第三章 多元线性回归模型的参数估计

合集下载

多元线性回归模型参数估计

多元线性回归模型参数估计

多元线性回归模型参数估计Y=β0+β1X1+β2X2+...+βnXn+ε其中,Y是因变量,X1,X2,...,Xn是自变量,β0,β1,β2,...,βn 是待求的模型参数,ε是偏差项。

参数估计的目标是找到具有最小残差平方和(RSS)的模型参数。

残差是观测值与模型预测值之间的差异,残差平方和则是所有观测值的残差平方的和。

对于参数估计,常用的方法是最小二乘法。

最小二乘法的思想是最小化残差平方和以找到最佳的模型参数。

最小二乘法的步骤如下:1.假设自变量X和因变量Y之间存在线性关系。

2. 对每一个自变量Xj(j = 1, 2, ... , n),计算Xj的均值(记作xj_mean)和标准差(记作xj_std)。

3. 对每一个自变量Xj,将Xj进行标准化处理(Z-score标准化),即将Xj减去其均值后除以其标准差。

4. 根据标准化的自变量Xj,计算其相关系数(记作rj)与因变量Y 的相关系数(记作ry)。

相关系数表示两个变量之间的线性关系的强度和方向。

相关系数的取值范围为-1到1,接近-1表示负相关,接近1表示正相关,接近0表示无相关。

5. 对每个自变量Xj,计算其回归系数(记作bj)等于ry乘以xj_std除以rj。

6. 计算截距项(记作b0)等于Y的均值减去所有回归系数bj与自变量Xj的均值相乘的和。

7.得到完整的多元线性回归模型。

在进行参数估计时,需要注意以下几点:1.数据的准备:确保数据符合多元线性回归模型的假设,包括自变量与因变量的线性关系、多重共线性等。

2.异常值的处理:需要检测和处理可能存在的异常值,以避免对参数估计的干扰。

3.模型的评估:通过评估模型的适应度指标(如决定系数R^2、调整决定系数等)来判断模型的拟合优度,并对模型进行修正。

4.参数的解释:对于得到的参数估计结果,需要解释其含义和影响,以便进行预测和决策。

总之,多元线性回归模型的参数估计是通过最小二乘法等方法来找到最佳的模型参数,以拟合数据并进行预测。

3多元线性回归模型参数估计

3多元线性回归模型参数估计

3多元线性回归模型参数估计多元线性回归是一种用于预测多个自变量与因变量之间关系的统计模型。

其模型形式为:Y=β0+β1X1+β2X2+...+βnXn+ε,其中Y是因变量,X1、X2、..、Xn是自变量,β0、β1、β2、..、βn是模型的参数,ε是误差项。

多元线性回归模型参数的估计可以使用最小二乘法(Ordinary Least Squares,OLS)来进行。

最小二乘法的基本思想是找到一组参数估计值,使得模型预测值与实际观测值之间的平方差最小。

参数估计过程如下:1.根据已有数据收集或实验,获取因变量Y和自变量X1、X2、..、Xn的观测值。

2.假设模型为线性关系,即Y=β0+β1X1+β2X2+...+βnXn+ε。

3.使用最小二乘法,计算参数估计值β0、β1、β2、..、βn:对于任意一组参数估计值β0、β1、β2、..、βn,计算出模型对于所有观测值的预测值Y'=β0+β1X1+β2X2+...+βnXn。

计算观测值Y与预测值Y'之间的平方差的和,即残差平方和(RSS,Residual Sum of Squares)。

寻找使得RSS最小的参数估计值β0、β1、β2、..、βn。

4.使用统计方法计算参数估计值的显著性:计算回归平方和(Total Sum of Squares, TSS)和残差平方和(Residual Sum of Squares, RSS)。

