材料力学答案第十一章
《材料力学 第2版》_顾晓勤第11章第1节 惯性力问题
21.9
MPa
d max Kd st max 26.3 MPa
OB
al
A m
第 1 节 惯性力问题
第十一章 动载荷和疲劳
二、杆件作匀速转动时的应力计算
在设计飞轮时,要求用料少而惯性大,所以常把 飞轮设计成轮缘厚、中间薄的样式。若不考虑轮辐的 影响,可以近似地认为飞轮的质量绝大部分集中在轮 缘上,将飞轮简化为一个绕中心旋转的圆环。
16
第 1 节 惯性力问题
第十一章 动载荷和疲劳
例 11-4 钢质飞轮匀角速转动如图所示,轮缘外径
D 1.8 m,内径 d 1.4 m ,材料密度 7.85 103 kg/m3。 要求轮缘内的应力不得超过许用应力 [ ] 60 MPa,轮
辐影响不计。试计算飞轮的极限转速 n 。
解:由强度条件,得到 轮缘允许的线速度
解:由附表 4 查得 32a 工字钢:
10 a
2m
8m
2m
= 52.717kg/m;加速度 a = 0 时,
每根钢绳的拉力 Fst = mg /2,应力 32a 号工字钢
st
Fst πd 2 / 4
39.5106 N/m2
39.5 MPa
动荷系数:
Kd
1
a g
1
6 9.8
1.612
d Kd st 1.612 39.5 MPa 63.6 MPa
第 1 节 惯性力问第题十一章 动载荷和疲第劳十一章 动载荷和疲劳
静载荷:所加载荷的特点是由零缓慢地增加到某一 数值,以后保持不变,即是静载荷。由静载荷产生 的应力,称为静应力。
动载荷:主要是指随时间而变化的载荷,特别是冲 击载荷。 动应力:凡是由动载荷引起的构件的应力。
第十一章北航 材料力学 全部课件 习题答案
(c)
Fcr
π 2 EI 4l 2
11-7
试确定图示各细长压杆的相当长度与临界载荷。设弯曲刚度 EI 为常数。
题 11-7 图 (a)解:相当长度为
5
leq a
临界载荷为
π 2 EI a2 (b)解:压杆微弯状态的挠曲轴如图 11-7b 中的虚线所示。 Fcr
由此得
sin
kl kl kl 4k 2 EI kl [sin (1 )cos ] 0 2 2 2 cl 2
图示阶梯形细长压杆,左、右两段各截面的弯曲刚度分别为 EI1 与 EI2 。试 证明压杆的临界载荷满足下述方程:
11-11
tank1l tank2l
式中: k1 F /( EI1 ) ; k2 F /( EI 2 ) 。
Fcr, 1
π 2 EI l2
Fcr, 2
显然,压杆的临界载荷为
1.359EI l2
1.359EI l2
Fcr Fcr, 2
11-10
图示两端铰支细长压杆,弯曲刚度 EI 为常数,压杆中点用弹簧常量为 c 的
弹簧支持。试证明压杆的临界载荷满足下述方程:
sin
式中, k F /( EI ) 。
第十一章
压杆稳定问题
11-1
图示两端铰支刚杆-蝶形弹簧系统,试求其临界载荷。图中,c 代表使蝶形弹
簧产生单位转角所需之力偶矩。
题 11-1 图 解:系统的临界状态(微偏斜状态)如图 11-1 所示。注意到蝶形弹簧产生的转角为 2θ , 由右段刚杆的力矩平衡方程
l c(2θ ) F (θ ) 0 2
材料力学第十一章习题选及其解答
11-2. 桥式起重机上悬挂一重量G=50kN 的重物,以匀速度v=1m/s 向前移动(在图中移动的方向垂直于纸面)。
若起重机突然停止移动,重物将象单摆一样向前摆动。
若梁为No14工字钢,吊索截面面积A=5×10-4m 2,试问当惯性力为最大值时,梁及吊索内的最大应力增加多少?解:(1)起重机突然停止时,吊索以初速v 作圆周运动,此时吊索轴力增量是kN Rv g G ma N n D 28.12=⋅==Δ(2)吊索的应力增量是MPa AN σDd 56.2==ΔΔ (3)梁内最大弯矩的增量是l N M D ΔΔ41=(4)查表得梁的抗弯截面系数3610102m W -⨯=(5)梁内最大正应力的增量是MPa WM σd 68.15'==ΔΔ11-4. 轴上装一钢质圆盘,盘上有一圆孔。
若轴与盘ω=40 1/s 的匀角速度转动,试求轴内因这一圆孔引起的最大正应力。
解:(1)假设挖空圆盘和圆孔部分的质量分别是M 和m ,它们的质心距轴线的距离分别为R 的r ,则有mr MR =(2)挖空圆盘的惯性力是kN ωr gVγωmr ωMR Ma F n n 64.10222=⋅==== 上式中钢的密度取3/8.76m kN γ=(3)轴内的最大正应力增量是MPa WlF W M σnd 5.1241max max ===Δ11-5. 在直径为100mm 的轴上装有转动惯量I=0.5kN ⋅m ⋅s2的飞轮,轴的转速为300r/min 。
