x x xB C Dy y y y==-==-⎧⎧⎧⎧⎨⎨⎨⎨==-=-=-⎩⎩⎩⎩8.若2,117x ax byy bx by=-+=⎧⎧⎨⎨=+=⎩⎩是方程组的解,则(a+b)·(a-b)的值为()A.-353B.353C.-16 D.16二、填空题(每小题3分,共24分)9.若2x2a-5b+y a-3b=0是二元一次方程,则a=______,b=______.10.若12ab=⎧⎨=-⎩是关于a,b的二元一次方程ax+ay-b=7的一个解,则代数式x2+2xy+y2-1•的值是_________.11.写出一个解为12x y =-⎧⎨=⎩的二元一次方程组__________.12.a -b=2,a -c=12,则(b -c )3-3(b -c )+94=________. 13.已知32111x x y y ==-⎧⎧⎨⎨==⎩⎩和都是ax+by=7的解,则a=_______,b=______. 14.若2x 5a y b+4与-x 1-2b y 2a 是同类项,则b=________.15.方程mx -2y=x+5是二元一次方程时,则m________.16.方程组2332s t s t +-==4的解为________. 三、解答题17.解方程组(每小题4分,共8分)(1)257320x y x y -=⎧⎨-=⎩ 33(2)255(2)4x y x y +⎧=⎪⎨⎪-=-⎩18.已知y=3xy+x ,求代数式2322x xy y x xy y +---的值.(本小题5分)19.已知方程组256351648x y x y ax by bx ay +=--=⎧⎧⎨⎨-=-+=-⎩⎩与方程组的解相同.求(2a+b )2004的值本小题5分) 20.已知x=1是关于x 的一元一次方程ax -1=2(x -b )的解,y=1是关于y 的一元一次方程b (y -3)=2(1-a )的解.在y=ax 2+bx -3中,求当x=-3时y 值.(本小题5分)21.甲、乙两人同解方程组54ax y x by +⎧⎨=⎩ 时,甲看错了方程①中的a ,解得31x y =-⎧⎨=-⎩,乙看错了②中的b ,200620075(410x a y =⎧+-⎨=⎩试求的值.(本小题5分)22.某商场按定价销售某种电器时,每台可获利48元,•按定价的九折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等.求该电器每台的进价、•定价各是多少元?(本小题6分)23.一张方桌由1个桌面,4条桌腿组成,如果1m3木料可以做方桌的桌面50•个或做桌腿300条,现有10m3木料,那么用多少立方米的木料做桌面,•多少立方米的木料做桌腿,做出的桌面与桌腿,恰好能配成方桌?能配成多少张方桌.(本小题6分)24.甲、乙二人在上午8时,自A、B两地同时相向而行,上午10时相距36km,•二人继续前行,到12时又相距36km,已知甲每小时比乙多走2km,求A,B两地的距离.(•本小题6分)25.某中学组织学生春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满,已知45•座客车每日每辆租金为220元,60座客车每日每辆租金为300元.试问:(1)春游学生共多少人?原计划租45座客车多少辆?(2)若租用同一种车,要使每位同学都有座位,怎样租车更合算?(本小题6分)答案:一、选择题1.B 解析:②④是2.C 解析:用加减法,直接相加即可消去y,求得x的值.3.B 解析:解方程组可得x=7k,y=-2k,然后把x,y代入二元一次方程2x+3y=6,即2×7k+3×(-2k)=6,解得k=34,故选B.4.B5.B 解析:正整数解为:1241 x xy y==⎧⎧⎨⎨==⎩⎩6.C 解析:由方程组消去m,得到一个关于x,y的方程,化简这个方程即可.7.C 解析:根据两个非负数互为相反数,判断两个非负数必定都是0,所以有122 2301 x y xx y y+-==⎧⎧⎨⎨+-==-⎩⎩解得8.C 解析:把x=-2,y=1代入原方程组得213 275a b ab a b-+==-⎧⎧⎨⎨-+==-⎩⎩解得,∴(a+b)(a-b)=-16.二、填空题9.-2,-1 解析:根据二元一次方程的定义可得x,y的指数都是1,•由二元一次方程定义,得2512311 a b aa b b-==-⎧⎧⎨⎨-==-⎩⎩解得.10.24 解析:把a=1,b=-2代入原方程可得x+y的值,把a=1,b=-2代入ax+ay-b=•7得x+y=5,因为x2+2xy+y2-1=(x+y)2-1,所以原式=24.11.2024x yx y+=⎧⎨-=-⎩(答案不唯一).12.278解析:由a-b=2,a-c=12可得b-c=-32,再代入(b-c)3-3(b-c)+94=278.13.2 1 解析:本题既考查了二元一次方程的解的概念又考查了二元一次方程组的解法.分别将两组解法代入二元一次方程,可得372 21171a b aa b b+==⎧⎧⎨⎨-+==⎩⎩解这个方程组得.14.-2 解析:本题涉及同类项的概念:所含字母相同,相同字母的指数也相同,• 由此可得5a=1-2b;b+4=2a,将两式联立组成方程组,解出a,b的值,分别为a=1,b=-2,•故b a=-2.15.≠116. 24434342s t s t s t +⎧=⎪=⎧⎪⎨⎨=-⎩⎪=⎪⎩解析:解方程组即可. 三、解答题17.解:(1)257320x y x y -=⎧⎨-=⎩①×3得,6x -3y=15 ③ ②-③,得x=5.将x=5代入①,得y=5,所以原方程组的解为55x y =⎧⎨=⎩. (2)原方程组变为51565104x y x y +=⎧⎨-=-⎩①-②,得y=25.将y=25代入①,得5x+15×25=6,x=0, 所以原方程组的解为025x y =⎧⎪⎨=⎪⎩. 18.解:因为y=3xy+x ,所以x -y=-3xy . 当x -y=-3xy 时,2322()32(3)332()2325x xy y x y xy xy xy x xy y x y xy xy xy +--+-+===------. 解析:首先根据已知条件得到x -y=-3xy ,再把要求的代数式化简成含有x -y 的式子,然后整体代入,使代数式中只含有xy ,约分后得解.19.解:因为两个方程组的解相同,所以解方程组25623562x y x x y y +=-=⎧⎧⎨⎨-==-⎩⎩解得 代入另两个方程得2143a b a a b b +=-=⎧⎧⎨⎨-+=-=-⎩⎩解得,∴原式=(2×1-3)2004=1. 20.解:将x=1,y=1分别代入方程得512(1)3(13)2(1)23a a b b a b ⎧=⎪-=-⎧⎪⎨⎨-=-⎩⎪=⎪⎩解方程组得 所以原式=53x 2+23x -3.当x=-3时,• 原式=53×(-3)2+23×(-3)-3=15-2-3=10. 21.解:把31x y =-⎧⎨=-⎩代入方程②,得4×(-3)=b ·(-1)-2,解得b=10.把54x y =⎧⎨=⎩ 代入方程①,得5a+5×4=15,解得a=-1,所以a 2006+20072006200710()(1)()1010b -=-+-=1+(-1)=0. 22.解:设该电器每台的进价为x 元,定价为y 元.由题意得48,162,6(0.9)9(30)210.y x x y x y x y -==⎧⎧⎨⎨-=--=⎩⎩解得. 答:•该电器每台的进价是162元,定价是210元.解析:打九折是按定价的90%销售,利润=售价-进价.23.解:设用xm 3木料做桌面,ym 3木料做桌腿.由题意,得106,450300 4.x y x x y y +==⎧⎧⎨⎨⨯==⎩⎩解得 (2)6×50=300(张).答:用6m 3木料做桌面,4m 3木料做桌腿恰好能配成方桌,能配成300张方桌.解析:问题中有两个条件:①做桌面用的木料+做桌腿用的木料=10;②4×桌面个数=桌腿个数.24.解:设A 、B 两地相距xkm ,乙每小时走ykm ,则甲每小时走(y+2)km .根据题意,•得2(2)361084(2)3617y y x x y y x y ++=-=⎧⎧⎨⎨++=+=⎩⎩解这个方程组得.答:略. 25.解:(1)设参加春游的学生共x 人,原计划租用45座客车y 辆.根据题意,得451524060(1)5y x x y x y +==⎧⎧⎨⎨-==⎩⎩解这个方程组,得 . 答:春游学生共240人,原计划租45座客车5辆.(2)租45座客车:240÷45≈5.3,所以需租6辆,租金为220×6=1320(元);租60•座客车:240÷60=4,所以需租4辆,租金为300×4=1200(元).所以租用4辆60座客车更合算.解析:租车时最后一辆不管几个人都要用一辆,所以在计算车的辆数时用“收尾法”,而不是“四舍五入”.。
二元一次方程组单元测试
单元测试(一) 二元一次方程组(时间:40分钟 满分:100分)一、选择题(每小题3分,共30分)1.下列方程组中是二元一次方程组的是(D)A.⎩⎪⎨⎪⎧xy =1x +y =3B.⎩⎪⎨⎪⎧5x -2y =31x +1y =3C.⎩⎪⎨⎪⎧2x +z =03x -y =5D.⎩⎪⎨⎪⎧x +y =5x 2+y 3=7 2.将方程3x -4y =5变形为用含x 的代数式表示y 为(A)A .y =3x -54B .y =3x +54C .y =-3x +54D .y =-3x -543.解方程组⎩⎪⎨⎪⎧2x -3y =2,①2x +y =10 ②时,由②-①,得(B) A .2y =8 B .4y =8C .-2y =8D .-4y =84.下列各组数中,不是二元一次方程x +y =10的解的是(C)A.⎩⎪⎨⎪⎧x =-3y =13B.⎩⎪⎨⎪⎧x =12y =-2C.⎩⎪⎨⎪⎧x =2y =5D.⎩⎪⎨⎪⎧x =4y =6 5.已知x ,y 满足方程组⎩⎪⎨⎪⎧x +6y =12,3x -2y =8,则x +y 的值为(A) A .5 B .7 C .9 D .36.方程组⎩⎪⎨⎪⎧x +y =5,x +z =7,y +2z =13的解为(C)A.⎩⎪⎨⎪⎧x =1y =4z =2B.⎩⎪⎨⎪⎧x =3y =2z =1C.⎩⎪⎨⎪⎧x =2y =3z =5D.⎩⎪⎨⎪⎧x =5y =0z =17.已知关于x ,y 的方程x 2m -n -2+4y m +n +1=6是二元一次方程,则m ,n 的值分别为(A)A .1,-1B .-1,1C.13,-43 D .-13,438.关于x ,y 的方程组⎩⎪⎨⎪⎧x +2y =3m ,x -y =9m 的解也是方程3x +2y =34的一组解,那么m 的值是(A)A .2B .-1C .1D .-29.《九章算术》中记载:“今有人共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:现在一些人共同买一个物品,每人出8元,还余3元;每人出7元,还差4元.问共有多少人?这个物品价格是多少元?设共有x 个人,这个物品价格是y 元,则可列方程组为(A)A.⎩⎪⎨⎪⎧8x =y +37x =y -4B.⎩⎪⎨⎪⎧8x =y -37x =y +4C.⎩⎪⎨⎪⎧8x =y +47x =y -3D.⎩⎪⎨⎪⎧8x =y -47x =y +3 10.学校计划购买A 和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元.学校准备将1 500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有(B)A .3种B .4种C .5种D .6种二、填空题(每小题4分,共24分)11.若一个二元一次方程组的解为⎩⎪⎨⎪⎧x =18,y =-10,则这个方程组可以是答案不唯一,如⎩⎪⎨⎪⎧x =18x +y =8. 12.解方程组⎩⎪⎨⎪⎧2x -5=y ,3x -2y =12比较适宜的方法是代入法,解方程组⎩⎪⎨⎪⎧2x +3y =13,3x -4y =-6比较适宜的方法是加减法.13.若⎩⎪⎨⎪⎧x =1,y =2与⎩⎪⎨⎪⎧x =2,y =3都是方程ax -by =3的解,则a =-3,b =-3. 14.已知|2x -3y +4|与(x -2y +5)2互为相反数,则(x -y)2 019=1.15.定义运算“※”,规定x※y=ax +by ,其中a ,b 为常数,且3※2=7,4※-1=13,则a =3,b =-1.16.小林、小芳和小亮三人玩飞镖游戏,各投5支飞镖,规定在同一圆环内得分相同,中靶和得分情况如图,则小亮的得分是_21分.三、解答题(共46分)17.(8分)解下列方程组:(1)⎩⎪⎨⎪⎧x -3y =5,①2x +y =5;② 解:⎩⎪⎨⎪⎧x =207,y =-57.(2)⎩⎪⎨⎪⎧3x -5y =3,①x 2-y 3=1.②解:⎩⎪⎨⎪⎧x =83,y =1.18.(8分)已知关于x ,y 的方程组⎩⎪⎨⎪⎧mx -12ny =12,mx +ny =5的解为⎩⎪⎨⎪⎧x =2,y =3.求m ,n 的值. 解:将⎩⎪⎨⎪⎧x =2,y =3代入⎩⎪⎨⎪⎧mx -12ny =12,mx +ny =5,得⎩⎪⎨⎪⎧2m -32n =12,①2m +3n =5.②②-①,得92n =92,解得n =1. 把n =1代入②,得m =1.所以m =1,n =1.19.(8分)某村经济合作社决定把22吨竹笋加工后再上市销售,刚开始每天加工3吨,后来在乡村振兴工作队的指导下改进加工方法,每天加工5吨,前后共用6天完成全部加工任务,问该合作社改进加工方法前后各用了多少天?解:设改进加工方法前用了x 天,改进加工方法后用了y 天,依题意,得⎩⎪⎨⎪⎧x +y =6,3x +5y =22,解得⎩⎪⎨⎪⎧x =4,y =2. 答:该合作社改进加工方法前用了4天,改进加工方法后用了2天.20.(10分)甲、乙两位同学一起解方程组⎩⎪⎨⎪⎧ax +by =2,cx -3y =-2,甲正确地解得⎩⎪⎨⎪⎧x =1,y =-1,乙仅因抄错了题中的c ,而求得⎩⎪⎨⎪⎧x =2,y =-6.求原方程组中a ,b ,c 的值. 解:把⎩⎪⎨⎪⎧x =1,y =-1代入到原方程组中,得⎩⎪⎨⎪⎧a -b =2,c +3=-2,解得c =-5. 乙仅因抄错了c 而求得⎩⎪⎨⎪⎧x =2,y =-6,但它仍是方程ax +by =2的解. 把⎩⎪⎨⎪⎧x =2,y =-6代入ax +by =2,得2a -6b =2,即a -3b =1.联立⎩⎪⎨⎪⎧a -b =2,a -3b =1,解得⎩⎪⎨⎪⎧a =52,b =12.故a =52,b =12,c =-5.21.(12分)已知某厂家生产三种不同型号的电冰箱,出厂价分别为:甲种每台 1 500元,乙种每台2 100元,丙种每台2 500元.(1)某商场要同时从该厂家购进其中两种不同型号的电冰箱共50台,用去9万元,请你研究一下商场的进货方案;(2)该商场销售一台甲种电冰箱可获利150元,销售一台乙种电冰箱可获利200元,销售一台丙种电冰箱可获利250元,在同时购进两种不同型号的方案中,哪种方案获利最多?解:(1)①设购进甲种电冰箱x 1台,乙种电冰箱y 1台,根据题意,得⎩⎪⎨⎪⎧x 1+y 1=50,1 500x 1+2 100y 1=90 000. 解得⎩⎪⎨⎪⎧x 1=25, y 1=25. 故第一种进货方案是购进甲、乙两种型号的电冰箱各25台.②设购进甲种电冰箱x 2台,丙种电冰箱y 2台,根据题意,得⎩⎪⎨⎪⎧ x 2+y 2=50, 1 500x 2+2 500y 2=90 000.解得⎩⎪⎨⎪⎧x 2=35, y 2=15. 故第二种进货方案是购进甲种电冰箱35台,丙种电冰箱15台.③设购乙种电冰箱x 3台,丙种电冰箱y 3台,根据题意,得⎩⎪⎨⎪⎧x 3+y 3=50, 2 100x 3+2 500y 3=90 000.解得⎩⎪⎨⎪⎧x 3=87.5,y 3=-37.5.不合题意,舍去.故此方案不可行. (2)上述第一种方案可获利:150×25+200×25=8 750(元),第二种方案可获利:150×35+250×15=9 000(元).因为8 750<9 000,所以应选择第二种进货方案,即购进甲种电冰箱35台,丙种电冰箱15台获利最多.。
第五章二元一次方程组单元测试2024-2025学年北师大版数学八年级上册
北师大版八年级上册第五章二元一次方程组一、选择题1.下列方程中,属于二元一次方程的是( )A .523x -=B .31x y +=C .26x y -=D .221x y -=2.方程组的解是31x y x y +=⎧⎨-=-⎩的解是( ) A . B .32x y =-⎧⎨=-⎩ C .21.x y =⎧⎨=⎩, D .23.x y =⎧⎨=⎩, 3.在解二元一次方程组22425x y x y -=⎧⎨-=⎩①②时,下列方法中无法消元的是( ) A .-①② B .由①变形得22x y =+③,将③代入②C .4⨯+①②D .由②变形得245y x =-③,将③代入①4.《张丘建算经》中有这样一首古诗:甲乙隔溪牧羊,二人互相商量;甲得乙羊九只,多乙一倍正当;乙说得甲九只,两人羊数一样;问甲乙各几羊,让你算个半晌,如果设甲有羊x 只,乙有羊y 只,那么可列方程组( )A .B .C .D .5.如图,在天平上放若干苹果和香蕉,其中①②的天平保持平衡,现要使③中的天平也保持平衡,需要在天平右盘中放入砝码( )A .350克B .300克C .250克D .200克6.如图,已知函数y =ax +b 和y =kx 的图象交于点P ,则根据图象可得,关于x 、y 的二元一次方程组y ax b y kx=+⎧⎨=⎩的解是( ) 12x y =⎧⎨=⎩A.4.53xy=⎧⎨=⎩B.31xy=-⎧⎨=⎩C.13xy=⎧⎨=-⎩D.3xy=⎧⎨=⎩7.为清理积压的库存,商场决定打折销售,已知甲、乙两种服装的原单价共为440元,现将甲服装打八折,乙服装打七五折,结果两种服装的单价共为342元,则甲、乙两种服装的原单价分别是A.200元,240元B.240元,200元C.280元,160元D.160元,280元8.上学年初一某班的学生都是两人一桌,其中男生与女生同桌,这些女生占全班女生的,本学年该班新转入4个男生后,男女生刚好一样多.设上学年该班有男生x人,女生y人,则列方程组为()A.B.C.D.9.某校七年级1班学生为了参加学校文化评比,买了22张彩色的卡纸制作如图形(每个图形由两个三角形和一个圆形组成),已知一张彩色卡纸可以剪5个三角形,或3个圆形,要使圆形和三角形正好配套,需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,可列式为()A.B.C.D.10.现有八个大小相同的长方形,可拼成如图①、②所示的图形,在拼图②时,中间留下了一个边长为2的小正方形,则每个小长方形的面积是()二、填空题11.已知3x 2a +b -3-5y 3a -2b +2=1是关于x ,y 的二元一次方程,则(a +b )b = .12. 已知二元一次方程,请写出该方程的一组整数解.关于x ,y 的方程组{x +6y =42x −3y =2k −1的解也是二元一次方程的解,则k 的值为 . 13.若方程组的解是 ,则直线y =-2x +b 与直线y =x -a 的交点坐标是 .14.在方程组中,若未知数x 、y 满足x +y >0,则m 的取值范围是 . 15.我国古代数学书《四元玉鉴》中有这样﹣一个问题:“九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱”.计算可得甜果的个数是 .16.小明与爸爸的年龄和是52岁,爸爸对小明说:“当我的年龄是你现在的年龄的时候,你还要16年才出生呢.”如果设现在小明的年龄是x 岁,爸爸的年龄是y 岁,则可列二元一次方程组为: .17.如图,已知函数y ax b =+和y kx =的图象交于点P ,则二元一次方程组y ax b y kx=+⎧⎨=⎩的解是________.三、解答题18.解方程组:(1). (2).19.已知方程组与有相同的解,求m 和n 值.20.大型客车每辆能坐54人,中型客车每辆能坐36人,现有378人,问需要大、中型客车各几辆才能使每个人上车都有座位,且每辆车正好坐满?21.某校积极开展课外兴趣活动,已知701班同学中,参加球类项目的学生与参加艺术类项目的学生共32人,且参加球类项目的学生比参加艺术类项目的学生多4人.求参加球类和艺术类项目的学生各多少人. 3x y +=22.某班组织班团活动,班委会准备15元钱全部用来购买笔记本和中性笔两种奖品.已知笔记本2元/本,中性笔1元/支,且每种奖品至少买1件.(1)若设购买笔记本x本,中性笔y支,写出y与x之间的数量关系式;(2)有多少种购买方案?请列举所有可能的结果.23.某校八年级师生共368人准备参加社会实践活动,现已预备了A、B两种型号的客车,除司机外A型号客车有49个座,B型号客车有37个座,两种客车共8辆,刚好坐满,求A、B两种型号的客车各用了多少辆?24.如图,已知函数y=x+2的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,4)且与x轴及y=x+2的图象分别交于点C、D,点D的坐标为(23,n)(1)则n=,k=,b=_______.(2)若函数y=kx+b的函数值大于函数y=x+2的函数值,则x的取值范围是_______.(3)求四边形AOCD的面积.25.某商场购进甲、乙两种服装后,都加价40%标价出售,春节期间商场搞优惠促销,决定将甲、乙两种服装分别按标价的八折和九折出售.某顾客购买甲、乙两种服装共付款182元,两种服装标价之和为210元,问这两种服装的标价和进价各是多少元?26.某服装店用6000元购进A,B两种新式服装,按标价售出后可获得毛利润3800元(毛利润=售价﹣进价),这两种服装的进价,标价如表所示.类型价格A型B型进价(元/件)60100标价(元/件)100160(1)求这两种服装各购进的件数;(2)如果A种服装按标价的8折出售,B种服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?27.某公司在手机网络平台推出的一种新型打车方式受到大众的欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/千米计算,耗时费按y元/分钟计算.小聪、小明两人用该打车方式出行,按上述计价规则,他们打车行驶里程数、所用时间及支付车费如下表:里程数(千米)时间(分钟)车费(元)小聪3109小明61817.4(1)求x,y的值;(2)该公司现推出新政策,在原有付费基础上,当里程数超过8千米后,超出的部分要加收0.6元/千米的里程费,小强使用该方式从家打车到郊区,总里程为23千米,耗时30分钟,求小强需支付多少车费.28.植树造林可以减少二氧化碳排放,为实现“碳中和”做出贡献,还可以美化环境:为此某区计划由甲施工队把城区主干道某一段公路的一侧栽上若干棵小叶榕树;若施工队平均每人植5棵小叶榕树,则施工队可以种植的棵数比计划种植的棵数少10棵;若施工队平均每人植6棵小叶榕树,则施工队可以种植的棵数比计划种植的棵数多5棵.求甲施工队有多少人?计划种植的小叶榕树有多少棵?。