计算决定系数(Coefficient of Determination, R^2):R^2 = (TSS - RSS) / TSS。

计算F统计量:F=(R^2/k)/((1-R^2)/(n-k-1)),其中k为自变量的个数,n为观测值的个数。

根据F统计量的显著性,判断多元线性回归模型是否合理。

多元线性回归模型参数估计的准确性和显著性可以使用统计假设检验来判断。

常见的参数估计的显著性检验方法包括t检验和F检验。

t检验用于判断单个参数是否显著,F检验用于判断整个回归模型是否显著。

多元线性回归模型参数估计

多元线性回归模型参数估计

多元线性回归模型参数估计多元线性回归是一种用于建立自变量与因变量之间关系的统计模型。

它可以被视为一种预测模型,通过对多个自变量进行线性加权组合,来预测因变量的值。

多元线性回归模型的参数估计是指利用已知的数据,通过最小化误差的平方和来估计回归模型中未知参数的过程。

本文将介绍多元线性回归模型参数估计的基本原理和方法。

Y=β0+β1X1+β2X2+...+βpXp+ε其中,Y是因变量,X1、X2、..、Xp是自变量,β0、β1、β2、..、βp是回归系数,ε是残差项。

参数估计的目标是找到使得误差的平方和最小的回归系数。

最常用的方法是最小二乘法(Ordinary Least Squares, OLS)。

最小二乘法通过最小化残差的平方和来确定回归系数的值。

残差是观测值与回归模型预测值之间的差异。

为了进行最小二乘法参数估计,需要计算回归模型的预测值。

预测值可以表示为:Y^=β0+β1X1+β2X2+...+βpXp其中,Y^是因变量的预测值。

参数估计的目标可以表示为:argmin(∑(Y - Y^)²)通过对目标函数进行求导,可以得到参数的估计值:β=(X^TX)^-1X^TY其中,X是自变量的矩阵,Y是因变量的向量,^T表示矩阵的转置,^-1表示矩阵的逆。

然而,在实际应用中,数据往往存在噪声和异常值,这可能导致参数估计的不准确性。

为了解决这个问题,可以采用正则化方法,如岭回归(Ridge Regression)和LASSO回归(Least Absolute Shrinkage and Selection Operator Regression)。

这些方法通过在目标函数中引入正则化项,可以降低估计结果对噪声和异常值的敏感性。

岭回归通过在目标函数中引入L2范数,可以限制回归系数的幅度。

LASSO回归通过引入L1范数,可以使得一些回归系数等于零,从而实现变量选择。

这些正则化方法可以平衡模型的拟合能力与泛化能力,提高参数估计的准确性。

多元线性回归模型的参数估计

多元线性回归模型的参数估计
加权最小二乘法(WLS)
在最小二乘法基础上,对不同的观测值赋予不同的权重,以调整其 对回归参数估计的影响。
广义最小二乘法(GLS)
考虑自变量之间的相关性,通过转换自变量和因变量来消除自变量 之间的多重共线性影响。
03
参数估计的方法
普通最小二乘法
最小二乘法是一种常用的参数估计方法,通过最小化误差 平方和来估计参数。在多元线性回归模型中,普通最小二 乘法通过求解线性方程组来得到参数的估计值。
模型选择
选择多元线性回归模型作 为预测模型,以商品价格 和用户评价作为自变量, 销量作为因变量。
参数估计
使用最小二乘法进行参数 估计,通过最小化误差平 方和来求解回归系数。
模型检验
对模型进行假设检验,确 保满足线性回归的前提假 设。
结果解释与模型评估
结果解释
根据回归系数的大小和符号,解释各自变量对因变量 的影响程度和方向。
05
参数估计的实例分析
数据来源与预处理
数据来源
数据来源于某大型电商平台的销售数据,包括商 品价格、销量、用户评价等。
数据清洗
对原始数据进行清洗,去除异常值、缺失值和重 复值,确保数据质量。
数据转换
对连续变量进行离散化处理,对分类变量进行独 热编码,以便进行回归分析。
模型建立与参数估计
01
02
03
THANKS
感谢观看
04
参数估计的步骤
确定模型形式
确定自变量和因变

首先需要确定回归模型中的自变 量和因变量,通常因变量是研究 的响应变量,自变量是对响应变 量有影响的预测变量。
确定模型的形式
根据自变量和因变量的关系,选 择合适的回归模型形式,如线性 回归、多项式回归等。

3多元线性回归模型参数估计

3多元线性回归模型参数估计

3多元线性回归模型参数估计多元线性回归是一种回归分析方法,用于建立多个自变量和一个因变量之间的关系模型。

多元线性回归模型可以表示为:Y=β0+β1X1+β2X2+…+βnXn+ε其中,Y表示因变量,X1,X2,…,Xn表示自变量,β0,β1,β2,…,βn表示模型参数,ε表示误差项。