制动器开始作用后,在20转内将飞轮刹住,试求轴内最大剪应力。
设在制动器作用前,轴已与驱动装置脱开,且轴承的磨擦力矩可以不计。
解:(1)飞轮作匀减速转动2220/25.120/42.3130s rad φωωεωs rad πn ωt t -=-=∴=== (2)惯性力距是kNm εI m d 96.1=-=(3)轴在飞轮和制动器之间发生扭转变形MPa d πTW T τm T t d 10163max ===∴= 11-6. 钢轴AB 的直径为80mm ,轴上有一直径为80mm 钢质圆杆CD ,CD 垂直于AB 。
材料力学答案第十一章
第十一章 能量方法第十一章答案11.1 图示桁架各杆的材料相同,截面面积相等。
试求在F 力作用下,桁架的变形能。
12,2N N F F F ==32N F F =222222()2222N F F l l F x V dx EA EA EAε⎫⎛⎫⎪ ⎪⎝⎭⎝⎭==+⎰2234F l EA=.11.2计算图示各杆的应变能。
(a) 2223244F l F l F l V EA EA EAε=+=. (b) 2212/32/3120022e e l l M M x x l l V dx dx EI EIε⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭=+⎰⎰ /32/322221220023318l l e e M M l x x EIl EI ⎛⎫⎛⎫⎛⎫ ⎪=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.11.3 传动轴受力情况如图所示。
轴的直径为40mm ,材料为45钢,E = 210GPa,G = 80GPa 。
试计算轴的应变能。
51 / 6由扭转引起的应变能:20.220800.0322pV dx GI ε==⎰由弯曲引起的应变能:20.210(531.4)20.0292x V dx EIε==⎰120.061J V V V εεε=+=.11.4 计算图示梁的应变能,并说明是否满足叠加原理及其原因。
2230()26lFl Fx F l V dx EI EIε-==⎰而22310()22lFl F lV dx EI EIε==⎰22320()26lFx F l V dx EI EIε-==⎰.不满足叠加原理,因为应变能与内力的关系不是线性的。
11.5在外伸梁的自由端作用力偶矩e ,试用互等定理,并借助于附录E ,求跨度中点C 的挠度w c 。
(见课本下册p40例12-4)11.6 图示刚架的各杆的EI 皆相等,试求截面AC 的转角。
CM eA l /2 l /2B D a EIMe=FlFlx(a) A 点:在A 点加一个向下的单位力。
材料力学 第11章 组合变形习题集
横截面m-m上任一点C(y,z)处由 弯矩Mz和My引起的正应力分别为
M z y M cos y M y z M sin z
Iz
Iz
Iy
Iy
38
C点的正应力
' ''
M
cos
Iz
y
sin
Iy
z
悬臂梁固定端截面A的弯矩Mz和My 均达到最大值,故该截
面是危险截面。设yo、zo为中性轴上任一点的坐标,并令σ
算 圆轴表面上与轴线成30°方位上的正应变。
32
解: (1)由内力图知,所有截面均为危险截面,危险点为靠近
轴表面的各点,应力状态如图。计算危险点的主应力。轴力
引起的正应力
FN 4F
A πd 2
扭矩引起的切应力
T M 8F
Wp Wp 5πd 2
危险点处的主应力为
1
2
(
)2
( )2
它在y、z两轴上的截距分别为
y* z* h / 2
该截面惯性半径的平方为
iy2
Iy A
h2 12
iz2
Iz A
b2 12
28
中性轴①对应的核心边界上点1的坐标为
ey1
iz2 y*
0
ez1
iy2 z*
h 6
按上述方法可求得与它们对应的截面核
心边界上的点2、3、4,其坐标依次为:
ey2
b 6
ez2 0
车臂的直径d。
18
解:两个缆车臂各承担缆车重量的一半,如 图。则缆车臂竖直段轴力为FN=W/2=3kN 弯矩为M=Wb/2=540N·m 危险截面发生在缆车臂竖直段左侧,由强度条件
工程力学材料力学答案-第十一章
11-6 图示悬臂梁,横截面为矩形,承受载荷F 1与F 2作用,且F 1=2F 2=5 kN ,试计算梁内的最大弯曲正应力,及该应力所在截面上K 点处的弯曲正应力。
解:(1) 画梁的弯矩图(2) 最大弯矩(位于固定端):max 7.5 M kN =(3) 计算应力: 最大应力:K 点的应力:11-7 图示梁,由No22槽钢制成,弯矩M =80 N.m ,并位于纵向对称面(即x-y 平面)内。
