高等代数论文
高等代数实践小论文
高等代数实践小论文代数在讨论任意多个未知数的一次方程组,也叫线性方程组的同时还研究次数更高的一元方程组。
发展到这个阶段,就叫做高等代数。
高等代数是代数学发展到高级阶段的总称,它包括许多分支。
《高等代数I 》主要介绍了多项式、行列式、矩阵以及线性方程组的相关知识并建立了联系。
其相关具有代表性的习题如下:1.设a,b 为两个不相等的常数,则多项式f(x)被(x-a)(x-b)除所得余式为_____.解答:设r(x)=cx+d,其中∂(r(x))<2.f(x)=(x-a)(x-b)g(x)+cx+d,f(a)=ca+d,f(b)=cb+d,联立可解得c=f (a )−f(b)a−b ,d=f(a)-a f (a )−f(b)a−b 故r(x)= f (a )−f(b)a−b x + f(a)-a f (a )−f(b)a−b .Thoughts of mine:已知除式为2次则可由余式的次数小于除式得到余式的次数,进而带入已知数求解。
2.设f(x)=3x 4-41x 3-53x 2-101x+7,求f(15).解答:由余数定理,f(15)即为f(x)除以15所得的余数.做综合除法可得f(15)=67.Thoughts of mine:余数定理即可得此时的值,没有必要将15代入求解.3.求f(x)=x 7+2x 6-6x 5-8x 4+17x 3+6x 2-20x+8的根.解答:f ’(x)= 7x 6+12x 5-30x 4-32x 3+51x 2+12x-20.则(f(x),f ’(x))= x 5+x 4-5x 3-x 2+8x-4.f(x)((f (x ),f ′(x ))=x 2+x-2=(x+2)(x-1). 根据f(x)的常数项可以得到,f(x)=(x +2)3(x −1)4.故f(x)的根为1,-2.Thoughts of mine:对于有些多项式来说,单看公因子判别是否为有理根的情况很多且很复杂,先去掉次数的方法相对容易.4.已知f(x)=x 3+a x 2+bx+c,a,b,c ∈Z.求证:若ac+bc 为奇数,则f(x)无整数根.证:假设f(x)有整数根α,则有α|c.由于(a+b)c 为奇数,故a+b,c 均为奇数,故α也为奇数.则x-α|f(x),设f(x)=(x-α)q(x),其中q(x)为整系数多项式.f(1)=(1-α)q(1)=1+a+b+c,而1+a+b+c 为奇数,但1-α为偶数,矛盾. 故f(x)无整数根.Thoughts of mine:奇偶矛盾是反证法常用的一种矛盾,不管是次数矛盾还是根的奇偶都容易得到,也就容易推出矛盾.5.已知x+y+z=0,xyz ≠0,,求x 2yz +y 2xz +z 2xy 的值.解答: x 2yz +y 2xz +z 2xy =x 3+y 3+z 3xyz .令f(x,y,z)=x 3+y 3+z 3,首项为x 3.故f(x,y,z)=σ13+a σ1σ2+b σ3,其中σ1= x+y+z=0.故f(x,y,z)=x 3+y 3+z 3=-6=-2b,故b=3.则x 2yz +y 2xz +z 2xy =x 3+y 3+z 3xyz =3σ3σ3=3.Thoughts of mine:表成初等对称多项式可以解决很多对称多项式的求值问题或求方程组的解的问题.例如:解方程组{x +y +z =2,(x −y)2+(y −z)2+(z −x)2=14,x 2y 2z +x 2yz 2+xy 2z 2=2.解答:σ1=x+y+z=2=-a 1,对方程组作加减变换,可得x 2+y 2+z 2-(xy+xz+yz)=7,xyz(xy+yz+xz)=2,x 2+y 2+z 2+2(xy+xz+yz)=4,故xy+xz+yz=σ2=-1=a 2,xyz=σ3=-2=-a 3.故x,y,z 为方程f(x)=x 3-2x 2-x+2的三个根,易得x=1为一个有理根. 用综合除法可得f(x)=(x-1)(x+1)(x-2),故f(x)的三个根为1,-1,2.6.已知5阶行列式5123452221127312451112243150D ==.求414243A A A ++ 和4445A A +.解答:设x=414243A A A ++,y=4445A A +则D 5=414243A A A +++2(4445A A +)=x+2y=27,若将第四行换成与第二行相同的数字,则有D′5=|1 2 3 4 52 2 2 1 13 1 24 52 2 2 1 14 3 15 1|=0,则D′5=2x+y=0.联立可解得x=-9,y=18.Thoughts of mine:因为A ij 为代数余子式,故可看成按某一行全为1或2展开即行列式的值.类似地,还有| 2 1 5 41 2 3 1−1 0 2 3 3 1 0 −1|,求M 13-M 23-2M 43的值.简解: M 13-M 23-2M 43=1∙A 13+1∙A 23+0∙A 33+2∙A 43=| 2 1 1 41 2 1 1−1 0 0 33 1 2 −1|,即将第三列元素换为代数余子式前的系数.7.求行列式的值:|1 1 1a b c a 3 b 3 c 3|.解答:|A |=| 1 1 1 1a b c y a 2 b 2 c 2 y2a 3 b 3 c 3 y 3|,原行列式的值即为该行列式求值后y 2的系数的相反数.显然,|A |是Vandermonde 行列式, |A |=(y-a)(y-b)(y-c)(b-a)(c-a)(c-b), 由根与系数的关系可得y 2的系数为-(a+b+c)(b-a)(c-a)(c-b),故所求原行列式的值为(a+b+c)(b-a)(c-a)(c-b)= a 2+ b 2+c 2.Thoughts of mine:与Vandermonde 行列式类似的情形可转化为Vandermonde 行列式,根据根与系数的关系求解.8. R 是实数域,对任意正整数m n ≥,证明:在n R 中存在m 个向量12,,,m ααα,使其中任意n 个向量线性无关.解答:令α1=(1,1,1,⋯,1),α2=(1,2,22,⋯,2n−1),⋯,αm =(1,m,m 2,⋯,m n−1),将其排成列矩阵,A=[1⋯1⋮⋱⋮1 ⋯m n−1],任意取其中n 列都可能到一个方阵,且这个方阵取行列式为Vandermonde 行列式.由于1,2,⋯,m 各不相等,故|A |≠0,即其中任意n 个向量线性无关.Thoughts of mine:Vandermonde 行列式的值易求得,且容易构造,所以取特殊情况构造时可以选择Vandermonde 行列式.9. 百鸡术:母鸡每只5钱,公鸡每只3钱,小鸡3只1钱,百钱买百鸡,各买几何?解答:设买母鸡、公鸡、小鸡数分别为x,y,z.则可得线性方程组和约束条件:{x +y +z =100,5x +3y +13z =100且100≥x ,y,z ≥0,3|z.A̅=[1 1 11005 3 13100]→[1 0 −43−1000 1 73200],故{x=43z−100,y=−73z+200根据约束条件z=75,78,81,84,故可以得到四组解{x=0,y=25,z=75.{x=4,y=18,z=78.{x=8,y=11,z=81.{x=12,y=4,z=84.Thoughts of mine:可用线性方程组解决实际问题,但应注意的是,在用线性方程组解决实际问题时要注意实际问题的约束条件.类似的还有, 将军点兵,三三数之剩二,五五数之剩三,七七数之剩二,问兵几何?(求在500至1000范围内的解)10.已知A是方阵,A2-A-2E=0,则A−1=_______,(A+2E)−1=__________.解答:A2-AE-2E=0,A(A-E)=2E,所以A−1=A−E2.(A+2E)(A-3E)=-4E,所以(A+2E)−1=-A−3E4.Thoughts of mine:求A−1需要对已知的式子进行变形,得到A A−1=E,从而得到所求结果.。
高等代数论文
行列式计算方法摘 要 本文归纳总结了行列式的计算方法问题,介绍了计算n 阶行列式的几种行之有效的方法。
除比较常用的定义法,化三角形法,递推法外,还介绍了利用降阶法,加边法,换元等技巧性较高的计算方法。
只要灵活的运用这些计算技巧和方法,就可以基本上解决n 阶行列式的计算问题。
关键词 n 阶行列式、性质、计算方法、举例1行列式定义 n 阶行列式用符号nnn n nn a a a a a a a a a 212222111211表示的n 阶行列式指的是n !项的代数和,这些项是一切可能的取自nnn n nn a a a a a aa a a 222222111211的不同的行与不同的列上的n 个元素的乘积n nj j j a a a 2121。
项n nj j j a a a 2121的符号为(-1))(21n j j j π,也就是说,当n j j j 21是偶排列时,这一项的符号为正,当n j j j 21是奇排列时,这一项的符号为负。
2行列式性质(1)行列式与它的转置行列式相等。
(2)交换一个行列式的两行(或两列),行列式改变符号。
(3)如果一个行列式有两行(列)完全相同,那么这个行列式等于零。
(4)把一个行列式的某一行(列)的所有元素同乘以某一个数k ,等于以数k 乘这个行列式。
(5)如果一个行列式中有一行(列)的元素全部是零,那么这个行列式等于零。
(6)如果一个行列式有两行(列)的对应元素成比例,那么这个行列式等于零。
(7)把行列式的某一行(列)的元素乘以同一数后加到另一行(列)的对应元素上,行列式不变。
(8)一个行列式中某一行(列)所有元素的公因子可以提到行列式符号的外边。
(9)设行列式D 的第i 行的所有元素都可以表示成两项的和:nn n n in in i i i i n a a a c b c b c b a a a D21221111211+++=那么D 等于两个行列式1D 与2D 的和,其中1D 的第i 行的元素是in i i b b b ,,21,2D的第i 行的元素是in i i c c c ,,21,而1D 与2D 的其他各行都和D 的一样。
高等代数小论文--分块矩阵及其应用
高等代数期中论文课程高等代数专业班级数学0802 姓名徐锴学号 ******** 指导教师牛敏分块矩阵及其应用主要内容1.分块矩阵1.1. 分块矩阵的定义用纵线与横线将矩阵A 划分成若干较小的矩阵:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡st s s t t A A A A A A A A A 212222111211 其中每个小矩阵 .),1;,1(t j s i A ij==叫做A 的一个子块;分成子块的矩阵叫做分快矩阵[2].1.2 运算规则()1 stij ij st ij st ij B A B A )()()(+=± ()2 tsT ji st Tij A A )()(= ()3 sp ij tp ij st ij C B A )()()(=,ij C =∑-==tk kjik t j s i B A 1),...1,,...1( ()4 stij st ij A k A k )()(=(k 是数量) 在用规则1)时,A 与B 的分块方法须完全相同;用性质3)时,A 的列的分法与B 的行的分法须相同.1.3分块矩阵的性质及其推论在行列式计算中 ,我们经常用到下面三条性质[3]:()1 若行列式中某行有公因子 ,则可提到行列式号外面;()2 把行列式中的某行乘上某一个非零数 ,加到另一行中去 ,其值不变; ()3 把行列式中的某两行互换位置 ,其值变号;利用矩阵的分块 ,我们可以把行列式的三条性质在分块矩阵中进行广.性质 1 设方阵A 是由如下分块矩阵组成A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321C C C B B B A A A 其中 1A ,2A ,3A ,1B ,2B ,3B ,1C ,2C ,3C 都是t s ⨯矩阵 ,又M 是任一s 级方阵 .对于矩阵B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321C C C MB MB MB A A A则B =MA证明 设s E 为s 级单位矩阵 ,则B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321000000C C C B B B A A A E M E s s =A E ME s s⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000000 于是B =0000ssE ME A =s E M s E A =MA性质 2 设矩阵是由如下分块矩阵组成A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321C C C B B B A A A 其中 1A ,2A ,3A ,1B ,2B ,3B ,1C ,2C ,3C 都是t s ⨯矩阵 ,又M 是任一s 阶方阵 .