多元线性回归模型的目标是估计出模型参数β0,β1,β2,…,βn,使得实际观测值与模型预测值之间的误差最小化。

参数估计的方法有很多,下面介绍两种常用的方法:最小二乘法和梯度下降法。

1. 最小二乘法(Ordinary Least Squares, OLS):最小二乘法是最常用的多元线性回归参数估计方法。

它的基本思想是找到一组参数估计值,使得模型预测值与实际观测值之间的残差平方和最小化。

首先,我们定义残差为每个观测值的实际值与模型预测值之间的差异:εi = Yi - (β0 + β1X1i + β2X2i + … + βnXni)其中,εi表示第i个观测值的残差,Yi表示第i个观测值的实际值,X1i, X2i, …, Xni表示第i个观测值的自变量,β0, β1, β2, …,βn表示参数估计值。

然后,我们定义残差平方和为所有观测值的残差平方的总和:RSS = ∑(Yi - (β0 + β1X1i + β2X2i + … + βnXni))^2我们的目标是找到一组参数估计值β0,β1,β2,…,βn,使得残差平方和最小化。

最小二乘法通过数学推导和求导等方法,可以得到参数估计值的解析解。

2. 梯度下降法(Gradient Descent):梯度下降法是一种迭代优化算法,可以用于估计多元线性回归模型的参数。

它的基本思想是通过迭代调整参数的值,使得目标函数逐渐收敛到最小值。

首先,我们定义目标函数为残差平方和:J(β) = 1/2m∑(Yi - (β0 + β1X1i + β2X2i + … + βnXni))^2其中,m表示样本数量。

5、计量经济学【多元线性回归模型】

5、计量经济学【多元线性回归模型】

二、多元线性回归模型的参数估计
2、最小二乘估计量的性质 当 ˆ0, ˆ1, ˆ2, , ˆk 为表达式形式时,为随机变量, 这时最小二乘估计量 ˆ0, ˆ1, ˆ2, , ˆk 经过证明同样也 具有线性性、无偏性和最小方差性(有效性)。 也就是说,在模型满足那几条基本假定的前提 下,OLS估计量具有线性性、无偏性和最小方差性 (有效性)这样优良的性质, 即最小二乘估计量
用残差平方和 ei2 最小的准则: i
二、多元线性回归模型的参数估计
1、参数的普通最小二乘估计法(OLS) 即:
min ei2 min (Yi Yˆi )2 min Yi (ˆ0 ˆ1X1i ˆ2 X 2i ˆk X ki )2
同样的道理,根据微积分知识,要使上式最小,只 需求上式分别对 ˆj ( j 0,1, k) 的一阶偏导数,并令 一阶偏导数为 0,就可得到一个包含 k 1 个方程的正 规方程组,这个正规方程组中有 k 1个未知参数 ˆ0, ˆ1, ˆ2, , ˆk ;解这个正规方程组即可得到这 k 1 个参数 ˆ0, ˆ1, ˆ2, , ˆk 的表达式,即得到了参数的最小 二乘估计量;将样本数据代入到这些表达式中,即可 计算出参数的最小二乘估计值。
该样本回归模型与总体回归模型相对应,其中残差 ei Yi Yˆi 可看成是总体回归模型中随机误差项 i 的 估计值。
2、多元线性回归模型的几种形式: 上述几种形式的矩阵表达式: 将多元线性总体回归模型 (3.1) 式表示的 n 个随机方 程写成方程组的形式,有:
Y1 0 1 X11 2 X 21 .Y.2.........0.......1.X...1.2........2.X...2.2. Yn 0 1 X1n 2 X 2n
ˆ0, ˆ1, ˆ2, , ˆk 是总体参数真值的最佳线性无偏估计 量( BLUE );即高斯—马尔可夫定理 (GaussMarkov theorem)。