试求梁内的最大弯曲拉应力与最大弯曲压应力。
解:(1) 查表得截面的几何性质:4020.3 79 176 z y mm b mm I cm ===(2) 最大弯曲拉应力(发生在下边缘点处)()30max880(7920.3)10 2.67 17610x M b y MPa I σ-+-⋅-⨯-⨯===⨯6max max max227.510176 408066ZM M MPa bh W σ⨯====⨯6max max 337.51030132 ********K ZM y M y MPa bh I σ⋅⋅⨯⨯====⨯x M1zM M z(3) 最大弯曲压应力(发生在上边缘点处)30max88020.3100.92 17610x M y MPa I σ---⋅⨯⨯===⨯ 11-8 图示简支梁,由No28工字钢制成,在集度为q 的均布载荷作用下,测得横截面C 底边的纵向正应变ε=3.0×10-4,试计算梁内的最大弯曲正应力,已知钢的弹性模量E =200 Gpa ,a =1 m 。
解:(1) 求支反力31 44A B R qa R qa ==(2) 画内力图(3) 由胡克定律求得截面C 下边缘点的拉应力为:49max 3.010******* C E MPa σε+-=⋅=⨯⨯⨯=也可以表达为:2max4C C z zqa MW W σ+== (4) 梁内的最大弯曲正应力:2maxmax max 993267.5 8C zz qa M MPa W W σσ+====qxxF SM11-14 图示槽形截面悬臂梁,F =10 kN ,M e =70 kNm ,许用拉应力[σ+]=35 MPa ,许用压应力[σ-]=120 MPa ,试校核梁的强度。
材料力学答案2及材料力学答案第十一章
习 题2-1 一木柱受力如图示,柱的横截面为边长20cm 的正方形,材料服从虎克定律,其弹性模量51010.0⨯=E MPa .如不计柱自重,试求:(1)作轴力图; (2)各段柱横截面上的应力; (3)各段柱的纵向线应变; (4) 柱的总变形.解:(1) 轴力图(2) AC 段应力a a MP P σ5.2105.22.010100623-=⨯-=⨯-=CB 段应力a a MP P σ5.6105.62.010260623-=⨯-=⨯-=(3) AC 段线应变45105.2101.05.2-⨯-=⨯-==E σε N-图 CB 段线应变45105.6101.05.6-⨯-=⨯-==E σε (4) 总变形 m 3441035.15.1105.65.1105.2---⨯=⨯⨯-⨯⨯-=AB ∆2-2 图(a)所示铆接件,板件的受力情况如图(b)所示.已知:P =7 kN ,t =0.15cm ,b 1=0.4cm ,b 2=0.5cm ,b 3=0.6cml 。
试绘板件的轴力图,并计算板内的最大拉应力。
解:(2)a MP σ4.194101024.015.0767311=⨯⨯⨯⨯⨯=- a MP σ1.311101025.015.0767322=⨯⨯⨯⨯⨯=-a MP σ9.388101026.015.07673=⨯⨯⨯⨯=- 最大拉应力a MP σσ9.3883max ==2-3 直径为1cm 的圆杆,在拉力P =10 kN 的作用下,试求杆内最大剪应力,以及与横截面夹角为α=30o 的斜截面上的正应力与剪应力。
解:(1) 最大剪应力a d MP ππP στ66.6310101102212672241max =⨯⨯⨯⨯===- (2)︒=30α界面上的应力()a MP ασσα49.952366.632cos 12=⨯=+= a MP αστα13.5530sin 66.632sin 2=⨯=⨯=︒ 2-4 图示结构中ABC 与CD 均为刚性梁,C 与D 均为铰接,铅垂力P =20kN 作用在C 铰,若(1)杆的直径d 1=1cm ,(2)杆的直径d 2=2cm ,两杆的材料相同,E =200Gpa ,其他尺寸如图示,试求(1)两杆的应力;(2)C 点的位移。
材料力学答案第十一章