第八章 二元一次方程组 (单元测试)【解析版】
第八章二元一次方程组章节测试一、单选题:1.下列方程组中是二元一次方程组的是()A .141y xx v ⎧+=⎪⎨⎪-=⎩B .43624x y y z +=⎧⎨+=⎩C .41x y x y +=⎧⎨-=⎩D .22513x y x y +=⎧⎨+=⎩2.已知方程237x y =+,用含y 的代数式表示x 的是()A .237x y =+B .237x y =-+C .372x y =+D .3722=+x y 3.将13x y -=-代入21x y -=的可得()A .1213x x --⨯=B .()2113x x --=C .2213x x ++=D .2213x x -+=4.将三元一次方程组5x 4y z 03x y 4z 11x y z 2++=⎧⎪+-=⎨⎪++=-⎩①②③,经过①-③和③×4+②消去未知数z 后,得到的二元一次方程组是()A .4x 3y 27x 5y 3+=⎧⎨+=⎩B .4x 3y 223x 17y 11+=⎧⎨+=⎩C .3x 4y 223x 17y 11+=⎧⎨+=⎩D .3x 4y 27x 5y 3+=⎧⎨+=⎩【答案】A【分析】根据题意先得出①-③后的方程,再得到③×4+②的方程,从而得出二元一次方程组.【详解】解:根据题意得:①-③得:4x+3y=2,③×4+②得:7x+5y=3,则三元一次方程组54034112x y z x y z x y z ++=⎧⎪+-=⎨⎪++=-⎩①②③,经过①-③和③×4+②消去未知数z 后,得到的二元一次方程组是432753x y x y +=⎧⎨+=⎩;故选:A .【点睛】本题主要考查了三元一次方程组的解,解题的关键是掌握加减消元法消去未知数项,从而得到二元一次方程组.5.若324432a b a b x y ++--=是关于x ,y 的二元一次方程,则23a b +的值为()A .0B .3-C .3D .6【答案】A【分析】根据二元一次方程的定义,得=1a b +,324=1+-a b ,即可得到关于a 、b 的方程组,从而解出a ,b .【详解】解:∵324432a b a b x y ++--=是一个关于x ,y 的二元一次方程,∴=1324=1a b a b +⎧⎨+-⎩,解得:=3=2a b ⎧⎨-⎩,∴23=660+-=a b ,故选:A .【点睛】本题考查了二元一次方程的定义,二元一次方程必须符合以下三个条件:方程中只含有2个未知数;含未知数项的最高次数为一次;方程是整式方程.6.已知x ,y 满足方程组45x m y m +=⎧⎨-=⎩,则无论m 取何值,x ,y 恒有关系式().A .1x y +=B .1x y +=-C .9x y +=D .9x y -=【答案】C【分析】方程组中的两个方程相加得出x +y +m -5=4+m ,整理后即可得出答案.【详解】解:45x m y m +⎧⎨-⎩=①=②,①+②得:x +y +m -5=4+m ,即x +y =9,故选:C .【点睛】本题考查了二元一次方程组的解和解二元一次方程组,能理解二元一次方程组的解的定义是解此题的关键.7.对于非零的两个实数a ,b ,规定a b am bn ⊗=-,若3⊗(-5)=-15,4⊗(-7)=-28,则(-1)⊗2的值为()A .-13B .13C .2D .-2【答案】B【分析】根据已知规定及两式,确定出m 、n 的值,再利用新规定化简原式即可得到结果.【详解】根据题意得:3⊗(-5)3515m n =+=-,4⊗(-7)4728m n =+=-,∴35154728m n m n +=-⎧⎨+=-⎩,解得:3524m n =⎧⎨=-⎩,∴(-1)⊗22354813m n =--=-+=,故选:B .【点睛】本题考查了新定义运算,涉及了解二元一次方程组等知识,要求学生能理解题目规则,正确列出等式.解决本题时,求出m 、n 是关键.8.如图,宽为50cm 的长方形图案由10个形状大小完全相同的小长方形拼成,其中一个小长方形的面积为()A .2400cmB .2500cmC .2600cmD .24000cm 【答案】A【分析】设小长方形的宽为x cm ,长为y cm ,根据题意列方程组求解即可.【详解】设小长方形的宽为x cm ,长为y cm ,根据题意得504x y y x +=⎧⎨=⎩,解得1040x y =⎧⎨=⎩,∴一个小长方形的面积为21040400cm ⨯=,故选:A .【点睛】本题考查了二元一次方程组的实际应用,能够根据题意列出方程组并准确求解是解题的关键.9.已知关于,x y 的方程组212ax y x by +=⎧⎨-=⎩,甲看错a 得到的解为12x y =⎧⎨=-⎩,乙看错了b 得到的解为11x y =⎧⎨=⎩,他们分别把a b 、错看成的值为()A .5,1a b ==-B .15,2a b ==C .11,2a b =-=D .1,1a b =-=【答案】A【分析】把甲的结果代入第一个方程求出a 的值,把乙的结果代入第二个方程求出b 的值,求解即可.【详解】解:把12x y =⎧⎨=-⎩代入21ax y +=得:41a -=,把11x y =⎧⎨=⎩代入2x by -=得:12b -=,解得:a=5,b=-1,故选A .【点睛】此题主要考查了二元一次方程组的解和解二元一次方程的知识点,解题关键点是看清题意再得出a 、b 的值.10.关于x ,y 的二元一次方程组59x y kx y k+=⎧⎨-=⎩的解也是二元一次方程2x +3y =﹣6的解,则k 的值是()A .﹣34B .34C .43D .﹣43二、填空题:11.请写出一个以21x y =⎧⎨=-⎩为解的二元一次方程:______.【答案】1x y +=(答案不唯一)【分析】根据二元一次方程定义:ax by c +=,令,,a b c 为常数,把21x y =⎧⎨=-⎩代入,解出c 即可.【详解】∵本题答案不唯一,只要写出的二元一次方程的解为21x y =⎧⎨=-⎩即可∴令1a =,1b =,得x y c +=∴把21x y =⎧⎨=-⎩代入方程x y c+=解出1c =∴1x y +=故答案是:1x y +=.【点睛】本题考查解二元一次方程的逆过程、不定方程的定义,灵活掌握二元一次方程定义是解题的关键.12.若11x y =⎧⎨=-⎩是方程组2421ax y bx by a +=⎧⎨-=-⎩的解,则a =_______,b =_______.【答案】3, 1.【分析】所谓方程组的解,指的是该数值满足方程组中的每一方程.把x 、y 的值代入原方程组可转化成关于a 、b 的二元一次方程组,解方程组即可求出a 、b 的值.【详解】把x ,y 的值代入方程组,得2421a b b a -=⎧⎨+=-⎩解得a=3,b=1,故答案为3, 1.【点睛】一要注意方程组的解的定义;二要熟练解方程组的基本方法:代入消元法和加减消元法.13.若()235230x y x y ,-++-+=则x y +的值为______.【答案】-3【分析】根据已知等式,利用非负数的性质列出方程组,求出方程组的解得到x 与y 的值,即可确定出x+y 的值.【详解】∵(3x-y+5)2+|2x-y+3|=0,∴3x-y+5=0,2x-y+3=0,∴x=-2,y=-1.∴x+y=-3.【点睛】本题考查的知识点是:某个数的平方与另一数的绝对值的和等于0,那么平方数的底数为0,绝对值里面的代数式的值为0.14.在y=ax 2+bx+c 中,当x=1时,y=0;当x=2时,y=4;当x=3时,y=10,则当x=4时,y=___.【答案】18【分析】先把x=1时,y=0;x=2时,y=4;x=3时,y=10分别代入y=ax 2+bx+c ,求出a ,b ,c 的值,从而得出等式y=x 2+x-2,再把x=4代入,即可求出y 的值.【详解】把x=1时,y=0;x=2时,y=4;x=3时,y=10分别代入y=ax 2+bx+c 得:04249310a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩,解得:112a b c =⎧⎪=⎨⎪=-⎩,则等式y=x 2+x-2,把x=4代入上式得:y=18.【点睛】本题考查了三元一次方程组的解法,掌握解三元一次方程组的步骤是本题的关键15.已知点()36,415A x y -+,点()5,B y x 关于x 轴对称,则x y +的值是____.【答案】-6【分析】让两点的横坐标相等,纵坐标相加得0,即可得关于x ,y 的二元一次方程组,解值即可.【详解】解:∵点()36,415A x y -+,点()5,B y x 关于x 轴对称,∴3654150x y y x -=⎧⎨++=⎩;解得:33x y =-⎧⎨=-⎩,∴=-6+x y ,故答案为-6.【点睛】本题考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系:关于横轴的对称点,横坐标不变,纵坐标变成相反数.16.若二元一次方程组23151x y ax by -=⎧⎨+=⎩和51cx dy x y -=⎧⎨+=⎩同解,则可通过解方程组_____求得这个解.【答案】23151x y x y -=⎧⎨+=⎩【分析】联立两方程组中不含a 与b 的方程重新组成新的方程组即可.【详解】解:∵二元一次方程组23151x y ax by -=⎧⎨+=⎩和51cx dy x y -=⎧⎨+=⎩同解,∴可通过解方程组23151x y x y -=⎧⎨+=⎩求得这个解,故答案为:23151x y x y -=⎧⎨+=⎩.【点睛】本题主要考查了二元一次方程组同解的问题,解题的关键在于能够熟练掌握相关知识进行求解.17.已知关于x ,y 的二元一次方程组224x y mx y +=⎧⎨+=⎩的解满足x ﹣y =3,则m 的值为_____【答案】1【分析】②−①得到x−y =4−m ,代入x−y =3中计算即可求出m 的值.【详解】解:224x y m x y +=⎧⎨+=⎩①②,②−①得:x−y =4−m ,∵x−y =3,∴4−m =3,解得:m =1,故答案为1【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.若关于x ,y 的方程组322x y x y a +=⎧⎨-=-⎩的解是正整数,则整数a 的值是_____.19.《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系其中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:5头牛、2只羊共值金10两.2头牛、5只羊共值金8两.每头牛、每只羊各值金多少两?设1头牛值金x 两,1只羊值金y 两,则可列方程组为_________.【答案】5210258x y x y +=⎧⎨+=⎩【分析】设1头牛值金x 两,1只羊值金y 两,根据等量关系“①5头牛,2只羊共值10两金;②2头牛,5只羊共价值8两金”,分别列出方程即可求解.【详解】设1头牛值金x 两,1只羊值金y 两,由题意可得,5210258x y x y +=⎧⎨+=⎩.故答案为:5210258x y x y +=⎧⎨+=⎩.【点睛】本题主要考查了二元一次方程组的应用,根据题意得出正确的等量关系是解题关键.20.为鼓励居民节约用气,某省决定对天然气收费实行阶梯气价,阶梯气价划分为两个档级:(1)第一档气量为每户每月30立方米(含30立方米)以内,执行基准价格;(2)第二档气量为每户每月超出30立方米以上部分,执行市场调节价格.小明家5月份用气35立方米,交费112.5元;6月份用气41立方米,交费139.5元,若小明7月份用气29立方米,则他家应交费________元.【答案】87【分析】根据5月份用气35立方米,交费112.5元;6月份用气41立方米,交费139.5元,列出方程组求得气价,再进一步根据7月份用气29立方米选择气价计算即可.【详解】设基准价格为x 元,市场调节价格为y 元,由题意得305112.5,3011139.5,x y x y +=⎧⎨+=⎩解得3,4.5.x y =⎧⎨=⎩7月份用气29立方米,则他家应交费29×3=87元.故答案为87.【点睛】此题主要考查二元一次方程组的应用,解题的关键是根据题意列出方程组.三、解答题:21.解方程:(1)32339x y x y +=⎧⎨-=⎩(用代入消元法)(2)734831x y x y -=⎧⎨-=-⎩(用加减消元法)(3)12343314312x y x y ++⎧=⎪⎪⎨--⎪-=⎪⎩(4)281223x y z x y x z y ++=⎧⎪-=-⎨⎪+=+⎩【答案】(1)56x y =⎧⎨=⎩;(2)513x y =-⎧⎨=-⎩;(3)22x y =⎧⎨=⎩;(4)123x y z =⎧⎪=⎨⎪=⎩【分析】(1)由方程②变形得39y x =-,并代入方程①,解方程即可求得x 的值,再将求得的x 值代入39y x =-中,可求得y 的值,从而得方程组的解;(2)考虑两方程中y 的系数相同,两式相减即可消去未知数y ,求得x ,再将x 的值代入第一个方程即可求得y 的值,从而得方程组的解;(3)先化简方程组中的每一个方程,再用加减法解方程组即可;(4)先消去未知数z ,转化为二元一次方程组,解二元一次方程组求得x 与y 的值,最后求得z 的值即可.【详解】(1)32339x y x y +=⎧⎨-=⎩①②,方程②变形得:39y x =-③,把③代入①,得:()33923x x +-=,解得:5x =,把5x =代入③得:6y =,所以方程组的解为:56x y =⎧⎨=⎩;(2)734831x y x y -=⎧⎨-=-⎩①②,②-①得:5x =-,把5x =-代入①得:3534y --=解得:13y =-所以方程组的解为:513x y =-⎧⎨=-⎩;(3)方程组化简得:432342x y x y -=⎧⎨-=-⎩①②①+②得:770x y -=,即y x =,把y x =代入①得:2x =,∴2y x ==,所以原方程组的解为:22x y ==⎧⎨⎩;(4)原方程组化为:281223x y z x y x y z ++=⎧⎪-=-⎨⎪-+=⎩①②③①×2-③得:613x y +=④,④-②得:714y =,解得:2y =,把2y =代入②得:1x =,把2y =,1x =代入①得:3z =,所以原方程组的解为:123x y z =⎧⎪=⎨⎪=⎩.【点睛】题目主要考查解二元一次方程组和三元一次方程组,解法有代入消元法和加减消元法两种,能够根据方程组的特点,灵活选取适当的方法,熟练而准确地掌握解方程组方法是本题的关键.22.一个两位数,个位数字与十位数字的和为8,个位数字与十位数字互换位置后,所得的两位数比原两位数小18,则原两位数是多少?【答案】原两位数是53.【分析】设原两位数的个位数字为x ,十位数字为y ,根据“个位数字与十位数字的和为8,个位数字与十位数字互换位置后,所得的两位数比原两位数小18”,即可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,再将其代入10y +x 即可得出结论.【详解】解:设原两位数的个位数字为x ,十位数字为y ,根据题意得:()8101018x y y x x y +=⎧⎨+-+=⎩解得:35x y =⎧⎨=⎩∴10y+x =53.答:原两位数是53.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.23.初一级学生去某处旅游,如果每辆汽车坐45人,那么有15个学生没有座位;如果每辆汽车坐60人,那么空出1辆汽车.问一共多少名学生、多少辆汽车.【答案】240名学生,5辆车.【分析】设车数是x ,学生是y 人,依据题意列方程组:()4515601x y x y ⎧⎨-⎩+==即可解.【详解】设车数是x ,学生是y 人,依据题意列方程组:()4515601x y x y ⎧⎨-⎩+==,解方程组可得:5240x y ⎧⎨⎩==.所以一共有学生240人,车5辆.故答案为一共有学生240人,车5辆.【点睛】本题考查的知识点是二元一次方程组的应用,解题关键是弄清题意,找出合适的等量关系,列出方程组.24.已知方程组3247x y mx ny -=⎧⎨+=⎩与231953mx ny y x -=⎧⎨-=⎩有相同的解,求m ,n 的值.【答案】41m n =⎧⎨=-⎩【分析】先解不含m 、n 的方程组,解得x 、y 的值,再代入含有m 、n 的方程组求解即可.【详解】解:∵3247x y mx ny -=⎧⎨+=⎩与231953mx ny y x -=⎧⎨-=⎩有相同的解,∴32453x y y x -=⎧⎨-=⎩和23197-=⎧⎨+=⎩mx ny mx ny 也有相同的解,∴解方程组324{53x y y x -=-=,得21x y =⎧⎨=⎩,代入23197-=⎧⎨+=⎩mx ny mx ny 中得431927m n m n -=⎧⎨+=⎩,∴解方程组得41m n =⎧⎨=-⎩.故答案为41m n =⎧⎨=-⎩.【点睛】本题主要考查了与二元一次方程组的解有关的知识点,解题的关键是准确理解方程组有相同解的情况,组成新的二元一次方程组求解.25.材料:解方程组()1045x y x y y --=⎧⎨--=⎩时,可由①得1x y -=③,然后再将③代入②得415y ⨯-=,求得1y =-,从而进一步求得01x y =⎧⎨=-⎩这种方法被称为“整体代入法”请用这样的方法解方程组()()423324x y x y x y -=⎧⎨--=⎩26.抗洪指挥部的一位驾驶员接到一个防洪的紧急任务,要在限定的时间内把一批抗洪物质从物资局运到水库,这辆车如果按每小时30千米的速度行驶在限定的时间内赶到水库,还差3千米,他决定以每小时40千米的速度前进,结果比限定时间早到18分钟,问限定时间是几小时?物资局仓库离水库有多远?27.为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)请你设计一种方案,不仅每小时支付的租金最少,又恰好能完成每小时的挖掘量?当m=5,n=3时,支付租金:100×5+120×3=860元当m=1,n=6时,支付租金:100×1+120×6=820元.答:有一种租车方案,即租用1辆甲型挖掘机和6辆乙型挖掘机,不仅每小时支付的租金最少,又恰好能完成每小时的挖掘量.点睛:本题考查了二元一次方程组的应用.解决问题的关键是读懂题意,依题意列出等式(或不等式)进行求解.。
