人教版高中数学课件:对数函数
合集下载
人教A版高中数学必修1课件:2.2.2《对数函数及其性质》课件
练习:(1)y log a (9 x 2 ) (2)y log (2 x1) (3 x 2)
3y
log
7
1 1 3x
4y loga 4 x
小结: 1.对数函数的概念. 2.对数函数的定义域. 3.对数函数的图象及其性质,通过对a分类讨 论掌握其性质与图象.
练习:已知函数 f(x)=log2 (2x-1)
即已知y求x的问题。
yx=log2xy
对数函数:
一般地,我们把函数 y log a xa 叫0做且对a数函1
数,其中x是自变量,函数的定义域是(0,+∞).
注意:①对数函数的定义与指数函数类似,都是情势定义,
注意辨别.如:y 2 log 2 x,
能称其为对数型函数.
y l都og不2 是52 对x 数函数,而只
a>1
0<a<1
图
y
y
象
o (1, 0)
(1, 0) xo
x
(1) 定义域: (0,+∞)
性 (2) 值域:R
(3) 过点(1,0), 即x=1 时, y=0
(4) 0<x<1时, y<0;
(4) 0<x<1时, y>0;
质
x>1时, y>0
x>1时, y<0
(5) 在(0,+∞)上是增函数 (5)在(0,+∞)上是减函数
0 1 23 4
连 -1 线 -2
2 4… 1 2…
x
x … 1/4 1/2
列 表
y
y
log 2
log 1
x…
x…
2
-2 2
高中数学《对数函数》课件(共14张PPT)
底数的取值范围:底数a必须为正实数,且不能等于1。 输入值的范围:对数函数的输入值必须大于0且小于a的实数。 对数的运算顺序:对于多个对数的运算,应先将对数函数的自变量化简到最简形式,再计算对 数值。
谢谢大家
人教版高中数学必修五
五、对数函数的应用
对数函数在数学、物理、工程等领域中广泛应用,用于处理指数运算、比例运算、数值比较等 问题。 对数函数可以用于实现数据压缩和扩展,例如在声音信号处理中,可以使用对数函数将声音信 号的动态范围进行调整,以提高声音的质量和清晰度。 对数函数还可以用于计算复利、估算自然对数的值、求解方程组等问题。 在使用对数函数时,需要注意以下几点:
a>1: 当:x>1时, 图像在y轴上方; 当0<x<1时,图像在下方;
0<a<1:
当:x>1, 图像在y轴下方;
当 0<x<1, 图像在轴上方;
函数性质
定义域:x>0
值域: R 当x=1时,y=0。
增函数 减函数
a>1: 当x>1, 则 y>0, 当0<x<1, 则y<0; 0<a<1: 当:x>1, 则y<0 当0<x<1, 则y>0;
5. 函数值分布:a>1: 当:x>1时, 图像在y轴上方; 当0<x<1时,图像在y轴下方;
函数性质 定义域:x>0 值域: R 当x=1时,y=0。
增函数
a>1: 当x>1, 则 y>0, 当0<x<1, 则y<0;
0 a 1 y loga x
x 1
图像的特征 1.图像位于y轴右侧; 2. 图像在y轴的投影占满了整个y轴; 3. 过(1.0)点 4. 单调性: 0<a<1时,图像下降; 5. 函数值分布: 0<a<1: 当:x>1, 图像在y轴下方; 当 0<x<1, 图像在轴上方;
谢谢大家
人教版高中数学必修五
五、对数函数的应用
对数函数在数学、物理、工程等领域中广泛应用,用于处理指数运算、比例运算、数值比较等 问题。 对数函数可以用于实现数据压缩和扩展,例如在声音信号处理中,可以使用对数函数将声音信 号的动态范围进行调整,以提高声音的质量和清晰度。 对数函数还可以用于计算复利、估算自然对数的值、求解方程组等问题。 在使用对数函数时,需要注意以下几点:
a>1: 当:x>1时, 图像在y轴上方; 当0<x<1时,图像在下方;
0<a<1:
当:x>1, 图像在y轴下方;
当 0<x<1, 图像在轴上方;
函数性质
定义域:x>0
值域: R 当x=1时,y=0。
增函数 减函数
a>1: 当x>1, 则 y>0, 当0<x<1, 则y<0; 0<a<1: 当:x>1, 则y<0 当0<x<1, 则y>0;
5. 函数值分布:a>1: 当:x>1时, 图像在y轴上方; 当0<x<1时,图像在y轴下方;
函数性质 定义域:x>0 值域: R 当x=1时,y=0。
增函数
a>1: 当x>1, 则 y>0, 当0<x<1, 则y<0;
0 a 1 y loga x
x 1
图像的特征 1.图像位于y轴右侧; 2. 图像在y轴的投影占满了整个y轴; 3. 过(1.0)点 4. 单调性: 0<a<1时,图像下降; 5. 函数值分布: 0<a<1: 当:x>1, 图像在y轴下方; 当 0<x<1, 图像在轴上方;
人教版高中数学《对数函数的图象和性质》教学课件
a>1
0<a<1
图y
y
象 0 (1,0)
x
0 (1,0) x
定义域 : ( 0,+∞)
性
值域 : R
过定点(1 ,0), 即当x =1时,y=0
在(0,+∞)上是增函数 在(0,+∞)上是减函数
质 y loga x与y log 1 x的图象关于x轴对称 底大图右
a
典例精讲
例3 比较下列各组中,两个值的大小:
3
y log 1 x
2
性质: ① y loga x与y log 1 x的图象关于x轴对称
a
② 在第一象限底大图右
探索发现
y
2
认真观察函数
1 11
y=log2x
42
0 1 23 4
x
-1
的图象填写下表 -2
图象位于y轴右方 图象向上、向下无限延伸
定义域 : ( 0,+∞)
值域: R
自左向右看图象逐渐上升 在(0,+∞)上是:增函数
典例精讲
例2 求下列函数的定义域:
(1) y loga x2 (a 0,且a 1)
解: ∵x2 ﹥0 即x ≠ 0 ∴函数y= logax2 的定义域是{x| x ≠ 0}
(2)y log a (4 x)
解:∵ 4-x﹥0即x﹤4 ∴函数y=loga (4-x) 的定义域是{x|x﹤4}
y
探索发现
2
认真观察函数
1 11
42
y lo g 1 x
0 123 4
x
-1
2
的图象填写下表
-2
图象位于y轴右方 图象向上、向下无限延伸 自左向右看图象 逐渐下降
对数函数及其性质(第一课时)课件-高一上学期数学人教A版(2019)必修第一册
)
(1)A已.知cab0.3a0.4 ,A.b cB.lobga34ab,cc lBo.g0.a3 4C,b.则b(c a c )C. b Da.bc c a D.b c a
A. c b a B. a b c
C.b a c
D.b c a
例题讲练
(2)设 a log3 , b log2 3 , c log3 2 ,则(
x lxogaloyg(a ya ( 0a且 a0 且 1a),1x),也是x 也以是y以为自y 为变自量变的量函的数函(数其(中其y 中 0y, 0x , Rx ),R ), 根据根我据们我的们认的知认习知惯习,惯我,们我把们x 把 lxogaloyg中a 字y 中母字x 母, xy,对调y 对,调, 写成写y成 lyogaloxg(a 其x (中其x 中 0x, 0y, Ry ).R ).