第十一章能量要领之阳早格格创做第十一章问案图示桁架各杆的资料相共,截里里积相等.试供正在F 力效率下,桁架的变形能.估计图示各杆的应变能.传动轴受力情况如图所示.轴的直径为40mm ,资料为45钢,E = 210GPa ,G = 80GPa.由扭转引起的应变能: 由蜿蜒引起的应变能:估计图示梁的应变能,并证明是可谦脚叠加本理及其本果.而没有谦脚叠加本理,果为应变能取内力的闭系没有是线性的.借帮于附录E ,供跨度中面(睹课本下册p40例12-4)11.6 图示刚刚架的各杆的EI 皆相等,试供截里A 、B 的位移战截里C 的转角.(a)A 面:正在A 面加一个背下的单位力.M (x 1)=0, M (x 2)=Fx 2, M (x 3)=FbC 面:正在C 加一个顺时针的力奇矩为1的单位力奇(b) A 面:正在A面加一个背下的单位力B 面:正在B 面加一个背左的单位力图示桁架各杆的资料相共,截里里积相等C 处的火仄位移战笔直位移.CF BAR火仄位移:(122) 3.828Fl FlEA EA +=-=-.笔直位移:Fl EA ∆=-.2,E 索 = 177GPa.F = 20kN ,(a)假设横梁ABCD 为刚刚体,供C 面的笔直位移.(2)若没有把ABCD 假设为刚刚体,且已知其抗直刚刚度为EI 2,试再供C 面的笔直位移.(1)42110.87.891033F EA -⎛⎫∆=⨯=⨯ ⎪⎝⎭m.(2)20.44047.89102Fx dx EI -∆=⨯+⎰4447.8910 1.48109.3710---=⨯+⨯=⨯m.11.9 等截里直杆BC 的轴线为四分之三的圆周.若AB 杆可视为刚刚性杆,试供正在F 力效率下,截里B 的火仄位移及笔直位移.火仄位移:M ()=FR cos, ()sin M R θθ=33320sin cos 2FR FRd EI EI πθθθ∆==⎰.D CFAB60 ° 60 ° 800 400400RFO B BF ORA F笔直位移:()(1cos )M R θθ=--33.36FR EI =.11.10 图示圆弧形小直率杆,仄衡半径为R .力F笔直于圆环中线地圆的仄里.试供二个F 力效率面的相对于线位移.M ()=FR sin, ()sin M R θθ= T ()=FR (1-cos), ()(1cos )T R θθ=-333pFR FR EI GI ππ=+.11.11图示圆弧形小直率杆,仄衡半径为R .正在横截里A 取B 处受一对于集结力F 效率.力F 正在圆环中线地圆的仄里内.试供二个F 力效率面的相对于线位移. M ()=FR sin,()sin M R θθ=32320sin FR FRd EI EI πθπθ∆==⎰.11.12图示轴线为火仄里内四分之一圆周的直杆,正在自由端B 效率笔直荷载F ,设EI 战GI P 为已知,试供正在F 力效率下端里B 的笔直位移.F O O Rθ B F AM ()=FR sin, ()sin M R θθ= T ()=FR (1-cos), ()(1cos )T R θθ=- 33(38)44pFR FR EI GI ππ-=+.。
材料力学第11章——交变应力
用尺寸因数
或
表示。
1d , 1d 为光滑大试件 且 1, 1 ,d 越大, 越小, r 愈小。
其中: 1 , 1 为光滑小试件
材料力学
第十一章 交变应力
构件表面质量的影响
构件上的最大应力常发生于表层,疲劳裂纹也多生成于 表层。故构件表面的加工缺陷(划痕、擦伤)等将引起应力 集中,降低疲劳极限。
2
max
1
3
4
1
min
t
车轴每转一周,某点处的材料即经历一次由拉伸到压缩的 应力循环。
材料力学
第十一章 交变应力
④电机转子偏心惯性力引起强迫振动梁上的危险点正 应力随时间作周期性变化。
st
的静应力,最大应力和最小应力分别表示梁在最大和 最小位移时的应力。
st 表示电机的重力W以静载方式作用于梁上引起
第十一章 交变应力
min r 1 max
2
max
1
m
min
3
4
1
t
1 max min 0 2
1 a max min max 2
如:机车车轴
材料力学
2.脉动循环
min 0
第十一章 交变应力
1 1 m max min max 2 2 1 max min 1 max a 2 2
第十一章 交变应力
a a
max min
o
m
min 循环特征:r max
m
t
1 a max min 2
1 max min 2
max m a
材料力学知到章节答案智慧树2023年青岛科技大学
材料力学知到章节测试答案智慧树2023年最新青岛科技大学第一章测试1.构件应有足够的承受载荷的能力,因此应当满足()。
参考答案:稳定性要求;刚度要求;强度要求2.强度是构件抵抗破坏的能力。
()参考答案:对3.刚度是构件抵抗变形的能力。
()参考答案:对4.稳定性要求是指构件应有足够保持原有平衡形态的能力。
()参考答案:对5.机床主轴变形过大而影响加工精度,是由于强度要求未满足造成的。
()参考答案:错6.变形固体的基本假设有()。
参考答案:连续性假设;均匀性假设;各向同性假设7.木材属于各向同性材料。
()参考答案:错8.用汽锤锻打工件时,汽锤受到的载荷是()。
参考答案:冲击载荷9.各向同性假设认为,材料沿各个方向具有相同的()。