(完整版)初二数学二元一次方程组单元测试题
二元一次方程组单元测试题一.填空题:1.已知x5y 4 ,则用 x 的代数式表示y ,得;此中当 x2时, y =。
2.若x2 m15y3n 2 m7 是二元一次方程,则m =; n=。
3.若x a是方程2 x y0的一个解,则 6a3b 2 =。
y b4.已知2a y5b3 x 与4a2 x b2 4 y 的和是一个单项式,则x =, y =。
5.已知x : y 1 : 2 ,则x2 y =,xy =。
y x y6.已知点 A(m 15,15 2n),点 B(3n , 9m ) 对于原点对称,则2m 3n的值是 _____________________ 。
二.选择题:7.已知y kx b ,当x0 时,y1;当 x 1 时,y 2 ,则()A .k 1,b1B .k 1 , b 1C .k 1,b 1D .k 2 , b 1x 个,排球有y个,则8.学校篮球数比排球数的 2 倍少 3 个,篮球数与排球数的比是3:2,要求这两种球的个数。
若设篮球有依据题意,获得的方程组是()A. x 2 y 3B. x 2y 3C. x 2 y 3D. x 2 y 33x 2 y2y 3x3y 2x2x 3y9.已知方程组3x 2 y m 2的解中 x 与y的和为2,则m的值是()2x3y m10.由方程组x 2 y3z0,可得 x :y: z 是()2x3y4z0A1: 2:1B1:( 2):( 1)C1:( 2) :1D1:2:( 1)11、对于x, y的方程组y x m的解知足x y 6 ,则 m 的值为()x2y5mA、 1 B 、 2 C 、 3D、 412.某次数学比赛共出了25 道选择题,评分方法是:答对一道加 4 分,答错一道倒扣 1 分,不答记0 分。
已知小王不答的题比答错的题多 2 道,他的总分是74 分,则他答对了A.18 题 B.19题 C .20题 D .21题( )13.对于 x, y 的二元一次方程组x y5k2x+3y=6 的解,则 k 的值是()x y的解也是二元一次方程9kA . k=-3B . k=3C . k=4D .k=-4 4433 4x3y,144的解 x 和y相等,则 a14.二元一次方程组ax(a2) y_______.7三.解方程组:15.3x y 716. 2 x 7 y 317. 3 y 4x 6 5x 2 y 8 4 x 2 y23x 4 y 1 0x1 y 1183 2 2. 3( 2x y)4( x 2y) 43 .192x 11y 2(3x y)3( x y)312四.解答题:20.已知 a b 17, a b7 ,求 3( a 2 b 2 ) 513 的值。
初二数学二元一次方程组单元练习及答案
二元一次方程组单元练习(时间60分满分100分)一、判断题正确的画“”,错误的画“”每小题2分,共10分5.任何二元一次方程组都有唯一解[ ]二、选择题(每小题5分共30分)1.在下列给出的方程组中是二元一次方程组的是 [ ]3.把方程写成用含x的代数式表示y的形式,以下各式中正确的是 [ ]4.用代入法解方程组以下各式中,代入正确的是 [ ]5.已知,当x=-1时y=-9,当x=-2时,y=-20,当x=1时,y=-4,则关于字母a,b,c的方程中正确的是 [ ]6.某工程队共有55人,每人每天平均可挖土2.5立方米或运土3立方米,为合理分配劳力,使挖出的土及时运走,应分配挖土和运土的人数分别是 [ ]A.25,30 B.35,20 C.30,25 D.20,35三、填空题(每题4分共20分)1.将方程5x+2y=3的含y的项的系数化为与方程3x+4y=1的含y的项的系数为相反数,其结果为________.2.在方程5x-2y+z=3中,若x=-1,y=2,则z=______.3.若已知|x-1|+(2y+1)2+(3z+2)2=0,则2x-y+z=______.4.已知二元一次方程3x+4y=12当x=0时,y=______,当x=______时,y=0.5.已知是关于x、y的二元一次方程组,则m、n的取值范围是________.五、列一次方程(组)解下列应用题(每小题8分共16分)1.汽车在平路上速度为30千米/时,上坡速度为28千米/时,下坡速度为35千米/时,现在走142千米的路程,去时用了4小时30分,回来用了4小时42分,问这段路程上坡路、下坡路、平路各有多少千米?(以去时为标准)2. 有两块合金,第一块含金270克,铜30克;第二块含金400克,铜100克,要得到含金82.5%的合金400克,应当每块合金各取多少克?参考答案一、判断题1.√ 2.√ 3.× 4.√ 5.×二、选择题1.D 2.B 3.D 4.D 5.C 6.C三、填空题1.-10x-4y=-62.43.4.3,45.m≠0或n≠0四、解下列方程组五、列方程(组)解应用题1.解:设上坡路有x千米,下坡路有y千米,平路有z千米根据题意,得。
二元一次方程组测试卷
二元一次方程组测试卷一、选择题(每题3分,共30分)1. 下列方程中,是二元一次方程的是()A. x + (1)/(y)=2B. xy = 9C. 3x - 2y = 4D. x^2+y = 62. 方程2x + y = 9在正整数范围内的解有()A. 1组。
B. 2组。
C. 3组。
D. 4组。
3. 若x = 2 y = 1是关于x、y的二元一次方程ax - 3y = 1的解,则a的值为()A. 2.B. -2.C. 5.D. -5.4. 二元一次方程组x + y = 5 x - y = 3的解是()A. x = 4 y = 1B. x = 1 y = 4C. x = 2 y = 3D. x = 3 y = 25. 用代入法解方程组y = 1 - x x - 2y = 4时,代入正确的是()A. x - 2 - x = 4B. x - 2 - 2x = 4C. x - 2 + 2x = 4D. x - 2 + x = 46. 已知x = m y = n和x = n y = m是方程2x - 3y = 1的解,则m - n的值为()A. 1.B. -1.C. 0.D. 2.7. 若方程组ax + by = 2 ax - by = 2与2x + 3y = 4 4x - 5y = -6的解相同,则a,b的值为()A. a = (23)/(11) b = (4)/(11)B. a = (23)/(11) b = -(4)/(11)C. a = -(23)/(11) b = (4)/(11)D. a = -(23)/(11) b = -(4)/(11)8. 某班有x名学生,其中女生人数占45%,则男生人数为()A. 0.45xB. 0.55xC. (x)/(0.45)D. (x)/(0.55)9. 甲、乙两人练习跑步,如果乙先跑10米,则甲跑5秒就可追上乙;如果乙先跑2秒,则甲跑4秒就可追上乙,设甲的速度为x米/秒,乙的速度为y米/秒,下列方程组正确的是()A. 5x = 5y + 10 4x = 4y + 2yB. 5x - 5y = 10 4x - 2x = 4yC. 5x + 10 = 5y 4x - 4y = 2D. 5x - 5y = 10 4x - 4y = 2y10. 关于x,y的方程组3x - y = m x + my = n的解是x = 1 y = 1,则| m - n|的值是()A. 5.B. 3.C. 2.D. 1.二、填空题(每题3分,共15分)1. 若x^2m - 1+5y^3n - 2m=7是二元一次方程,则m=_ ,n=_ 。
七年级数学(下)第八章《二元一次方程组》单元测试卷附答案
七年级数学(下)第八章《二元一次方程组》单元测试卷(测试时间:90分钟 满分:120分)一、选择题(共10小题,每题3分,共30分)1.方程2x ﹣3y=4,2x+y 3=4,2x-3y=4,2x+3y ﹣z=5,x 2﹣y=1中,是二元一次方程的有( )A .1个B .2个C .3个D .4个 2.如果a 3x b y与﹣a 2y b x+1是同类项,则( )A 、23x y =-⎧⎨=⎩ B. 23x y =⎧⎨=-⎩ C. 23x y =-⎧⎨=-⎩D. 23x y =⎧⎨=⎩3.x 与y 的值相等,则已知程方组54358x y mx y -=⎧⎨+=⎩中m 的值是( ).(A )1 (B )1- (C )1± (D )5±4.甲、乙两个车间工人人数不相等,若甲车间调10人到乙车间,则两车间人数相等;若乙车间调10人到甲车间,则甲车间的人数就是乙车间人数的2倍,求原来甲、乙两车间各有多少名工人?设原来甲车间有x 名工人,乙车间有y 名工人,列以下方程组正确的是( ) A.⎩⎨⎧-==-)10(210y x y x B.⎩⎨⎧-==-10210y x y x C.⎩⎨⎧-=++=-)10(2101010y x y x D.⎩⎨⎧-=++=-10)10(21010y x y x5.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到方程组为( )A .50180x y x y =-⎧⎨+=⎩ B .50180x y x y =+⎧⎨+=⎩ C . 5090x y x y =+⎧⎨+=⎩ D .5090x y x y =-⎧⎨+=⎩6.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x 人,到瑞金的人数为y 人.下面所列的方程组正确的是( )A .3412x y x y +=⎧⎨+=⎩ B .3421x y x y +=⎧⎨=+⎩ C .3421x y x y +=⎧⎨=+⎩ D .23421x y x y +=⎧⎨=+⎩7.已知:21x y =⎧⎨=⎩是方程kx-y=3的解,则k 的值是( )A.2B.-2C.1D.-18.方程组525x y x y =+⎧⎨-=⎩的解满足方程x +y -a=0,那么a 的值是( )A .5B .-5C .3D .-39.已知x 2y 1==⎧⎨⎩是方程组ax by 5bx ay 1+=+=⎧⎨⎩的解,则a ﹣b 的值是( )A.1-B.2C.3D.4 10.下列四组数值中,为方程组⎪⎩⎪⎨⎧=--=--=++231202z y x z y x z y x 的解是( )A 、⎪⎩⎪⎨⎧-===210z y xB 、⎪⎩⎪⎨⎧===101z y xC 、⎪⎩⎪⎨⎧=-==010z y xD 、⎪⎩⎪⎨⎧=-==321z y x二、填空题(共10小题,每题3分,共30分) 11.已知x 2y 1=⎧⎨=-⎩是方程ax 5y 15+=的一个解,则a = 。
二元一次方程组单元检测题(附参考答案)
第七章二元一次方程组单元检测题(附参考答案)(时间90分钟,满分120分)班级____________________ 姓名___________ 学号______一、选择题(每小题3分,共30分)1.在(1)2,3,1,1,(2)(3)(4)1;1;7;7 x x x xy y y y====-=-===-⎧⎧⎧⎧⎨⎨⎨⎨⎩⎩⎩⎩各组数中,是方程2x-y=5的解是() A.(2)(3) B.(1)(3) C.(3)(4) D.(1)(2)(4)2.若x+4y=-15和3x-5y=6有相同的解,则相同的解是().A.33,33...3333 x x x xB C Dy y y y=-===-⎧⎧⎧⎧⎨⎨⎨⎨=-=-==⎩⎩⎩⎩3.若单项式2x2y a+b与﹣x a﹣b y4是同类项,则a,b的值分别为()A.a=3,b=1 B.a=﹣3,b=1 C.a=3,b=﹣1 D.a=﹣3,b=﹣14.已知a,b满足方程组,则a+b的值为()A.﹣4 B.4 C.﹣2 D.25.利用加减消元法解方程组,下列做法正确的是()A.要消去y,可以将①×5+②×2 B.要消去x,可以将①×3+②×(﹣5)C.要消去y,可以将①×5+②×3 D.要消去x,可以将①×(﹣5)+②×26.小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x千克,乙种水果y千克,则可列方程组为()A.B.C.D.7.笼中有鸡和兔,它们的头共有20个,脚共有56只,笼中鸡的数目x•和兔的数目y分别是().A.8101112...121098 x x x xB C Dy y y y====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩8.有一根7米长的钢条,要把它锯成两段,使得每一段的长度都是整数,有()种锯法.A.3 B.4 C.5 D.69.足球比赛的记分规则是:胜一场得3分,平一场得1分,负一场得0分,一支青年足球队参加15场比赛,负4场,共得29分,则这支球队胜了( )(A)2场 (B)5场 (C)7场 (D)9场10.为推进课改,王老师把班级里40名学生分成若干小组,每小组只能是5人或6人,则有几种分组方案()A.4 B. 3 C.2 D. 111.下列方程:①;②;③;④;⑤;⑥.其中是二元一次方程的是()。
(完整版)人教版第八章二元一次方程组单元测试题(含答案解析)
第八章二元一次方程组单元测试题题号一二三总分得分一、选择题(本大题共9 小题,共27 分)1.方程 2x- =0, 3x+y=0,2x+xy=1, 3x+y-2x=0, x2-x+1=0 中,二元一次方程的个数是()A. 5个B. 4个C. 3个D. 2个2. 假如 3x m+n+5y m-n-2=0是一个对于x、y 的二元一次方程,那么()A. B. C. D.3.以下各方程的变形,正确的选项是()A.由 3+x=5,得 x=5+3 C. 由y=0,得y=2B.D.由7x= ,得 x=49由3=x-2,得 x=2+34. 假如 x=y,那么以下等式不必定成立的是()A. x+a=y+aB. x-a=y-aC. ax=ayD.=5.已知甲、乙两种商品的进价和为100 元,为了促销而打折销售,若甲商品打八折,乙商品打六折,则可赚 50 元,若甲商品打六折,乙商品打八折,则可赚 30 元,甲、乙两种商品的订价分别为()A. 50元、150元B. 50元、100元C. 100元、50元D. 150元、50元6.把方程 x=1 变形为 x=2,其依照是()A. 分数的基天性质B. 等式的性质1C. 等式的性质2D. 解方程中的移项7.用“加减法”将方程组中的 x 消去后获得的方程是()A. 3y=2B. 7y=8C. -7y=2D. -7y=88.已知 2x-3y=1,用含 x 的代数式表示 y正确的选项是()A. y= x-1B. x=C. y=D. y=-- x9.在一次野炊活动中,小明所在的班级有x 人,分红 y 组,若每组 7 人,则余下 3 人;若每组 8 人,则缺 5 人,求全班人数的正确的方程组是()A. B. C. D.二、填空题(本大题共 6 小题,共 24 分)10.对于 x、y 方程( k2-1)x2+( k+1)x+2 ky=k+3,当 k= ______ 时,它为一元一次方程,当 k= ______ 时,它为二元一次方程.11.若( 2x-y)2与|x+2 y-5|互为相反数,则(x-y)2005= ______ .12.二元一次方程组的解是 ______ .13.一个两位数的十位数字与个位数字之和等于5,十位数字与个位数字之差为1,设十位数字为 x,个位数字为y,则用方程组表示上述语言为 ______ .14.方程 x( x+3 ) =0 的解是 ______ .15.由方程组,能够获得 x+y+z的值是 ______ .三、计算题(本大题共8 小题,共 49 分)16.解方程组:17. 解方程组:18.解方程组.19. 五一时期,春华旅行社组织一个由成人和学生共20 人构成的旅行团到凤凰古城旅游,景区门票售票标准是:成人门票148 元 /张,学生门票20 元 /张,该旅行团购置门票共花销 1936 元,问该团购置成人门票和学生门票各多少张?20.为迎接 6 月 5 日“世界环境日”,某校团委展开“光盘行动”,提议学生截止餐桌上的浪费.该校七年级(1)、( 2)、( 3)三个班共128 人参加了活动,此中七(3)班有 38 人参加,七( 1)班参加的人数比七(2)班多 10 人,请问七( 1)班和七( 2)班各有多少人参加“光盘行动”?21. 广安某水果店计划购进甲、乙两种新出产的水果共140 千克,这两种水果的进价、售价如表所示:进价(元 /千克)售价(元/千克)甲种58乙种913( 1)若该水果店估计进货款为1000 元,则这两种水果各购进多少千克?( 2)若该水果店决定乙种水果的进货量不超出甲种水果的进货量的 3 倍,应如何安排进货才能使水果店在销售完这批水果时赢利最多?此时收益为多少元?22. 某旅行社组织一批旅客出门旅行,原计划租用45座客车若干辆,但有15 人没有座位;若租用相同数目的60 座客车,则多出一辆车,且其他客车恰巧坐满.已知45 座客车租金为每辆 220 元, 60 座客车租金为每辆300 元,问:( 1)这批旅客的人数是多少?原计划租用多少辆45座客车?( 2)若租用同一种车,要使每位旅客都有座位,应当如何租用才合算?23. 为了更好治理岳阳河水质,安岳县污水办理企业计划购置10台污水办理设施,现有A、 B 两种型号的设施,此中每台的价钱、月办理污水量如表:A 型B 型价钱(万元 /台)m n办理污水量(吨/250200月)经检查:买一台 A 型比购 B 型多 3 万元,买 2 台 A 型比购置 3 台 B 型少 5 万元.( 1)求 m, n 的值;( 2)经估算,购置设施自己不超出117 万元,你以为有哪几种购置方案?( 3)在( 2)的条件下,若每个月要求办理无水不低于2050 吨,为节俭资本,请你为企业设计一种最省钱的方案.答案和分析【答案】1.D2.B3. D4. D5. D6. C7. D8.C9.A10.-1; 111.-112.13.14.0 或 -315.316. 解:,① ×3+②得: 16x=48,解得: x=3,把x=3 代入①得: y=2.因此原方程组的解为.17. 解:,① ×2+②得: 9x=18,解得: x=2,把x=2 代入②得: y=1,则方程组的解为.18. 解:方程组整理得:,①-② ×2 得: x=-1,把x=-1 代入②得: y=5 ,则方程组的解为.19.解:设购置成人门票 x 张,学生门票 y 张,由题意得解得答:购置成人门票12 张,学生门票8 张.20. 解:设七(1)班有x人参加“光盘行动”,七(2)班有 y 人参加“光盘行动”,,解得,,即七( 1)班有 50 人参加“光盘行动”,七(2)班有 40 人参加“光盘行动”.21.解:( 1)设购进甲种水果 x 千克,则购进乙种水果( 140-x)千克,依据题意可得:5x+9 ( 140-x) =1000 ,解得: x=65,∴140-x=75(千克),答:购进甲种水果 65 千克,乙种水果 75千克;( 2)由图表可得:甲种水果每千克收益为: 3 元,乙种水果每千克收益为: 4 元,设总收益为W,由题意可得出:W=3 x+4( 140-x) =-x+560,故W 随 x 的增大而减小,则 x 越小 W 越大,由于该水果店决定乙种水果的进货量不超出甲种水果的进货量的3 倍,∴140-x≤3x,解得: x≥35,∴当 x=35 时, W 最大 =-35+560=525 (元),故140-35=105 ( kg).答:当甲购进35 千克,乙种水果105 千克时,此时收益最大为525 元.22. 解:(1)设这批旅客的人数是x 人,原计划租用45 座客车 y 辆.依据题意,得,解这个方程组,得.答:这批旅客的人数240 人,原计划租45 座客车 5 辆;( 2)租 45 座客车: 240÷45≈5.(3辆),因此需租 6 辆,租金为220×6=1320(元),租 60 座客车: 240÷60=4 (辆),因此需租 4 辆,租金为300×4=1200 (元).答:租用 4 辆 60 座客车更合算.23. 