对于矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++=321321321C C C MC B MC B MC B A A A D 则A =D证明 由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡s s sE E E 000000⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321C C C B B B A A A = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++321321321C C C MC B MC B MC B A A A 其中 s E 是s 级单位矩阵 ,对上式两边同时取行列式得A =D性质 3 设方阵A 和'A 写成如下形式A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321C C C B B B A A A ,'A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321C C C A A A B B B 其中 1A ,2A ,3A ,1B ,2B ,3B ,1C ,2C ,3C 都是 s ×t 矩阵,则|'A |=⎩⎨⎧-为奇数时,当为偶数时当s A s A |||,|证明 A 可由'A 中的1B ,2B ,3B 与1A ,2A ,3A 相应的两行对换而得到 ,而对换行列式的两行 , 行列式反号 ,故当s 为偶数时|'A |=A 当s 为奇时|'A |=-A可以证明 ,对于一般分块矩阵也具有类似性质.同时 ,这些性质不仅对行成立 ,对列也同样成立.下面举例说明这些性质在行列式计算和证明中的应用.推论 1 设A ,都是n 阶方阵,则有AB =A B ()2.6 证明 作2n 阶行列式C =EA AB由拉普拉斯展开定理得C =AB E =AB又由性质2并应用于列的情况,有E A AB0=E EB A AB AB --0=EB A -0=B A nn n --+++++++2)1(21)1( =B A 推论 2 设,A B 都是n 阶方阵,则有AB BA =B A B A -+ 证明 根据定性质2并应用于列的情况,有AB BA =A AB B B A ++=B A B B A ++0=B A B A -+ 例1 计算n 2阶行列式D =ab a b a b b a b a ba 000000000000000000000000解 令A =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡a 00000a 0000a 0000aB =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0000000000000 b b b 则 D =ABBA=B A B A -+=a b a b b a b a 00000000 ab a b b aba 00000000 ---- =n b a )(+n b a )(-=nb a )(22-推论 3 设,B ,C ,D 都是n 阶方阵 ,其中A ≠0,并且AC =CA ,则有DC BA=CB AD - ()2.8 证明 根据性质2,因为1-A 存在,并注意到AC =CA ,用1C A --乘矩阵⎥⎦⎤⎢⎣⎡D C B A 的第一行后加到第二行中去得⎥⎦⎤⎢⎣⎡----B CA D B CA A 110 从而D C B A=110A C A B D C A B---- =A B CA D 1--=B ACA AD 1--B CAA AD 1--=CB AD- 把行列式的性质在分块矩阵中进行推广之后,我们又由这三个新的性质得到了三个结论.设A ,B ,C ,D 都是n 级方阵则有AB =A B ABBA =B A B A -+ 结论()2.6告诉我们,两个方阵的乘积的行列式等于这两个方阵的行列式的乘积.结论()2.7则说明,当一个行列式可以分成四个级数相等的方阵A ,B ,B ,A 时(即AB BA ), 2.1分块矩阵在矩阵的秩的相关证明中的应用定理 1 秩()AB≤秩()A ,且秩()AB ≤秩()B ,则秩()AB ≤min{秩A ,秩B }[4]证明 令s m C ⨯=n m A ⨯⋅s n B ⨯,A =()12,n aa a ,C =()12,s γγγ 则(s γγγ 21,)=()12,naa a ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡ns n n s s b b b b b bb b b212222111211 ∴nns s s s nn n n a b a b a b a b a b a b a b a b a b +++=+++=+++=22112222112212211111γγγ∴s γγγ 21,()1可由n a a a 21,()2线性表示 ∴秩()I ≤秩()I I ,即秩()C =秩()AB ≤秩()A令=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡mn n n 21,B=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n βββ 21 所以⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡mn n n 21=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡mn m m n n a a a a a aa a a212222111211⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nβββ 21即nmn m m s nn n n a a a a a a a a a βββηβββηβφβη+++=+++=+++=22112222112212211111∴m ηηη 21,()3可由nβββ 21,()4线性表示 ∴秩()III ≤秩()IV ,即秩()C=秩()AB ≤秩()B即秩()AB ≤()()m i n {A B }秩,秩 定理 2 设、都是n 级矩阵,若0A B =则秩()A +秩()B ≤n[5].证明 对分块如下:()12nB B B B = 由于0A B =即()120nA B A B A B = 即()01,2,,i A B i n == 说明的各列B 都是0A X =的解.从而秩()12nB B B ≤基础解系=n -秩()A 即秩()A+秩()B ≤n3.1 分块矩阵在求逆矩阵方面的应用命题1[10]设P =⎥⎦⎤⎢⎣⎡D C B A 是一个四分块方阵,其中B 为r 阶方阵, C 为k 阶方阵,当B 与)(1A DB C --都是可逆矩阵时,则P 是可逆矩阵,并且1-P=⎥⎦⎤⎢⎣⎡---+----------------1111111111111)()()()(A DB C A B DB A DB C A B B A DB C DB A DB C 特例 ()1 当A =0,D =0,B 与C 都可逆时,有1-P=⎥⎦⎤⎢⎣⎡--0011B C . ()2 当A =0,D ≠0,B 与C 都可逆时,有1-P=⎥⎦⎤⎢⎣⎡-----01111B C DB C ()3 当A ≠0,D =0,B 与C 都可逆时,有1-P=⎥⎦⎤⎢⎣⎡-----1111AC B BC 证明 设P 可逆,且1-P =⎥⎦⎤⎢⎣⎡W Z Y X,其中Y 为k 阶方阵,Z 为r 阶的方阵.则应有 于是得到下面的等式(4.1)0(4.2)0(4.3)(4.4)k r X AY C E X BY D Z AW C Z BW DE +=⎧⎪+=⎪⎨+=⎪⎪+=⎩因为可逆,用1-B 右乘(3.2)式可得代入(3.1)式得Y -11)(---A DB C 则X =11)(----A DB C D 1-B . 用右乘(3.4)式可得=()r E W D -1-B =1-B -1W D B - 代入(3.3)式得W =1B A -11)(---A DB C则 可得Z =1-B +1B A -11)(---A DB C D 1-B .所以1-P=⎥⎦⎤⎢⎣⎡W Z Y X ⎥⎦⎤⎢⎣⎡---+----------------1111111111111)()()()(A DB C A B DB A DB C A B B A DB C DB A DB C . 命题2 设Q =⎥⎦⎤⎢⎣⎡D C B A 是一个四分块方阵,其中A 为r 阶方阵,D 为k 阶方阵,当A 与(B CA D 1--)都是可逆矩阵时,则Q 是可逆矩阵,并且1-Q =1-⎥⎦⎤⎢⎣⎡D C B A =⎥⎦⎤⎢⎣⎡------+-------------1111111111111)()()()(B CA D CA B CA D B CA D B A CA B CA D B A A特例 (1) 当B =0,C =0,A 与D 都可逆时,有1-Q=⎥⎦⎤⎢⎣⎡--1100D A (2) 当B ≠0,C=0,A 与D 都可逆时,有1-Q=⎥⎦⎤⎢⎣⎡-----11110D BD A A 1X Y D B-=(3) 当B =0,C ≠0,A 与D 都可逆时,有1-Q=⎥⎦⎤⎢⎣⎡-----11110D CA D A 此结论参考命题1.例1 设M =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------6000004000001001095201473,求1-M . 解 令=⎥⎦⎤⎢⎣⎡--5273,=⎥⎦⎤⎢⎣⎡--109014,=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000000,D =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--600040001.则很容易求得1-A =⎥⎦⎤⎢⎣⎡--3275,1-D =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--6/10004/10001 且11---BD A =-⎥⎦⎤⎢⎣⎡--3275⎥⎦⎤⎢⎣⎡--109014⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--600040001=⎥⎦⎤⎢⎣⎡---2/12/1196/74/543 由命题2可得,1-M =⎥⎦⎤⎢⎣⎡-----1111D O BD A A =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-------6/1000004/1000001002/12/119326/74/54375 3.2 分块矩阵在行列式计算式方面的应用在线性代数中 ,分块矩阵是一个十分重要的概念 ,它可以使矩阵的表示简单明了 ,使矩阵的运算得以简化. 而且还可以利用分块矩阵解决某些行列式的计算问题. 而事实上 ,利用分块矩阵方法计算行列式 ,时常会使行列式的计算变得简单 ,并能收到意想不到的效果[11]. 本节给出利用分块矩阵计算行列式的几种方法.引理 设矩阵H =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡s A OOA O A A21或H =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡s A AO A O OA21其中sA A A ,,,21 均为方阵,则 H =s A A A 21.3.2.1矩阵A 或B 可逆时行列式|H|的计算 命题 1 B A 、分别为m 与n 阶方阵. 证明 : (1)当可逆时 ,有BCD A =A D CA B 1-- (3.5) (2)当可逆时 ,有BCD A =C DB A 1--B (3.6) 证明 根据分块矩阵的乘法 ,有⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡---D CA B D A B C D A E CA E 1100 由引理知,两边取行列式即得(3.5).()2 根据分块矩阵的乘法 ,有⎥⎦⎤⎢⎣⎡--E DB E 01⎥⎦⎤⎢⎣⎡B C D A =⎥⎦⎤⎢⎣⎡--B C C DB A 01两边取行列式即得(3.6).此命题可以用来解决一些级数较高的矩阵求逆问题,但在利用命题1时,要特别注意条件有矩阵或可逆,否则此命题不适用,下面给出此命题的应用.推论1 设,,,ABCD 分别是,,m n nm ⨯和mn ⨯矩阵. 证明 B C DE m=CD B - ( 3.7) nE CD A =DC A - (3.8) 证明 只需要在命题1的(3.5)中令=m E , 即得(3.7);在(3.6)中令=n E ,即得(3.8). 推论2 ,C D 分别是n m ⨯和mn ⨯矩阵.