参考答案:力学性能10.用截面法求内力时,可以保留构件截开后的任一部分进行平衡计算。
()参考答案:对第二章测试1.使杆件产生轴向拉压变形的外力必须是一对沿杆件轴线的集中力。
()参考答案:错2.卸除外力之后能够完全消失的变形称为弹性变形。
()参考答案:对3.材料的延伸率与试件的尺寸无关。
()参考答案:错4.拉杆伸长后,横向会缩短,这是因为杆有横向应力存在。
()参考答案:错5.桁架结构中各杆件的变形,属于()变形。
参考答案:轴向拉压6.塑性材料的延伸率大于等于()。
参考答案:5%7.下列哪个量是衡量铸铁材料强度的唯一指标。
()参考答案:强度极限8.当直杆承受轴向拉力作用时,一般情况下将会引起()。
参考答案:轴向尺寸增大、横向尺寸缩小9.一实心圆截面直杆两端承受轴向拉力作用,若将其直径增加一倍,其他条件不变,则其抗拉刚度将是原来的()。
参考答案:4倍10.下列衡量材料塑性的指标是()。
参考答案:延伸率;断面收缩率第三章测试1.一点处两个相交面上的切应力大小相等,方向指向(或背离)该两个面的交线。
()参考答案:错2.杆件产生扭转变形时,任意两个横截面会发生相对错动。
()参考答案:错3.薄壁圆筒扭转时,包含轴线的纵向截面上没有切应力。
《材料力学》第11章典型习题解析
第11章典型习题解析1.用卡氏第二定理求图12.3所示刚架A 截面的位移和B 截面的转角。
略去剪力Q 和轴力N 的影响,E Ⅰ为已知.解:(1)A 截面的位移AB 段弯矩:M(x)=-Px (0≤x ≤l ) ∂M(x) /∂P=-x在A 处虚加一水平力向右的力Q,之后,再令其为0.那么,BC 段弯矩:M(y)=-2P l - Q l +(P+Q)y∂M(y) /∂P=-2l +y ∂M(y) /∂ Q=-l +yA 截面的竖直位移:Y A ==∂∂∑⎰EI P Mdx ML 0 ()()()()⎰⎰+-+-+--L LEIdy y L Py PL EI dx x Px 00222 =EIPL 223A 截面的水平位移: X A =EI Q M M L ∂∂∑⎰0dx=()()EI dy y L Qy Py QL PL L 200+-++--⎰ 积分,令Q=0得 ()()EIPL EI dy y L Py PL XA L 1252230=+-+-=⎰(2)B 截面的转角在B 处虚加一力偶M B,AB 段弯矩:M(x)=-Px (0≤x<l )BC 段弯矩:M(y)=-2P l -B M +Py (0<y<l )∂M(x) /∂MB=0 ∂M(y) /∂MB =-1 ∑⎰∂∂=L B B EI dx M M M 0θ =()()⎰-+--L B EI dxPy M PL 0212 EIPL 432= 2.用卡氏第二定理求图示的A 截面的位移和B 截面的转角。
略去剪力Q 和轴力N 的影响,E Ⅰ为已知。
解:(1)A 截面的位移在A 点虚加一向下的力F ,支反力2qL F P Y B ++= (L 为AB 和AD 的长度) P X qL P Y C C -=--=,2AB 段弯矩: M1=0∂ M1 /∂F=0AD 段弯矩:M2(x)=2qL P F qx 2++⋅1()x-2∂M2(x) /∂F=xCD 段弯矩:M3(y)=PyaⅠⅠ2ⅠC DA 截面的竖直位移:∑⎰∂∂=L A EIdx F M M Y 0=⎰⋅⎥⎦⎤⎢⎣⎡-⋅⎪⎭⎫ ⎝⎛++L EI xdx qx x F qL P 02222 积分,令F=0得34A PL qL Y 6EI 24EI =+求A 截面的水平位移时, 在A 处虚加一水平力向右的力Q, 再令其为0.那么, 支反力B qL Y P Q 2=++ (L 为AB 和AD 的长度)C C qL Y P Q X P Q 2=-+=-+()+,() AB 段弯矩: M1=0∂ M1 /∂Q=0AD 段弯矩:M2(x)=(P+Q)x ⋅∂M2(x) /∂Q=xCD 段弯矩:M3(y)=(P+Q )y∂M3(y) /∂Q=yA 截面的水平位移∑⎰∂∂=L A EI dx Q M M X 0=()⎰⋅+L EIdx x Q P 022=()⎰⋅+L EI ydy y Q P 0积分,令Q=0得 EIPL X A 23= (2) B 截面的转角在B 处虚加一顺时针的力偶M B, 积分,并令其为零。
材料力学-第11章 压杆稳定new
引言
压杆稳定的利用 - 柔性电子器件
材料力学-第11章 压杆稳定
引言
基本概念
F
压杆失稳(屈曲): 受压杆件由直线平衡状态变为弯曲平衡状态 临界载荷:
使得受压杆件由直线平衡态转为弯曲平衡态的临界力
材料力学-第11章 压杆稳定 受压杆件为什么会失稳?