多元线性回归模型的参数估计PPT精选文档

多元线性回归模型的参数估计PPT精选文档
R2 1RS/S(nk1) TS/S(n1)
其中:n-k-1为残差平方和的自由度,n-1为总 体平方和的自由度。
30
31
二、方程的显著性检验(F检验)
方程的显著性检验,旨在对模型中被解释变 量与解释变量之间的线性关系在总体上是否显著 成立作出推断。
1、方程显著性的F检验
即检验模型
Yi=0+1X1i+2X2i+ +kXki+i
15
一、普通最小二乘估计
• 对于随机抽取的n组观测值 ( Y i,X j) ii ,1 ,2 , ,n ,j 0 ,1 ,2 , k
如果样本函数的参数估计值已经得到,则有:
Y ˆ i ˆ 0 ˆ 1 X 1 i ˆ 2 X 2 i ˆ k X i Ki i=1,2…n
• 根据最 小二乘原 理,参数 估计值应 该是右列 方程组的 解
于是:
β ˆ ˆ ˆ 1 2 0 0 .7 .02 0 1 . 3 2 0 0 .E 0 5 6 0 3 0 3 7 1 09 5 3 6 6 4 0 1 7 .7 .8 1 0 4 7 4 7 3 7
20
⃟正规方程组 的另一种写法 对于正规方程组
X X X 1iX k k2kii i ˆˆˆ1 k 0X X 11 k11
1 X12 Xk2
1Y1 X1nY2 X k n Y n

(XXβ ˆ)XY
由于X’X满秩,故有 β ˆ(XX)1XY
18
例3.2.1:在例2.1.1的家庭收入-消费支出例中,
1 X1
(X 'X )X 11
X1i i
X1i E(i )
0
XKii XKiE(i )
假设4,向量 有一多维正态分布,即

第三章 多元线性回归模型

第三章  多元线性回归模型
R 2 = 1− RSS /( n − k − 1) TSS /( n − 1)
其中:n-k-1为残差平方和的自由度,n-1为总体平 方和的自由度。
检验) 三、方程的显著性检验(F检验 方程的显著性检验 检验
方程的显著性检验, 方程的显著性检验,旨在对模型中被解释变 量与解释变量之间的线性关系在总体上 在总体上是否显著 量与解释变量之间的线性关系在总体上是否显著 成立作出推断。 成立作出推断。 即检验模型
写成矩阵形式: 写成矩阵形式:
Y = Xb + µ
其中
Y1 Y2 Y = M Yn
1 1 X = M 1 X 11 X 12 M X 1n X 21 X 22 M X 2n L L L X k1 X k2 M X kn n × ( k +1 )
回归系数的显著性检验( 检验 检验) 第五节 回归系数的显著性检验(t检验)
方程的总体线性 总体线性关系显著≠每个解释变量 总体线性 ≠每个解释变量对被 解释变量的影响都是显著的 因此,必须对每个解释变量进行显著性检验, 以决定是否作为解释变量被保留在模型中。 检验完成的。 这一检验是由对变量的 t 检验完成的。

1 x ′x → Q n
其中:Q为一非奇异固定矩阵,矩阵x是由各解释变量 的离差为元素组成的n×k阶矩阵
x11 L x k1 x= M L M x 1n L x kn
假设6,回归模型的设定是正确的。
第二节 参数的最小二乘估计
一、回归参数的最小二乘估计 二、随机项µ的方差的估计量 随机项 的方差的估计量
( )
( )
( )
= E ( X ′X
)