证明 nm E CD E =CD E n -=DC E m - (3.9) 证明 在推论1的(3.7)中,令=n E ,在(3.8)中,令=m E ,即得(3.9)例3 计算下面2n 阶行列式n H 2=bcb c d a da()0a ≠解 令=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡a a ,=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡b b,=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡c c ,D =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡dd为n 阶方阵.由于0a ≠,故为可逆方阵.又易知-D CA1-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡------d ca b d ca b d ca b 111从而由命题1中()1得n H 2=AD C B=DCA B A 1-- =nn d ca b a )(1--=n cd ab )(-.例4 计算行列式()1);,,2,1,0(,00100100111121n i a a a a a i n=≠ ()2cb b b b a a a a nn3213211000100010001解 ()1 设=BC DA ,其中 =()0a ,=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n a a a21,=T )1,,1,1( ,D =)1,,1,1( . 因为n i a i ,,2,1,0 =≠所以是可逆矩阵.又易知 A -C DB 1-=⎥⎦⎤⎢⎣⎡-∑=ni i a a 10/1从而由命题1中的结论()4.2得BC D A=1A DB CB -- =⎥⎦⎤⎢⎣⎡-∑=ni i n a a a a a 1021/1 (2)设Q =BC DE n,其中 B =(c ),C =),,,(21nb b b ,D =Tn a a a ),,(21 由于C D =),,,(21nb b b Tn a a a ),,(21 =∑=ni ii ba 1从而由推论1知,=BC DEn=B CD -=c -∑=ni ii ba 1.3.2.2矩阵,A B C D==时行列式|H|的计算 命题 2 ,A C 是两个n 阶方阵.则AC CA=|A+C||A-C| 证明 根据行列式的性质和定理,有AC CA =A A C C C A ++=C A C C A -+0 =A CA C +-. 例1 计算行列式.D =000xyzx zy y z x z y x解 这道题看似简单 ,但如果方法选择不好,做起来并不轻松. 这里设=⎥⎦⎤⎢⎣⎡00x x ,=⎥⎦⎤⎢⎣⎡y z z y 由命题2知D =ACCA=C A C A -+ =yzx z x y++yzx z x y ----=])(][)([2222z x y z x y --+- =))()()((z y x z y x z y x z y x ++--+-+-++行列式的计算是线性代数中的一个重要内容,本节就行列式的计算问题具体就形如H =BC DA (,,,ABCD 分别是,,m n nm ⨯和mn ⨯矩阵)的类型的行列式计算进行了分析,其中将一个行列式分块成,,,ABCD 后,又细分为几种情况进行了讨论,依据不同的情况给出了不同的计算方法,在计算行列式时可根据这几种不同的情况具体问题具体对待,从而简化行列式的计算过程.在这一部分可见,利用分块矩阵计算行列式主要是靠分块矩阵来改变原来矩阵的级数从而达到简化计算过程,快速解决问题的目的.。
高等代数教学论文
高等代数教学中的几点感悟文宋雪丽摘要在大学数学课程中,高等代数是其中一门十分重要的科目。
结合教学实践,谈了一些感悟。
关键词内容;概念;方法高等代数是大学数学课程中一门重要的专业基础课程,为后继课程提供必不可少的数学理论基础知识,一般都在大学一年级开设。
由于该课程是学习大学后继相关课程的基石,同时也是研究其他学科的工具,许多高等院校都将高等代数列为研究生招生考试课程,因此,该课程在整个专业课程体系中地位很高。
由于该课程的抽象性和枯燥性,许多初学者往往觉得学起来很困难。
因此,作为高校教师,如何培养学生对高等代数的学习兴趣,提高高等代数的课堂教学质量显得尤为重要。
结合多年的教学实践经验,下面我谈谈在《高等代数》教学中的一些感悟。
一、尽量与中学数学内容相联系高等代数课程中的许多教学内容与中学数学有着紧密的联系。
例如数与数域,中学教材中有整数、有理数、实数及复数。
高等代数中介绍了数域的概念;多项式,在中学数学教材中就有多项式的加、减、乘、除四则运算法则。
在高等代数中严格定义了多项式的次数及加法、减法、乘法运算,介绍了多项式的整除理论及最大公因式理论;方程,中学教材中有一元一次方程、一元二次方程的求解方法、一元二次方程根与系数的关系。
高等代数中介绍一元次方程根的定义、复数域上一元次方程根与系数的关系及根的个数、实系数一元次方程根的特点、有理数一元次方程根的性质及其求法;方程组,中学教材中有二元一次方程组、三元一次方程组的消元解法。
高等代数中有元一次线性方程组的行列式解法克拉默法则和矩阵消元解法、线性方程族解的判定及解与解之间的关系;空间与图形,中学教材中有平面与空间向量的长度与夹角,高等代数中有欧式空间向量的长度和夹角。
通过以上分析,高等代数与中学数学在内容上有很多相关联的地方。
不同的是中学数学知识比较浅显,面也比较窄,而高等代数将中学数学的内容拓宽了许多,同时也抽象了许多。
因此作为老师,要正确地引导学生以较高的观点去认识中学教学内容。
高等代数课程论文
摘要:线性方程组的求解在高等代数学的是一个很重要组成分,因此对于对线性方程组解的广泛应用于数学与其他科学领域,因此对于线性方程组有解的判别定理和线性方程组解的结构我们必须进行认真的研究,搞清楚他们之间的关系。
本文对线性方程组的解和判定进行了全面的分析与研究。
关键字:线性方程组;解结构;矩阵;解的判定目录线性方程组解的判定与结构 .............................. 错误!未定义书签。
引言 (1)1 线性方程组解的判别定理 (1)2 齐次线性方程组的解的结构 (2)3 一般线性方程组的解的结构 (3)致谢 (7)参考文献: (7)引言线性方程组是线性代数的主要内容,包括线性方程组有解性的判定、消元法解线性方程组和线性方程组解的结构以及他们的基础解系。
它与矩阵、向量还有行列式、方程组、秩、克拉默法则的内容密切相关,与矩阵、向量组相关的许多重要结论都是线性方程组有关结论的应用和推广,对此本论文紧紧围绕线性方程组与解的结构进行展开,这也对我们以后学习线性方程组的解结构与解判别定理有很大帮助。
下面我就分几大板块来介绍关于线性方程解的判定与结构。
1 线性方程组解的判别定理线性方程组是否有解,我们有没有其他办法来解决?当然有,那就是通过用系数矩阵和增广矩阵的秩来进行刻划,下面我们对此介绍几个相关的定理:定理 1 线性方程组AX=b 有解的充分必要条件是它的系数矩阵的秩和增广矩阵的秩相等,即 秩(A )=秩(A ')。
证明 线性方程组(1)有解,就是说β可以经向量组12,,n ααα线性表出,由此立即推出,向量组12,,n ααα与向量组12,,,n αααβ等价,因而有相同的秩。
这两个向量组分别是矩阵A 与A '的列向量组,因此矩阵A 与A '有相同的秩定理2若线性方程组AX=b 有满足 秩(A )=秩(A ')=r ,则当r=n 时,线性方程组有解且只有唯一解;当r<n 时,线性方程组有无穷多解。
高等代数教学中的一些想法的论文
高等代数教学中的一些想法的论文高等代数教学中的一些想法的论文一、引言高等代数[1]是理工科大学生的基础课, 对数学系的学生尤其重要.它的教学质量的高低直接关系到理工科大学生的专业基础和后继课程的学习, 提高其教学质量对培养高层次人才具有重要意义[2].高等代数包括多项式、行列式、线性方程组、矩阵、二次型、线性空间、线性变换、λ-矩阵、欧式空间、双线性函数与辛空间等内容, 对理工科的大学生来说课程内容量多, 教学课时紧, 理解难度较大, 学生普遍感觉学习比较吃力.笔者近年来主要在数学系从事高等代数的教学工作, 针对学生在学习这门课程中存在的上述问题, 总结归纳了几个方面, 期望对学生的学习和同行教师的教学有所帮助, 共同改进和提高高等代数的教学质量.二、具体问题 (注:本文中的教材均指参考文献[1], 以后不再详细赘述)1. 关于"阶梯形矩阵"的理解和运用.教材P72给出了"阶梯形矩阵"的文字定义, 但学生普遍反映该定义较抽象, 理解难度较大, 笔者建议学生可同时参看另一本书[3]给出的相关内容.在[3]中不仅给出了"阶梯形矩阵"具体数学表达式的定义, 还给出了什么是"阶梯头", 以及一类特殊的阶梯形矩阵---约化阶梯形矩阵(也称为行最简形) .实践证明, 学生若理解阶梯头的概念和约化阶梯形矩阵, 对其解题帮助甚多.对此类问题, 可用两种方法求解.分析:方法1是教材上给出的传统解法, 也是大多数教师在讲解第三章内容时所用的方法;方法2是笔者将方法1解答过程中得到的阶梯形矩阵利用初等行变换进一步化为约化阶梯形矩阵, 进而求解方程组.表面上看, 两种方法复杂程度相当, 实际上方法2比方法1快捷, 因为化为约化阶梯形矩阵以后, 每个阶梯头都是1, 该列其余所有的元素均为0, 因此与原方程组等价同解的方程组(如上述方程组(*) ) 就非常容易求解, 其解一目了然.[4]2. 教材P188给出引理:对一个s×n矩阵A作一初等行变换就相当于在A的左边乘上相应的s×s初等矩阵, 对A作一初等列变换就相当于在A的'右边乘上相应的n×n的初等矩阵, 我们不妨简记为"左乘行变, 右乘列变", P191给出定理6:n级矩阵A为可逆的充分必要条件是它能表成一些初等矩阵的乘积:A=Q1Q2…Qm,利用该引理和定理6, 笔者给出教材P180定理4的另一种简单证明方法.定理4 A是一个s×n矩阵, 如果P是s×s可逆矩阵, Q是n×n可逆矩阵, 那么证明:因为P是可逆矩阵, 根据定理6, 它能表成一些初等矩阵的乘积:根据引理, 矩阵X1X2…XmA (即PA) 相当于对矩阵A作m次的初等行变换, 由于初等变换不改变矩阵的秩, 故秩 (A) =秩 (P A) .另一个等式可同样证明.3. 分块矩阵的分块原则.教材第三章第五节讲到了"矩阵的分块", 但是并没有很直接地说明相关问题, 比如是否对每一个矩阵的计算都适合用分块的方法, 以及分块时如何去进行.首先需要明确:并不是所有的矩阵都适合用分块的方法去计算.总结讲解高等代数的相关书籍, 我们会发现下面的规律:对于一般矩阵而言, 只有将其分块以后能分出诸如零矩阵、单位矩阵、数量矩阵、对角矩阵等特殊的子矩阵, 我们一般才考虑用分块的方法去计算.这样的例子有很多, 如教材P181所给的例子:按照教材上的分块方法, 矩阵A分成的四个子矩阵中, 包括两个2级单位矩阵和一个2级零矩阵.当然上述规律也不尽然, 对一些特别的矩阵, 可能分块以后并没有上面提到的一些特殊子矩阵, 但是实践证明也较适用分块的方法.读者可参看教材P203第28题, 对于矩阵A,本题要求用两种方法求逆矩阵, 一是初等变换, 二是矩阵分块.读者通过用两种方法分别计算可知, 本题用第二种方法较为简便.4. 向量组的极大线性无关组P125:定义13一向量组的一个部分组称为一个极大线性无关组, 如果这个部分组本身是线性无关的, 并且从这向量组中任意添加一个向量(如果还有的话) , 所得的部分向量组都线性相关.齐次线性方程组的基础解系P142:定义17齐次线性方程组(1) (见教材P141) 的一组解η1, η2, …, ηt称为它的基础解系, 如果 (1) (1) 的任一个解都能表成η1, η2, …, ηt 的线性组合; (2) η1, η2, …, ηt线性无关.线性空间的一组基P249:定义6在n维线性空间V中, n个线性无关的向量ε1, ε2, …, εn称为V的一组基.设α是V中任一向量, 于是ε1, ε2, …, εn, α线性相关, 因此α可以被基ε1, ε2, …, εn线性表出:α=a1ε1+a2ε2+…anεn.三者的区别与联系:区别是很明显的, 无须多言.联系在于:齐次线性方程组的任一个解本质上都是一个解向量, 因此从定义上可看出, 齐次线性方程组的一个基础解系即是它所有解构成的解向量组的一个极大线性无关组.同样的道理可知, 线性空间的一组基也为该空间中所有向量组成向量组的一个极大线性无关组.又向量本质上为矩阵, 故对三者的各类求解问题, 虽然表面差别很大, 但实质都是考察矩阵的行 (列) 初等变换、化为阶梯形矩阵、秩、找出极大线性无关组等问题, 殊途同归.具体例子请参看教材P271第17题.5. 对矩阵秩r的全面理解.教材P134定理6:一矩阵的秩为r的充分必要条件为矩阵中有一个r级子式不为零, 同时所有r+1级子式全为零.这里补充注意两个问题:(1) 对该矩阵A而言, 其所有的k (≤r-1) 级子式均不全为零.因为由行列式按一行展开的公式可知, 如果矩阵A的k (≤r-1) 级子式全为零, 则矩阵A的k+1级子式全为零, 从而A的所有级数大于k的子式全为零.显然r≥k+1, 故A的所有级数为r的子式全为零, 与定理条件"有一个r级子式不为零"相矛盾.(2) 同 (1) 分析可知, 若矩阵A的k+1级子式全为零, 则A的所有级数大于k+1的子式也必然全为零, 从而可以说:此时, A的所有级数大于k的子式全为零.综合以上两点, 可将定理6换一种定义说法, 即:一矩阵的秩为r的充分必要条件为矩阵的非零子式的最高级数为r级.三、总结高等代数是理工科大学生一门非常重要的专业基础课.本文总结了高等代数教学过程中几个容易被忽视而对整个知识体系的理解又非常关键的问题, 旨在帮助学生们更好地把握整个代数知识框架的脉络, 同时也期望为从事这门课程教学的教师同行们提供积极的教学参考.参考文献[1]北京大学数学系前代数小组.高等代数[M].第4版.北京:高等教育出版社, 2013.[2]张华民, 殷红彩.高等代数教学中的几点思考[J].安庆师范学院学报:自然科学版, 2014, 20 (1) :90-93.[3]陈维新.线性代数[M].第2版.北京:科学出版社, 2005.[4]张盛祝, 蔡礼明, 胡余旺.高等代数内容、方法及典型问题[M].北京:中国石化出版社, 2014.。