解:(1)由题意得,解得;( 2)设购置污水办理设施 A 型设施 x 台, B 型设施( 10-x)台,依据题意得14x+11( 10-x)≤117,解得 x≤∵x 取非负整数,∴x=0, 1, 2,∴有三种购置方案:①A 型设施 0 台, B 型设施 10 台;② A 型设施 1 台, B 型设施 9 台;③ A 型设施 2 台, B 型设施 8 台;( 3)由题意: 250x+200( 10-x)≥2050,解 x≥1,又∵x≤,∴1≤x≤,而 x 取非负整数,∴x 为 1, 2,当x=1 时,购置资本为: 14×1+11×9=113 (万元),当x=2 时,购置资本为: 14×2+11×8=116 (万元),∴为了节俭资本,应选购 A 型设施 1 台, B 型设施 9 台.【分析】1.解: 2x- =0 是分式方程,不是二元一次方程;3x+y=0 是二元次方程;2x+xy=1 不是二元一次方程;3x+y-2x=0 是二元一次方程;2x -x+1=0 不是二元一次方程.含有两个未知数,而且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.本题主要考察的是二元一次方程的定义,掌握二元一次方程的定义是解题的重点.2. 解:依题意得:,解得.应选: B.依据二元一次方程的定义进行判断即可.本题考察了二元一次方程的定义,二元一次方程一定切合以下三个条件:(1)方程中只含有 2 个未知数;( 2)含未知数项的最高次数为一次;(3)方程是整式方程.3. 解:A、两边加的数不一样,故 A 不切合题意;B、两边乘的数不一样,故 B 不切合题意;C、左侧乘2,右侧加 2,故 C 不切合题意;D 、两边都加2,故 D 切合题意;应选: D.依据等式的性质,可得答案.本题考察了等式的性质,熟记等式的性质是解题重点.4.解: A、等式 x=y 的两边同时加上 a,该等式仍旧成立;故本选项正确;B、等式 x=y 的两边同时减去a,该等式仍旧成立;故本选项正确;C、等式 x=y 的两边同时乘以a,该等式仍旧成立;故本选项正确;D 、当 a=0 时,、无心义;故本选项错误;应选: D.利用等式的性质对每个式子进行变形即可找出答案.本题主要考察等式的性质.运用等式性质 2 时,一定注意等式两边所乘的(或除以的)数或式子不为0,才能保证所得的结果还是等式.5.解:设甲种商品的订价分别为x 元,则乙种商品的订价分别为y 元,依据题意得:,解得:.应选 D.设甲种商品的订价分别为x 元,则乙种商品的订价分别为y 元,依据“若甲商品打八折,乙商品打六折,则可赚 50元,若甲商品打六折,乙商品打八折,则可赚30 元”可得出对于 x、 y 的二元一次方程组,解方程组即可得出结论.本题考察认识二元一次方程组,依据数目关系列出二元一次方程组是解题的重点.6. 解:把方程x=1变形为x=2,其依照是等式的性质2,应选 C利用等式的基天性质判断即可.本题考察认识一元一次方程,以及等式的性质,娴熟掌握等式的性质是解本题的重点.7. 解:,①-②得: -7y=8,应选 D.方程组中双方程相减消去x 获得结果,即可做出判断.本题考察认识二元一次方程组,娴熟掌握运算法例是解本题的重点.8.解:方程 2x-3y=1 ,解得: y=.应选 C.将 x 看做已知数求出y 即可.本题考察认识二元一次方程,解题的重点是将x 看做已知数求出y.9.解:依据每组 7 人,则余下 3 人,得方程 7y+3= x,即 7y=x-3;依据每组8 人,则缺 5 人,即最后一组差 5 人不到 8 人,得方程8y-5=x,即 8y=x+5.可列方程组为:.应选: A.本题中不变的是全班的人数x 人.等量关系有:①每组 7 人,则余下 3 人;②每组 8 人,则缺 5 人,即最后一组差 5 人不到 8 人.由此列出方程组即可.本题考察二元一次方程组的实质运用,理解题目中不变的是全班的人数,用不一样的代数式表示全班的人数是本题的重点.10.解:由于方程为对于 x、 y 的一元一次方程,因此:①,解得 k=-1 ;②,无解,因此 k=-1 时,方程为一元一次方程.依据二元一次方程的定义可知,解得k=1,因此 k=1 时,方程为二元一次方程.故答案为: -1; 1.( 1)若方程为对于x、 y 的一元一次方程,则二次项系数应为0,而后 x 或 y 的系数中有一个为0,另一个不为0 即可.( 2)若方程为对于x、y 的二元一次方程,则二次项系数应为0 且 x 或 y 的系数不为0.考察了一元一次方程与二元一次方程的定义,本题比较简单,解答本题的重点是熟知一元一次方程与二元一次方程的定义.11.解:∵( 2x-y)2与|x+2y-5|互为相反数,∴( 2x-y)2+|x+2y-5|=0,∴,解得,,∴( x-y)2005=( 1-2)2005=-1 ,故答案为 -1.依据非负数的性质列出方程求出x、 y 的值,代入所求代数式计算即可.本题考察了非负数的性质:几个非负数的和为0 时,这几个非负数都为0.12. 解:,把①代入②得:x+2x=3,即 x=1,把x=1 代入①得: y=2,则方程组的解为,故答案为:方程组利用代入消元法求出解即可.本题考察认识二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13. 解:由题意,有.题中有两个等量关系:十位数字+个位数字 =5;十位数字 -个位数字 =1.依据这两个等量关系即可列出方程组.读懂题意,找出等量关系是列方程解应用题的重点.本题比较简单.注意十位数字与个位数字之差即为十位数字-个位数字,而不是个位数字 -十位数字.14.解:x(x+3)=0 ,∴x=0, x+3=0 ,∴方程的解是x1=0, x2=-3 .故答案为: 0 或 -3.推出方程x=0, x+3=0,求出方程的解即可.本题主要考察对解一元一次方程,解一元二次方程,等式的性质等知识点的理解和掌握,能把一元二次方程转变成一元一次方程是解本题的重点.15.解:∵① +② +③,得2x+2 y+2z=6,∴x+y+z=3,故答案为: 3.依据方程组,三个方程相加,即可获得x+y+z的值.本题考察三元一次方程组的解,解得重点是明确解三元一次方程组的解答方法.16.用加减法,先把 y 的系数转变成相同的或相反的数,而后双方程相加减消元,从而求出 x 的值,而后把x 的值代入一方程求y 的值.解二元一次方程组的基本思想是消元.消元的方法有代入法和加减法,本题主要考察了加减消元法.17.方程组利用加减消元法求出解即可.本题考察认识二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.方程组整理后,利用加减消元法求出解即可.本题考察认识二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.设购置成人门票 x 张,学生门票 y 张,则由“成人和学生共 20 人”和“购置门票共花销1936 元”列出方程组解决问题.本题考察二元一次方程组的实质运用,找出题目包含的数目关系是解决问题的重点.20.依据题意能够列出相应的二元一次方程组,从而能够解答本题.本题考察二元一次方程组的应用,解题的重点是明确题意,列出相应的二元一次方程组.21. (1)依据计划购进甲、乙两种新出产的水果共140 千克,从而利用该水果店估计进货款为1000 元,得出等式求出即可;(2)利用两种水果每千克的收益表示出总收益,再利用一次函数增减性得出最大值即可.主要考察了一次函数的应用以及一元一次不等式的应用和一元一次方程的应用等知识,利用一次函数增减性得出函数最值是解题重点.22.145×45座客车辆数+15=旅客总数,60× 45座客车辆数()本题中的等量关系为:(-1) =旅客总数,据此可列方程组求出第一小题的解;(2)需要分别计算 45 座客车和 60 座客车各自的租金,比较后再弃取.本题考察二元一次方程组的实质运用,找出题目包含的数目关系是解决问题的重点.23.( 1)利用买一台 A 型比购 B 型多 3 万元,买 2 台 A 型比购置 3 台 B 型少 5 万元可列二元一次方程组,而后解方程组可获得m、 n 的值;( 2)设购置污水办理设施 A 型设施 x 台, B 型设施( 10-x)台,利用购置设施自己不超出117 万元列不等式 14x+11( 10-x)≤117,解得 x≤,而后 x 取非负整数可获得购置方案;( 3)利用每个月要求办理无水不低于2050 吨列不等式250x+200( 10-x)≥2050,解 x≥1,加上 x≤,则 1≤x≤,再 x 取非负整数获得x 为 1, 2,而后比较x=1 和 x=2 的购置资本可获得最省钱的方案.本题考察了一元一次不等式的应用:由实质问题中的不等关系列出不等式,成立解决问题的数学模型,经过解不等式能够获得实质问题的答案.。
二元一次方程组及其应用单元测试题4套(含答案)
⼆元⼀次⽅程组及其应⽤单元测试题4套(含答案)⼆元⼀次⽅程组单元检测1姓名:时间:成绩:⼀、选择题(共12题每题3分共36分)⼀、根据图1所⽰的计算程序计算y 的值,若输⼊2=x ,则输出的y 值是() A .0 B .2- C .2 D .4 ⼆、将⽅程121=+-y x 中含的系数化为整数,下列结果正确的是() A .442-=-y x B .442=-y x C .442-=+y x D .442=+y x 三、如果==21y x 是⼆元⼀次⽅程组?=+=+21ay bx by ax 的解,那么a ,b 的值是() A .??=-=01b a B .==01b a C .==10b a D .?-==10b a 四、如果⼆元⼀次⽅程组?=+=-a y x ay x 3的解是⼆元⼀次⽅程0753=--y x 的⼀个解,那么a 的值是( )A .3B .5C .7D .9五、如果3251b a 与y x x b a ++-141是同类项,则x ,y 的值是( )A .??==31y x B .==22y x C .==21y x D .==32y x六、若2a 2s b 3s -2t 与-3a 3t b 5是同类项,则( ) A .s =3,t =-2 B .s =-3,t =2 C .s =-3,t =-2 D .s =3,t =2 七、⽅程3y +5x =27与下列的⽅程________所组成的⽅程组的解是??==43y x ( )A .4x +6y =-6B .4x +7y -40=0C .2x -3y =13D .以上答案都不对⼋、⼆元⼀次⽅程组??=-=+ky x k y x 7252的解满⾜⽅程31x -2y =5,那么k 的值为( )A .53B .35C .-5D .1九、甲、⼄两地相距360千⽶,⼀轮船往返于甲、⼄两地之间,顺流⽤18⼩时,逆流⽤24⼩时,若设船在静⽔中的速度为x 千⽶/时,⽔流速度为y 千⽶/时,在下列⽅程组中正确的是 ( )A .=-=+360)(24360)(18y x y xB .??=+=+360)(24360)(18y x y xC .=-=-360)(24360)(18y x y xD .=+=-360)(24360)(18y x y x⼗、在等式b kx y +=中,当x=0时,y=1-;当x=1-时,y=0,则这个等式是( )A .1--=x yB .x y -=C .1+-=x yD .1+=x y ⼗⼀、如果??=+-=-+0532082z y x z y x ,其中xyz≠0,那么x :y :z=( )A .1:2:3B .2:3:4C .2:3:1D .3:2:1 ⼗⼆、如果⽅程组??=-+=+5)1(21073y a ax y x 的解中的x 与y 的值相等,那么a 的值是( )A .1B .2C .3D .4 ⼆、填空题(共4题每题3分共12分)⼗三、已知42+=a x ,32+=a y ,如果⽤x 表⽰y ,则y = .⼗四、在等式5×⼝+3×Δ=4的⼝和Δ处分别填⼊⼀个数,使这两个数互为相反数.⼗五、如果2006200520044321=+-+-+n m n m y x 是⼆元⼀次⽅程,那么32n m +的值是.⼗六、如图,点A 的坐标可以看成是⽅程组的解.三、解答题(共7题 6+6+7+7+8+8+10 共52分)⼗七、(1)??-==+73825x y y x (2)?=-=+423732y x y x⼗⼋、若⽅程组??=+=-31y x y x 的解满⾜⽅程组?=+=-84by ax by ax ,求a ,b 的值.⼗九、定义“*”:(1)(1)x yA B x A BA B *=++++,已知321=*,432=*,求43*的值.⼆⼗、某⽔果批发市场⾹蕉的价格如下表购买⾹蕉数(千克) 不超过20千克 20千克以上但不超过40千克 40千克以上每千克的价格6元5元4元张强两次共购买⾹蕉50千克,已知第⼆次购买的数量多于第⼀次购买的数量,共付出264元,请问张强第⼀次,第⼆次分别购买⾹蕉多少千克?⼆⼗⼀、为保护学⽣视⼒,课桌椅的⾼度都是按⼀定的关系配套设计的,研究表明:假设课桌的⾼度y (cm)是椅⼦的⾼度x (cm )的⼀次函数,下表列出两套符合条件的课桌椅的⾼度:第⼀套第⼆套椅⼦的⾼度X(cm) 40.0 37.0 桌⼦⾼度y(cm)75.070.2(1)请确定x y 与的函数关系式;(2)现有⼀把⾼39cm 的椅⼦和⼀张⾼为78.2cm 的课桌,它们是否配套?为什么?⼆⼗⼆、(1)求⼀次函数的坐标的交点的图象与的图象P l x y l x y 2112122-=-=. (2)求直线1l 与y 轴交点A 的坐标; 求直线2l 与X 轴的交点B 的坐标; (3)求由三点P 、A 、B 围成的三⾓形的⾯积.⼆⼗三、阅读下列解题过程,借鉴其中⼀种⽅法解答后⾯给出的试题:问题:某⼈买13个鸡蛋,5个鸭蛋、9个鹅蛋共⽤去了9.25元;买2个鸡蛋,4个鸭蛋、3个鹅蛋共⽤去了3.20元.试问只买鸡蛋、鸭蛋、鹅蛋各⼀个共需多少元.分析:设买鸡蛋,鸭蛋、鹅蛋各⼀个分别需x 、y 、z 元,则需要求x+y+z 的值.由题意,知----=++---=++)2(20.3342)1(25.99513z y x z y x ;视x 为常数,将上述⽅程组看成是关于y 、z 的⼆元⼀次⽅程组,化“三元”为“⼆元”、化“⼆元”为“⼀元”从⽽获解.解法1:视x 为常数,依题意得?-----=+----=+)4(220.334)3(1325.995x z y x z y解这个关于y 、z 的⼆元⼀次⽅程组得??-=+=xz xy 2105.0于是05.12105.0=-+++=++x x x z y x .评注:也可以视z 为常数,将上述⽅程组看成是关于x 、y 的⼆元⼀次⽅程组,解答⽅法同上,你不妨试试.分析:视z y x ++为整体,由(1)、(2)恒等变形得 25.9)2(4)(5=++++z x z y x , 20.3)2()(4=+-++z x z y x .解法2:设a z y x =++,b z x =+2,代⼊(1)、(2)可以得到如下关于a 、b 的⼆元⼀次⽅程组??----=----=+)6(20.34)5(25.945b a b a由⑤+4×⑥,得05.2221+a ,05.1=a .评注:运⽤整体的思想⽅法指导解题.视z y x ++,z x +2为整体,令z y x a ++=,z x b +=2,代⼈①、②将原⽅程组转化为关于a 、b 的⼆元⼀次⽅程组从⽽获解.请你运⽤以上介绍的任意⼀种⽅法解答如下数学竞赛试题:购买五种教学⽤具A 1、A 2、A 3、A 4、A 5的件数和⽤钱总数列成下表:那么,购买每种教学⽤具各⼀件共需多少元?品名次数 A 1 A 2 A 3 A 4 A 5 总钱数第⼀次购买件数 l 3 4 5 6 1992 第⼆次购买件数l 5 7 9 11 2984参考答案⼀、选择题1.D2.A3.B4.C5.C6.D7.B8.B9.A10.A11.C12.B ⼆、填空题 13.x -1 14.2,-2 15.9 16.??+--=512x y x y 三、解答题17、(1){21=-=x y (2){21==x y 18、解:解⽅程组??=+=-31y x y x 得:{21==x y将{21==x y 分别代⼊⽅程组=+=-84by ax by ax 得{8242=+=-b a b a 解这个⽅程组得{32==a b所以3=a 、2=b 19.?-==13275Y X ,351442013277543=-=*.20.解:设张强第⼀次购买了⾹蕉x 千克, 第⼆次购买了⾹蕉y 千克,由题意可知025x <<, ①当02040x y <≤,≤时,由题意可得,=+=+5026456y x y x 解得{1436==x y②当02040x y <≤,>时,由题意可得?=+=+5026446y x y x 解得{3218==x y (不合题意,舍去)③当025x <<时,则2530y <<,则张强花的钱数为5X+5Y=5×50=250<264(不合题意,舍去) 所以张强第⼀次买14千克⾹蕉,第⼆次买36千克⾹蕉. 21.解:(1)设y kx b =+,根据题意得{750.402.700.37=+=+b k b k 解得{6.111==k b 所以116.1+=k y(2)不配套,因为:当X=39时,由116.1+=k y 得y=1.6×39+11=73.4≠78 所以不配套.22、解:(1)由-=-=22121x y x y 解得:??=-=3232x y 所以点P 的坐标为-32,32,(2)当X=0时,由Y=2×0-2=-2,所以点A 坐标是(0,-2). 当Y=0时,由0=-21X-1,得X=2,所以点B 坐标是(2,0). (3)如图112222222233PAB S =??-=△23、1000元⼆元⼀次⽅程单元检测2姓名:时间:成绩:⼆⼗四、选择题(共12题每题3分共36分) 1. 已知下列⽅程组:(1)-==23y y x ,(2)=-=+423z y y x ,(3)=-=+0131y x y x ,(4)=-=+0131y x y x ,其中属于⼆元⼀次⽅程组的个数为() A.1 B.2 C.3 D.42. 已知532b a x y +与2244a b x y --是同类项,则a b 的值为()A.2B.-2C.1D.-13. 已知⽅程组-=-=+1242m ny x ny mx 的解是-==11y x ,那么m 、n 的值为()A.?-==11n m B.==12n m C.==23n m D.==13n m4. 三元⼀次⽅程组??=+=+=+651x z z y y x 的解是()A.??===501z y x B. 015x y z ?=?=??=?C.===401z y xD.===014z y x5. 若⽅程组=+=-+14346)1(y x y a ax 的解x 、y 的值相等,则a 的值为()A.-4B.4C.2D.16. 若关于x 、y 的⽅程组?=-=+k y x ky x 73的解满⾜⽅程2x +3y =6,那么k 的值为()A.-23B.23C.-32D.-237. 若⽅程y =kx +b 当x 与y 互为相反数时,b ⽐k 少1,且x =21,则k 、b 的值分别是() A.2,1 B.32,35 C.-2,1 D.31,-328. 某班学⽣分组搞活动,若每组7⼈,则余下4⼈;若每组8⼈,则有⼀组少3⼈.设全班有学⽣x ⼈,分成y 个⼩组,则可得⽅程组()A.=-=+y x y x 3847B.=++=x y x y 3847C.+=-=3847x y x yD.+=+=3847x y x y9. 某车间56名⼯⼈,每⼈每天能⽣产螺栓16个或螺母24个,设有名⼯⼈⽣产螺栓,其它⼯⼈⽣产螺母,每天⽣产的螺栓和螺母按1:2配套,所列⽅程正确的是()A.=?=+y x y x 2416256B.=?=+y x y x 1624256C.==+y x y x 241628D.?==+y x y x 16245610. 某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲、⼄两种奖品共 30件,其中甲种奖品每件16元,⼄种奖品每件12元,求甲⼄两种奖品各买多少件?该问题中,若设购买甲种奖品x 件,⼄种奖品y 件,则⽅程组正确的是()A.301216400x y x y +=??+=?B.301612400x y x y +=??+=?C. 121630400x y x y +=??+=?D. 161230400x y x y +=??+=?11. 灾后重建,四川从悲壮⾛向豪迈.灾民发扬伟⼤的抗震救灾精神,桂花村派男⼥村民共15 ⼈到⼭外采购建房所需的⽔泥,已知男村民⼀⼈挑两包,⼥村民两⼈抬⼀包,共购回15 包.请问这次采购派男⼥村民各多少⼈?A .男村民3⼈,⼥村民12⼈B .男村民5⼈,⼥村民10⼈C .