第三章多元线性回归模型的参数估计

第三章多元线性回归模型的参数估计

第三章多元线性回归模型的参数估计多元线性回归模型的参数估计是指通过给定的数据样本,使用其中一种方法来计算出回归模型的参数值。

在多元线性回归模型中,我们有多个自变量与一个因变量之间的关系,因此需要估计出每个自变量的系数。

参数估计是回归模型的核心内容之一,它能够通过对样本数据的分析和处理,得到模型中的参数值,从而建立起模型与实际数据之间的映射关系。

常用的多元线性回归模型的参数估计方法有最小二乘法和最大似然估计法。

最小二乘法是一种最常用的参数估计方法。

它的基本思想是通过最小化因变量的观测值与模型预测值之间的平方误差,来确定模型参数的最佳估计值。

最小二乘法的优点是数学上简单且易于计算,但对于异常值的敏感性较强。

最大似然估计法是另一种常用的参数估计方法。

它的基本思想是找到最能使观测数据发生的概率最大的模型参数,从而得到最优的参数估计值。

最大似然估计法具有较好的统计性质,但它的计算复杂度较高,需要对似然函数进行极大化求解。

在实际应用中,我们需要根据实际情况选择合适的参数估计方法。

通常情况下,最小二乘法是首选的方法,因为它具有简单和直观的优点,适用于大多数情况。

但当样本数据存在异常值或者数据分布不符合正态分布假设时,最大似然估计法可能是更好的选择。

无论是最小二乘法还是最大似然估计法,其核心问题都是通过最优化方法找到使得模型和观测数据之间的误差最小的参数值。

这一过程需要使用数学工具和计算方法进行求解,可以使用迭代算法,如牛顿法或梯度下降法,来逐步逼近最优解。

参数估计的结果可以告诉我们每个自变量对因变量的贡献程度。

因此,一个良好的参数估计能够帮助我们更好地理解数据,预测因变量,以及识别自变量之间是否存在相互影响。

总而言之,多元线性回归模型的参数估计是通过最小化模型与观测数据之间的误差,找到最佳的模型参数值的过程。

合理选择参数估计方法,并进行有效的数学计算,能够为我们提供有关数据和模型之间的重要信息,并为进一步的分析和应用提供基础。

3第三章多元线性回归模型分析(一)

3第三章多元线性回归模型分析(一)
其他参数的含义与之相同。
例:
Ct

β 1
β
2
Dt
β3Lt
ut
其中,Ct=消费,Dt=居民可支配收入 Lt=居民拥有的流动资产水平
β 2的含义是,在流动资产不变的情况下,可支配收入变动一个 单位对消费额的影响。这是收入对消费额的直接影响。
收入变动对消费额的总影响=直接影响+间接影响。 (间接影响:收入流动资产拥有量消费额)
xiK

b2
bK


n

i 1
yi
根据数据的样本均值定义,则有:
x


1 n
n i1
xi1,
1 n
n
xi2,
i1

,1 n
n i1
xiK

也即: y x b
(3)的证明方法1

因为Σei=0,所以对 y y e两边求和即可。



(Y Y )(Y Y )

en



(Y X β)(Y X β)


(Y β X )(Y X β)




Y Y β X Y Y X β β X X β
注意到上式中所有项都是标量,且

X
Y
)

第三章 多元线性回归模型**
多元线性回归模型是我们课程的重点,原因 在于:
多元线性回归模型应用非常普遍;
原理和方法是理解更复杂计量经济学模型的 基础;
内容较为丰富。
从而,我们应不遗余力地学,甚至是不遗余 力地背!!!

何晓群:《应用回归分析》第四版-第三章多元线性回归

何晓群:《应用回归分析》第四版-第三章多元线性回归

由 y X 及正态假定 ~ N (0, 2In ) , 有
y ~ N ( X , 2 In )
于是, 似然函数为
L

(2
)n/ 2 (
2
)n / 2
exp{
1
2
2
(
y

X
)'(
y

X
)}
对数似然函数为
ln
L


n 2
ln(2
)

n 2
ln(
2
)

1
2
2
(
y
北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东 河南 湖北 湖南 广东 广西 海南
x1 1.94 0.33 6.16 5.35 3.78 11.2 2.84 8.64 3.64 30.9 6.26 4.13 5.85
6.7 10.8 4.16 4.64 7.08 16.3 4.01
(3.23)
为 yi 的残差. 称 e (e1,e2 ,,en )' y yˆ 为回归残差向量. 有
e y Hy (I H ) y
e y Hy (I H ) y 记
cov(e, e) (cov(ei , e j ))nn 为残差向量 e 的协方差阵, 或称为方差阵. 记为D(e).

yn 0 1 xn1 2 xn2 p xnp n
(3.4)
y1 0 1 x11 2 x12 p x1 p 1 y2 0 1 x21 2 x22 p x2 p 2