例题讲练
【练习习 55】】
((11))已已知知ff((xx))的的定定义义域域为为[0[,10],1,] ,则函则数函数f [lof g[l1o(g31(3x)] 的x)定] 的义定域义为域___为____________._____.
22
例题讲练
(2)已知函数 y f [lg(x 1)] 的定义域为 (0,99] ,则函数 y f [log2 (x 2)] 的定义域为__________.
§4.4 对数函数及其性质 (第一课时)
人教版高中数学必修一
课堂引入:
通过前面的学习我们知道,某细胞经过 x 次分裂后,变成的细胞个数 y 2x ,
得由到一由y 个y2指x 数2x函x数x.lo由gglo22gyyy2y2对x 于对任于x意任的意lo细的g2胞细y个胞,数个对数y于,任y 我,意们我的都们细可都胞以可个通以数过通y对过,数对我运数们算运都算可 得到以得唯通到一唯过的一对的数x 与运x 之与算对之得应对到,应唯所,一以所的细以x胞细与分胞之裂分对次裂应数次,所数x以也x细可也胞以可分看以裂出看次以出数细以x胞细也个胞可数个以数y看为y成自为以变自细变胞个 量的数量函的y数函为.数自.变量的函数. 同样同地样,地根,据根指据数指与数对与数对的数关的系关,系由,y由 ayx(aax ( 0a且 a0 且 1a)可1)以可得以到得:到:
4.4对数函数的概念课件(人教版)
2
任意 y (0, 1]
!
唯一
(0, )
x
=ݕቌ
新知形成
௫
5730
1 ቍ ( ∈ ݔሾ0, + ∞ሻሻ
y
= ݔlog5730 1ݕ
2
高中数学
1
ݕ
( ݔ, ݕሻ
x 0
任意 ( ∈ ݕ0,1ሿ 唯一 ∈ ݔሾ0, + ∞ሻ
新知特征
问题3: 这个函数有什么特征? = ݔlog5730 1ݕ
问题3: 这个函数有什么特征?
= ݔlog5730 1ݕ
2
此函数自变量:y 变量:x
= ݕlog5730 1ݔ
2
通常函数自变量:x
变量:y
高中数学
温故知新
回顾研究过程, 你能得到什么 一般性结论?
1
௫
5730
= ݕቌ൬21൰ ቍ
= ݔlog5730 1ݕ
2
= ݕlog5730 1ݔ
⑥y = ln x.
(A) ①②⑤ (B) ④⑤⑥ (C) ①②④⑤⑥ (D) ③④
高中数学
判断函数是否为对数函数的根据是什么?
新知特征
y = loga x.
判断 一 个函数是否是对数函数,要以下关注三点: 1. 对数符号前面的系数为1; 2. 对数的底数是不等于1的正常数; 3. 对数的真数仅有自变量x.
高中数学
学以致用
例 1 给出下列函数:
① y = log2 (3x - 2);
②y = 2 log0.3 x;
④ y = lg x;
⑤y
=
log (
任意 y (0, 1]
!
唯一
(0, )
x
=ݕቌ
新知形成
௫
5730
1 ቍ ( ∈ ݔሾ0, + ∞ሻሻ
y
= ݔlog5730 1ݕ
2
高中数学
1
ݕ
( ݔ, ݕሻ
x 0
任意 ( ∈ ݕ0,1ሿ 唯一 ∈ ݔሾ0, + ∞ሻ
新知特征
问题3: 这个函数有什么特征? = ݔlog5730 1ݕ
问题3: 这个函数有什么特征?
= ݔlog5730 1ݕ
2
此函数自变量:y 变量:x
= ݕlog5730 1ݔ
2
通常函数自变量:x
变量:y
高中数学
温故知新
回顾研究过程, 你能得到什么 一般性结论?
1
௫
5730
= ݕቌ൬21൰ ቍ
= ݔlog5730 1ݕ
2
= ݕlog5730 1ݔ
⑥y = ln x.
(A) ①②⑤ (B) ④⑤⑥ (C) ①②④⑤⑥ (D) ③④
高中数学
判断函数是否为对数函数的根据是什么?
新知特征
y = loga x.
判断 一 个函数是否是对数函数,要以下关注三点: 1. 对数符号前面的系数为1; 2. 对数的底数是不等于1的正常数; 3. 对数的真数仅有自变量x.
高中数学
学以致用
例 1 给出下列函数:
① y = log2 (3x - 2);
②y = 2 log0.3 x;
④ y = lg x;
⑤y
=
log (
人教版高中数学必修一课件:2.2.2 对数函数的图像及其性质(共20张PPT)
y=0.5x 和y= log0.5x 的图象画在一个坐标内 ,观察图象的特点!