高等代数论文
数统学院数学与应用数学系“高等代数”课程论文题目:n维线性空间的线性变换的核与值域的性质及应用姓名:郑某某学号:20111010xxx数统学院数学与应用数学系数学与应用数学专业2011级2013年2 月26 日摘要:本文先从n 维线性空间上的线线变换的核与值域出发,引出它们的一些性质。
通过几种类型的例题来加深对这些性质的理解。
由解题的过程,可以总结出解决n 维线新空间的线新变幻的核与值域的一般方法与思想。
关键词:n 维线新空间 线新变换 值域 核一.相关定义及性质。
文[1][2]给出了具体的关于n 维线性空间的线性变换的相关定义及性质。
下面是性质的一个补充。
我们知道:若σ的n 维线性空间V 的线性变换,则σ(V )和1(0)σ-是σ的不变子空间。
若τ也是V 的一个线性变换,且τ与σ可交换,那么τ的值域和核是不是也是σ的不变子空间?命题一:若线性变换,στ是n 维线性空间V 的线性变换,且σ,τ可交换,则τ的核和值域都是σ-子[3]空间。
证明:ξ∀∈1(0)σ-,则有τ(σ(ξ)) =τσ(ξ)=σ(0)=0 ∴σ(ξ)∈1(0)σ-∀τ(η)()V τ∈,σ(τ(η))=τ(σ(η))()V τ∈ ()V τ∴也是A-子空间。
二.有关核与值域的维数问题。
例一:设F 为数域,V=n F ,证明:1)T(12,,,n x x x )=(1210,,,,n x x x - )是线性空间V 的一个线性变换,且n T =02)求T 的核与值域TV 的维数。
证明:设α=(12n ααα+++ ),V β∈=(12n βββ+++ )V ∈。
T(αβ+)=(0,112211,,,n n αβαβαβ--+++ )=(1210,,,,n ααα- )+(1210,,,,n βββ- )=T α+T β k F ∀∈,则T (k α)=(1210,,,,n k k k ααα- )=k (1210,,,,n ααα- )=kT α,∴T 为线性空间V 的线性变换。
高等代数论文
向量组线性相关的证明方法内容提要向量组的现行相关性是高等代数理论中的一块基石,在它的基础上我们可以衍生出许多其他理论,所以熟练地掌握判定向量组线性相关的方法可以更好地帮助我们理解其他理论的知识。
本文从理解向量组线性相关性的定义入手,论述了若干证明向量组线性相关的方法,例如利用线性相关的定义,行列式的值,矩阵的秩,齐次线性方程组的解等知识判定向量组线性相关性的判定,并且比较了不同种证明方法的适用范围和条件。
向量组线性相关性的证明理论在现实生活当中有着广泛的应用。
因此学好这一块的理论知识,掌握证明方法是很重要的。
第一章 绪论线性相关性的理论在数学专业许多课程中都有体现,如解析几何,高等代数和常微分方程中等等,它是线性代数理论当中的基本概念,它与向量空间和子空间的概念有着密切的联系,同时在解析几何以及常微分方程中有广泛的应用,因此掌握向量组线性相关性这个概念有着十分重要的意义,也是解决问题重要的理论依据。
向量组的线性相关和线性无关可以推广到函数组的线性相关和线性无关。
在线性代数中,向量组的线性相关性占到了举足轻重的作用。
它可以将线性代数中的矩阵,行列式,二次型的知识联系起来,如果能熟练掌握线性相关性则能更好地理解线性代数当中的其他知识,,理清线性代数的框架,做到融会贯通。
本文主要研究的是向量组的线性相关性的判定方法,从定义和性质下手,熟悉了一些重要的理论,熟悉了定义我们就能更好地把握线性相关性的本质。
而本文的第三章就并提出了几种线性相关性的证明方法,比较了不同种证明方法的适用范围和优势劣势,并给出了详细地证明过程和例题,从而更加深入地理解线性相关性的理论知识。
最后是关于这部分理论的展望和本文参考的具体文献。
第二章 向量组线性相关性的定义和性质2.1.1线性相关的概念定义1设m 21,,,ααα 是F 上向量空间V 的m 个向量.如果存在F 中一组不全为零的数,,,,21m k k k 使得0m 2211=+++αααm k k k (1)那么就称向量m 21,,,ααα 线性相关.如果不存在不全为零的数,,,,m 21k k k 使(1)式成立,或者说,只有当0m 21====k k k 时,(1)式才成立,那么就称m 21,,,ααα 线性无关.定义 2 若向量组A 中每一个向量i α(t i ,,2,1 =)都可由向量组B ={s ββ,,1 }线性表示,则称A 可由B 线性表示.若两个向量组可互相线性表示,则称这两个向量组等价.性质1 向量组的等价具有1)反射性;2)对称性;3)传递性.定义 3 设向量组{r i i i ααα,,,21 }是向量组{s ααα,,,21 }的部分组.称{r i i i ααα,,,21 }是{s ααα,,,21 }的极大无关组,如果1)向量组{r i i i ααα,,,21 }线性无关;2){s ααα,,,21 }中的任意1+r 个向量(如果有的话)构成的向量组总是线性相关的.定义 4 向量组{s ααα,,,21 }的极大无关组所含向量的个数称为该向量组的秩. 记为秩(s ααα,,,21 ).性质2 向量组{r αα,,1 }线性无关⇔秩{r αα,,1 } =r .向量组{r αα,,1 }线性相关⇔{r αα,,1 }秩<r .2.1.2线性相关的性质性质(1) 含零向量的向量组必线性相关,即{s αα,,,01 }线性相关.性质(2) 一个向量组若有部分向量线性相关,则此向量组线性相关.性质(3) 若一个向量组线性无关,则它的每个非空部分向量组也线性无关. 性质(4) {α}线性相关0=⇔α.性质(5) {βα,}线性相关λβα=⇔)(P ∈λ.性质(6) n P 中单位向量组线性无关.性质(7) 向量组i α=),,,(21in i i a a a ),,2,1(s i =线性相(无)关⇔齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221121221111s sn n n s s s s x a x a x a x a x a x a x a x a x a(2) 有(无)非零解.性质(8) 设向量组{r ααα,,,21 }线性无关,而向量组{r ααα,,,21 ,β}线性相关,则β一定可由r ααα,,,21 唯一的线性表示.性质(9) 向量组{r ααα,,,21 }(r 2≥)线性相关的充要条件是其中某一个向量是其余向量的线性组合.性质(10) 设s ααα,,,21 是向量空间V 中的向量,A 是t s ⨯矩阵,B 是r t ⨯矩阵.则有((s ααα,,,21 )A )B =(s ααα,,,21 )AB (3)性质(11) 设向量组{p γγγ ,,21}可以由向量组{t βββ,,,21 }线性表示,向量组{t βββ,,,21 }可以由向量组{s ααα,,,21 }线性表示,则向量组{p γγγ ,,21}可以由向量组{s ααα,,,21 }线性表示.性质(12) 设向量组{r ααα,,,21 }线性无关,且可由向量组{s βββ,,,21 }线性表示.则s r ≤.必要时对向量组{s βββ,,,21 }中的元素重新排序,使得用r ααα,,,21 替换s βββ,,,21 后,所得向量组},,,,,{121s r r ββααα +与{s βββ,,,21 }等价. 性质(13) (1)若向量组{t βββ,,,21 }可由向量组{s ααα,,,21 } 线性表示,并且s t >,则向量组{t βββ,,,21 }线性相关;(2) 设向量组{t βββ,,,21 }线性无关,t s <,则向量组{t βββ,,,21 }不能由含s 个向量的向量组线性表示.性质(14) 两个等价的线性无关的向量组含有相同个数的向量.性质(15) 任意1+n 个n 维向量必线性相关.性质(16) 若{s ααα,,,21 }和{t βββ,,,21 }是两个等价的线性无关的向量组,则t s =,且存在s 阶可逆矩阵A 使得(s ααα,,,21 )=(t βββ,,,21 )A (4)性质(17) 设向量组{r i i i ααα,,,21 }是向量组{s ααα,,,21 }的一个部分组,则{r i i i ααα,,,21 }是极大线性无关组的充要条件为1)向量组{r i i i ααα,,,21 }线性无关;2)每一个j α(s j ,,2,1 =)都可由r i i i ααα,,,21 线性表示.性质(18) 向量组的任意一个极大无关组都与向量组本身等价.性质(19) 一个向量组的任意两个极大无关组含有相同个数的向量.性质(20) 两个等价的向量组有相同的秩.性质(21)设向量组(s ααα,,,21 )线性无关,A 是一个t s ⨯矩阵,令(t βββ,,,21 )=(s ααα,,,21 )A ,则 A R t =),,,(21βββ .性质(22)如果向量函数)(,),(),(21t x t x t x m 在区间b t a ≤≤上线性相关,则它们的朗斯基行列式0)(=t W .性质(23) 如果向量函数)(,),(),(21t x t x t x m 在区间d t ≤≤c 上线性无关,则它们的朗斯基行列式0)(≠t W .第三章 向量组线性相关性的证明方法3.1定义法这是判定向量组线性相关的基本方法.定义法既适用于分量没有具体给出的抽象向量组,也适用于分量已经给出的具体向量组.其定义是,设m 21,,,ααα 是F 上向量空间V 的m 个向量.如果存在F 中一组不全为零的数,,,,m 21k k k 使得0m 2211=+++αααm k k k ,那么就称向量m 21,,,ααα 线性相关,否则称它是线性无关的. 例1设有两个n 维向量组,,,s 12 ααα、,,,s 12 βββ,若存在两组不全为零的数12,,,s k k k ;12,,,s λλλ ,使111111()()()()s s s s s s k k k k λλλλ+++++-++-= 0ααββ;则 .证明111111()()()()s s s s s s k k k k λλλλ+++++-++-= ααββ0,111111()()()()s s s s s s k k λλ-++-+++++= αβαβαβαβ0,所以1111,,,,,s s s s --++ αβαβαβαβ线性相关.例2 设A 是n 阶矩阵,若存在正整数k ,使线性方程组x A k 0=有解向量α,且01≠-αk A .证明向量组ααα1,,,-k A A 线性无关.证明 设有实数,,,21k λλλ 使得0121=+++-αλαλαλk k A A (9) 则有)(1211=+++--αλαλαλk k k A A A . (10)从而011=-αλk A 由于01≠-αk A ,所以,01=λ.把01=λ代入(*)式再左乘2-k A 可得012=-αλk A ,由01≠-αk A ,得02=λ.类似可证得043====k λλλ故向量组ααα1,,,-k A A 线性无关.我们还可以利用向量组内向量之间的线性关系判定.即向量组A :12,,m ααα⋅⋅⋅线性相关的充要条件是向量组A 中至少有一个向量可由其余线性表示.比如例1,取1k =3k =1,2k =4k =-1,则1β=2β-3β+4β,即1β可由2β,3β,4β三个向量线性表示,所以向量组1β,2β,3β,4β线性相关.3.2根据齐次线性方程组的解进行判定在应用定义法解一个齐次线性方程组,需由该方程组是否有非零解来判定向量组的线性相关性.即应用定义法的同时也就应用了齐次线性方程组的解进行了线性相关性的判定.于是我们可以利用结论[1]进行判定.