F
引言
杆件压力超过临界载荷时,弯曲构型具有更 小的应变能
Fcr
π 2 EI
l
2
这一表达式称为欧拉公式。其中l为不同压杆屈曲后挠曲线上正弦 半波的长度,称为有效长度(effective length);
为反映不同支承影响的系数,称为长度因数(coefficient of
1ength),可由屈曲后的正弦半波长度确定。
材料力学-第11章 压杆稳定
FPcr
π 2 EI
l
2
需要注意的是, 临界载荷公式只有在压杆的微弯 曲状态下仍然处于弹性状态时才是成立的。
材料力学-第11章 压杆稳定
§11-3 两端非铰支细长压杆的临界载荷
例题
图示四根压杆,已知杆件横截面和材料完全相同。 试:将压杆按承载能力大小排序
5m
7m
(a)
(b)
3m
(c)
§11-3 两端非铰支细长压杆的临界载荷 长度因数 由屈曲后的正弦半波长度确定
欧拉公式可写为:
2 EI
正弦半波长
2
两端铰支 =1.0
一端自由, 一端固定 =2.0
一端铰支, 一端固定 =0.7
两端固定 =0.5
材料力学-第11章 压杆稳定
§11-3 两端非铰支细长压杆的临界载荷
F
Fcr
材料力学:第11章:组合变形
2
≤[σ]
2
M + 0.75T W
3
≤[σ]
πd
32
例:图示悬臂梁的横截面为等边三角形, 图示悬臂梁的横截面为等边三角形, C为形心,梁上作用有均布载荷q,其作用方 为形心,梁上作用有均布载荷q,其作用方 为形心 q, 向及位置如图所示,该梁变形有四种答案: 向及位置如图所示,该梁变形有四种答案: A)平面弯曲; (√ )平面弯曲; (C)纯弯曲; )纯弯曲; (B)斜弯曲; )斜弯曲; (D)弯扭结合。 )弯扭结合。
Mz y My σ′=− =− sin ϕ Iz Iz
σ ′′ = −
ቤተ መጻሕፍቲ ባይዱ
My z Iy
Mz =− cos ϕ Iy
Py
Mz
Pz
My
y z σ = σ ′ + σ ′′ = − M sin ϕ + cos ϕ I Iy z
下面确定中性轴的位置: 下面确定中性轴的位置: 设中性轴上某一点的坐标为 y0 、 z0,则
α
ϕ
中性轴
ϕ
中性轴
二、位移计算 斜弯曲概念 为了计算梁在斜弯曲时的挠度, 为了计算梁在斜弯曲时的挠度,仍应用叠加法
fy = Py l
3
3EI Z
Pl3 = sin ϕ 3EI Z
Pl3 Pz l 3 fz = = cosϕ 3EI y 3EI y
ϕ
f =
2 fy
+f
2 z
tg β =
fy fz
=
Iy Iz
tg ϕ
tg β = tgα
α
β =α
ϕ
中性轴 总挠度f与中 总挠度 与中 性轴垂直
材料力学课后习题答案11章
S z (η2 ) = 2.5 × 10 − 5 + (0.010η2 )(0.050 −
S z ,max (η 2 ) = 3.75 × 10 −5 m 3
η2
2
)
τ1 =
FSy S z , max (η1 ) 5 × 103 × 2.5 × 10 −5 N = = 3.75 × 106 Pa = 3.75MPa I zδ 3.333 × 10 − 6 × 0.010m 2 FSy S z , max (η2 ) I zδ 5 × 103 × 3.75 × 10 −5 N = = 5.63 × 106 Pa = 5.63MPa −6 2 3.333 × 10 × 0.010m
2 = 2.5 × 10 −5 + 2.5 × 10 −4 η 2 − 5 × 10 −3 η 2
τ 1, max =
FSy S z , max (η1 ) I zδ 1
=
5 × 103 × 1.25 × 10 −5 N = 3.00 ×106 Pa = 3.00MPa 2.08 × 10 − 6 × 0.010m 2
S z , A (ω ) =
δ
2 yA =
0.010 × 0.050 2 m 3 = 1.25 × 10 − 5 m 3 2
= 1.875 × 10 −4 m 3
据公式
τ (η ) =
得
FS S z (ω ) I zδ
40 × 10 3 × 1.25 × 10 −5 N τA = = 1.499 × 10 6 Pa = 1.499MPa −5 2 3.335 × 10 × 0.010m
[
]
11-6
试指出图示截面的剪心位置。
题 11-6 图 解: (a)双对称截面,剪心与形心重合; (b)角钢形截面,剪心在二边条中心线相交处; (c)T 形截面,剪心在翼缘中心线与腹板中心线相交处。
材料力学答案第十一章
第十一章 能量方法第十一章答案11、1 图示桁架各杆的材料相同,截面面积相等。
试求在F 力作用下,桁架的变形能。
12,2N N F F F ==32N F F = 2222222()2222N F F l l F x V dx EA EA EA ε⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭==+⎰2234F l EA=、11、2计算图示各杆的应变能。