(书面作业)
•P73 2,3
19
Thank you!
要善于退,足够的退,退到不失去重 要性的地方就是解决数学问题的诀窍。
20
比较两个同底对数值的大小时:
1.观察底数是大于1还是小于1( a>1时为增函数
小
2.比较真数值的大小;
0<a<1时为减函数)
结
3.根据单调性得出结果。
14
•(3) loga5.1与 loga5.9 (a>0,且a≠1)
解: 若a>1 则函数y=log a x在区间(0,+∞)上是增函数;
∵5.1<5.9 ∴ loga5.1 < loga5.9
16
函数 yloga x,ylogb x,ylogc x,ylogd x
C 的图像如图,则 所下 示列式子中正( 确) 的
y ylogb x A .0 a b 1 c d
yloga x B .0 b a 1 d c
x
O
ylogd x C .0 d c 1 b a
2.2.2对数函数的图象与性质
y
x
o 1
1
(一)对数函数的定义 ★ 函数 y = log a x (a>0,且a≠1)叫做对数函数.
其中x是自变量, 定义域是(0,+∞)
想 对数函数解析式有哪些结构特征? 一 ①底数:a>0,且 a≠1 想 ②真数: 自变量x ? ③系数函数?(导学与评价P53) ① y log a x 2 ; ② y log 2 x 1; ③ y 2 log 8 x ; ④ yloxga(x0,且x1); ⑤ ylo5gx.
(书面作业)
•P73 2,3
19
Thank you!
要善于退,足够的退,退到不失去重 要性的地方就是解决数学问题的诀窍。
20
比较两个同底对数值的大小时:
1.观察底数是大于1还是小于1( a>1时为增函数
小
2.比较真数值的大小;
0<a<1时为减函数)
结
3.根据单调性得出结果。
14
•(3) loga5.1与 loga5.9 (a>0,且a≠1)
解: 若a>1 则函数y=log a x在区间(0,+∞)上是增函数;
∵5.1<5.9 ∴ loga5.1 < loga5.9
16
函数 yloga x,ylogb x,ylogc x,ylogd x
C 的图像如图,则 所下 示列式子中正( 确) 的
y ylogb x A .0 a b 1 c d
yloga x B .0 b a 1 d c
x
O
ylogd x C .0 d c 1 b a
2.2.2对数函数的图象与性质
y
x
o 1
1
(一)对数函数的定义 ★ 函数 y = log a x (a>0,且a≠1)叫做对数函数.
其中x是自变量, 定义域是(0,+∞)
想 对数函数解析式有哪些结构特征? 一 ①底数:a>0,且 a≠1 想 ②真数: 自变量x ? ③系数函数?(导学与评价P53) ① y log a x 2 ; ② y log 2 x 1; ③ y 2 log 8 x ; ④ yloxga(x0,且x1); ⑤ ylo5gx.
高中数学必修一(人教版)《4.4.2 对数函数的图象和性质》课件
3
3
3
(2)因为函数 y=log1.5x 是(0,+∞)上的增函数,且 1.6>1.4,所以 log1.51.6>log1.51.4.
(3)因为 0>log70.6>log70.5,所以log170.6<log170.5,即 log0.67<log0.57.
(4)因为 log3π>log31=0,log20.8<log21=0,所以 log3π>log20.8.
(3)取中间值 1,因为 log23>log22=1=log55>log54,所以 log23>log54.
[方法技巧] 比较对数值的大小的策略
(1)比较两个底数为同一常数的对数的大小,首先要根据对数的底数来判断对 数函数的单调性,然后比较真数的大小,再利用对数函数的单调性判断.
(2)比较两个对数值的大小,对于底数是相同字母的,需要对底数进行讨论. (3)若不同底但同真,则可利用图象的位置关系与底数的大小关系解决或利用 换底公式化为同底后再进行比较. (4)若底数和真数都不相同,则常借助中间量1,0,-1等进行比较.
综上所述,当 a>1 时,原不等式的解集为{x|x>4};
当 0<a<1 时,原不等式的解集为x52<x<4
.
[方法技巧] 对数不等式的三种考查类型
(1)形如logam>logan的不等式,借助y=logax的单调性求解. (2)形如logam>b的不等式,应将b化成以a为底数的对数式的形式(b=logaab), 再借助y=logax的单调性求解. (3)形如logf(x)a>logg(x)a(f(x),g(x)>0且不等于1,a>0)的不等式,可利用换底 公式化为同底的对数进行求解,或利用函数图象求解. 提醒:底数中若含有参数,一定要注意底数大于0且不等于1,同时要注意对 底数是大于1还是大于0且小于1进行分类讨论.
4.4.2对数函数的图像与性质课件(人教版)
对数函数图像特征及性质
2.本节课用到哪些数学思想方法
(1)数形结合:由解析式到图象(由数到形,以形读数)
图象到性质(由形到数,以数观形)
(2)分类整合:底数的两个范围对函数性质的影响
(3)类比思想:通过研究指数函数方法类比得出
对数函数的性质
六、作业布置
1.函数y = log2x, y=log5x, y = lgx的图象如图所示,
a
二、新知探究
(二)探究对数函数的性质
4.视察底数a的变化对数函数的影响,总结一般特征
(1)请同学们视察这些函数图像的位置、公共点、
变化趋势,它们有哪些共性?有哪些不同?
共同点:1. 这些函数图像都在由右侧,并且都过(1,0).
2.这些函数定义域均为(0, +∞)、值域均为R.
差异点:1.当a>1时,图像从左至右逐步上升,并且
而1.8 < 2.7,∴0.3 1.8 > 0.3 2.7.
三、例题精讲
例1:比较下列各题中两个值的大小
(1)log23.4,log28.5;
(2)log0.31.8,log0.32.7;
(3)loga5.1,loga5.9(a>0,且a≠1).
(4)log3.55,log4.55.
解:(3)∵ =
∴当 > 1时, = 在定义域上单调递增
而5.1 < 5.9,∴ 5.1 < 5.9 .