结论[1] 向量组i α=),,,(21in i i a a a ),,2,1(m i =线性相(无)关⇔齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221121221111m mn n n m m m m x a x a x a x a x a x a x a x a x a (11) 有(无)非零解.例3[7] 证明向量组1α=(2,1,0,5),2α=(7,-5,4,-1),3α=(3,-7,4,-11)线性相关.证明 以1α,2α,3α为系数向量的齐次线性方程组是1x 1α+2x 2α+3x 3α=0,即⎪⎪⎩⎪⎪⎨⎧=--=+=--=++0115044075037232132321321x x x x x x x x x x x (12) 利用矩阵的行初等变换将方程组的系数矩阵转化为阶梯型矩阵,即→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----110110110751242404401717075111154403727511115440751372 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--000000110751 由行阶梯型矩阵可知,()R A =32<.即齐次线性方程组有非零解,所以向量组1α,2α,3α线性相关.3.3利用矩阵的秩进行判定结论[5] 设向量组A :12,,m ααα⋅⋅⋅是由m 个n 维列向量所组成的向量组,则向量组A 的线性相关性可由向量组A 所构成的矩阵A =(12,,m ααα⋅⋅⋅)的秩的大小来进行判定.即(i) 当R(A )= m 时,则向量组A :12,,m ααα⋅⋅⋅是线性无关的.(ii) 当R(A )<m 时,则向量组A :12,,m ααα⋅⋅⋅是线性相关的.例4 设1α=T )1,1,1(,2(1,2,3)T α=,3(1,3,5)T α=问向量组1α,2α,3α是否线性相关.解 因为⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛=000210111420210111531321111A3)(<A R ,所以向量组1α,2α,3α线性相关.例5[4] 试讨论n 维单位向量组的相关性.解 因为),,,(21n e e e E =的行列式01≠=E , 即n E R =)(,所以,n 维单位向量组线性相关.利用矩阵的秩与利用齐次线性方程组的解进行判定的出发点不同,但实质上是一样的,都是要利用矩阵的初等行变换将相应的系数矩阵化简为行阶梯形矩阵,从而求出向量组的秩,即系数矩阵的秩,然后再作出判定.3.4利用行列式值进行判定行列式值的判定实质上是根据克莱姆法则判定以向量组作为系数向量的齐次线性方程组是否有非零解,然后再对向量组的线性相关性作出判定,所以能应用行列式值进行判定的向量组,也可以应用矩阵的秩和齐次线性方程组是否有非零解的方法来进行判定.结论 [3] 若向量组A :12,,m ααα⋅⋅⋅ 是由m 个m 维列向量所组成的向量组,且向量组A 所构成的矩阵A =(12,,m ααα⋅⋅⋅),即A 为m 阶方阵,则(i) 当A =0时,则向量组A :12,,m ααα⋅⋅⋅是线性相关的.(ii) 当A ≠0时,则向量组A :12,,m ααα⋅⋅⋅是线性无关的.例6设向量组4321,,,αααα线性无关,判断向量组12,αα+23,αα+34,αα+ 41αα-是线性相关还是线性无关.解 设存在4个数4321,,,k k k k ,使得)()()()(144433322211=-++++++ααααααααk k k k ,(13)拆项重组为 0)()()()(443332221141=++++++-ααααk k k k k k k k ,(14)由4321,,,αααα线性无关知 ⎪⎪⎩⎪⎪⎨⎧=+=+=+=-000043322141k k k k k k k k (15)由于系数行列式021100011000111001≠=- (16)所以,齐次线性方程组(1)只有零解,即04321====k k k k .因此向量组14433221,,,αααααααα-+++线性无关.3.5反证法在有些题目中,直接证明结论常常比较难,但从结论的反面入手却很容易推出一些与已知条件相悖的结果,近而得出结论.例7[5] 设向量组12,,,m ααα 中任一向量i α不是它前面1i -个向量的线性组合,且i α≠0,证明向量组12,,,m ααα 线性无关.证明 (反证法)假设向量组12,,,m ααα 线性相关,则存在不全为零的数21,k k m k ,使得11k α+22m m k k αα++ =0 (17)由此可知,0=m k ,否则由上式可得112211------=m m m m m m k k k k k k αααα ,(18) 即m α可由它前面1m -个向量线性表示,这与提设矛盾,因此0=m k , 于是(17)式转化为1k 1α+22k α+ +11m m k α--=0.类似于上面的证明,同样可得01221=====--k k k k m m ,这与m k k k ,,,21 不全为零的假设矛盾,因此,向量组12,,,m ααα 线性无关.3.6 数学归纳法有些题中,我们还可以利用数学归纳法,如下例. 例8[9] 设线性无关的向量组r γγγ ,,21①可由向量组t βββ,,,21 ②线性表示,且t r ≤,则可从{t βββ,,,21 }中选出)(m t -个向量组)(21,,,m t j j j -βββ , 使得向量组m γγγ ,,21,)(21,,,m t j j j -βββ ③与向量组②等价.证明:用数学归纳法(1)当1=r 时,有t r ≤,由于∑==tj j j k 11βγ,且01≠γ,则t k k k ,,,21 不全为0,在②中,设01≠k t t k k k k k ββγβ12121111---= ,故t r ββ,,,11 与t βββ,,,21 等价 (2)设1-=s r 时结论成立,推证s r =时结论成立. 由于121,,-s γγγ ,t βββ,,,21 与向量组②等价,而s γ又可由向量组t βββ,,,21 线性表示故有tt s s s s s h h h h h βγγγγγ++++++=-- 112211 , (19)而题设s γγγ,,,21 线性无关,必有t s s h h h ,,,1 +不全为0,设0≠s h ,则 t s t s s s s s s s s s s h h h h h h h h h ββγγγβ-+-+--=++-- 1111111 (20) 因此,s γγγ,,,21 ,t β与121,,,-s γγγ ,t s ββ,, 等价,由上分析可知,当t s ≤,s r =时结论成立.由数学归纳法知命题成立.3.7利用线性微分方程组的相关理论判定结论[8] 一组1-n 次可微的纯量函数)(,),(),(21t x t x t x m 线性相关的充要条件是向量函数⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡'⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡'⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡'---)()()(,,)()()(,)()()()1()1(222)1(111t x t x t x t x t x t x t x t x t x n mmm n n (21) 线性相关.证明:事实上,如果)(,),(),(21t x t x t x m 线性相关,则存在不全为零的常数m c c c ,,,21 使得0)()()(2211=+++t x c t x c t x c m m .将上式对t 微分一次,二次,…,1-n 次,得到,0)()()(,0)()()(,0)()()()1()1(22)1(1122112211=+++=''+''+''='+'+'---t x c t x c t x c t x c t x c t x c t x c t x c t x c n m m n n m m m m(22)即有,0)()()()()()()()()()1()1(2222)1(1111=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡'++⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡'+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡'---t x t x t x c t x t x t x c t x t x t x c n mm m m n n (23)这就是说,向量函数组(22)式是线性相关的.反之,如果向量函数(22)线性相关,则存在不全为零的常数使m c c c ,,,21 得(23)成立,当然有0)()()(2211=+++t x c t x c t x c m m ,这就表明)(,),(),(21t x t x t x m 线性相关.例9若函数)(,),(),(21t x t x t x m 在区间b t a ≤≤上线性相关,则它们的朗斯基行列式0)(=t W .证明 据结论[8] 和纯量函数朗斯基行列式的概念知,存在一组不全为零的常数m c c c ,,,21 ,使得,0)()()()()()()()()()1()1(2222)1(1111=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡'++⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡'+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡'---t x t x t x c t x t x t x c t x t x t x c n mm m m n n (24) 上式可以看成是关于m c c c ,,,21 的齐次线性代数方程组,它的系数行列式就是)](,),(),([21t x t x t x W m ,于是由线性代数理论知,要此方程组存在非零解,则它的系数行列式必为零,即0)(=t W .结束语以上归纳了判断向量组线性相关性的几种方法,只要我们熟练掌握并能灵活的运用,将会在研究线性方程组解之间的关系,或者说研究线性方程组解的结构问题时带来很大的方便.参考文献[1]刘仲奎等.高等代数[M].北京:高等教育出版社,2005.[2]北京大学数学力学系几何和代数教研室代数小组.高等代数[M].北京:人民教育出版社,2003.[3]张禾瑞,郝炳新.高等代数[M].北京:高等教育出社,2005.[4]王品超.高等代数新方法[M].北京:中国矿业大学出版社,2002.[5]王萼方.高等代数题解[M].北京:北京大学出版社,2002.[6]邱森.高等代数[M].武汉:武汉大学出版社,2008.[7]西北工业大学高等代数编写组.高等代数[M].北京:科学出版社,2008.[8]王高雄等.常微分方程[M].北京:高等教育出版社,2006.[9]栾召平.证明向量组线性相关性的几种方法[J].山东电大学报,2002,(2):61-62.致谢在本次论文设计过程中,白永强老师对该论文从选题、构思到最后定稿的各个环节都给予细心指引与教导,使我得以最终完成毕业论文设计.在学习中,老师渊博的专业知识、深厚的学术素养、严谨的治学态度、精益求精的工作作风、诲人不倦的高尚师德对我影响深远,也是我永远学习的榜样,并将积极影响我今后的学习和工作,使我终身受益.在此,谨向陈老师表示崇高的敬意和衷心的感谢!这四年中还得到众多老师的关心、支持和帮助.在此,向他们表示我深深的谢意!最后,向在百忙中抽出时间对本文进行评审并提出宝贵意见的各位老师表示衷心地感谢!。
高等代数课程论文(示例)
⾼等代数课程论⽂(⽰例)⾼等代数有关理论的⼏何描述探讨信息与计算科学04-01班⽑维东内容摘要:⾸先通过对线性空间理论的基本阐述,重点讨论了线性空间元素向量的运算、相关性和向量内积的⼏何意义。
其次分析了线性⽅程组的解在⼏何上如何⽤线或者⾯的关系来表⽰,并⽤实例说明解的情况与⼏何图形的关系,并对解得关系进⾏了图形描述;再通过矩阵对实际计算机图形中的变化进⾏研究,得出图形变化后的坐标矩阵;最后,通过对⼆次型的基本概念与基本理论的阐述,重点讨论了正定⼆次型、负定⼆次型,并通过具体的实例给出了分类问题的⼏何描述,与此同时,分析并列举了⼆次型标准型在⼆次曲⾯分类上的应⽤,由此得到了常见的⼏种⼆次曲⾯标准⽅程,并对典型⽅程给出了图形描述。
在问题的研究中,采⽤理论分析与实例应⽤相结合,充分发挥数学应⽤软件的优势,将代数理论的内涵形象、直观、清晰地给予展现。
关键字:线性空间;向量;矩阵;⼆次型;⼏何描述1 导⾔对于在数学内容上是否应将代数与⼏何统⼀处理, ⼈们对此有不同的意见和做法。