男村民6⼈,⼥村民9⼈D .男村民7⼈,⼥村民8⼈12. 在早餐店⾥,王伯伯买5颗馒头,3颗包⼦,⽼板少拿2元,只要50元.李太太买了 11颗馒头,5颗包⼦,⽼板以售价的九折优待,只要90元.若馒头每颗x 元,包⼦每颗y 元,则下列哪⼀个⼆元⼀次联⽴⽅程式可表⽰题⽬中的数量关系?A .=++=+9.09051125035y x y xB .÷=++=+9.09051125035y x y xC .=+-=+9.09051125035y x y xD .÷=+-=+9.09051125035y x y x⼆⼗五、填空题(共4题每题3分共12分)13. 已知⼆元⼀次⽅程1213-+y x =0,⽤含y 的代数式表⽰x ,则x =_________;当y =-2时,x =.14. 在(1)-==23y x ,(2)-==354y x ,(3)1472x y ?==??这三组数值中,_____是⽅程组 x -3y =9的解,______是⽅程2 x +y =4的解,______是⽅程组?=+=-4293y x y x 的解.15. 已知=-=54y x ,是⽅程41x +2 my +7=0的解,则m =_______.16. 若⽅程组=-=+137by ax by ax 的解是-=-=12y x ,则a =_________,b =_______.⼆⼗六、解答题(共7题 6+6+7+7+8+8+10 共52分(此处分值可以根据具体情况来定))17. -=-=-.557832y x y x18. =+=+.15765545.04332y x y x19. 已知⽅程组?+=+=+25332n y x ny x 的解x 、y 的和为12,求n 的值.20. 已知⽅程组-=+=-1332by ax y x 与=+=+3321123by ax y x 的解相同,求a 2+2ab +b 2 的值.21. 已知代数式x 2+ax +b 当x =1和x =-3时的值分别为0和14,求当x =3时代数式的值.22.某校去年⼀年级男⽣⽐⼥⽣多80⼈,今年⼥⽣增加20%,男⽣减少25%,结果⼥⽣⼜⽐男⽣多30⼈,求去年⼀年级男⽣、⼥⽣各多少⼈.23.B两地相距20千⽶,甲、⼄两⼈分别从A、B 两地同时相向⽽⾏,两⼩时后在途中相遇,然后甲返回A地,⼄继续前进,当甲回到A地时,⼄离A地还有2千⽶,求甲、⼄两⼈的速度.参考答案⼀、选择题1.B2.C3.D4.A5.C6.B7.D8.C9.A 10.B 11.B 12. B ⼆、填空题13.x =62y -;x =32.14.(1),(2);(1),(3);(1).15.-53.16.a =-5,b =3.三、解答题17.【答案】-=-=.65y x 【答案】=-=.223y x19.【提⽰】解已知⽅程组,⽤n 的代数式表⽰x 、y ,再代⼊ x +y =12.【答案】n =14.20.【提⽰】先解⽅程组=+=-1123332y x y x 求得x 、y ,再代⼊⽅程组?=+-=+3321by ax by ax 求a 、b .【答案】=-=52b a .21.【提⽰】由题意得关于a 、b 的⽅程组.求出a 、b 写出这个代数式,再求当x =3时它的值.【答案】5. 22.【提⽰】设去年⼀年级男⽣、⼥⽣分别有x ⼈、y ⼈,可得⽅程组=--+=-.30)100251()100201(80x y y x 【答案】x =280,y =200. 23.【提⽰】由题意,相遇前甲⾛了2⼩时,及“当甲回到A 地时,⼄离A 地还有2千⽶”,可得列⽅程组的另⼀个相等关系:甲、⼄同向⾏2⼩时,相差2千⽶.设甲、⼄两⼈的速度分别为x 千⽶/时,y 千⽶/时,则=-=+.2)(220)(2y x y x 【答案】甲的速度为5.5千⽶/时,⼄的速度为4.5千⽶/时.⼆元⼀次⽅程组单元检测3姓名:时间:成绩:⼀、选择题(共12题每题3分共36分)1. 下列是⼆元⼀次⽅程的是()A .x x =-63B .y x 23=C .132=+y x D .xy y x =-32 2. 在⽅程组=+=-1253by x y ax 中,如果-==121y x 是它的⼀个解,那么a 、b 的值为( )A .a =1,b =2B .不能惟⼀确定C .a =4,b =0D .a =21,b =-1 3. ⽅程41ax y x -=-是⼆元⼀次⽅程,则a 的取值为()A 、a ≠0B 、a ≠-1C 、a ≠1D 、a ≠24. 已知57x y =??=?满⾜⽅程kx ﹣2y =1,则k 等于()A .3B .4C .5D .65. ⼆元⼀次⽅程32325x y x y -=??+=?的解是()A 、10x y =??=?B 、322x y ?==?C 、232x y =??= D 、71x y =??=-? 6. ⽼师问⼀⼥⽣有⼏个兄弟姐妹,她答:“有⼏个兄弟就有⼏个姐妹”,⽼师⼜问她的哥哥有⼏个兄弟姐妹,他答:“我的姐妹是兄弟的2倍”,则他们的兄弟姐妹中,男孩、⼥孩的⼈数各是()A 、4、3B 、2、5C 、3、4D 、5、27. 在等式b kx y +=中,当1=x 时,5=y ;当2-=x 时,11=y ,则k 、b 的值为A.??-==27b kB.??=-=27b k C.-==72b k D.=-=72b k8. 若352220x y x y +++--=,则223x xy -的值是()A 、14B 、-4C 、-12D 、129. ⼆元⼀次⽅程组327,25x y x y -=??+=?的解是()A .32x y =??=?B .12x y =??=?C .42x y =??=?D .31x y =??=?10. ⼩明在解关于x 、y 的⼆元⼀次⽅程组331x y x y +?=??-?=?时得到了正确结果1x y =⊕=?后来发现“?”、“⊕”处被墨⽔污损了,请你帮他找出“?”、“⊕”处的值分别是()A . ?=1,⊕=1B . ?=2,⊕=1C . ?=1,⊕=2D . ?=2,⊕=211. 为迎接2013年“亚青会”,学校组织了⼀次游戏:每位选⼿朝特制的靶⼦上各投三以飞镖,在同⼀圆环内得分相同.如图所⽰,⼩明、⼩君、⼩红的成绩分别是29分、43分和33分,则⼩华的成绩是()⼩明⼩君⼩红⼩华A .31分B .33分C .36分D .38分12. 下列⽅程中,是⼆元⼀次⽅程的是() A .3x -2y =4z B .6xy +9=0 C .1x +4y =6 D .4x =24y - ⼆、填空题(共4题每题3分共12分)13. 若?==53y x 是⽅程22=-y mx 的⼀个解,则=m 。
人教版七年级数学下册 第八章 二元一次方程组 单元检测试题(有答案)
第八章二元一次方程组单元检测试题(满分120分;时间:120分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 下列方程中属于二元一次方程的是()A. B. C. D.2. 甲、乙两人练习赛跑,若甲先跑半小时,则乙出发后分钟可追上甲,设甲、乙每小时分别跑千米、千米,则可列方程()A. B. C. D.3. 某工程队共有人,每人每天可挖沙或运沙,为使挖出的沙及时运走,应分配挖沙和运沙的人数分别是A.,B.,C.,D.,4. 小王只用元和元的两种货币支付一件价格为元的物品,他付款的方式有()A.种B.种C.种D.种5. 下列组数:①②③④,其中是方程的解的有()A.个B.个C.个D.个6. 在下列方程组中,只有一个解的是()A. B.C. D.7. 若方程与方程的解相同,则的值是()A. B. C. D.8. 甲、乙两个药品仓库共存药品吨,为共同抗击新型冠状病毒,现从甲仓库调出库存药品的,从乙仓库调出支援疫区.结果乙仓库所余药品比甲仓库所余药品多吨,那么甲乙仓库原来所存药品分别为A.吨;吨B.吨;吨C.吨;吨D.吨;吨9. 父子二人,已知年前父亲的年龄是儿子年龄的倍,年后父亲的年龄是儿子年龄的倍,那么儿子出生时,父亲的年龄是()A. B. C. D.10. 为清理积压的库存,商场决定打折销售,已知甲、乙两种服装的原单价共为元,现将甲服装打八折,乙服装打七五折,结果两种服装的单价共为元,则甲、乙两种服装的原单价分别是()A.元,元B.元,元C.元,元D.元,元二、填空题(本题共计8 小题,每题3 分,共计24分,)11. 已知关于,的二元一次方程组与方程组的解相同,则________.12. 小明用元钱去购买笔记本和钢笔共件,已知每本笔记本元,每枝钢笔元,那么小明最多能买________枝钢笔.13. 已知,是二元一次方程组的解,则代数式的值为________.14. 已知,满足方程组则的值为________.15. 设甲数为,乙数为,则甲数增加与乙数增加到原来的倍后的和比甲、乙两数的和多,则方程为________.16. 某工厂去年的利润(总产值-总支出)为万元,今年总产值比去年增加了,总支出比去年减少了,今年的利润为万元,去年的总产值为________万元,总支出是________万元.17. 小辉只带了元和元两种面额的人民币(这两种面额的人民币足够多),他在东方文化园中买了一件物品需付元,如果不麻烦售货员找零钱,他有________种不同的付款方法.18. 山脚下有一池塘,泉水以固定的流量(即单位时间里流入池中的水量相同)不停地向池塘内流淌.现池塘中有一定深度的水,若用一台型抽水机抽水,则小时正好能把池塘中的水抽完;若用两台型抽水机抽水,则分钟正好把池塘中的水抽完.问若用三台型抽水机同时抽,则需要________分钟恰好把池塘中的水抽完.三、解答题(本题共计6 小题,共计66分,)19. 解方程组(1)(2)20. 已知关于,的方程组和有相同解,求值.21. 已知方程组与有相同的解,求、的值.22. 第一个容器有水升,第二个容器有水升,若将第二个容器的水倒满第一个容器,那么第二个容器剩下的水是该容器的一半,若将第一个容器的水倒满第二个容器,那么第一个容器剩下的水是该容器的三分之一.求两个容器的容量.23. 汽车在相距千米的甲、乙两地之间往返行驶,因行程有一坡度均匀的小山,该汽车从甲地到乙地需要小时分钟,从乙地到甲地需要小时分钟,已知汽车在平地每小时行驶千米,上坡路每小时行驶千米,下坡每小时行驶千米,求甲地到乙地地行驶过程中平路、上坡、下坡各是多少?24. 已知:用辆型车和辆型车载满货物一次可运货吨;用辆型车和辆型车载满货物一次可运货吨,某物流公司现在有吨货物,计划同时租用型车辆,型车辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)辆型车和辆型车都载满货物一次分别运货多少吨?(2)若型车每辆需租金元/次,型车每辆需租金元/次.设租车总费用为元,型车辆,求与的函数关系式,并求出最省钱的租车方案和最少租车费用.参考答案一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】D【解答】解:只有一个未知数,为分式方程,错误;为一元一次方程,错误;为一元二次方程,错误;符合二元一次方程的定义;故选.2.【答案】D【解答】解:设甲、乙每小时分别跑千米、千米,则可列方程:∵,∴.故选:.3.【答案】B【解答】解:设分配挖沙人,运沙人,则解得∴应分配挖沙人,运沙人.故选.4.【答案】C【解答】解:设需要元和元两种货币分别为、.由题意知:,又∵、是整数,∴当,则,当,则,当,则.故只有种可能.故选:.5.【答案】C【解答】解:∵当时,,故①是方程的解,∵当时,,故②不是方程的解,∵当时,,故③是方程的解,∵当时,,故④是方程的解,故选.6.【答案】【解答】解:、把方程两边乘以得,,∵,∴方程组无解,故错误;、把方程两边乘以得,,∵,∴方程组无解,故错误;、把方程两边乘以得,,它与方程联立成为方程组,则有唯一解,故正确;、把方程两边乘以得,,∵另一个方程为,∴方程组有无数组解,故错误.故选.7.【答案】D【解答】解:,移项,得,合并同类项,得,系数化为,得,把代入中,得,解得.故选.8.【答案】A【解答】解:设甲乙仓库原来所存药品分别为吨,吨.根据题意得:解得:因此甲乙仓库原来所存药品分别为吨;吨.故选.【答案】A【解答】解:设年前父亲的年龄是岁,儿子的年龄是岁.根据题意,得,解,得.所以,父子两人相差岁.故选.10.【答案】B【解答】解:设甲、乙两种服装的原单价分别是元、元.根据题意,得:解得:答:甲、乙两种服装的原单价分别是元、元.故选.二、填空题(本题共计8 小题,每题 3 分,共计24分)11.【答案】【解答】解:解得:得:∴.故答案为:.12.【答案】【解答】解:设小明一共买了本笔记本,支钢笔,根据题意,可得,可求得因为为正整数,所以最多可以买钢笔支.故答案为:.13.【答案】【解答】解:①×+②,解得③,把③ 代入①得,,所以方程组的解是所以代数式.故答案为:.14.【答案】解:∵,满足方程组∴得,.故答案为:.15.【答案】【解答】解:根据甲数增加与乙数增加到原来的倍后的和比甲、乙两数的和多,可得方程.16.【答案】,【解答】解:设去年的总产值为万元,总支出为万元,则有根据题意得:解得:故答案为:;.17.【答案】【解答】解:设支付元的张,元的张,则有;、都为非负整数.,当、、时,有非负整数解;所以共有三种.18.【答案】【解答】解:设池塘中的水有,山泉每小时的流量是,一台型抽水机每小时抽水量是.根据题意,得解得,.设若用三台型抽水机同时抽,则需要小时恰好把池塘中的水抽完.,,即分钟.所以若用三台型抽水机同时抽,则需要分钟恰好把池塘中的水抽完.故答案为:.三、解答题(本题共计6 小题,每题10 分,共计60分)19.【答案】①②,得=,解得:=,把=代入①得:=,解得:=,所以原方程组的解是:;①②,得=∴=把=代入①,得=解得=所以原方程组的解是:.【解答】①②,得=,解得:=,把=代入①得:=,解得:=,所以原方程组的解是:;①②,得=∴=把=代入①,得=解得=所以原方程组的解是:.20.【答案】解:因为两组方程组有相同的解,所以原方程组可化为①,②,解方程组①得代入②得所以.【解答】解:因为两组方程组有相同的解,所以原方程组可化为①,②,解方程组①得代入②得所以.21.【答案】解:解方程组得,将分别代入,中,得,解得:,.【解答】解:解方程组得,将分别代入,中,得,解得:,.22.【答案】解:设第一个容器的容量为,第二个容器的容量为,由题意可列方程组解得答:第一个容器的容量为升,第二个容器的容量为升.【解答】解:设第一个容器的容量为,第二个容器的容量为,由题意可列方程组解得答:第一个容器的容量为升,第二个容器的容量为升.23.【答案】甲地到乙地地行驶过程中平路、上坡、下坡各是千米,千米,千米.【解答】解:设甲地到乙地地行驶过程中平路、上坡、下坡各是千米、千米、千米.则.解得.24.【答案】解:(1)设每辆型车、型车载满货物一次可分别运货吨、吨,依题意得:,解方程组得:.答:每辆型车、型车载满货物一次可分别运货吨、吨.(2)型车每辆需租金元/次,型车每辆需租金元/次,设租车总费用为元,型车辆,则,即.当最小时,最小,,都是整数,,或或.时,.答:租型车辆、型车辆时费用最少为元.【解答】解:(1)设每辆型车、型车载满货物一次可分别运货吨、吨,依题意得:,解方程组得:.答:每辆型车、型车载满货物一次可分别运货吨、吨.(2)型车每辆需租金元/次,型车每辆需租金元/次,设租车总费用为元,型车辆,则,即.当最小时,最小,,都是整数,,或或.时,.答:租型车辆、型车辆时费用最少为元.。
(完整版)初一数学二元一次方程组测试题及答案
0.《二元一次方程组》单元测试题一、选择题(每题3分,共30分)1.下列方程组中,是二元一次方程组的是().(A)(B)(C)(D)2.二元一次方程组的解是( )(A)(B)(C)(D)3.根据图1所示的计算程序计算的值,若输入,则输出的值是()(A)0 (B)(C)2 (D)44.如果与是同类项,则,的值是( )(A)(B)(C)(D)5.已知是方程组的解,则a+b= ( ).(A)2 (B)-2 (C)4 (D)-46.如图2,AB⊥BC,∠ABD的度数比∠DBC的度数的两倍少15°,设∠ABD和∠DBC的度数分别为x、y,那么下面可以求出这两个角的度数的方程组是( )(A)(B)(C)(D)7.如果是方程组的解,则一次函数y=mx+n的解析式为( )(A)y=-x+2 (B)y=x-2 (C)y=-x-2 (D)y=x+28.已知是二元一次方程组的解,则2m-n的算术平方根为()(A)(B)(C)2 (D)49.如果二元一次方程组的解是二元一次方程的一个解,那么的值是( )(A)3 (B)5 (C)7 (D)910.如图3,一次函数和(a≠0,b≠0)在同一坐标系的图象.则的解中()(A)m>0,n>0 (B)m>0,n<0 (C)m<0,n>0 (D)m<0,n<0二、填空题(每小题4分,共20分)11.若关于x,y的二元一次方程组的解满足x+y=1,则k的取值范围是.12.若直线经过一次函数的交点,则a的值是.13.已知2x-3y=1,用含x的代数式表示y,则y =,当x=0时,y=.14.一个两位数的十位数字与个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来的两位数为_______.15.如图4,点A的坐标可以看成是方程组的解.三、解答题16.解下列方程组(每小题6分,共12分)(1) (2)17.已知是关于x,y的二元一次方程组的解,求出a+b的值.18.(8分)为了净化空气,美化环境,我市青羊区计划投资1.8万元种银杏和芙蓉树共80棵,已知某苗圃负责种活以上两种树苗的价格分别为:300元/棵,200元/棵,问可种银杏树和芙蓉树各多少棵?19.(10分)已知与的值互为相反数,求:(1)、的值;(2)的值.20.(本题12分)如图5,成都市某化工厂与A,B两地有公路和铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.5元/(吨·千米),铁路运价为1.2元/(吨·千米).这两次运输共支出公路运费15000元,铁路运费97200元.请计算这批产品的销售款比原料费和运输费的和多多少元?(1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:甲:乙:根据甲、乙两名同学所列方程组,请你分别指出未知数x、y表示的意义,然后在等式右边的方框内补全甲、乙两名同学所列方程组.甲:x表示_____________________,y表示________________________乙:x表示_____________________,y表示________________________(2)甲同学根据他所列方程组解得x=300.请你帮他解出y的值,并解决该实际问题.参考答案一、1-5、DCDCB 6-10、BDCCA二、11.k=2; 12.-6; 13.,; 14. 35; 15.三、16.(1)x=0.5,y=5 (2)x=-3 , y=17.a+b=118.设银杏树为x,芙蓉树为y.由题意可得:解得19.20.解:(1)甲:x表示产品的重量,y表示原料的重量;乙:x表示产品销售额,y表示原料费甲方程组右边方框内的数分别为15000,97200,乙同甲(2)将x=300代入原方程组解得y=400∴产品销售额为300×8000=2400000元原料费为400×1000=400000元又∵运输费为15000+97200=112200元∴这批产品的销售款比原料费和运输费的和多2400000–(400000+112200)=1887800元。
人教新版七年级下册《第8章_二元一次方程组》2024年单元测试卷+答案解析
人教新版七年级下册《第8章二元一次方程组》2024年单元测试卷一、选择题:本题共2小题,每小题3分,共6分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.学校计划用200元钱购买A、B两种奖品两种都要买,A种每个15元,B种每个25元,在钱全部用完的情况下,有多少种购买方案()A.1种B.2种C.3种D.4种2.“十一”国庆期间,学校组织466名八年级学生参加社会实践活动,现己准备了49座和37座两种客车共10辆,刚好坐满,设49座客车x辆,37座客车y辆.根据题意,得()A. B.C. D.二、填空题:本题共3小题,每小题3分,共9分。