当0 < < 1时, = 在定义域上单调递减
而5.1 < 5.9,∴ 5.1 > 5.9 .
三、例题精讲
例1:比较下列各题中两个值的大小
(1)log23.4,log28.5;
2.本节课用到哪些数学思想方法
(1)数形结合:由解析式到图象(由数到形,以形读数)
图象到性质(由形到数,以数观形)
(2)分类整合:底数的两个范围对函数性质的影响
(3)类比思想:通过研究指数函数方法类比得出
对数函数的性质
六、作业布置
1.函数y = log2x, y=log5x, y = lgx的图象如图所示,
a
二、新知探究
(二)探究对数函数的性质
4.视察底数a的变化对数函数的影响,总结一般特征
(1)请同学们视察这些函数图像的位置、公共点、
变化趋势,它们有哪些共性?有哪些不同?
共同点:1. 这些函数图像都在由右侧,并且都过(1,0).
2.这些函数定义域均为(0, +∞)、值域均为R.
差异点:1.当a>1时,图像从左至右逐步上升,并且
而1.8 < 2.7,∴0.3 1.8 > 0.3 2.7.
三、例题精讲
例1:比较下列各题中两个值的大小
(1)log23.4,log28.5;
(2)log0.31.8,log0.32.7;
(3)loga5.1,loga5.9(a>0,且a≠1).
(4)log3.55,log4.55.
解:(3)∵ =
∴当 > 1时, = 在定义域上单调递增
而5.1 < 5.9,∴ 5.1 < 5.9 .
当0 < < 1时, = 在定义域上单调递减
而5.1 < 5.9,∴ 5.1 > 5.9 .
三、例题精讲
例1:比较下列各题中两个值的大小
(1)log23.4,log28.5;
4.4.1对数函数的概念课件(人教版)
学习目标
新课讲授
课堂总结
例3 假设某地初始物价为1,每年以5%的增长率递增,经过y年后的物价为x.
(2)填写下表,并根据表中的数据,说明该地物价的变化规律.
物价x 1
2
3
4
5
6
7
8
9
10
年数y 0
(2)根据函数y=log1.05x,x∈[1,+∞),利用计算工具,可得下表
物价x 1 年数y 0
2
3
学习目标
新课讲授
课堂总结
例1 下列函数中,哪些是对数函数?
(1)y=logax2(a>0,且a≠1);(2)y=log2x-1;
(数
学习目标
新课讲授
课堂总结
总结归纳 判断一个函数是对数函数的方法 (1)底数a>0,且为不等于1的常数,也不含有自变量x; (2)真数位置是自变量x,且x的系数是1; (3)logax的系数是1.
4
5
6
7
8
9
10
14 23 28 33 37 40 43 45 47
由表中的数据可以发现,该地区的物价随时间的增长而增长, 但大约每增加1倍所需要的时间在逐渐缩小.
学习目标
新课讲授
课堂总结
练一练 已知f(x)=log3x. (1)作出这个函数的图象; (2)若f(a)<f(2),利用图象求a的取值范围.
4.4.1 对数函数的概念
学习目标
新课讲授
课堂总结
1.理解对数函数的概念 2.会求对数函数的定义域
学习目标
新课讲授
课堂总结
知识点:对数函数的概念
思考:已知死亡生物体内碳14的含量,如何得知它死亡了多长时间呢? 死亡时间x是碳14的含量y的函数吗?
高中数学人教A版必修1课件:2.2.2对数函数及其性质(共15张ppt)
小结:若底数相同,利用对数函数的单调性判断.
练习1. 比较下列各组数中的两个值的大小:
(1)lg3 lg8 ;
(2)log0.41.2 log0.42.5;
变式若(3)㏒1.2 m<㏒1.2 n,则m n. (4)㏒0.2 m<㏒0.2 n,则m n.
例 比较对数值大小
2. 底、真数都不同的两个对数比较大小 ⑴ log 67 , log 7 6 ; ⑵ log 3π , log 2 0.8 .
a 1
0 a 1
y
y
图
y loga x
(1,0)
像
o (1,0)
xo
x
y loga x
定义域 性值 域 质 单调性
奇偶性 过定点
(0,)
(0,)
R 在(0,)上递增
R 在(0,)上递减
非奇非偶
非奇非偶
(1,0), 即x=1时,y=0
单调性的应用
例 比较对数值大小
1. 同底的两个对数比较
⑴ log 23.4 , log 28.5 ⑵ log 0.31.8 , log 0.32.7 ⑶ log a5.1 , log a5.9 ( a>0 , a≠1 ) 解:(3)当a>1时,函数y=log ax在(0,+∞)上是增函数, log a5.1<log a5.9 当0<a<1时,函数y=log ax在(0,+∞)上是减函数, log a5.1>log a5.9
对数函数,定义域是 (0,+ ,
例如:函数 y loga (a 1)x 是对数函数,
则a=
.
概念辨析
例1 下列函数是对数函数的是( 1,5,7,8 )
① y log4 x ③ y log4 x
练习1. 比较下列各组数中的两个值的大小:
(1)lg3 lg8 ;
(2)log0.41.2 log0.42.5;
变式若(3)㏒1.2 m<㏒1.2 n,则m n. (4)㏒0.2 m<㏒0.2 n,则m n.
例 比较对数值大小
2. 底、真数都不同的两个对数比较大小 ⑴ log 67 , log 7 6 ; ⑵ log 3π , log 2 0.8 .
a 1
0 a 1
y
y
图
y loga x
(1,0)
像
o (1,0)
xo
x
y loga x
定义域 性值 域 质 单调性
奇偶性 过定点
(0,)
(0,)
R 在(0,)上递增
R 在(0,)上递减
非奇非偶
非奇非偶
(1,0), 即x=1时,y=0
单调性的应用
例 比较对数值大小
1. 同底的两个对数比较
⑴ log 23.4 , log 28.5 ⑵ log 0.31.8 , log 0.32.7 ⑶ log a5.1 , log a5.9 ( a>0 , a≠1 ) 解:(3)当a>1时,函数y=log ax在(0,+∞)上是增函数, log a5.1<log a5.9 当0<a<1时,函数y=log ax在(0,+∞)上是减函数, log a5.1>log a5.9
对数函数,定义域是 (0,+ ,
例如:函数 y loga (a 1)x 是对数函数,
则a=
.