从国内来看, 在许多院校试⾏了将线性代数与解析⼏何统⼀的课程改⾰,有的将线性代数与解析⼏何统⼀课程作为⾼等院校理⼯、经管、数学专业学科的教材,也有⼀些⾼校将线性代数与解析⼏何作为不同的学科分开教学。
从国际来看, 早已出现了⼤量将线性代数与解析⼏何统⼀在⼀个学科内的教材。
对于是否统⼀的问题各⼈持有不同的观点:反对代数与⼏何统⼀的⼀些⼈认为, 这是在消灭⼏何,⽽历史上忽视⼏何的做法起码在教学上效果不好;赞同代数与⼏何统⼀的⼈认为, 代数与⼏何本来就是统⼀的,⼈为的割裂使学⽣不能从整体上理解数学,迄今为⽌分裂代数与⼏何的做法起码在实践上的效果并不好,⼜由于理论数学分⽀, 如代数⼏何、解析数论、拓扑结构等都是代数与⼏何的统⼀体,因此在学习的初级阶段, 让学⽣更⾃觉地体会⼏何与代数的统⼀性是必要的。
代数与⼏何是两门相互依赖、紧密相联的学科。
由于代数学科概念的⾼度抽象性、定理的⾼度概括性和⼏何学科的具体直观性,使“数”“形”结合问题受到越来越多的关注。
高等代数中高中数学论文
高等代数中高中数学论文一、新课改和高中数学学习的现状从长远发展的角度看,这一改变是非常有利于学生的学习和进步的。
数学是一门非常具有逻辑性和连续性的学科,对于高等代数来说尤为如此。
所以在学生高等代数的学习上,更不能出现高中老师认为"这是大学老师该讲的内容'、而大学老师却认为"这是高中已经学过的内容'的现象发生。
这对于学生来讲是非常不负责任的。
所以我们应该正确的看待新课改所给高中数学中的高等代数带来的影响,改变是进步的必经之路,只有不断创新,才能不断发展。
二、新课改对于高中高等代数学习的影响分析高中数学的新课改让学生们对高等代数有了一定的初步认识和了解,这对于大学所学的高数内容来看有很大的铺垫意义。
多项式因式分解的理论与方法、线性方程组理论意义、行列式在中学数学解题中的应用、矩阵与几何变换、欧氏空间与中学几何、向量的线性关系的几何意义、集合与映射等等,这些有关高等代数的内容的学习既可以向学生们展示高等数学的学习思路和学习内容,又可以促进学生学习数学的系统逻辑性的认识,从而充分的发挥数学优势,利用高等数学的学习方法和逻辑思维去解决问题,提高学生的思想性和认识性。
在中学代数里,多项式中的x只能代表数,而在高等代数里,多项式中的文字x可作允许的各种解释(如x可以代表矩阵、线性变换等)。
再比如,线性空间中定义了一种加法运算,它可以是数的加法,多项式的加法,矩阵的加法。
在高等代数中,由于概念的高度抽象性,作为概念之间规律性联系的定理,也一般是大量事实的高度概括。
不管怎么说,高中数学为高等代数的许多学习内容奠定了基石,同时,高等代数也让高中数学知识在大学得到了深入的提高和延伸,并且有效地解释了许多高中数学没能解释清的问题,从这一点上看,高中数学的新课改对于运用现代数学的观点、原理和方法指导高等代数教学具有非凡的现实意义。
新课改对高等代数学习有明显的有益影响,对于初等数学与高等数学的融合,数学各部分的融合,几何概念和算术概率的融合,数学与应用数学的融合,感性与理性的融合等,不仅在数学教育中,更是在整个现代化教育中为学生的德育和优育做好的由学习思维引发的德操思维的转化。
高等代数期末论文学习总结
高等代数期末论文学习总结LELE was finally revised on the morning of December 16, 2020高等代数学习总结摘要:两学期的高等代数已经接近尾声了,高等代数作为数学专业的基础学科之一。
本文主要讲述本人两学期下来学习高等代数的一些知识总结和学习体会。
关键词:行列式矩阵二次型正文:《高等代数》是数学学科的一门传统课程。
在当今世界的数学内部学科趋于统一性和数学在其他学科的广泛应用性的今天,《高等代数》以其追求内容结构的清晰刻画和作为数学应用的基础,是大学数学各个专业的主干基础课程。
它是数学在其它学科应用的必需基础课程,又是数学修养的核心课程。
高等代数是代数学发展到高级阶段的总称,它包括许多分支。
它是在初等代数的基础上研究对象进一步的扩充,引进了许多新的概念以及与通常很不相同的量,比如最基本的有集合、向量和向量空间等。
这些量具有和数相类似的运算的特点,不过研究的方法和运算的方法都更加繁复。
通过学习后,我们知道,不仅是数,还有矩阵、向量、向量空间的变换等,对于这些对象,都可以进行运算,虽然也叫做加法或乘法,但是关于数的基本运算定律,有时不再保持有效。
因此代数学的内容可以概括称为带有运算的一些集合,在数学中把这样的一些集合,叫做代数系统。
在学习之前,我一直认为高等代数就是把线性代数重学一遍,因为大一的时候线性代数学得不深,而且也没有学完。
经过两学期的学习后,我发现,这两者之间区别还是挺大的。
高等代数数学专业开设的专业课,更注重理论的分析,需要搞懂许多概念是怎么来的,而线性代数,只是一种运算工具,是供工科和部分医科专业开设的课程,只注重应用。
经过两学期的学习,我对高等代数里面的知识有了个初步的认识和接触,特别是代数的一些思想,也从中收获不少。
下面就对两学期的学习做一个回顾和总结。
行列式行列式是代数学中的一个基本概念,它不仅是讨论线性方程组理论的有力工具,而且还广泛的应用于数学及其他科学技术领域定义:设A=()为数域F上的n n矩阵,规定A的行列式为其中,为1,2,…,n的一个排列。
数学学年论文毕业论文高等代数思想方法在数学分析中的应用
高等代数思想方法在数学分析中的应用摘要:本文主要目的是通过用典型的高等代数方法来解决数学分析问题,就数学分析与高等代数的联系进行初步的探讨.关键词:极值;二次型;特征值;不等式;重积分.0.引言高等代数与数学分析是大学数学系的两门重要的专业基础课,它们讨论的问题以及解决问题的方法不尽相同,但是它们之间又有很密切的联系.本文的目的是通过用高等代数的思想方法来解决数学分析中的一些典型问题,就它们的联系进行初步的探讨,从而建立知识框架,提高解决高等数学问题的综合能力.1.高代思想方法在极限﹑导数﹑连续方面的应用极限是数学分析研究问题的基础和工具,可导性与连续性是数学分析研究对象函数的基础性质.而高等代数与它们有着密切的联系,因此在解法上有了相互的交叉与渗透.通过下面三个典型例题来说明这一点.例1.[1]已知A =⎪⎪⎪⎪⎭⎫ ⎝⎛-11n x n x ,I 是二阶单位阵,求:()⎥⎦⎤⎢⎣⎡-∞→→I A x n n x 1lim lim 0 分析:)(1I A x n -是一个二阶方阵,且含有两个变量x 和n .为了求得此极限,首先要把A 化成简单形式,再对ij a (j i ,=1,2),分别进行讨论.解 令⎪⎪⎭⎫⎝⎛-=θθθθcos sin sin cos k A ,其中()nxarctg n x k =+=θ,12,则 ⎪⎪⎭⎫⎝⎛-=θθθθn n n n k A ncos sin sin cos . 当1,→∞→n k n 有时, 又因为x x n x n n x narctg n n n n sin lim sin lim sin sin lim 222=⎪⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛=∞→∞→∞→θ同理有,x n n cos cos lim =∞→θ 所以,()⎪⎪⎭⎫⎝⎛---=-∞→1cos sin sin 1cos lim x x x x I A n n 故 ()⎥⎦⎤⎢⎣⎡-∞→→I A x n n x 1lim lim 0=⎪⎪⎭⎫⎝⎛-0110 例2.设A 是n 方阵,其中ij a =ij ,(j i ,=1,2,… n),f(x)=I -Ax (I 表示n 阶单位阵),试计算)0(f '.分析:本题是典型的数学分析与高等代数相结合的问题,以行列式给出多项式)(x f ,求其在x=0时的导数,该值就是行列式展开式中一次项的系数.解 )(x f =I Ax -是关于x 的次数不大于n 的多项式,设)(x f =∑=nj j j x b 1则11,)0(b b f 其中='是行列式展开式中x 的一次项的系数和.对于I Ax -这个n 阶行列式,展开式中含x 的一次幂的项只可能是主对角线上的各元素乘积这一项,即含于()∏=-ni ii x a 11中,所以()()()()()61211111121111++-=-=-=-=-=-∑∑n n n i a b n ni n ni ii n例3. 设A 是n 阶正定矩阵,a 为实数,b 是非零实数列向量,设线性方程组b X aI A =+)(的解=X X (a),证明)()(a X a =Φ是[)+∞,0上的严格递减函数. (其中)(a X 表示向量)(a X 的长度)分析:首先要明确)(a Φ是用含参数a 的向量的长)(a X 来定义的,而)(a X 是线性方程b X aI A =+)(的解.由A 的正定性,知存在正交阵U 使得UAU 为对角形,且对角线上的元素都是正实数,应该由此入手来讨论.证明 因为是正A 定矩阵,存在正交阵,使得U⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛='nAU U λλλ21 用U A =⎪⎪⎪⎪⎪⎭⎫⎝⎛n λλλ21U '代入线性方程组:B X aI A =+)(. 即 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+++a a a U n λλλ21B X U =' 则 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+++a a a n λλλ21B U X U '='. 作变量代换)(,,2,1'==='=n c c c C X Y UB C X U Y 。
高等代数论文
数量对合矩阵的性质胡清孝(数学与应用数学系 指导老师:杨忠鹏)摘要:讨论了复数域上n 阶数量对合矩阵性质,特别是两个数量对合矩阵A 和B 的关于秩的性质问题,给出了这些矩阵的和、差的秩的等式;利用已有的一些幂等矩阵的性质和幂等矩阵的秩的等式,得出了两斜对合矩阵的换位子AB BA -可逆性的几个充要条件。
关键词: 数量对合矩阵 斜对合矩阵 秩等式 幂等矩阵 可逆Abstract: We discuss the properties of scalar-involutiry matrices over the comlex filed, and we estabnlish several rankequalities for two scalar-involutiry matrices.In particular,we obtain new formulas for the rank of the difference,the sum of scalar-involutiry matrices.We also obtain some equivalent conditions of nonsingular srew-involutiry matrices.Keywords: scalar-involutiry matrices srew-involutiry matrices rank equalities idempotent matricesnonsingularity1 引言及预备定理幂等矩阵和对合矩阵是矩阵论中,两类最基本的矩阵, Yongge Tian 等在参考文献[1]-[8]中对幂等矩阵的性质和秩的等式都作了深刻的研究。
本文在它们的基础上,讨论数量对合矩阵的性质。
以下介绍必要符号和预备定理:用m nC⨯表示复数域C 上的所有m n ⨯矩阵组成的集合;E 表示单位矩阵;用A *表示A 的伴随矩阵,用1A -表示A 的逆,()r A 表示矩阵A 的秩。
高等代数的应用论文
高等代数的应用论文代数在经济管理中的应用目录摘要.................................................................. 3 问题提出............................................................ 4 实际应用举例...................................................... 4 论文总结............................................................ 10 参考文献 (11)2【摘要】科学技术的开展使我们的生活水平有了很大的提高,也促进了整体的经济水平和管理层次的提升。
我们所学的知识源于生活,同时这些知识也最终会效劳于生活,在高等代数的学习过程中,我们发现代数在经济管理中有着很多用途,为经济管理等方面的计算提供了便利。
本篇论文中,我们就对代数在经济学和管理学方面的应用进行了探究。