(a) 2223244F l F l F l V EA EA EAε=+=、 (b) 2212/32/3120022e e l l M M x x l l V dx dx EI EIε⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭=+⎰⎰ /32/322221220023318l l e e M M l x x EIl EI ⎛⎫⎛⎫⎛⎫ ⎪=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭、11、3 传动轴受力情况如图所示。
轴的直径为40mm ,材料为45钢,E = 210GPa ,G = 80GPa 。
试计算轴的应变能。
由扭转引起的应变能:20.220800.0322pV dx GI ε==⎰由弯曲引起的应变能:20.210(531.4)20.0292x V dx EIε==⎰120.061J V V V εεε=+=、11、4 计算图示梁的应变能,并说明就是否满足叠加原理及其原因。
2230()26lFl Fx F lV dx EI EIε-==⎰而22310()22l Fl F lV dx EI EIε==⎰22320()26lFx F l V dx EI EIε-==⎰、不满足叠加原理,因为应变能与内力的关系不就是线性的。
、0、36kN(b)1kN200200 EIMe=FlFlx11、5在外伸梁的自由端作用力偶矩中点C 的挠度w c 。
(见课本下册p40例12-4)11、6 图示刚架的各杆的EI 皆相等,试求截面A 、B 的位移与截面C 的转角。
(a) A 点:在A 点加一个向下的单位力。
M (x 1)=0, M (x 2)=Fx 2, M (x 3)=Fb11()M x x =,22()M x Fx =,3()0M x = 3330()()h M x M x Fabhdx EI EI∆==-⎰、C 点:在C 加一个逆时针的力偶矩为1的单位力偶。
材料力学答案第十一章讲解学习
材料力学答案第十一章仅供学习与交流,如有侵权请联系网站删除 谢谢50第十一章 能量方法第十一章答案11.1 图示桁架各杆的材料相同,截面面积相等。
试求在F 力作用下,桁架的变形能。
12,2N N F F F == 32N F F = 222222()2222N F F l l F x V dx EA EA EA ε⎫⎛⎫⎪ ⎪⎝⎭⎝⎭==+⎰2234F l EA=.11.2计算图示各杆的应变能。
(a)仅供学习与交流,如有侵权请联系网站删除 谢谢512223244F l F l F l V EA EA EAε=+=.(b) 2212/32/3120022e e l l M M x x l l V dx dx EI EIε⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭=+⎰⎰ /32/322221220023318l l ee M M l x x EIl EI ⎛⎫⎛⎫⎛⎫ ⎪=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.11.3 传动轴受力情况如图所示。
轴的直径为40mm ,材料为45钢,E = 210GPa ,G = 80GPa 。
试计算轴的应变能。
由扭转引起的应变能:20.220800.0322pV dx GI ε==⎰由弯曲引起的应变能:20.210(531.4)20.0292x V dx EIε==⎰120.061J V V V εεε=+=.11.4 计算图示梁的应变能,并说明是否满足叠加原理及其原因。
2230()26lFl Fx F l V dx EI EIε-==⎰0.08kN· 0.36kN (b) 1kN 2000200EIMe=FlFlx仅供学习与交流,如有侵权请联系网站删除 谢谢52而22310()22lFl F l V dx EI EIε==⎰22320()26lFx F l V dx EI EIε-==⎰.不满足叠加原理,因为应变能与内力的关系不是线性的。
11.5在外伸梁的自由端作用力偶矩M跨度中点C 的挠度w c 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章 能量方法
第十一章答案
11.1 图示桁架各杆的材料相同,截面面积相等。
试求在F 力作用下,桁架的变形能。
12,2
N N F F F ==
32N F F =
2
22222()2
222N F l l F x V dx EA EA EA
ε⎫⎛⎫⎪ ⎪⎝⎭⎝⎭==+⎰
2234F l EA
=.
11.2计算图示各杆的应变能。
(a) 2223244F l F l F l
V EA EA EA
ε=+=. (b) 22
12/32/3120022e e l l M M x x l l V dx dx EI EI
ε⎛⎫⎛⎫
⎪ ⎪⎝⎭⎝⎭=+⎰⎰ /32/322221220023318l l e e M M l x x EIl EI
⎛⎫⎛⎫⎛⎫ ⎪=
+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
.