概念辨析
例1 下列函数是对数函数的是( 1,5,7,8 )
① y log4 x ③ y log4 x
4.4.1对数函数的概念课件(人教版)
∴
1-x>0, x<1,
∴-1<x<1.∴该函数的定义域为(-1,1).
5-x>0, (2)要使函数式有意义,需 x-2>0,
x-2≠1,
x<5, ∴ x>2,
x≠3,
∴2<x<5,且 x≠3.
∴该函数的定义域为(2,3)∪(3,5).
20
4.4.1 对数函数的概念 课堂小结
1. 对数函数概念 2. 对数函数的特征
4.4.1 对数函数的概念 变式训练
2、点A(8,-3)和B(n,2)在同一个对数函数图象上,则
—14
n=______.
解:设对数函数为f(x)=logax(a>0,且a≠1).
则由题意可得f(8)=-3,即loga8=-3,所以a-3=8,
则a=
8-
1 3
1 2
17
4.4.1 对数函数的概念 典型例题——对数函数型的定义域
10
4.4.1 对数函数的概念 情景导入 阅读课本130-131页,思考并完成以下问题 1. 对数函数的概念是什么? 2. 对数函数解析式的特征?
11
4.4.1 对数函数的概念 研探新知 知识点一 对数函数的概念 函数y=logax(a>0,且a≠1)叫做对数函数, 其中x是自变量,函数的定义域是(0,+∞).
2
①求f(x)的解析式;
②解方程f(x)=2.
解:
①由题意设f(x)=logax(a>0,且a≠1),由函数图象过点( 可得f(4)= 1
4,1 ) 2
即loga4=
1 2
2
1
,所以4=a2 ,解得a=16,故f(x)=log16x.
②方程f(x)=2,即log16x=2
所以x=162=256.
新人教A版必修一对数函数的概念对数函数图像和性质课件(22张)
;
(2)下列函数中,是对数函数的是
.(填序号)
①y=log4x;②y=log2(3x);③y=logx2;④y=log3(x-1);⑤y=log2x2;
1
⑥y= 2 log3x.
探究一
探究二
探究三
易错辨析
解析:(1)设 f(x)=logax(a>0,且 a≠1),
1
依题意有 loga4=-1,故 a=4,
探究三
易错辨析
对于含有偶次根式中被开方式为对数式时,要注意被开方的代数
式为非负,还要顾及对数式中本身的真数大于0这一隐含信息,错解
中显然忘记了真数大于0这一隐含条件.
1
2
3
4
5
6
1.下列函数中,是对数函数的是(
A.y=log2x-1
B.y=logx3x
C.y= log 1 x
D.y=3log5x
2
探究一
探究二
探究三
易错辨析
变式训练2函数f(x)=3x(0<x≤2)的反函数的定义域为(
A.(0,+∞)
B.(1,9]
C.(0,1)
D.[9,+∞)
解析:∵ 0<x≤2,∴1<3x≤9,
即函数f(x)的值域为(1,9].
故函数f(x)的反函数的定义域为(1,9].
答案:B
)
探究一
探究二
探究三
易错辨析
C.
2
D.x2
解析:由题意,知 f(x)=logax.∵f(x)的图像过点(√,a),
1
∴a=loga√.∴a=2.∴f(x)=log 1 x.故选 B.
2
答案:B
函数y=logax(a>0,且a≠1)的反函数是y=ax(a>0,且a≠1);函数
(2)下列函数中,是对数函数的是
.(填序号)
①y=log4x;②y=log2(3x);③y=logx2;④y=log3(x-1);⑤y=log2x2;
1
⑥y= 2 log3x.
探究一
探究二
探究三
易错辨析
解析:(1)设 f(x)=logax(a>0,且 a≠1),
1
依题意有 loga4=-1,故 a=4,
探究三
易错辨析
对于含有偶次根式中被开方式为对数式时,要注意被开方的代数
式为非负,还要顾及对数式中本身的真数大于0这一隐含信息,错解
中显然忘记了真数大于0这一隐含条件.
1
2
3
4
5
6
1.下列函数中,是对数函数的是(
A.y=log2x-1
B.y=logx3x
C.y= log 1 x
D.y=3log5x
2
探究一
探究二
探究三
易错辨析
变式训练2函数f(x)=3x(0<x≤2)的反函数的定义域为(
A.(0,+∞)
B.(1,9]
C.(0,1)
D.[9,+∞)
解析:∵ 0<x≤2,∴1<3x≤9,
即函数f(x)的值域为(1,9].
故函数f(x)的反函数的定义域为(1,9].
答案:B
)
探究一
探究二
探究三
易错辨析
C.
2
D.x2
解析:由题意,知 f(x)=logax.∵f(x)的图像过点(√,a),
1
∴a=loga√.∴a=2.∴f(x)=log 1 x.故选 B.
2
答案:B
函数y=logax(a>0,且a≠1)的反函数是y=ax(a>0,且a≠1);函数
高中数学新人教A版必修1课件:第二章基本初等函数2.2.1对数与对数运算(第1课时)对数
• 并非所有指数式都可以直接化为对数式.如(-3)2=9就不能直接 写成log(-3)9=2,只有a>0且a≠1,N>0时,才有ax=N⇔x=logaN.
〔跟踪练习1〕
将下列指数式化为对数式,对数式化为指数式:
(1)42=16;
(2)102=100;
1
(3)42
=2;
(4)log1 32=-5. 2
(3)原式=(alogab) logbc=blogbc=c.
• 『规律方法』 运用对数恒等式时注意事项 • (1)对于对数恒等式alogaN=N要注意格式: • ①它们是同底的;②指数中含有对数情势;③其值为对数的真数. • (2)对于指数中含有对数值的式子进行化简,应充分考虑对数恒等式的应用.