【关键词】高等代数,经济管理,实际,应用【Abstract】The development of science and technology not only make our living standard greatly improved, but also promote the whole economic level and management level. We learned lots of knowledge from life, at the same time this knowledge will eventually serve in life. In the learning process of the advanced algebra, we found that the algebra in economic and management has many uses. It provide Economic and management convenience. In this thesis, we do research on the algebra about the economics and management. 【Key words】3Advanced Algebra, Economic and management, Practical, Application 【问题提出】学习高等代数已经两个学期,马上就要结束这门课程了。
高等代数现行教材概况论文
高等代数现行教材概况摘要:高等代数的重要性从其作为理工科及数学专业学生所必学的科目就可以看出。
并且,在教学过程中教材是教学的外在依托,所以对其教材的研究是很重要的。
在此,通过本文的工作,对现行的高等代数教材进行收集,分析其教材的发展现状,比较部分教材,得出教材发展的主线。
关键词:高等代数教材收集教材比较一、高等代数的发展及现状历史上对初等代数的研究在以最简单的一元一次方程的基础上又分为两个方向,其一是讨论二元及三元的一次方程组,其二是研究二次以上及可以转化为二次的方程组,顺着这两个方向继续往前走,代数学在研究任意多个未知数的一次方程组(或者说是线型方程组)的同时,也在研究次数更高的一元方程组。
至此,初等代数演变为高等代数。
所以,高等代数作为代数学发展到高级阶段的产物,虽包括了许多分支,但其内容主要还是多项式理论和线性代数两个部分。
其中,线性代数是重要部分。
线性代数到了20世纪才成为数学的一个独立分支,刚开始的线性问题不过是对线性方程组的求解,随着对线性方程组和变量的线性变换问题研究的深入,德国数学家雅克比在1841年建立了行列式的系统理论。
“从此,行列式和矩阵论,二次型和线性变换理论,不变量理论迅速发展起来。
这些现代工具现在统一叫做线性代数学。
”[1]而且在当代的学术界中,数学学科的发展速度越来越快,其高等代数的内容也在不断扩大,在许多数学的分支学科中都可以看到高等代数的身影。
“同时它也是理论物理和理论化学不可缺少的代数基础知识,而且随着计算机的快速发展,代数的方法已可以运用到多个领域,例如现代科学、技术、经济、管理等,其重要性和实用性尤其是在计算机、通讯、电子等科学领域日渐显现。
”[2] “同时,我们也知道教材是体现教学内容和教学方法的知识载体,是进行教学的基本工具,也是深化教育教学改革,全面推进素质教育,培养创新人才的重要保证,更是反映教学、科研水平的重要成果,教材建设是高校建设的重要组成部分。
高等代数论文
有关幂等矩阵与对合矩阵换位子的进一步讨论聂晓柳(数学与应用数学系 指导教师:杨忠鹏)摘 要:本文主要研究了复数域上幂等矩阵和对合矩阵换位子的秩等式,及其可逆的等价条件.同时利用幂等矩阵与对合矩阵的性质,研究了它们的差与和的秩等式及其可逆的等价条件.在这篇文章中,主要使用了两种经典的方法:一、把对合矩阵转化为幂等矩阵;二、分块矩阵的高斯消元法.我们还进一步涉及了其它类型的特殊矩阵的换位子的相关性质,并提出了以后的研究方向.关键词:幂等矩阵 对合矩阵 换位子 矩阵的秩 可逆性Abstract :In this paper, we mainly study the rank equalities for the communicator of the idempotent matrix and the involutory matrix, and the invertible equivalent conditions of the communicator in the complex field. Using properties of idempotent matrices and involutory matrices, we also study the rank equalities of the difference and the sum of one idempotent matrix and one involutory matrix, including their invertibility, respectively, by two classical tools: transforming an involutory matrix into an idempotent matrix and applying block Gaussian elimination. Besides we further study the rank equalities of the communicator of other special matrices. And we also propose some problems for further work in the future.Key words : Idempotent matrix Involutory matrix Communicator Rank equality Invertibility0、符号说明及引言幂等矩阵与对合矩阵是矩阵论中的重要组成局部,在许多内容和各种学科中都非常有用,请参看[1-11,14-17].为了后面的写作方便,首先进行符号说明.用m n C ⨯表示复数域C 上的所有m n ⨯矩阵组成的集合; n C 表示复数域C 上所有n 维列向量组成的集合, E 表示n 阶单位矩阵,()r A 表示矩阵A 的秩。
高等代数论文
莆田学院数学与应用数学系“高等代数”课程论文题目:四分块矩阵的初等变换的性质及应用姓名:黄俊艺学号:410401338莆田学院数学与应用数学系数学与应用数学专业043数本2007年6月24号四分块矩阵的初等变换的性质及应用摘要:给出四分块矩阵初等变换及其性质;论述它们在矩阵秩,等式,不等式证明及求解矩阵行列式,求矩阵逆的应用。
关键词:四分块矩阵,初等变换,矩阵秩,矩阵行列式,矩阵逆正文:预备知识:定义1 初等矩阵:由单位矩阵经过一次初等变换(初等行或初等列变换)所得到的矩阵。
初等矩阵共分3类:(1)(),P i j ——变换E 的第i 行与第j 行(或第i 列与第列)得到的矩阵(2)()()P i k ——用数域P 中的非零数k 乘以E 的第i 行(或第j 列)得到的矩阵 (3)(),()P i j k ——把E 的第j 行的k 倍加到第i 行(或第j 列的k 倍加到第i 列)得到的矩阵定义2 分块初等矩阵分块初等矩阵共分3类:()1 ()01,2E0n m E P ⎛⎫⎪⎝⎭()2 ()()01,20n M P M E ⎛⎫ ⎪⎝⎭ ,()()01,20mE P M M ⎛⎫⎪⎝⎭,其中M 可逆. ()3 ()()1,20mn E M P M E ⎛⎫⎪⎝⎭, ()()01,2m n E P M ME ⎛⎫⎪⎝⎭性质1:分块初等矩阵均是可逆矩阵 性质2:分块初等矩阵左(右)乘A B C D ⎛⎫⎪⎝⎭(要可乘,可加)相当于对其作相应的分块初等行(列)变换性质3:分块初等变换不改变矩阵的秩一 四分块矩阵极其初等变换在证明矩阵秩等式与不等式的应用例1 SyWester 公式:设,s nn m A PB P ⨯⨯∈∈证明: ()()()r A r B n r AB +-≤证明:利用分块初等矩阵相关性质00000n nn ns m E E B E B E A E E A AB -⎛⎫⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭ 由性质3得:()()()000n n E B E r r r A r AB n r AB A AB ⎛⎫⎛⎫==+-=+ ⎪ ⎪-⎝⎭⎝⎭()1,20P n n AO E B E B A⎛⎫⎛⎫−−−→ ⎪ ⎪⎝⎭⎝⎭故()()0nnA O EB r r r A r B E B A⎛⎫⎛⎫=≥+ ⎪⎪⎝⎭⎝⎭ 所以()()()00nnA EB n r AB r r r A r B E B A⎛⎫⎛⎫+==≥+ ⎪ ⎪⎝⎭⎝⎭因此()()()r A r B n r AB +-≤例2 Frobenius 不等式设,,ABC AB BC 存在证明:()()()()r ABC r AB r BC r B ≥+-证明:对于四分块矩阵00ABC B ⎛⎫⎪⎝⎭()()()()1,21,21,200000P C P P ABC ABCAB AB AB B B BCB B BC -⎛⎫⎛⎫⎛⎫⎛⎫−−−→−−−−→−−−→ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭由性质3得:()()()()000ABC AB r ABC r B r r r AB r BC B B BC ⎛⎫⎛⎫+==≥+⎪ ⎪⎝⎭⎝⎭所以 ()()()()r ABC r AB r BC r B ≥+- 例3 设A 为n n ⨯矩阵证明: ()()2A E r A E r A E n =⇔++-=证明:对于四分块矩阵00A E A E -⎛⎫⎪+⎝⎭()()()()()()()()()()()1,21,21221,22121,220002111222201020P A E P E P E P A E P A E A E A EA EE A A E A EA E A EE A EE A A E E A A EE E A E E --⎛⎫⎛⎫ ⎪ ⎪-⎝⎭⎝⎭⎛⎫⎡⎤- ⎪⎢⎥⎣⎦⎝⎭----⎛⎫⎛⎫⎛⎫−−−−−→−−−−→ ⎪ ⎪ ⎪+-+-⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫-----⎪ ⎪−−−−→−−−−−→⎪ ⎪-⎝⎭⎝⎭⎛⎫-- ⎪−−−−−−→ ⎪⎝⎭由性质3得:()()()()222100200A EA E r r r A E r E r A E n A E E ⎛⎫---⎛⎫ ⎪==-+=-+ ⎪ ⎪+⎝⎭⎝⎭又 ()()00A Er r A E r A E A E -⎛⎫=-++⎪+⎝⎭故 ()()()2r A E r AE rA E n-++=-+则 ()()()220r A E r A E n r A E A E -++=⇔-=⇔=例4 设,A B 分别为,n m m n ⨯⨯矩阵,且1ABA B -= 证明: ()()r E A B r E A B n-++= 证明: 对于四分块矩阵 00E ABE AB -⎛⎫⎪+⎝⎭因为1ABA B -=,则()1ABA B B B E -==()()()()()12,11,21,2212,120002000202P E P E P E P AB E E AB E AB E AB E AB E AB E AB E AB E AB E E AB E AB E E ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎡⎤- ⎪⎢⎥⎣⎦⎝⎭----⎛⎫⎛⎫⎛⎫−−−−→−−−−→−−−−→⎪ ⎪ ⎪+-+-⎝⎭⎝⎭⎝⎭--⎛⎫⎛⎫−−−−−−→ ⎪ ⎪-⎝⎭⎝⎭由性质3得000002E AB r n E AB E r -⎛⎫⎛⎫== ⎪ ⎪+⎝⎭⎝⎭又()()00E ABr E AB r E AB E A r B -⎛⎫=-++⎪+⎝⎭所以()()r E AB r E AB n -++= 例5 设A 为n n ⨯矩阵证明:()()()()()3222A A r A r E A n r A r A A r A A =⇔+-=⇔=-++ 证明:先证:()()32A A r A r E A n =⇔+-=对于四分块200AE A ⎛⎫⎪-⎝⎭()()()()()()()()221,22,1223231,21,200000P A P A P A P A AA A A E A A E A A E A AA A A E E ---⎛⎫⎛⎫⎛⎫−−−−→−−−−→ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫--−−−−→−−−−→⎪ ⎪⎝⎭⎝⎭由性质3知()3320000AA A r r r A A n E A E ⎛⎫-⎛⎫==-+ ⎪ ⎪-⎝⎭⎝⎭而()()2200Ar r A r E A E A ⎛⎫=+-⎪-⎝⎭故()()()2330r A r E A n r A A A A +-=⇔-=⇔= 现证:()()()322A A r A r A A r A A =⇔=-++对于四分块矩阵()()()()()()()()()2221,21,22221132221,21,22221312,220001*********P A A P E P A E P A E P E E A A A A A A A A A A A A A A A A A A A AA A A A A -⎛⎫⎛⎫⎛⎫⎛⎫-- ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫--−−−−−→−−−−→ ⎪ ⎪+-+⎝⎭⎝⎭⎛⎫⎛⎫---- ⎪−−−−−−→−−−−−−→ ⎪ ⎪-⎝⎭⎝⎭⎛⎫- ⎪−−−−→ ⎪⎝⎭300A A A ⎛⎫-−−⎪⎝⎭由性质3得:()()23320000A A A A r r r A A r A A A A ⎛⎫⎛⎫--==-+ ⎪ ⎪+⎝⎭⎝⎭而()()2222A A r r A A r A A A A ⎛⎫-=-++⎪+⎝⎭ 故()()()()22330r A A r A A r A r A A A A -++=⇔-=⇔=小结: 分块初等变换不改变矩阵的秩,这一性质在求矩阵的秩,特别是分块矩阵的秩是很方便的,很常见的,很重要的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等代数论文矩阵在生产生活方面的应用指导老师李思泽运输1512 崔粲 15251169知行1501 徐鹏宇 15291200目录【摘要】 (2)【关键词】 (2)【Abstract】 (2)【Key words】..................................... 错误!未定义书签。