11.3 传动轴受力情况如图所示。
轴的直径为40mm ,材料为45钢,E = 210GPa ,G = 80GPa 。
试计算轴的应变能。
由扭转引起的应变能:
2
0.2
20
800.0322p
V dx GI ε==⎰
由弯曲引起的应变能:
2
0.2
10
(531.4)20.0292x V dx EI
ε==⎰
120.061J V V V εεε=+=.
11.4 计算图示梁的应变能,并说明是否满足叠加原理及其原因。
223
0()26l
Fl Fx F l V dx EI EI
ε-==⎰
而
2
23
10()22l
Fl F l
V dx EI EI
ε==⎰
223
20()26l
Fx F l V dx EI EI
ε-==⎰.
不满足叠加原理,因为应变能与内力的关系不是线性的。
11.5在外伸梁的自由端作用力偶矩
跨度中点C 的挠度w c 。
(见课本下册p40例12-4)
11.6 图示刚架的各杆的EI 皆相等,试求截面A 、B 的位移和截面C 的转角。
(a) A 点:在A 点加一个向下的单位力。
M (x 1)=0, M (x 2)=Fx 2, M (x 3)=Fb
11()M x x =,22()M x Fx =,3()0M x = 3330
()()h
M x M x Fabh
dx EI EI
∆==-⎰
.
C 点:在C 加一个逆时针的力偶矩为1的单位力偶。
2()1M x =, 3()1M x =
33
22230
0()()()()b
h M x M x M x M x dx dx EI
EI ∆=+⎰
⎰22Fb Fbh EI EI
=+.
(b) A 点:在A 点加一个向下的单位力。
2
()22
ql qx M x
x =-, 1()2
M x x =
24/20122252384l qlx qx x ql dx EI EI
⎛⎫
- ⎪⎝⎭∆==⎰. B 点:在B 点加一个向右的单位力。
()M x h =
230()2212l qlx qx h ql h dx EI EI
-∆==⎰. 11.7
处的水平位移和
垂直位移。
杆号 1 2 3 4 5 N F
水平 0 0 -1 0 N F 垂直
0 0 0 -1 0
水平位移:
1 n
Ni Ni i
i F F l Fl EA EA
=∆==--
∑
(1 3.828Fl Fl
EA EA
+=-
=-
. 垂直位移: Fl EA
∆=-.
11.8 图中绕过无摩擦滑轮的钢索的截面面积为76.36mm 2,E 索 = 177GPa 。
F = 20kN ,(a) 假设横梁ABCD 为刚体,求C 点的垂直位移。
(2) 若不把ABCD 假设为刚体,且已知其抗弯刚度为EI = 1440kN.m 2,试再求C 点的垂直位移。
(1) 420.87.8910EA -⎫
∆=
=⨯⎪⎭
m. (2) 2
0.4
40
47.89102Fx dx EI
-∆=⨯+⎰
4447.8910 1.48109.3710---=⨯+⨯=⨯m .
11.9 等截面曲杆BC 的轴线为四分之三的圆周。
若AB 杆可视为刚性杆,试求在F 力作用下,截面B 的水平位移及垂直位移。
水平位移:M (θ)=FR cos θ, ()sin M R θθ=
333
20
sin cos 2FR FR
d EI EI
πθθθ∆==⎰
.
垂直位移:()(1cos )M R θθ=--
333
20
cos (1cos )(43)4FR FR d EI EI
π
θθπθ-+∆==⎰
3
3.36FR EI
=.
11.10 图示圆弧形小曲率杆,平均半径为R 。
力F 垂直于圆环中线所在的平面。
试求两个F 力作用点的相对线位移。
M (θ)=FR sin θ, ()sin M R θθ= T (θ)=FR (1-cos θ), )(1cos )T R θθ=-
3232
220
0sin (1cos )p
FR FR d d EI GI π
πθ
θθθ-∆=+⎰
⎰
3
3
3p
FR FR EI GI ππ=+
.
11.11 图示圆弧形小曲率杆,平均半径为R 。
在横截面A 与B 处受一对集中力F 作用。
力F 在圆环中线所在的平面内。
试求两个F 力作用点的相对线位移。
M (θ)=FR sin θ, ()sin M R θθ=
323
20
sin FR FR d EI EI
πθπθ∆==⎰
.
11.12 图示轴线为水平面内四分之一圆周的曲杆,在自由端B 作用垂直荷载F ,设EI 和GI P 为已知,试求在F 力作用下端面B 的垂直位移。
M (θ)=FR sin θ, ()sin M R θθ= T (θ)=FR (1-cos θ), )(1cos )T R θθ=-
323
2
/2
/20
0sin (1cos )p
FR FR d d EI GI ππθ
θθθ-∆=+⎰
⎰
3
3
(38)44p
FR FR EI GI ππ-=+
.。