3.《九章算术》卷八方程【七】中记载:“今有牛五、羊二,值金十两.牛二、羊五,值金八两.牛、羊各值金几何?”题目大意是:5头牛、2只羊共值金10两,2头牛、5只羊共值金8两,每头牛、每只羊各值金多少两?若设一头牛值金x两,一只羊值金y两,则可列方程组为______.4.若关于x,y的二元一次方程组的解为,则多项式A可以是__________写出一个即可5.某校进行篮球联赛,每场比赛都要分出胜负,每胜1场得2分,负1场得1分.如果某队在10场比赛中得到16分,那么这个队胜负场数可以是______写出一种情况即可三、解答题:本题共6小题,共48分。
解答应写出文字说明,证明过程或演算步骤。
6.本小题8分已知与是同类项,求a,b的值.7.本小题8分解方程组8.本小题8分某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同.安全检查中,对4道门进行了测试:当同时开启一扇正门和两扇侧门,1分钟内可以通过280名学生;当同时开启一扇正门和一扇侧门时,4分钟内可通过800名学生.求平均每分钟一道正门的一道侧门各可以通过通过多少名学生?检查中发现,紧急情况时因学生拥挤,出门的效率降低安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离.假设这栋教学大楼每间教室最多有45名学生,则建造的这4道门是否符合安全规定?请你说明理由.9.本小题8分用加减消元法解下列方程组:10.本小题8分本地某快递公司规定:寄件不超过1千克的部分按起步价计费:寄件超过1千克的部分按千克计费.小文分别寄快递到上海和北京,收费标准及实际收费如表:收费标准:目的地起步价元超过1千克的部分元/千克上海7b北京10实际收费:目的地质量千克费用元上海2北京3求a,b的值.11.本小题8分放学后,小贤和小艺来到学校附近的地摊上购买一种签字笔和卡通笔记本,这种签字笔每盒10支,如果整盒买比单支买每支可优惠元.小贤要买3支签字笔、2本笔记本需花12元,小艺要买6支签字笔、1本笔记本需花费15元.求笔记本的单价和单独购买一支签字笔的价格;小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,小贤还剩2元钱,小艺还剩1元钱,他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.答案和解析1.【答案】B【解析】解:设购买A种奖品x件,B种奖品y件,依题意得:,又,y均为正整数,或,共有2种购买方案.故选:设购买A种奖品x件,B种奖品y件,利用总价=单价数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出共有2种购买方案.本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.2.【答案】A【解析】解:依题意,得:故选:根据“准备了49座和37座两种客车共10辆,且466人刚好坐满”,即可得出关于x,y的二元一次方程组,此题得解.本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.3.【答案】【解析】解:由题意可得,,故答案为:根据“5头牛、2只羊共值金10两.2头牛、5只羊共值金8两”,得到2个等量关系,即可列出方程组.本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,找到等量关系,列出相应的方程组.4.【答案】答案不唯一【解析】【分析】本题考查了二元一次方程组的解,本题是开放题,注意方程组的解的定义.根据方程组的解的定义,应该满足所写方程组的每一个方程.因此,可以围绕列一组算式,然后用x,y代换即可.【解答】解:关于x,y的二元一次方程组的解为,而,多项式A可以是答案不唯一故答案为:答案不唯一5.【答案】胜6场,负4场【解析】解:设这个队胜x场,负y场,根据题意,得解得故答案是:胜6场,负4场.设这个队胜x场,负y场,根据在10场比赛中得到16分,列方程组并解答即可.本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.6.【答案】解:由题意,得,解得【解析】根据同类项的定义,含有相同的字母,相同字母的指数相同,可得关于a、b的方程,根据解方程,可得答案.本题考查了同类项的定义:所含字母相同,并且相同字母的指数也相同,注意①一是所含字母相同,二是相同字母的指数也相同,两者缺一不可.7.【答案】解:,解:①②得:,解得:,把代入①得:,解得:,则原方程组的解为【解析】点拨方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.8.【答案】解:设一个正门平均每分钟通过x名学生,一个侧门平均每分钟通过y名学生,由题意,得,解得:答:一个正门平均每分钟通过120名学生,一个侧门平均每分钟通过80名学生.共有学生:,在拥挤的状态下5分钟通过:,建造的这4道门是符合安全规定.【解析】设平均每分钟一道正门可以通过x名学生,一道侧门可以通过y名学生,根据当同时开启一道正门和两道侧门时,每分钟可以通过280名学生;当同时开启一道正门和一道侧门时,每分钟可以通过200名学生.两个关系列方程组求解.根据的数据,可以求出拥挤时5分钟四道门可通过的学生人数,与这栋楼学生数比较得出答案.此题考查的知识点是二元一次方程组的应用,关键是现根据已知列方程组求解,然后计算拥挤时,5分钟内4道门能通过的学生数与现有学生数比较.9.【答案】解:①+②得:,解得:,把代入①得:,解得:,则方程组的解为【解析】方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.10.【答案】解:依题意得:,解得:答:a的值为15,b的值为【解析】根据寄往上海和北京的快递的重量及所需费用,即可得出关于a,b的二元一次方程组,解之即可得出结论.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.11.【答案】解:设签字笔x元/支,笔记本y元/本,依题意可得:解得:答:签字笔2元/支,笔记本3元/本;合买一盒签字笔.购买前:小贤有元,小艺有元,总共30元.由于整盒购买比单只购买每支可优惠元,因此,小贤和小艺可一起购买整盒签字笔,费用为15元,3本笔记本费用为9元,2件工艺品需6元,总共需30元;他们既能买到各自需要的文具用品,又都能购买到一个小工艺品.还多一支签字笔.【解析】设签字笔x元/支,笔记本y元/本,由题意:小贤要买3支签字笔、2本笔记本需花12元,小艺要买6支签字笔、1本笔记本需花费15元.列出方程组,解方程组即可;购买前:小贤有元,小艺有元,总共30元.再分别计算费用即可.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.。
北师版八年级数学上册 第五章 二元一次方程组(单元综合测试卷)
第五章二元一次方程组(单元重点综合测试)班级___________姓名___________学号____________分数____________考试范围:全章的内容;考试时间:120分钟;总分:120分一、单选题(本大题共10小题,每小题3分,共30分)1.下列属于二元一次方程组的是()A .2371x y xy +=⎧⎨=⎩B .372x y x z +=⎧⎨+=⎩C .143342x y x y ⎧+=⎪⎨⎪+=⎩D .531222x y x y ⎧+=⎪⎨⎪+=⎩2.下列各组x 、y 的值中不是二元一次方程364x y +=的解的是()A .43x y =⎧⎨=⎩B .2152x y =-⎧⎪⎨=⎪⎩C .80x y =⎧⎨=⎩D .436x y ⎧=⎪⎨⎪=⎩3.利用加减消元法解方程组2510536x y x y +=-⎧⎨-=⎩①②,下列做法正确的是()A .要消去x ,可以将()5⨯⨯-①3+②B .要消去y ,可以将⨯⨯①5+②2C .要消去x ,可以将()5⨯-⨯①+②2D .要消去y ,可以将53⨯+⨯①②4.已知关于x ,y 的方程组2326322x y k x y k +=+⎧⎨+=+⎩,若7x y +=,则k 的值为().A .6B .7C .8D .95.已知直线1l :y kx b =+与直线2l :24y x =-+交于点()2C m ,,则方程组24y kx by x =+⎧⎨=-+⎩的解是()A .11x y =⎧⎨=-⎩B .12x y =⎧⎨=⎩C .21x y =⎧⎨=⎩D .12x y =-⎧⎨=⎩6.甲、乙两人共同解方程组51642ax y x by +=⎧⎨-=-⎩①②由于甲看错了方程①中的a ,得到方程组的解为2,1,x y =-⎧⎨=-⎩乙看错了方程②中的b ,得到方程组的解为32x y =-⎧⎨=⎩则a ,b 的值分别为()A .2-,6B .2,6C .2,6-D .2-,6-7.小亮用作图象的方法解二元一次方程组时,在同一平面直角坐标系内作出了相应的两个一次函数的图象1l 、2l ,如图所示,他解的这个方程组是()A .22112y x y x =-+⎧⎪⎨=-⎪⎩B .2211.52y x y x =-+⎧⎪⎨=--⎪⎩C .231y x y x =-+⎧⎨=--⎩D .22112y x y x =-+⎧⎪⎨=--⎪⎩8.《九章算术》是中国古代数学著作之一,书中有这样的一个问题:今有黄金九枚,白银一十一枚,称之重,适等.交易其一,金轻十三两.问金、银一枚各重几何?大意是说:九枚黄金与十一枚白银重量相等,互换一枚,黄金比白银轻13两,问:每枚黄金、白银的重量各为多少?设一枚黄金的重量为x 两,一枚白银的重量为y 两,则可列方程组为()A .91191113x y x y y x =⎧⎨-=-+⎩B .91191113x y x y y x =⎧⎨-=--⎩C .91181013x y x y y x =⎧⎨+=++⎩D .91181013x y x y y x =⎧⎨+=+-⎩9.若m 是整数,关于x y 、的二元一次方程组210320mx y x y +=⎧⎨-=⎩的解是整数,则满足条件的所有m 的值的和为()A .6B .0C .24-D .12-10.已知,如图,直线AB :4y kx k =--,分别交平面直角坐标系于A B 、两点,直线CD :22y x =-+与坐标轴交于C D 、两点,两直线交于点(),E a a -;点M 是y 轴上一动点,连接ME ,将AEM △沿ME 翻折,A 点对应点刚好落在x 轴负半轴上,则ME 所在直线解析式为()A .1833y x =-B .823y x =-C .3746y x =-D .76y x =-二、填空题(本大题共8小题,每小题3分,共24分)11.若方程6141154m n x y ---+=是二元一次方程,则m =,n =.12.把二元一次方程123x y-=中的y 用含x 的式子表示为.13.如果方程组()371015x y ax a y +=⎧⎨+-=⎩的解中x 与y 的值相等,那么a 的值是.14.若方程组2439x y ax y -=⎧⎨+=⎩无解,则a 的值为15.一次越野赛跑中,当小明跑了1600m 时,小刚跑了1450m .此后两人分别以m/s a 和m/s b 匀速跑.又过100s 小刚追上小明,200s 时小刚到达终点,300s 时小明到达终点.这次越野赛跑的全程为m .16.方程组1122a x b y m a x b y n -=⎧⎨-=⎩的解是810x y =⎧⎨=⎩,请你写出方程组1122(2)2(1)5(2)2(1)5a x b y m a x b y n --+=⎧⎨--+=⎩的解.17.已知直线1l :4y x =-+,将直线1l 向下平移()0m m >个单位,得到直线2l ,设直线2l 与直线y x =的交点为P ,若2OP =,则m 的值为.18.如果无理数m 值介于两个连续正整数之间,即满足a m b <<(其中a ,b 是连续正整数),我们则称无理数m 的“博雅区间”为()a b ,.例:253<<5的“博雅区间”为()23,.若某一无理数的“博雅区间”为()a b ,,且满足321a b ≤<,其中x by a=⎧⎪⎨=⎪⎩x 、y 的二元一次方程bx ay p +=的一组正整数解,则p =.三、解答题(本大题共10小题,共66分)19.解方程组(1)31x y x y +=⎧⎨-=-⎩;(2)()113216x y x y ⎧+=⎪⎨⎪+-=⎩.20.解方程组:(1)263536x y x y +=⎧⎨-=⎩(2)34332(1)20x y x y ⎧+=⎪⎨⎪--=⎩21.解下列方程组:(1)228,22,341;x y z y z x y z -+=⎧⎪+=-⎨⎪+-=⎩(2)10,2317,328.x y z x y z x y z ++=⎧⎪++=⎨⎪+-=⎩22.小明同学解方程组3127x y x y -=⎧⎨-=⎩①②的过程如下:解:①×2,得2x ﹣6y =2③③﹣②,得﹣6y ﹣y =2﹣7﹣7y =﹣5,y =57;把y =57代入①,得x ﹣3×57=1,x =227所以这个方程组的解是22757x y ⎧=⎪⎪⎨⎪=⎪⎩你认为他的解法是否正确?若正确,请写出每一步的依据;若错误,请写出正确的解题过程.23.已知方程组451x y ax by -=⎧⎨+=-⎩和393418x y ax by +=⎧⎨+=⎩有相同的解,求()202123a b +的值.24.解方程组51521ax y x by +=⎧⎨-=-⎩时,小卢由于看错了系数a ,结果得到的解为31x y =-⎧⎨=-⎩,小龙由于看错了系数b ,结果得到的解为54x y =⎧⎨=⎩,求a b +的值.25.已知关于x 、y 的方程组26228x y x y mx +=⎧⎨-+=⎩.(1)请写出方程x +2y =6的所有正整数解.(2)若方程组的解满足x +y =0,求m 的值.(3)当m 每取一个值时,2x ﹣2y +mx =8就对应一个方程,而这些方程有一个公共解,你能求出这个公共解吗?(4)如果方程组有整数解,求整数m 的解.26.如图,直线2y x =和直线4y ax =+相交于点(),3A m .(1)求m 的值;(2)观察图象,直接写出关于x ,y 的方程组24y xy ax =⎧⎨=+⎩的解.27.阅读感悟:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的一个代数式的值.如以下问题:已知实数x 、y 满足35x y -=,237x y +=,求4x y -和75x y +的值.本题常规思路是将35x y -=①,237x y +=②联立组成方程组,解得x 、y 的值再代入欲求值的代数式得到答案.常规思路计算量比较大,其实本题还可以仔细观察两个方程未知数系数之间的关系,通过适当变形整体求得代数式的值,如由①-②可得42x y -=-,由①+②×2可得7519x y +=.这样的解题思想就是通常所说的“整体思想”.解决问题:(1)已知二元一次方程组2425x y x y +=⎧⎨+=⎩,则x y -=______,x y +=______;(2)试说明在关于x 、y 的方程组3453x y ax y a +=-⎧⎨-=⎩中,不论a 取什么实数,x y +的值始终不变;(3)某班级组织活动购买小奖品,买3支铅笔、5块橡皮、1本笔记本共需21元,买4支铅笔、7块橡皮、1本笔记本共需28元,则购买10支铅笔、10块橡皮、10本笔记本共需多少元?28.如图,在平面直角坐标系中,直线1:3l y x =+的图像分别与x 轴、y 轴交于A 、B 两点,直线2:1l y mx =+的图像分别与x 轴、y 轴交于C 、D 两点,且C 点坐标为1,03⎛⎫- ⎪⎝⎭;()1,2M 和()3,2N 是第一象限中的两个点,连接MN .(1)求直线2l 的函数解析式;(2)求1l 、2l 与y 轴所围成的三角形的面积;(3)直线y a =分别与直线1l 、2l 交于点E 和点F ,当1EF =时,求a 的值;(4)将线段MN 向左平移n 个单位,若与直线1l 、2l 同时有公共点,直接写出n 的取值范围.第五章二元一次方程组(单元重点综合测试)班级___________姓名___________学号____________分数____________考试范围:全章的内容;考试时间:120分钟;总分:120分一、单选题(本大题共10小题,每小题3分,共30分)1.下列属于二元一次方程组的是()A.2371x yxy+=⎧⎨=⎩B.372x yx z+=⎧⎨+=⎩C.143342x yx y⎧+=⎪⎨⎪+=⎩D.531222x yx y⎧+=⎪⎨⎪+=⎩【答案】C【分析】根据二元一次方程组的定义求解即可.方程组中有两个未知数,含有未知数的项的次数都是1,并且一共有两个方程,像这样的方程组叫做二元一次方程组.【解析】解:A.未知数的最高次是2,所以不是二元一次方程组,故此选项不符合题意;B.有三个未知数,所以不是二元一次方程组,故此选项不符合题意;C.是二元一次方程,故此选项符合题意;D.含有分式方程,所以不是二元一次方程组,故此选项不符合题意;故选:C.【点睛】本题主要考查了二元一次方程组的定义.熟练掌握二元一次方程组的定义是解题的关键.2.下列各组x、y的值中不是二元一次方程364x y+=的解的是()A.43xy=⎧⎨=⎩B.2152xy=-⎧⎪⎨=⎪⎩C.8xy=⎧⎨=⎩D.436xy⎧=⎪⎨⎪=⎩【答案】D【分析】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.把各项中x与y的值代入方程检验即可.【解析】解:A、把43xy=⎧⎨=⎩代入方程得:左边6=,右边6=,左边=右边,是方程的解;3.利用加减消元法解方程组2510536x y x y +=-⎧⎨-=⎩①②,下列做法正确的是()A .要消去x ,可以将()5⨯⨯-①3+②B .要消去y ,可以将⨯⨯①5+②2C .要消去x ,可以将()5⨯-⨯①+②2D .要消去y ,可以将53⨯+⨯①②【答案】C【分析】利用加减消元法判断即可.【解析】解:利用加减消元法解方程组2510536x y x y +=-⎧⎨-=⎩①②,要消元x ,则()5⨯-⨯①+②2或()52⨯+⨯-①②;要消去y ,则35⨯+⨯①②,故选:C .【点睛】本题主要考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.4.已知关于x ,y 的方程组2326322x y k x y k +=+⎧⎨+=+⎩,若7x y +=,则k 的值为().A .6B .7C .8D .95.已知直线1l :y kx b =+与直线2l :24y x =-+交于点()2C m ,,则方程组24y kx by x =+⎧⎨=-+⎩的解是()A .11x y =⎧⎨=-⎩B .12x y =⎧⎨=⎩C .21x y =⎧⎨=⎩D .12x y =-⎧⎨=⎩【答案】B【分析】根据直线解析式求出点C 坐标,根据两函数交点坐标与方程组的解得关系即可求解.【解析】将()2m ,代入24y x =-+得:242m -+=,解得:1m =,∴方程组24y kx b y x =+⎧⎨=-+⎩的解是12x y =⎧⎨=⎩,故选B .【点睛】本题考查两函数的交点坐标与方程组的解的关系,掌握两函数的交点坐标与方程组的解是解题关键.6.甲、乙两人共同解方程组51642ax y x by +=⎧⎨-=-⎩①②由于甲看错了方程①中的a ,得到方程组的解为2,1,x y =-⎧⎨=-⎩乙看错了方程②中的b ,得到方程组的解为32x y =-⎧⎨=⎩则a ,b 的值分别为()A .2-,6B .2,6C .2,6-D .2-,6-【答案】A【分析】由于甲看错了方程①中的a ,因此把2,1,x y =-⎧⎨=-⎩代入方程②中即可求出正确的b 的值.由于乙看错了方程②中的b,因此把32xy=-⎧⎨=⎩代入方程①中即可求出正确的a的值.【解析】把2,1,xy=-⎧⎨=-⎩代入方程②中得82b-+=-解得6b=把32xy=-⎧⎨=⎩代入方程①中得31016a-+=解得2a=-故选:A【点睛】本题主要考查了二元一次方程组错解复原问题,正确理解题意求出a,b的值是解题的关键. 7.小亮用作图象的方法解二元一次方程组时,在同一平面直角坐标系内作出了相应的两个一次函数的图象1l、2l,如图所示,他解的这个方程组是()A.22112y xy x=-+⎧⎪⎨=-⎪⎩B.221 1.52y xy x=-+⎧⎪⎨=--⎪⎩C.231y xy x=-+⎧⎨=--⎩D.22112y xy x=-+⎧⎪⎨=--⎪⎩【答案】D【分析】本题主要考查二元一次方程组与一次函数的关系.两个一次函数的交点为两个一次函数解析式所组方程组的解.