〔跟踪练习3〕 求31+log36-24+log23+103lg3+(19)log34的值. [解析] 原式=3·3 log36-24·2 log23+(10lg3)3+(3 log34)-2 =3×6-16×3+33+4-2 =18-48+27+116=-4176.
• 3.对数与指数的关系
• 当a>0,且a≠1时,ax=N⇔x=____ln_N_______.
• 4.对数的基本性质 • (1)___零___和_负_数______没有对数.
• (2)loga1=_0____(a>0,且a≠1). • (3)logaa=_1____(a>0,且a≠1). • 5.对数恒等式
B.log1 9=-2 3
C.log1 (-2)=9 3
D.log9(-2)=13
[解析] 将(13)-2=9写成对数式为log13 9=-2,故选B.
• 4.若log2(log3x)=0,则x=_3____. • [解析] 由题意得log3x=1,∴x=3.
〔跟踪练习1〕
将下列指数式化为对数式,对数式化为指数式:
(1)42=16;
(2)102=100;
1
(3)42
=2;
(4)log1 32=-5. 2
(3)原式=(alogab) logbc=blogbc=c.
• 『规律方法』 运用对数恒等式时注意事项 • (1)对于对数恒等式alogaN=N要注意格式: • ①它们是同底的;②指数中含有对数情势;③其值为对数的真数. • (2)对于指数中含有对数值的式子进行化简,应充分考虑对数恒等式的应用.
〔跟踪练习3〕 求31+log36-24+log23+103lg3+(19)log34的值. [解析] 原式=3·3 log36-24·2 log23+(10lg3)3+(3 log34)-2 =3×6-16×3+33+4-2 =18-48+27+116=-4176.
• 3.对数与指数的关系
• 当a>0,且a≠1时,ax=N⇔x=____ln_N_______.
• 4.对数的基本性质 • (1)___零___和_负_数______没有对数.
• (2)loga1=_0____(a>0,且a≠1). • (3)logaa=_1____(a>0,且a≠1). • 5.对数恒等式
B.log1 9=-2 3
C.log1 (-2)=9 3
D.log9(-2)=13
[解析] 将(13)-2=9写成对数式为log13 9=-2,故选B.
• 4.若log2(log3x)=0,则x=_3____. • [解析] 由题意得log3x=1,∴x=3.
4.4.1 对数函数的概念与对数函数的图象和性质课件ppt
4
定义域为( ,1).
5
探究三
指数函数与对数函数关系的应用
例3(2020四川宜宾高一检测)已知函数f(x)=log2x,若函数g(x)是f(x)的反函数,
则f(g(2))=(
A.1
B.2
)
C.3
D.4
答案 B
解析 ∵g(x)是f(x)的反函数,∴g(x)=2x.
∵g(2)=22=4,∴f(g(2))=f(4)=log24=2.
单调递增.
图1
(2)∵f(x)=log5|x|,∴f(x)是偶函数,其图象如图2所示.其定义域为
(-∞,0)∪(0,+∞),值域为R,函数的单调递增区间为(0,+∞),单调递减区间为
(-∞,0).
图2
探究五
对数型复合函数的单调性问题
(1)求函数f(x)=
log2)若函数f(x)=lg(x2+ax-a-1)在区间[2,+∞)上单调递增,求实数a的取值范围.
2
∴-1≤2log 1 x≤1,即
2
2
1 -1
1 1
1
log 1 (2) ≤2log 1 x≤log 1 (2) ,化简可得2≤x2≤2.
2
2
2
2
再由 x>0 可得 2 ≤x≤ 2,故函数 f(x)的定义域为[ 2 , 2].
反思感悟 求解与对数函数有关的函数的定义域的方法
(1)求与对数函数有关的函数的定义域时,除遵循前面已学过的求函数定义
y=log 1 x,即 f(x)=log 1 x,所以
2
2
1
1
g
f(4x-1)=lo (4x-1),其定义域满足 4x-1>0,即 x>4.故定义域为
定义域为( ,1).
5
探究三
指数函数与对数函数关系的应用
例3(2020四川宜宾高一检测)已知函数f(x)=log2x,若函数g(x)是f(x)的反函数,
则f(g(2))=(
A.1
B.2
)
C.3
D.4
答案 B
解析 ∵g(x)是f(x)的反函数,∴g(x)=2x.
∵g(2)=22=4,∴f(g(2))=f(4)=log24=2.
单调递增.
图1
(2)∵f(x)=log5|x|,∴f(x)是偶函数,其图象如图2所示.其定义域为
(-∞,0)∪(0,+∞),值域为R,函数的单调递增区间为(0,+∞),单调递减区间为
(-∞,0).
图2
探究五
对数型复合函数的单调性问题
(1)求函数f(x)=
log2)若函数f(x)=lg(x2+ax-a-1)在区间[2,+∞)上单调递增,求实数a的取值范围.
2
∴-1≤2log 1 x≤1,即
2
2
1 -1
1 1
1
log 1 (2) ≤2log 1 x≤log 1 (2) ,化简可得2≤x2≤2.
2
2
2
2
再由 x>0 可得 2 ≤x≤ 2,故函数 f(x)的定义域为[ 2 , 2].
反思感悟 求解与对数函数有关的函数的定义域的方法
(1)求与对数函数有关的函数的定义域时,除遵循前面已学过的求函数定义
y=log 1 x,即 f(x)=log 1 x,所以
2
2
1
1
g
f(4x-1)=lo (4x-1),其定义域满足 4x-1>0,即 x>4.故定义域为
人教版高中数学必修1:2.2.1《对数》课件【精品课件】
20
例2
求下列各式的值:
(1) log2(47×25);
(2) lg5
31log3 2
100
;
(3) log318 -log32 ;
(4)
3
1 log 3 2
.
21
例3 计算:
2 log 5 2 log 5 3 1 1 log 5 10 log 5 0.36 log 5 8 2 3
对数与对数运算
第二课时
对数的运算
13
问题提出
1.对数源于指数,对数与指数是怎样互 化的?