yn 0 1 xn1 2 xn2 p xnp n

计量经济学 詹姆斯斯托克 第3章 多元线性回归模型

计量经济学 詹姆斯斯托克 第3章 多元线性回归模型

i 2 i
10 21500 21500 53650000
1 X Y X1
1 X2
Y1 1 Y2 Yi 15674 X n X iYi 39468400 Yn
i i
638 1122 1155 1408 1595 1969 2078 2585 2530
ˆ 1
x y x
2 i
5769300 0.777 7425000
ˆ Y ˆ X 1567 0.777 2150 103 .172 0 0
因此,由该样本估计的回归方程(样本回归函数) 为:
i 1
n
2
ˆ ˆ X ˆ X ˆ X ))2 Q (Yi ( 0 1 1i 2 2i k ki
i 1
n
于是得到关于待估参数估计值的正规方程组:
ˆ ˆ X ˆ X ˆ X ) Y ( 0 1 1i 2 2i k ki i ˆ ˆ X ˆ X ˆ X ) X Y X ( 0 1 1i 2 2i k ki 1i i 1i ˆ ˆ X ˆ X ˆ X ) X Y X ( 0 1 1i 2i 2i k ki 2i i 2i ˆ ˆ ˆ ˆ ( 0 1 X 1i 2 X 2 i k X ki ) X ki Yi X ki
习惯上:把常数项看成为一个虚变量的系 数,该虚变量的样本观测值始终取1。这样: 模型中解释变量的数目为(k +1)。
Yi 0 1 X 1i 2 X 2 i k X ki i
也被称为 总体回归函数 的 随机表达形式 。它的 非随机表达式为:

计量经济学-多元线性回归分析

计量经济学-多元线性回归分析

yi ˆ1 x1i ˆ2 x2i ˆk xki ei 其矩阵形式为
i=1,2…n
y xβˆ e
其中 :
y1
y
y2
yn
x11
x
x12
x 21
x 22
xk1 xk2
x1n x2n xkn
ˆ1
βˆ
ˆ 2
ˆk
在离差形式下,参数旳最小二乘估计成果为
模型中解释变量旳数目为(k)
模型:Yt 1 2t X 2t k X kt ut
也被称为总体回归函数旳随机体现形式。它 旳 非随机体现式为:
E(Yi | X 2i , X 3i , X ki ) 1 2 X 2i 3 X 3i k X ki
方程表达:各变量X值固定时Y旳平均响应。
0.17033
2.652155 0.0157
R-squared
0.9954 Mean dependent var
928.4909
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)
βˆ (xx)1 xY
ˆ0 Y ˆ1 X 1 ˆk X k
⃟随机误差项旳方差旳无偏估计
能够证明,随机误差项旳方差旳无偏估计量为
ˆ 2 ei2 ee
nk nk
四、参数估计量旳性质
在满足基本假设旳情况下,其构造参数旳一般
最小二乘估计、最大或然估计及矩估计仍具有: 线性性、无偏性、有效性。
ˆ1
Байду номын сангаас
Q0
ˆ2
Q

计量经济学多元线性回归模型及参数估计

计量经济学多元线性回归模型及参数估计

-973 1314090 1822500 947508
-929 975870 1102500 863784
-445 334050 562500 198381
-412 185580 202500 170074
-159 23910 22500 25408
28 4140 22500
762
402 180720 202500 161283
2.多元线性回归模型的基本假定(矩阵形式)
V
ar
Cov( N
)
E
N
E(N
)N
E(
N
)
E(
NN
)
1
E
n2 1
2
12
n
E
2 1
n1
12 22
n2
1n
2n
n2
2
0
0
0
2
0
2
I
0
0
2
2.多元线性回归模型的基本假定(矩阵形式)
E(X
N )
E
1 X 11
ei 0 X i1ei 0 X i2ei 0
X ik ei 0
(*) (*)或(**)是多 元线性回归模型正
(**) 规方程组的另一种 写法。
离差形式的样本回归方程
由于
Yˆi ˆ0 ˆ1Xi1 ˆ2 Xi2 ˆk Xik
[Yi (ˆ0 ˆ1Xi1 ˆ2 Xi2 ˆk Xik )] 0
????eemm??所以有???eem??mnnee???ee?????????????????????????????????????????????nnnnnnnnmmmmmmmmme??????????????2121222211121121????????????????????????????????????????nnnnnnnnnnmmmmmmmmme?????????????????21221122221121221111因为xxxxim?????1为对称等幂矩阵即mm??mmmm???2????????nnnnnnnnnnmmmmmmmmme?????????????????????????????22112222211211221111??nnnnnmmmememem??????????22112222222111?????1212122??????????????kntrtrtrmtr????????xxxxixxxxi其中符号tr表示矩阵的迹其定义为矩阵主对角线元素的和