因此本题需根据图中直线所经过的点的坐标,用待定系数法求出两个一次函数的解析式.然后联立两个函数的解析式,即可得出所求的方程组.【解析】解:由图可知:直线1l过(2,2)-,(0,2),设直线1l的解析式为:y kx b=+,8.《九章算术》是中国古代数学著作之一,书中有这样的一个问题:今有黄金九枚,白银一十一枚,称之重,适等.交易其一,金轻十三两.问金、银一枚各重几何?大意是说:九枚黄金与十一枚白银重量相等,互换一枚,黄金比白银轻13两,问:每枚黄金、白银的重量各为多少?设一枚黄金的重量为x 两,一枚白银的重量为y 两,则可列方程组为()A .91191113x yx y y x =⎧⎨-=-+⎩B .91191113x y x y y x =⎧⎨-=--⎩C .91181013x y x y y x =⎧⎨+=++⎩D .91181013x y x y y x =⎧⎨+=+-⎩【答案】D【分析】根据题目中的等量关系列出二元一次方程组即可.【解析】解:设一枚黄金的重量为x 两,一枚白银的重量为y 两,则可列方程组为91181013x yx y y x =⎧⎨+=+-⎩.故选:D .【点睛】此题考查了列二元一次方程组,解题的关键是根据题意找到题目中的等量关系.9.若m 是整数,关于x y 、的二元一次方程组210320mx y x y +=⎧⎨-=⎩的解是整数,则满足条件的所有m 的值的和为()A .6B .0C .24-D .12-10.已知,如图,直线AB :4y kx k =--,分别交平面直角坐标系于A B 、两点,直线CD :22y x =-+与坐标轴交于C D 、两点,两直线交于点(),E a a -;点M 是y 轴上一动点,连接ME ,将AEM △沿ME 翻折,A 点对应点刚好落在x 轴负半轴上,则ME 所在直线解析式为()A .1833y x =-B .823y x =-C .3746y x =-D .76y x =-把(),E a a -代入直线CD :22a a -+=-,∴2a =,∴()2,2E -,把()2,2E -代入直线AB :二、填空题(本大题共8小题,每小题3分,共24分)11.若方程6141154m n x y ---+=是二元一次方程,则m =,n =.12.把二元一次方程123-=中的y 用含x 的式子表示为.13.如果方程组()371015x y ax a y +=⎧⎨+-=⎩的解中x 与y 的值相等,那么a 的值是.【答案】3【分析】把y =x 代入方程组,然后求出a 的值即可.【解析】解:把y =x 代入方程组得:101025x ax x =⎧⎨-=⎩,解得:13x a =⎧⎨=⎩,则a 的值是3,故答案为:3.【点睛】本题主要考查了二元一次方程组的解,正确理解方程组的解的概念是解答本题的关键.14.若方程组2439x y ax y -=⎧⎨+=⎩无解,则a 的值为【答案】-6【分析】根据加减消元法得出(6)21a x +=,然后根据方程组无解,得到a +6=0,求出即可.【解析】解∶2439x y ax y -=⎧⎨+=⎩①②,①×3+②,得(6)21a x +=,∵方程组无解,∴a +6=0,∴a =-6.故答案为:-6.【点睛】本题考查了解二元一次方程组和解一元一次方程等知识点的应用,关键是根据题意得出一个关于a 的方程(a +6=0),题目比较典型,有一点难度,是一道容易出错的题目.15.一次越野赛跑中,当小明跑了1600m 时,小刚跑了1450m .此后两人分别以m/s a 和m/s b 匀速跑.又过100s 小刚追上小明,200s 时小刚到达终点,300s 时小明到达终点.这次越野赛跑的全程为m .【答案】2050【分析】根据两人的全程的距离相同可得出16003001450200a b +=+,再由当小明跑了1600m 时,小刚跑了1450m .此后两人分别以m/s a 和m/s b 匀速跑.又过100s 时小刚追上小明,可以得到16001001450100a b +=+,解方程求出a 、b 的值,由此求解即可.【解析】解:解:根据题意,得1600100145010016003001450200a ba b +=+⎧⎨+=+⎩,解得:1.53a b =⎧⎨=⎩所以16003001600300 1.52050a +=+⨯=m 故答案为:2050【点睛】本题主要考查了二元一次方程组的实际应用,解题的关键在于能够准确根据题意列出方程求解.16.方程组1122a x b y m a x b y n -=⎧⎨-=⎩的解是810x y =⎧⎨=⎩,请你写出方程组1122(2)2(1)5(2)2(1)5a x b y m a x b y n--+=⎧⎨--+=⎩的解.17.已知直线1l :4y x =-+,将直线1l 向下平移()0m m >个单位,得到直线2l ,设直线2l 与直线y x =的交点为P,若OP =,则m 的值为.18.如果无理数m 值介于两个连续正整数之间,即满足a m b <<(其中a ,b 是连续正整数),我们则称无理数m 的“博雅区间”为()a b ,.例:23<<的“博雅区间”为()23,.若某一无理数的“博雅区间”为()a b ,,且满足321b ≤<,其中x by =⎧⎪⎨=⎪⎩x 、y 的二元一次方程bx ay p +=的一组正整数解,则p =.三、解答题(本大题共10小题,共66分)19.解方程组(1)31x y x y +=⎧⎨-=-⎩;(2)()113216x y x y ⎧+=⎪⎨⎪+-=.20.解方程组:(1)263536x y x y +=⎧⎨-=⎩(2)34332(1)20x y x y ⎧+=⎪⎨⎪--=⎩21.解下列方程组:(1)228,22,341;x y zy zx y z-+=⎧⎪+=-⎨⎪+-=⎩(2)10,2317,328.x y zx y zx y z++=⎧⎪++=⎨⎪+-=⎩【点睛】本题考查三元一次方程组的解法,掌握三元方程组消元转化二元方程组来解是解题关键.22.小明同学解方程组3127x yx y-=⎧⎨-=⎩①②的过程如下:解:①×2,得2x﹣6y=2③③﹣②,得﹣6y﹣y=2﹣7﹣7y=﹣5,y=5 7;把y=57代入①,得x﹣3×57=1,x=227所以这个方程组的解是22757 xy⎧=⎪⎪⎨⎪=⎪⎩你认为他的解法是否正确?若正确,请写出每一步的依据;若错误,请写出正确的解题过程.【答案】错误,正确过程见解析【分析】根据加减消元法求解即可.【解析】解:错误,①×2,得2x-6y=2③,③-②,得-6y+y=2-7,-5y=-5,y=1,把y=1代入①得x-3×1=1,x=4,所以这个方程组的解为41 xy=⎧⎨=⎩.【点睛】本题考查了加减消元法求解二元一次方程组,需要注意的是运用这种方法需满足其中一个未知数的系数相同或互为相反数,若不具备这种特征,则根据等式的性质将其中一个方程变形或将两个方程都变形,使其具备这种形式.23.已知方程组451x yax by-=⎧⎨+=-⎩和393418x yax by+=⎧⎨+=⎩有相同的解,求()202123a b+的值.【答案】1-【分析】根据已知条件列出方程组求解即可;【解析】解:解方程组4539x y x y -=⎧⎨+=⎩,解得23x y =⎧⎨=⎩,将2x =,3y =代入方程1ax by +=-得,231a b +=-,则()2021231a b +=-.【点睛】本题主要考查了二元一次方程组的求解,准确计算是解题的关键.24.解方程组51521ax y x by +=⎧⎨-=-⎩时,小卢由于看错了系数a ,结果得到的解为31x y =-⎧⎨=-⎩,小龙由于看错了系数b ,结果得到的解为54x y =⎧⎨=⎩,求a b +的值.【答案】4【分析】把把31x y =-⎧⎨=-⎩代入21x by -=-求出5b =,把54x y =⎧⎨=⎩代入515ax y +=求出1a =-,然后求出a b +值即可.【解析】解:∵小卢由于看错了系数a ,∴把31x y =-⎧⎨=-⎩代入21x by -=-得:61b -+=-,解得:5b =,∵小龙由于看错了系数b ,∴把54x y =⎧⎨=⎩代入515ax y +=得:52015a +=,解得:1a =-,∴154a b +=-+=.【点睛】本题主要考查了二元一次方程组的解,代数式求值,解题的关键是熟练掌握方程组解的定义,准确计算.25.已知关于x 、y 的方程组26228x y x y mx +=⎧⎨-+=⎩.(1)请写出方程x +2y =6的所有正整数解.(2)若方程组的解满足x+y=0,求m的值.(3)当m每取一个值时,2x﹣2y+mx=8就对应一个方程,而这些方程有一个公共解,你能求出这个公共解吗?(4)如果方程组有整数解,求整数m的解.26.如图,直线2y x =和直线4y ax =+相交于点(),3A m .(1)求m 的值;(2)观察图象,直接写出关于x ,y 的方程组24y x y ax =⎧⎨=+⎩的解.【答案】(1)32m =(2)323x y ⎧=⎪⎨⎪=⎩【分析】(1)(),3A m 代入2y x =,即可求出m 的值;(2)根据一次函数图象得交点即可求解.【解析】(1)解:把(),3A m 代入2y x =得,23m =,解得:32m =,∴点A 的坐标为3,32⎛⎫ ⎪⎝⎭;(2)由图象得,24y x y ax =⎧⎨=+⎩的解为:323x y ⎧=⎪⎨⎪=⎩.【点睛】本题主要考查了一次函数的图象和性质,解题的关键是熟练掌握用待定系数法求解函数表达式的方法,根据函数的图象求解二元一次方程组的解.27.阅读感悟:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的一个代数式的值.如以下问题:已知实数x 、y 满足35x y -=,237x y +=,求4x y -和75x y +的值.本题常规思路是将35x y -=①,237x y +=②联立组成方程组,解得x 、y 的值再代入欲求值的代数式得到答案.常规思路计算量比较大,其实本题还可以仔细观察两个方程未知数系数之间的关系,通过适当变形整体求得代数式的值,如由①-②可得42x y -=-,由①+②×2可得7519x y +=.这样的解题思想就是通常所说的“整体思想”.解决问题:(1)已知二元一次方程组2425x y x y +=⎧⎨+=⎩,则x y -=______,x y +=______;(2)试说明在关于x 、y 的方程组3453x y a x y a +=-⎧⎨-=⎩中,不论a 取什么实数,x y +的值始终不变;(3)某班级组织活动购买小奖品,买3支铅笔、5块橡皮、1本笔记本共需21元,买4支铅笔、7块橡皮、1本笔记本共需28元,则购买10支铅笔、10块橡皮、10本笔记本共需多少元?【答案】(1)-1;3(2)见解析(3)购买10支铅笔、10块橡皮、10本笔记本共需70元【分析】(1)①-②可求出x y -,()3÷①+②可求出x y +;(2)证明x y +为定值即可;(3)设铅笔、橡皮、笔记本的单价分别为x ,y ,z 元,根据题意列方程组,利用整体思想求出x y z ++即可.【解析】(1)解:2425x y x y +=⎧⎨+=⎩①②①-②得:1x y -=-,+①②得:339x y +=,等式两边同时除以3得:3x y +=,故答案为:-1;3.(2)证明:3453x y a x y a +=-⎧⎨-=⎩①②+①②得:2242x y a -=+,等式两边同时除以2得:=2 x y a -+③,①+③得:226x y +=,等式两边同时除以2得:=3x y +,因此不论a 取什么实数,x y +的值始终不变.(3)解:设铅笔、橡皮、笔记本的单价分别为x ,y ,z 元,由题意得,35214728x y z x y z ++=⎧⎨++=⎩①②②-①得:27x y +=,等式两边同时乘以2得:24=14 x y +③,①-③得:7x y z ++=,故10101070x y z ++=,即购买10支铅笔、10块橡皮、10本笔记本共需70元.【点睛】本题考查利用整体思想解方程组,读懂题意,熟练掌握并灵活运用整体思想是解题的关键.28.如图,在平面直角坐标系中,直线1:3l y x =+的图像分别与x 轴、y 轴交于A 、B 两点,直线2:1l y mx =+的图像分别与x 轴、y 轴交于C 、D 两点,且C 点坐标为1,03⎛⎫- ⎪⎝⎭;()1,2M 和()3,2N 是第一象限中的两个点,连接MN .(1)求直线2l 的函数解析式;(2)求1l 、2l 与y 轴所围成的三角形的面积;(3)直线y a =分别与直线1l 、2l 交于点E 和点F ,当1EF =时,求a 的值;(4)将线段MN 向左平移n 个单位,若与直线1l 、2l 同时有公共点,直接写出n 的取值范围.。
七年级数学下册《第八章 二元一次方程组》单元测试卷及答案解析-人教版
七年级数学下册《第八章 二元一次方程组》单元测试卷及答案解析-人教版一、单选题1.如果21x y =⎧⎨=-⎩是关于x 、y 的二元一次方程ax+y=1的解,那么a 的值为( )A .-2B .-1C .0D .I2.已知二元一次方程组 522048x y x y +=⎧⎨-=⎩①②,若用加减法消去y ,则正确的是( )A .①×1+②×1B .①×1+②×2C .①×1-②×1D .①×1-②×23.七年级学生在会议室开会,每排座位坐12人,则有11人没有座位;每排座位坐14人,则余1人独坐一排,则这间会议室的座位排数是( ) A .14B .13C .12D .154.方程组24x y x y -=⎧⎨-=⎩的解为2x y =-⎧⎨=⎩▽则被△和△遮盖的两个数分别为(,)A .-10,6B .2,-6C .2,6D .10,-65.已知13x y =⎧⎨=⎩是关于x ,y 的二元一次方程2x y m -=的一个解,则m 的值是( )A .5B .2C .-5D .-26.关于x ,y 的二元一次方程组538y x x y =-⎧⎨-=⎩,用代入法消去y ,得到的方程是( )A .3583x x --=B .358x x +-=C .358x x ++=D .358x x -+=7.已知24328a b a b +=⎧⎨+=⎩,则2a+2b 的值为()A .3B .4C .6D .78.小明计划用100元钱在京东商城购买价格分别为6元和8元的两种商品,则在钱全部用完的前提下,可供小明选择的方案有( ) A .3种B .4种C .5种D .6种9.举办“书香文化节”的活动中,将x 本图书分给了y 名学生,若每人分6本,则剩余40本;若每人分8本,则还缺50本,下列方程组正确的是( )A .640850y x y x -=⎧⎨+=⎩B .640850y xy x +=⎧⎨-=⎩C .640850x y x y +=⎧⎨-=⎩D .640850y xy x -=⎧⎨-=⎩10.若方程组41233x by z x by z -+=⎧⎨-+=⎩ 的解是1x ay z c=⎧⎪=⎨⎪=⎩,则6a b c ++的值是( )A .-3B .0C .3D .6二、填空题11.已知二元一次方程x -2y =10,用含x 的代数式表示y ,则y = . 12.已知x 、y 满足方程组3202132022x y x y +=⎧⎨+=⎩,则x y -= .13.若273330x y y z z x +=⎧⎪+=⎨⎪+=⎩,则代数式x+y+z 的值为 .14.小明家准备装修一套新房,若甲、乙两家装修公司合作需6周完成,装修费用为5.2万元;若甲公司单独做4周,剩下的由乙公司做,还需9周完成,此时装修费用为4.8万元.若小明只选甲公司单独完成,则他需要付给甲公司装修费用 万元.三、计算题15.解方程组:(1){y =2x3x +2y =7 (2){4x −y =112x +y =1316.解方程组: 4223327x y z x y z x y z +-=⎧⎪-+=-⎨⎪+-=⎩四、解答题17.解方程组 64ax by x cy +=⎧⎨+=⎩ 时甲同学因看错 a 符号,从而求得解为32x y =⎧⎨=⎩ ,乙因看漏 c ,从而求得解为 62x y =⎧⎨=-⎩ ,试求 a , b , c 的值.18.已知方程组31313x y mx y m +=-+⎧⎨-=+⎩的解满足x 为非正数,y 为负数,求m 的取值范围.19. 2021年下半年,新冠疫情在全球新一波蔓延,接种新冠疫苗是当前抗击疫情最有效的手段.某县注射的疫苗有两种,一种是2针剂的灭活疫苗,另种是3针剂的重组蛋白疫苗.某校120名教职工全部完成其中一种疫苗的注射,共注射了325针,注射2针剂和3针剂疫苗的教职工各有多少人?五、综合题20.已知二元一次方程20ax y b +-=(a ,b 均为常数,且a≠0).(1)当a =3,b =﹣4时用x 的代数式表示y ;(2)若()2212x a by b b =-⎧⎪⎨=+⎪⎩是该二元一次方程的一个解 ①探索a 与b 关系,并说明理由;②无论a 、b 取何值,该方程有一组固定解,请求出这组解.21.下面是马小虎同学解二元一次方程组的过程,请认真阅读并完成相应的任务.解方程组:{3x −y =4 ①6x −3y =10 ②解:①×2,得628x y -=……③ 第一步 ②-③,得2y -= 第二步=2y -. 第三步将=2y -代入①,得2x =.第四步所以,原方程组的解为22x y =⎧⎨=-⎩第五步(1)这种求解二元一次方程组的方法叫做 法,以上求解步骤中,马小虎同学第 步开始出现错误.(2)请写出此题正确的解答过程.22.目前,新型冠状病毒在我国虽可控可防,但不可松懈.建兰中学欲购置规格分别为200mL 和500mL 的甲、乙两种免洗手消毒液若干瓶,已知购买3瓶甲和2瓶乙免洗手消毒液需要80元,购买1瓶甲和4瓶乙免洗手消毒液需要110元. (1)求甲、乙两种免洗手消毒液的单价.(2)该校在校师生共1000人,平均每人每天都需使用10mL 的免洗手消毒液,若校方采购甲、乙两种免洗手消毒液共花费2500元,则这批消毒液可使用多少天?(3)为节约成本,该校购买散装免洗手消毒液进行分装,现需将8.4L 的免洗手消毒液全部装入最大容量分别为200mL 和500mL 的两种空瓶中(每瓶均装满),若分装时平均每瓶需损耗10mL ,请问如何分装能使总损耗最小,求出此时需要的两种空瓶的数量.参考答案与解析1.【答案】D【解析】【解答】解:将 21x y =⎧⎨=-⎩ 代入ax+y=1得2a-1=1 解得a=1. 故答案为:D.【分析】根据方程根的概念,将x=2与y=-1代入ax+y=1可得关于字母a 的方程,求解即可得出a 的值.2.【答案】B【解析】【解答】解: ACD 、既不能消去x ,也不能消去y ,错误;B 、能消去y ,正确; 故答案为:B.【分析】观察两方程中y 的系数,找出两系数的最小公倍数,结合系数的符号,即可判断.3.【答案】C【解析】【解答】解:设这间会议室的座位排数是x 排,人数是y 人.根据题意,得()12111411x y x y+=⎧⎨-+=⎩解得12155x y =⎧⎨=⎩. 故答案为:C .【分析】本题中有两个等量关系:1、每排坐12人,则有11人没有座位;2、每排坐14 人,则余1人独坐一排. 这样设每排的座位数为x ,总人数为y ,列出二元一次方程组即可.4.【答案】B【解析】【解答】解:∵方程组24x y x y -=⎧⎨-=⎩①②的解为2x y =-⎧⎨=⎩▽ 424y y --=⎧⎨--=⎩①②解之:y=-6, △=2【分析】将x=-2代入第二个方程,可求出△的值,再将x ,y 的值代入第一个方程,可求出△的值.5.【答案】C【解析】【解答】解:13x y =⎧⎨=⎩是关于x ,y 的二元一次方程2x y m -=的一个解123m ∴-⨯=5m ∴=-故答案为:C.【分析】将x=1、y=3代入方程中进行计算可得m 的值.6.【答案】D【解析】【解答】解:方程:{y =x −5①3x −y =8②把①式代入②式,可得:()358x x --=整理,可得:358x x -+= 故答案为:D.【分析】将第一个方程代入第二个方程中可得3x-(x-5)=8,然后化简即可.7.【答案】C【解析】【解答】解:24328a b a b +=⎧⎨+=⎩①② ①+②,可得: 4a +4b =12 ∴2a +2b =12÷2=6. 故答案为:C .【分析】两方程组中两方程相加即可求解.8.【答案】B【解析】【解答】设购买价格为6元的商品x 件,价格为8元的商品y 件依题意得:68100x y +=5034xy -∴=又x ,y 均为正整数解得211x y =⎧⎨=⎩或68x y =⎧⎨=⎩或105x y =⎧⎨=⎩或142x y =⎧⎨=⎩因此可供小明选择的方案有4种.