【实际应用举例】 (3)1. 计算网络中的流 (3)1.1 交通流分析 (3)1.2 程序运行代码 (5)1.3 程序运行截图 (8)1.4 程序运行代码(2) (9)1.5程序运行截图(2) (13)2.电路分析 (13)2.2程序运行代码 (15)2.3 程序运行截图 (18)【论文总结】...................................... 错误!未定义书签。
【参考文献】...................................... 错误!未定义书签。
摘要近二十年来,随着计算机技术的蓬勃发展,利用计算机的符号计算系统对代数中可计算问题形成了计算代数这个新的方向,本文主要通过对于矩阵的应用实例来说明代数在实际生活中的应用。
随着科学技术的发展,数学也越来越贴近我们的生活,可以说是息息相关。
我们在学习数学知识的同时,也不能忘记将数学知识应用于生活。
在学习高等代数的过程中,我们发现代数在生活和实践中都有不可缺少的的位置。
本篇论文中,我们就对代数中的矩阵在交通流量分析,电路分析的应用进行了探究并编写了相关程序。
【关键词】高等代数,矩阵,实际,应用,电路分析,交通流AbstractIn recent twenty years, with the rapid development of computer technology, using computer symbol computing system of algebra computational problems form the computational algebra in this new direction. This paper mainly through the matrix of the application examples to illustrate the application of algebra in real life. With the development of science and technology, mathematics is more and more close to our life, it can be said that it is closely related to the development of science and technology. At the same time, we can not forget to apply mathematical knowledge to life. In the course of learning advanced algebra, we found that the algebra has an indispensable position in life and practice. In this thesis, we study the application of the matrix in theanalysis of the traffic flow and the application of the circuit analysis.【Key words】Higher algebra,Practical,Matrix,Application,Circuit analysis,Traffic flow【实际应用举例】1.计算网络中的流在这一部分中,我们将介绍网络以及确定网络中流量的方法,网络的一个应用就是如图所示的单行道系统网络包括分支和节点,对于图1所示的单行道网络,分支是道路,节点是交叉路口,我们假定对于一个网络,进入一个节点的总流等于离开该节点的总流。
例1 1)建立一个方程组来表示如图2所示网络的交通流(数字给出的是高峰交通时段进出网络的平均流量)2)求解该方程组。
若x6=300,x7=1300车次每小时,则交通流量是多少?解:1)如图,由于进入一个节点的流等于离开的流,我们得到如下的方程组{x1+x2=800 x1+x4=400+x2 x2=600+x31600+x3=400+x7 x7=x4+x6x5+x6=1000上述方程组的增广矩阵为(101−100011000080004000100−101000000600−1−1200)因此,解为x6=x1+200x2=x7−600图 1x3=x7−1200x4=x7−x6x5=1000−x6如果x6=300,x7=1300,那么x1=100,x2=700,x3=100,x4=1000,x5=700通常我们要求网络中的流量是非负的,比如,仔细考虑图2中的交通网络,如果x5是负的,这既意味着流量是从F到E的,而不是指定的从E到F的方向。
C语言程序为:#include "stdio.h"int main (void){int x1,x2,x3,x4,x5,x6,x7,f1,f2,f3,f4,f5,f6,f7,i,j;printf("请输入从A流入的车流量:\n");scanf("%d",&f1);printf("请输入从B流出的车流量:\n");scanf("%d",&f2);printf("请输入从C流出的车流量:\n");scanf("%d",&f3);printf("请输入从D流入的车流量:\n");scanf("%d",&f4);printf("请输入从D流出的车流量:\n");scanf("%d",&f5);printf("请输入从F竖直流出的车流量:\n");scanf("%d",&f6);printf("请输入从F水平流出的车流量:\n");scanf("%d",&f7);//录入增广矩阵int a[6][8]={1,0,0,0,1,0,0,f1,1,-1,0,1,0,0,0,f2,0,1,-1,0,0,0,0,f3,0,0,1,0,0,0,-1,f5-f4,0,0,0,1,0,1,-1,0,0,0,0,0,1,1,0,f6+f7};//将增广矩阵化为等价标准型for(i=0;i<8;i++)a[1][i]=a[1][i]-a[0][i]+a[2][i]+a[3][i]-a[4][i];for(i=0;i<8;i++)a[2][i]=a[2][i]+a[3][i];for(i=0;i<8;i++)a[0][i]=a[0][i]-a[5][i];printf("请输入x6:\n");scanf("%d",&x6);printf("请输入x7:\n");scanf("%d",&x7);x1=a[0][7]+x6;x2=a[2][7]+x7;x3=a[3][7]+x7;x4=a[4][7]+x7-x6;x5=-x6-a[1][7];printf("矩阵的等价标准型为\n\n");for(i = 0; i < 6; i++){for(j = 0; j < 8; j++)printf("%d ", a[i][j]);printf("\n");}printf("\n解得\n");printf("x1为%d\n",x1);printf("x2为%d\n",x2);printf("x3为%d\n",x3);printf("x4为%d\n",x4);printf("x5为%d\n",x5);return 0;}程序运行截图:例2 考虑例一中的的交通网络(见图2),假设从A到B和从B到C 的道路必须关闭(即x1=0,x2=0),交通将会怎样变更线路?解根据例1,车流量为x6=x1+200x2=x7−600x3=x7−1200x4=x7−x6x5=1000−x6因此,如果x1=0,x2=0,那么可得x6=200,,x7=600.有这些值我们接着可以得x3=−600,x4=400,x5=800 ,为了使流量非负,我们必须把从C到D的道路方向反过来,这一改变就使x3=600而不是-600。
C语言程序为:#include "stdio.h"int main (void){int x1,x2,x3,x4,x5,x6,x7,f1,f2,f3,f4,f5,f6,f7,i,j;printf("请输入从A流入的车流量:\n");scanf("%d",&f1);printf("请输入从B流出的车流量:\n");scanf("%d",&f2);printf("请输入从C流出的车流量:\n");scanf("%d",&f3);printf("请输入从D流入的车流量:\n");scanf("%d",&f4);printf("请输入从D流出的车流量:\n");scanf("%d",&f5);printf("请输入从F竖直流出的车流量:\n");scanf("%d",&f6);printf("请输入从F水平流出的车流量:\n");scanf("%d",&f7);//录入增广矩阵int a[6][8]={1,0,0,0,1,0,0,f1,1,-1,0,1,0,0,0,f2,0,1,-1,0,0,0,0,f3,0,0,1,0,0,0,-1,f5-f4,0,0,0,1,0,1,-1,0,0,0,0,0,1,1,0,f6+f7};//将增广矩阵化为等价标准型for(i=0;i<8;i++)a[1][i]=a[1][i]-a[0][i]+a[2][i]+a[3][i]-a[4][i];for(i=0;i<8;i++)a[2][i]=a[2][i]+a[3][i];for(i=0;i<8;i++)a[0][i]=a[0][i]-a[5][i];for(i=0;i<8;i++){a[3][i]=a[3][i]-a[2][i];a[4][i]=a[4][i]-a[2][i];a[1][i]=a[1][i]-a[0][i];a[4][i]=a[4][i]+a[0][i];}printf("请输入x1:\n");scanf("%d",&x1);printf("请输入x2:\n");scanf("%d",&x2);x6=-a[0][7];x5=-a[1][7];x7=-a[2][7];x3=a[3][7];x4=a[4][7];printf("矩阵的等价标准型为\n\n");for(i = 0; i < 6; i++){for(j = 0; j < 8; j++)printf("%d ", a[i][j]);printf("\n");}printf("\n解得\n");printf("x1为%d\n",x1);printf("x2为%d\n",x2);printf("x3为%d\n",x3);printf("x4为%d\n",x4); printf("x5为%d\n",x5);printf("x6为%d\n",x6); printf("x7为%d\n",x7);return 0;}程序运行截图:1.电路分析我们现在考虑如图3的简单电路的电流,对于这样的电路网络,电流受欧姆定律和基尔霍夫定律支配,如下欧姆定律:通过一个电阻的电压,等于电流与电阻的乘积基尔霍夫第一定律:流入节点的电流之和等于流出节点的电流之和基尔霍夫第二定律:沿闭合回路的电压降的代数和,等于回路的总电压(注意:对于基尔霍夫第二定律而言,图3中的两个基本闭合回路是逆时针路径BDCB 和BCAB.并且,在每个支路中,我们对于电流的方向做了初步的设定,如果某个电流结果是负的,那我们就把对该支路设定的方向反过来.)例3 求如图3所示的电路的电流I 1,I 2,I 3.图3解 对回路BDCB 和BCAB 运用基尔霍夫第二定律,我们得到方程−10I 2+10I 3=1020I 1+10I 2=5对任意节点B 或C 应用基尔霍夫第一定律我们得到I 1−I 2−I 3=0这三个方程组成的方程组的增广矩阵为1−10−102010−10101005因此电流为I 1=0.4,I 2=−0.3,I 3=0.7.因为I 2是负的,所以电流方向是从C 到B 而不是如同3初步设定的那样从B 到C 。