第三章 多元回归模型

第三章 多元回归模型
其计算公式如下:
r0i,12i1i1k
r r r 0i,12i1i1k 1 0k ,12k 1 ik ,12i1i1k 1
1 r02k,12k1
1
r2
ik ,12i1i1k
1
问题:在多元回归中 r12(i1)(i1)k ,0 是越大越好,
还是越小越好?
17
模型显著性检验(F检验): F统计量
核心思想:残差平方和最小准则
min ei2 min yi yˆi 2
min yi ˆ0 ˆ1x1i ˆ2x2i ˆk xki 2
求解原理
ei2
ˆ j
0
结论
j 0,1,2,, k
ˆ X ' X 1 X 'Y
8
例子
经过研究,发现家庭书刊消费水平受家庭 收入及户主教育年数的影响。现对某地区 的家庭进行抽样调查,得到的样本数据如 表所示,其中 y 表示家庭书刊消费水平
其中,n k 1为 ei2 的自由度,n 1 为 yi y2
的自由度
引入修正的样本决定系数R 2的作用:
用自由度调整后,可以消除拟合优度评价中解释变量多 少对决定系数计算的影响
对于包含的解释变量个数不同的模型,可以用调整后的 决定系数直接比较它们的拟合优度的高低,但不能用原 来未调整的决定系数来比较
零阶偏相关系数、一阶偏相关系数、k 1 阶偏相关系数
r01 为零阶偏相关系数、 r02,1 称为一阶偏相关系数、 r01,23 称
为二阶偏相关系数、r01,234 称为三阶偏相关系数,依此类推
16
偏相关系数:一般公式
一般地,在研究多个变量的偏相关系数时,因变量 y
与解释变量 xi i 1,2,, k 的k 1 阶偏相关系数时,

多元线性回归模型的参数估计

多元线性回归模型的参数估计

多元线性回归模型的参数估计参数估计的方法有多种,其中比较常用的是最小二乘法。

最小二乘法的基本思想是通过最小化残差平方和来确定最优参数。

残差是实际观测值与模型预测值之间的差异。

通过最小化残差平方和,可以找到最佳的参数估计值,使得模型尽可能地接近真实观测值。

Y=β0+β1*X1+β2*X2+...+βp*Xp+ε其中Y是因变量,X1到Xp是自变量,β0到βp是参数,ε是误差项。

参数估计的过程分为两个步骤:估计回归系数和估计误差项。

估计回归系数的方法有多种。

最常用的是普通最小二乘法(Ordinary Least Squares, OLS)。

OLS的目标是最小化残差平方和。

通过计算导数,将残差平方和对参数进行求导并令导数等于0,可以得到参数的最优估计值。

这个过程可以使用矩阵计算来实现,可以得到参数的闭式解。

估计误差项的方法也有多种。

最常用的是最大似然估计法(Maximum Likelihood Estimation, MLE)。

在多元线性回归模型中,误差项假设为正态分布。

MLE通过最大化似然函数来确定误差项的参数。

似然函数给出了参数取值下观测样本出现的概率。

除了OLS和MLE,还有其他一些参数估计方法,如岭回归(Ridge Regression)、套索回归(Lasso Regression)等。

这些方法可以在普通最小二乘法的基础上进行改进,通过添加约束条件或正则化项来提高模型的性能和稳定性。

在进行参数估计之前,还需要检验模型的假设是否成立,如线性关系、误差项的独立性、误差项的正态性等。

如果模型的假设不成立,可能会导致参数估计的偏离。

总之,多元线性回归模型的参数估计是通过最小化残差平方和或最大化似然函数来确定最优的参数估计值。

这些方法可以提高模型的性能和稳定性,但也需要检验模型的假设是否成立。

参数估计的过程需要进行数学推导和计算,通常可以使用现有的统计软件包来实现。

第三章(多元线性回归模型)3-2答案

第三章(多元线性回归模型)3-2答案

3.2 多元线性回归模型的估计一、判断题1.满足基本假设条件下,样本容量略大于解释变量个数时,可以得到各参数的唯一确定的 估计值,但参数估计结果的可靠性得不到保证 ( T )二 、单项选择题1、线性回归模型的参数估计量ˆβ是随机向量Y 的函数,即1ˆ()X X X Y β-''=。