2.指数与对数都是一种运算,而且它们 互为逆运算,指数运算有一系列性质, 那么对数运算有那些性质呢?
14
15
知识探究(一):积与商的对数
思考1:求下列三个对数的值:log232, log24 , log28.你能发现这三个对数之 间有哪些内在联系? 思考2:将log232=log24十log28推广到一 般情形有什么结论?
48
思考3:点P(m,n)与点Q(n,m)有怎样的 位置关系?由此说明对数函数 y log a x x 的图象与指数函数 y a 的图象有怎样 的位置关系? y Q P o x
49
思考4:一般地,对数函数的图象可分为 几类?其大致形状如何? y 0 <a <1 y a >1
1 0 1 x 1 0 1
(5) lg0.01=-2;
化为指数式:
3
(6) ln10=2.303.
10
2
例2.求下列各式中x的值:
2 (1)log64x= ; (2) logx8=6 ; 3
(3)lg100=x;
(4)-lne2=x .
4.4.2对数函数的图象和性质课件(人教版)
7.40)之间的稳定状态。体内酸、碱产生过多或不足,引起血
液pH值改变,此状态称为酸碱失衡。维持基本的生命活动主要
取决于体内精细的酸碱平衡或内环境稳定,即使是微小的失衡
,也可能在很大程度上影响机体的代谢和重要器官的功能.
课堂小结
图象
对数函数的
图象及性质
定义域
值域
性质
பைடு நூலகம்
(0, +∞)
过定点(1,0),即 = 1时, = 0
酸碱度与溶液中氢离子的浓度之间的变化关系;
解 (1)根据对数的运算性质,有
= − lg
+
= lg
+ −1
= lg
1
+
,
所以,在(0, +∞)上,随着 + 的增大, 减小.
因此,溶液中氢离子的浓度越大,溶液的酸性就越强.
例题精讲
例4 (2)已知纯净水中氢离子的浓度为 + = 10−7 摩尔/升,
减函数
增函数
课后作业
1.完成习题4.4
2.探究互为反函数的两个函数图象间的关系.
谢谢
知识像一艘船让它载着我们驶向理想的
……
分析
第一步,列表
0.5
−1
第二步,描点
1
2
2.58
3
3.58
4
新知讲授
探究 用描点法画出函数 = 2 的图象.
分析续
第三步,连线
新知讲授
探究
画出函数 = 1 的图象,并与函数 = 2 的图
2
象进行比较,它们有什么关系?能否利用函数 = 2 的图
象,画出函数 = 1 的图象?
液pH值改变,此状态称为酸碱失衡。维持基本的生命活动主要
取决于体内精细的酸碱平衡或内环境稳定,即使是微小的失衡
,也可能在很大程度上影响机体的代谢和重要器官的功能.
课堂小结
图象
对数函数的
图象及性质
定义域
值域
性质
பைடு நூலகம்
(0, +∞)
过定点(1,0),即 = 1时, = 0
酸碱度与溶液中氢离子的浓度之间的变化关系;
解 (1)根据对数的运算性质,有
= − lg
+
= lg
+ −1
= lg
1
+
,
所以,在(0, +∞)上,随着 + 的增大, 减小.
因此,溶液中氢离子的浓度越大,溶液的酸性就越强.
例题精讲
例4 (2)已知纯净水中氢离子的浓度为 + = 10−7 摩尔/升,
减函数
增函数
课后作业
1.完成习题4.4
2.探究互为反函数的两个函数图象间的关系.
谢谢
知识像一艘船让它载着我们驶向理想的
……
分析
第一步,列表
0.5
−1
第二步,描点
1
2
2.58
3
3.58
4
新知讲授
探究 用描点法画出函数 = 2 的图象.
分析续
第三步,连线
新知讲授
探究
画出函数 = 1 的图象,并与函数 = 2 的图
2
象进行比较,它们有什么关系?能否利用函数 = 2 的图
象,画出函数 = 1 的图象?
人教版高三数学复习课件:对数与对数函数
解析:由log2a<0⇒0<a<1,
由(
1 2
)b>1⇒b<0.
答案:0<a<1,b<0
三基能力强化
3.已知 3a=5b=A,且1a+1b=2,则 A 的 值是________.
答案: 15
三基能力强化
4.若f(x)=logax在[2,+∞)上恒有 f(x)>1,则实数a的取值范围是______.
课堂互动讲练
自我挑战
4.(本题满分12分)已知:f(x)= lg(ax-bx)(a>1>b>0).
(1)求f(x)的定义域; (2)判断f(x)在其定义域内的单调 性; (3)若f(x)在(1,+∞)内恒为正, 试比较a-b与1的大小.
课堂互动讲练
自我挑战
解:(1)由ax-bx>0,
∴(
a b
)x>1,∵
课堂互动讲练
(2)原式=(llgg23+llgg29)·(llgg34+llgg38) =(llgg23+2llgg23)·(2llgg32+3llgg32) =32llgg23·56llgg32=54; (3)分子=lg5(3+3lg2)+3(lg2)2 =3lg5+3lg2(lg5+lg2)=3; 分母=(lg6+2)-lg 130600×110 =lg6+2-lg1060=4; ∴原式=34.
基础知识梳理
logax2=2logax是否正确? 【思考·提示】 不一定正确.logax2 =22llooggaax(-x(x) >0()x<0)
基础知识梳理
4.对数函数 函数y=logax(a>0,且a≠1)叫做 对数函数.其中x是自变量. 对数函数与指数函数 互为反函数, 其图象关于直线 y=x对称.
新教材人教A版4.4.1对数函数的概念课件(18张)
由m-x>0,得x<m,所以B={x|x<m}.
因为A∪B=R,所以m>1,则m的值可以是2.
答案:D
课堂建构
第四章 指数函数与对数函数
4.4 对数函数 4.4.1 对数函数的概念 [学习目标] 通过具体实例,了解对数函数的概念,体会
对数函数是一类重要的函数模型.