【分析】设购买价格为6元的商品x 件,价格为8元的商品y 件, 根据购买价格分别为6元和8元的两种商品共花费100元,列出二元一次方程,再求出其正整数解即可.9.【答案】B【解析】【解答】解:由题意得: 640850y xy x +=⎧⎨-=⎩故答案为:B.【分析】根据“ 每人分6本,则剩余40本”得方程6y-40=x ;根据“每人分8本,则还缺50本”得方程8y-50=x ,依此列出二元一次方程组,即可解答.10.【答案】A【解析】【解答】解:∵方程组41233x by z x by z -+=⎧⎨-+=⎩ 的解是1x a y z c=⎧⎪=⎨⎪=⎩∴41233a b c a b c -+=⎧⎨-+=⎩①② 由①-②得:2b c +=- ∴2b c =--把2b c =--代入①,得:()241a c c ---+=∴51a c +=-∴65123a b c a c b c ++=+++=--=-. 故答案为:A.【分析】由题意把x 、y 、z 的值代入方程组可得关于a 、b 、c 的方程组,将c 作为常数,用含c 的式子表示出a 、b ,整体代换计算即可求解.11.【答案】x 102- 【解析】【解答】解:x -2y =102y=x-10 解之:y=x 102-. 故答案为x 102-【分析】先移项,再将y的系数化为1,可求出y.12.【答案】1 2 -【解析】【解答】解:3202132022 x yx y+=⎧⎨+=⎩①②①-②得,2x-2y=﹣1两边同除以2得,x-y=1 2 -故答案为1 2 -.【分析】将①式和②式整体相减得出2x-2y=﹣1,然后根据等式的性质两边同除以2,即可解答. 13.【答案】45【解析】【解答】解:273330x yy zz x+=⎧⎪+=⎨⎪+=⎩①②③①+②+③得:2x+2y+2z=90整理得:x+y+z=45.故答案为:45.【分析】将方程组中的三个方程相加并化简可得x+y+z的值. 14.【答案】6【解析】【解答】解:设甲公司的工作效率为x,乙公司的工作效率为y.依题意列方程组,得661 491 x yx y+=⎧⎨+=⎩解这个方程组,得110115 xy⎧=⎪⎪⎨⎪=⎪⎩所以,甲公司单独做需10周,乙公司单独做需15周;设甲一周的装修费是m万元,乙一周的装修费是n万元.依题意列方程组,得66 5.2 49 4.8 m nm n+=⎧⎨+=⎩解这个方程组,得35415 mn⎧=⎪⎪⎨⎪=⎪⎩甲单独做的装修费:35×10=6(万元)故答案为:6.【分析】设甲公司的工作效率为x,乙公司的工作效率为y,根据相等关系“ 甲装修公司6周完成的工作量+乙装修公司6周完成的工作量=1,甲装修公司4周完成的工作量+乙装修公司9周完成的工作量=1”可得关于x、y的方程组,解之求出x、y的值;设甲一周的装修费是m万元,乙一周的装修费是n万元,根据相等关系“ 甲装修公司6周所需费用+乙装修公司6周完成所需费用=1,甲装修公司4周所需费用+乙装修公司9周所需费用=1”可得关于m、n的方程组,解之可求解.15.【答案】(1)解:{y=2x①3x+2y=7②将①代入②得3x+4x=7解得x=1将x=1代入①得y=2∴12 xy=⎧⎨=⎩(2)解:{4x−y=11①2x+y=13②①+②得6x=24解得x=4将x=4代入②得8+y=13解得y=5∴45 xy=⎧⎨=⎩【解析】【分析】(1)将①方程直接代入②方程可求出x的值,再将x的值代入①方程可求出y的值,从而即可得出方程组的解;(2)将方程组中的两个方程相加可求出x的值,再将x的值代入②方程可求出y的值,从而即可得出方程组的解.16.【答案】解:4 223 327x y zx y zx y z+-=⎧⎪-+=-⎨⎪+-=⎩①②③解:①+②得, 31x y -=④ ②×2+③得, 731x y -=⑤④与⑤组成方程组得 31731x y x y -=⎧⎨-=⎩解方程组得, 12x y =⎧⎨=⎩把 12x y =⎧⎨=⎩ 代入①得, 124z +-=解得, 1z =-∴原方程组的解为: 121x y z =⎧⎪=⎨⎪=-⎩【解析】【分析】利用第一个方程加上第二个方程可得3x-y=1,利用第二个方程的2倍加上第三个方程可得7x-3y=1,联立求解可得x 、y 的值,然后将x 、y 的值代入第一个方程中求出z 的值,据此可得方程组的解.17.【答案】解:甲同学因看错 a 符号∴ 把 3x = , 2y = 代入 4x cy +=解得 12c =326a b -+= .乙因看漏 c∴ 把 6x = , 2y =- 代入 6ax by +=得 626a b -= 得 326626a b a b -+=⎧⎨-=⎩解得, a=4 , b=9【解析】【分析】甲同学看错a 的负号,把x=3,y=2代入x+cy=4,求出c 值,因看错a 的符号,得-3a+2b=6,再由乙看漏c ,把x=6,y=-2代入ax+by=6,得6a-2b=6,联立方程组解方程组得a 、b 的值,即可解决问题.18.【答案】解:解方程组31313x y m x y m +=-+⎧⎨-=+⎩,得324x m y m =-⎧⎨=--⎩ ∵x 为非正数,y 为负数∴30240m m -≤⎧⎨--<⎩解得-2<m≤3【解析】【分析】先求出方程组的解324x m y m =-⎧⎨=--⎩,再根据题意列出不等式组30240m m -≤⎧⎨--<⎩,最后求出m 的取值范围即可。
七年级数学下册《第八章 二元一次方程组》单元测试卷附答案解析-人教版
七年级数学下册《第八章 二元一次方程组》单元测试卷附答案解析-人教版一、单选题1.已知x 2y 1=⎧⎨=-⎩是二元一次方程2x 3ky 1-=的一组解,则k 的值为( )A .1B .-1C .53D .53-2.方程组: 5210x y x y +=⎧⎨+=⎩①② ,由②-①得到的方程是( )A .3x =10B .x =-5C .3 x =-5D .x =53.七年级学生在会议室开会,每排座位坐12人,则有11人没有座位;每排座位坐14人,则余1人独坐一排,则这间会议室的座位排数是( ) A .14B .13C .12D .154.将方程3x+y=9写成用含y 的式子表示x 的形式,正确的是( )A .y=3x-9B .y=9-3xC .x=3y-3 D .x=3-3y 5.已知{x =2ky =−3k 是二元一次方程x-y=10的解,则k 的值是( )A .-10B .-2C .2D .106.若4326x y x y +=⎧⎨-=⎩,则x y +的值为( )A .3B .4C .5D .67.已知方程组272a b a b +=⎧⎨-=⎩①②下列消元过程错误的是( )A .代人法消去a ,由②得2a b =+代入①B .代入法消去b ,由①得72b a =-代入②C .加减法消去b ,①-②D .加减法消去a ,①-②×28.三元一次方程组32522x y x y z z -=⎧⎪++=⎨⎪=⎩,,的解是( )A .112x y z =⎧⎪=⎨⎪=⎩B .112x y z =⎧⎪=-⎨⎪=⎩C .112x y z =-⎧⎪=⎨⎪=⎩D .112x y z =-⎧⎪=-⎨⎪=⎩9.把一根长17m 的钢管截成2m 和3m 长两种不同规格的钢管,且不造成浪费,你有几种不同的截法( ) A .1种B .2 种C .3种D .4种10.在学习完“垃圾分类”的相关知识后,小明和小丽一起收集了一些废电池,小明说:“我比你多收集了7节废电池啊!”小丽说:“如果你给我8节废电池,我的废电池数量就是你的2倍”.如果他们说的都是真的,设小明收集了x 节废电池,小丽收集了y 节废电池,则可列方程组为( ).A .()7828x y x y -=⎧⎨-=+⎩B .()7828y x x y -=⎧⎨+=-⎩C .()728x y x y -=⎧⎨-=⎩D .()7288x y x y -=⎧⎨-=+⎩二、填空题11.已知方程2x ﹣y =8,用含x 的代数式表示y ,则y = . 12.若二元一次方程组ax by 3bx ay 2+=⎧⎨+=⎩的解为x 3y 2=⎧⎨=⎩,则a b +的值 .13.已知关于x ,y 的二元一次方程()()a 1x a 2y 52a 0-+++-=,当a 每取一个值时就有一方程,而这些方程有一个公共解,则这个公共解是 .14.某中学为积极开展校园足球运动,计划购买A 和B 两种品牌的足球,已知一个A 品牌足球价格为120元,一个B 品牌足球价格为150元.学校准备用3000元购买这两种足球(两种足球都买),并且3000元全部用完,请写出一种购买方案:买 个A 品牌足球,买 个B 品牌足球.三、计算题15.解方程 212311x y x y -=-⎧⎨+=⎩16.解方程组: 3472395978x z x y z x y z +=⎧⎪++=⎨⎪-+=⎩①②③四、解答题17.已知关于x ,y 的二元一次方程组2632x y x y k -=⎧⎨-=⎩的解满足x ﹣y =2,求k 的值.18.下面是王斌同学解方程组1022x y x y +=⎧⎨-=-⎩的过程,请认真阅读并完成相应任务.解:1022x y x y +=⎧⎨-=-⎩①②由①得10y x =-③,……第一步把③代入②,得2(10)2x x --=-,……第二步 整理得2022x x --=-,……第三步 解得18x -=,即18x =-.……第四步 把18x =-代入③,得28y =则方程组的解为1828x y =-⎧⎨=⎩.……第五步(1)任务一:填空:①以上求解过程中,王斌用了 消元法;(填“代入”或“加减”)②第 步开始出现错误,这一步错误的原因是 ;(2)任务二:直接写出该方程组求解后的正确结果.19.为了鼓励市民节约用电,某市对居民用电实行阶梯收费(总电费=第一阶梯电费+第二阶梯电费),规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.以下是张磊家2014年3月和4月所交电费的收据,问该市规定的第一阶梯电价和第二阶梯电价分别为每度多少元? 代收电费收据 电表号 1205 电表号 1205 户名 张磊 户名 张磊 月份 3月 月份 4月 用电量 220度 用电量 265度 金额112元金额139元20.已知31x y =⎧⎨=⎩是方程2x-ay=9的一个解,解决下列问题:(1)求a 的值;(2)化简并求值:()()()()211213a a a a a -+--+-21.阅读下列方程组的解法,然后解答相关问题:解方程组272625252423x y x y +=⎧⎨+=⎩①②时若直接利用消元法解,那么运算比较繁杂,采用下列解法则轻而易举解:①-②,得222x y +=,即1x y +=.③ ②-③×24,得1x =-.把1x =-代入③,解得2y =.故原方程组的解是12x y =-⎧⎨=⎩.(1)请利用上述方法解方程组192123111315x y x y +=⎧⎨+=⎩.(2)猜想并写出关于x ,y 的方程组()2()2ax a m y a mbx b m y b m +-=-⎧⎨+-=-⎩的解,并加以检验.22.一批机器零件共558个,甲先做3天后,乙再加入,两人共同再做6天刚好完成.设甲每天做x个,乙每天做y 个.(1)列出关于x ,y 的二元一次方程.(2)用含x 的代数式表示y ,并求当32x =时y 的值是多少? (3)若乙每天做48个,则甲每天做多少个?参考答案与解析1.【答案】B【解析】【解答】解:∵x 2y 1=⎧⎨=-⎩是二元一次方程2x-3ky=1的一组解∴4+3k=1 解得k=-1. 故答案为:B.【分析】根据二元一次方程根的概念,将x=2、y=-1代入原方程,可得关于字母k 的一元一次方程,解该方程可求出k 的值.2.【答案】D【解析】【解答】解:由②-①得:x=5.故答案为:D.【分析】由方程②-方程①,即左边减左边,右边减右边,可得x=5,即可得出正确答案.3.【答案】C【解析】【解答】解:设这间会议室的座位排数是x 排,人数是y 人.根据题意,得()12111411x y x y+=⎧⎨-+=⎩解得12155x y =⎧⎨=⎩. 故答案为:C .【分析】本题中有两个等量关系:1、每排坐12人,则有11人没有座位;2、每排坐14 人,则余1人独坐一排. 这样设每排的座位数为x ,总人数为y ,列出二元一次方程组即可.4.【答案】D【解析】【解答】解:3x+y=93x=9-y 解之:33yx =-. 故答案为:D【分析】先移项,将含y 的项移到方程的右边,再在方程的两边同时除以3,可求出x.5.【答案】C【解析】【解答】解:∵{x=2ky=−3k是二元一次方程x-y=10的解∴2k+3k=10解之:k=2.故答案为:C【分析】将x,y的值代入方程,可得到关于k的方程,解方程求出k的值. 6.【答案】A【解析】【解答】解:43 26 x yx y+=⎧⎨-=⎩①②①+②得3x+3y=9两边同时除以3得x+y=3.故答案为:A.【分析】直接将方程组中的两个方程相加后再在两边同时除以3即可得出答案. 7.【答案】C【解析】【解答】解:方程组272a ba b+=⎧⎨-=⎩①②A、代入法消去a,由②得a=b+2代入①可消去a,不符合题意;B、代入法消去b.由①得b=7−2a代入②可消去b,不符合题意;C、加减法消去b,①+②,符合题意;D、加减法消去a,①−②×2,不符合题意.故答案为:C.【分析】利用加减消元法和代入消元的方法求解二元一次方程组即可。
二元一次方程组单元测试(含答案)
二元一次方程组单元测试(含答案) 第8章二元一次方程组章末检测一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列各方程组中,是二元一次方程组的是A。
{a+b=1.2a=b}B。
{3x-2y=5.2y-z=10}C。
{xy+3=1.xy=1}D。
{x-y=27.x+1.1y=405}2.二元一次方程2x-y=1有无数多个解,下列四组值中是该方程的解的是A。
{x=2.y=-0.5}B。
{x=4.y=7}C。
{x=1.y=-1}D。
{x=3.y=5}3.解方程组{3m-4n=7.9m-10n=-25}的最简单方法是A。
由②得m=(10n-25)/9,代入①中B。
由②得9m=10n-25,代入①中C。
由①得m=7/3-4n/3,代入②中D。
由①得3m=7+4n,代入②中4.下列说法正确的是A。
{x-3y=9.x+2xy=3}是二元一次方程组B。
方程x+3y=6的解是{x=3.y=1}C。
方程2x-y=3的解必是方程组{2x-y=3.3x+y=1}的解D。
{x=3.y=-12}是方程组{x- y=4.3x+3y=3}的解5.若|3x+2y-4|+27(5x+6y)²=0,则x,y的值分别是A。
{x=6.y=-5}B。
{x=5/2.y=-5/3}C。
{x=8.y=10}D。
{x=11/2.y=-11/3}6.七年级两个班植树,一天共植树30棵,已知甲班的植树棵数是乙班植树棵数的2倍,设甲、乙两班分别植树x棵,y棵,那么可列方程组A。
{x+y=30.x=2y}B。
{x+y=30.2x=y}C。
{x+y=30.y=2+x}D。
{x+y=30.x=2+y}7.若关于x,y的二元一次方程组{x-y=4k-5.3x+ay=b}的解满足x+y=9,则k的值是A。
1B。
2C。
3D。
48.已知关于x,y的二元一次方程组{2ax+b=y。
x+by=c}的解为{x=2.y=3},那么{ax+b/2.ay+c/3}的解为A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二元一次方程组单元检测试题
一、选择题(每小题3分,共30分,把正确答案的代号填在括号内)
1.下列方程中,是二元一次方程的是( ) A .y x 23- B .02=-xy C .
0421=-y π D .5
243y x -= 2.下列方程组中,是二元一次方程组的是( )
A .⎩⎨⎧==54y x
B .⎩⎨⎧=-=+64382c b b a
C .⎪⎩⎪⎨⎧==-n m n m 20162
D .⎪⎩⎪
⎨⎧+=-=4236316y x
y x
3.二元一次方程1832=+y x ( )
A .有且只有一解
B .有无数解
C .无解
D .有且只有两解 4.方程x y -=1与523=+y x 的公共解是( )
A .⎩⎨
⎧==23y x B .⎩⎨⎧=-=23y x C .⎩⎨⎧-==23y x D .⎩
⎨⎧-=-=23
y x 5.若0)23(22
=++-y x ,则y x )1(+的值是( )
A .-1
B .-2
C .-3
D .2
3 6.方程组⎩
⎨
⎧=+=-53234y x k
y x 的解中,x 与y 的值相等,则k 等于( )
A . 1
B . 2
C . 3
D .0
7.已知33+-m n y x 与1
122+-n m y x
是同类项,则( ) A .3,5==n m B .2,1==n m C . 5,3==n m D .4,2==n m
8.望龙中学某年级学生共有128人,其中男生人数比女生人数的2倍少2人,设女生人数为x 人,男生人
数为y 人,则下面所列的方程组中正确的是( ) A .⎩⎨
⎧-==+22128x y y x B .⎩⎨⎧+==+22128x y y x C .⎩⎨⎧+==+22128x y y x D . ⎩⎨⎧+==+22128
y x y x
9.已知⎩⎨
⎧=+=+25ay bx by ax 的解是⎩
⎨⎧==34
y x ,则( )
A .⎩⎨
⎧==12b a B .⎩⎨⎧-==12b a C . ⎩⎨⎧=-=12b a D .⎩
⎨⎧-=-=12
b a 10.用加减法解方程组⎩
⎨
⎧=-=+11233
32y x y x 时,有下列四种变形,其中正确的是( )
A .⎩⎨
⎧=-=+1169364y x y x B .⎩⎨⎧=-=+2226936y x y x C .⎩⎨⎧=-=+3369664y x y x D .⎩⎨⎧=-=+11
46396y x y x
11.解一次方程组的基本思想是___________,其基本方法有_____________和_____________。
12.二元一次方程4=+y x 的正整数解是________________________________________。
13.在方程723+=x y 中,用含x 的式子表示y ,则=y __________________;用含y 的式子表示x ,
则=x ____________________;写出一个以⎩
⎨⎧-==11
y x 为解的二元一次方程组_____________________。
14.如果方程6=+ny mx 有两个解为⎩⎨
⎧==11y x 和⎩⎨⎧-==1
2y x ,则=-22n m __________。
15.如果方程组⎩⎨
⎧-=-=+1242a by x b y ax 的解是⎩⎨⎧-==1
1y x ,则=a
b _____________。
16.已知点A(15--m ,n 215--),点B(n 3,m 9)关于原点对称,则n m 32-的值是_____________________。
17.如果43=-b a ,则b a 621+-的值是 。
18.甲、乙两人在400米的环形跑道上练习竞走,已知甲的速度比乙的速度快,当他们从某处同时出发背
向行走时,每60秒相遇一次;同向行走时,每隔8分钟相遇一次,设甲的速度为x 米每分钟,乙的速度为
y 米每分钟,则可列方程组为____________________________________。
三、解方程组(每题5分,共20分)
19.用代入法解⎩⎨
⎧=-=-22534y x y x 20.用代入法解⎩
⎨⎧-=+=-63210
53y x y x
21.用加减法解⎩⎨⎧=-=+422822y x y x 22.用加减法解⎩
⎨⎧=-=+1130
32y x y x
23.解方程组⎪⎩
⎪
⎨⎧=+=+=+303327z x z y y x
24.甲、乙两位同学在解方程组⎩⎨⎧-=-=+232y cx by ax 时,甲正确解得⎩⎨⎧-==11y x ,乙因抄错了题中的c ,解得⎩
⎨⎧-==62
y x ,
求a 、b 、c 的值。
五、列方程组解应用题(每题6分,共12分)
25.有一只驳船,载重量是800吨,容积是795立方米,现在装运生铁和棉花两种物资,生铁每吨的体积
为0.3立方米,棉花每吨的体积为4立方米,求生铁和棉花各装多少吨刚好装满?
26.加工一批零件共350个,甲先单独做8小时,然后又与乙一起加工5小时完成任务。
已知甲每小时比
乙多加工2个零件。
求甲、乙两人每小时各加工多少个零件?。