对数函数的概念 [知识梳理]
对数函数的概念 一般地,函数 y= logax (a>0,且 a≠1)叫做对数函数, 其中 x 是自变量,定义域是 (0,+∞) .
(2)若对数函数 f(x)的图象过点(4,-2),则 f(8)= -3 .
方法规律
判断一个函数是否为对数函数的方法
一个函数的解析式或经过化简后的解析式形如 y=logax(a>0,且 a≠1),且函数的定义域是(0,+∞),则此函数 必是对数函数.具体来讲,满足两个条件:
(1)底数 a 满足 a>0,且 a≠1; (2)真数仅有自变量 x,且 x>0.
探索点二 含对数式的函数的定义域
【例 2】 (1)下列各组函数中,定义域相同的一组是 ( ) A.y=ln x2 与 y=2ln x B.y=lg(x-1)+lg(x+1)与 y=lg(x+1)(x-1) C.y=10lg x 与 y=lg 10x D.y=lg x 与 y=lg
解析:A项中,y=ln x2的定义域为{x|x∈R,且x≠0},y=2ln x 的定义域为(0,+∞);
【思考】 类比指数函数的解析式的特征,对数函数的解析式 有哪些特征? 提示:对数函数的解析式满足两个条件: (1)底数a满足a>0,且a≠1. (2)真数仅含有自变量x,且x>0.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
---邱芸菁
一、新授知识
(一)对数函数的概念: 函数 y loga x(a 0, 且a 1) 称作对数函数
对数函数的定义域是(0, ).
函数的值域是R.
常用对数函数
y = lg x
自然对数函数
y = ln x
(二)对数函数的图象与性质
画出函数y log 2 x,y log 1 x的图象
2
并通过图象研究两个函数的性质
(三)对数函数的性质
a>1
y log2 x
图 象
底数取其 0<a<1 它的值会 怎样呢?
y log 1 x
2
定义域: (0,+∞) 值域: R 性 过点(1,0),即当x=1时,y=0
质
x (0,1)
y0
y0
x (0,1)
x (1,)
【典型题例】
【例1】比较下列各数的大小
(1).log2 3.4
(2).log0.3
(3).loga 2
log2 8.5 1.8 log 2.7
0.3
a 1时 loga 2
2
loga
3
loga 3
(4).log6 3
(5).log6 7
(6).log3
log1.5 0.5 log7 6 0.8
底数0<a<1时,底数越小,其图象 越接近x轴。 (底大图高)
指数函数与对数函数图象的关系 1 x x y( ) y2 2 yx y
y log2 x
(0,1)
o
(1,0)
x
y log1 x
2
对数函数y log a x(a 0且a 1) x 与指数函数y a (a 0且a 1) 互为反函数;图像关于y x对称。
y0
y0
x (1,)
在(0,+∞)上是
增 函数
在(0,+∞)上是减 函数
图 形
y
y=log x
3
y=log x
4
0
1
y=log
0.3
y=log 0.25x
x
x
性质 底数互为倒数的两个对数 (一) 函数的图象关于x轴对称。 性质 底数a>1时,底数越大,其图象越 (二) 接近x轴。(底大图低)
∴函数 y loga (4 x)的定义域是
x | x 4
小结归纳
(一)对数函数的概念
(二)对数函数的图象与性质
(三)求函数的定义域的途径
作业:课本P73练习2
伽利略:给我空间、时间及对数, 我就可创造一个宇宙。
0 a 1 时 loga
log
3 a
例2 求下列函数的定义域: (1) y
是对数函数 吗?
loga x
2
2
解: 由 x 2 0 得 x 0 ∴函数 y loga x 的定义域是 x | x 0 (2)y loga (4 x) 解: 由 4 x 0 得 x 4
一、新授知识
(一)对数函数的概念: 函数 y loga x(a 0, 且a 1) 称作对数函数
对数函数的定义域是(0, ).
函数的值域是R.
常用对数函数
y = lg x
自然对数函数
y = ln x
(二)对数函数的图象与性质
画出函数y log 2 x,y log 1 x的图象
2
并通过图象研究两个函数的性质
(三)对数函数的性质
a>1
y log2 x
图 象
底数取其 0<a<1 它的值会 怎样呢?
y log 1 x
2
定义域: (0,+∞) 值域: R 性 过点(1,0),即当x=1时,y=0
质
x (0,1)
y0
y0
x (0,1)
x (1,)
【典型题例】
【例1】比较下列各数的大小
(1).log2 3.4
(2).log0.3
(3).loga 2
log2 8.5 1.8 log 2.7
0.3
a 1时 loga 2
2
loga
3
loga 3
(4).log6 3
(5).log6 7
(6).log3
log1.5 0.5 log7 6 0.8
底数0<a<1时,底数越小,其图象 越接近x轴。 (底大图高)
指数函数与对数函数图象的关系 1 x x y( ) y2 2 yx y
y log2 x
(0,1)
o
(1,0)
x
y log1 x
2
对数函数y log a x(a 0且a 1) x 与指数函数y a (a 0且a 1) 互为反函数;图像关于y x对称。
y0
y0
x (1,)
在(0,+∞)上是
增 函数
在(0,+∞)上是减 函数
图 形
y
y=log x
3
y=log x
4
0
1
y=log
0.3
y=log 0.25x
x
x
性质 底数互为倒数的两个对数 (一) 函数的图象关于x轴对称。 性质 底数a>1时,底数越大,其图象越 (二) 接近x轴。(底大图低)
∴函数 y loga (4 x)的定义域是
x | x 4
小结归纳
(一)对数函数的概念
(二)对数函数的图象与性质
(三)求函数的定义域的途径
作业:课本P73练习2
伽利略:给我空间、时间及对数, 我就可创造一个宇宙。
0 a 1 时 loga
log
3 a
例2 求下列函数的定义域: (1) y
是对数函数 吗?
loga x
2
2
解: 由 x 2 0 得 x 0 ∴函数 y loga x 的定义域是 x | x 0 (2)y loga (4 x) 解: 由 4 x 0 得 x 4