ˆβ是 (A )A 、随机向量B 、非随机向量C 、确定性向量D 、常量2.已知含有截距项的四元线性回归模型估计的残差平方和为∑=800e 2i ,样本容量为25,则其随机误差项i u 的方差的普通最小二乘估计为 (A )。

A 、40B 、32C 、38.095D 、36.364 三 、多项选择题1、对于二元样本回归模型12233ˆˆˆˆi i i iY X X e βββ=+++,下列各式成立的有(ABC ) A 、0e i =∑ B 、0X e i 2i =∑C 、0X e i 3i =∑D 、0Y e i i =∑E 、0X X i3i 2=∑四、计算题1、某地区通过一个样本容量为722的调查数据得到劳动力受教育年数的一个回归方程为10.360.0940.1310.210i i i i edu sibs medu fedu =-++ R 2=0.214式中,edu 为劳动力受教育年数,sibs 为劳动力家庭中兄弟姐妹的个数,medu 与fedu 分别为母亲与父亲受到教育的年数。

问(1)sibs 是否具有预期的影响?为什么?若medu 与fedu 保持不变,为了使预测的受教育水平减少一年,需要sibs 增加多少?(2)请对medu 的系数给予适当的解释。

(3)如果两个劳动力都没有兄弟姐妹,但其中一个的父母受教育的年数均为12年,另一个的父母受教育的年数均为16年,则两人受教育的年数预期相差多少年?解:(1)预期sibs 对劳动者受教育的年数有影响。

因此在收入及支出预算约束一定的条件下,子女越多的家庭,每个孩子接受教育的时间会越短。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

假设2,随机误差项具有零均值、同方差及不 序列相关性。
E(i ) 0
ij i,j 1 ,2 , ,n
V(a i)rE (i2)2
C( o i,v j) E (ij) 0
假设3,解释变量与随机项不相关
Co (X vji,i)0 j1,2,k
假设4,随机项满足正态分布
⃟正规方程组 的另一种写法 对于正规方程组
XYXXβ ˆ
X X β ˆ X eX X β ˆ
于是 Xe0 (*)
或 ei 0 (**)
Xjiei 0
i
(*)或(**)是多元线性回归模型正规方程组
的另一种写法。
⃟随机误差项的方差的无偏估计
可以证明,随机误差项的方差的无偏估
该正规方程组 可以从另外一种思路来导:
求期望 :
YX β μ X Y X X β X μ X (Y X β)X μ
E (X (Y X β )0
E (X (Y X β )0
称为原总体回归方程的一组矩条件,表明了原总 体回归方程所具有的内在特征。
1X(YXβ ˆ)0 n
表示:各变量X值固定时Y的平均响应。
j也被称为偏回归系数,表示在其他解释变
量保持不变的情况下,X j每变化1个单位时,Y的 均值E(Y)的变化;
或者说j给出了X j的单位变化对Y均值的
“直接”或“净”(不含其他变量)影响。
总体回归模型n个随机方程的矩阵表达式为:
其中 Y X β μ
1 X11 X 1 X12
ˆ 2
Q
0
ˆ k
Q
0
n
n

Q ei2 (Yi Yˆi)2
i1
i1
中n
2
(Y i(ˆ0ˆ1X 1iˆ2X 2i ˆkX k)i )
i 1
• 于是得到关于待估参数估计值的正规方程组:
((ˆˆ00(ˆ0ˆˆ11XX1ˆ1i1iX1ˆiˆ22iXXˆ222iiX2 i ˆˆkkXXˆkkkii))XXXki12)ii
如果样本函数的参数估计值已经得到,则有:
Y ˆ i ˆ 0 ˆ 1 X 1 i ˆ 2 X 2 i ˆ k X i Ki i=1,2…n
• 根据最 小二乘原 理,参数 估计值应
该是右列
方程组的 解

ˆ 0
Q
0

ˆ 1
Q
0

Y i 0 1 X 1 i 2 X 2 i k X k ii
也被称为总体回归函数的随机表达形式。它 的 非随机表达式为:
E ( Y i|X 1 i , X 2 i , X k ) i0 1 X 1 i 2 X 2 i k X ki

(XXβ ˆ)XY
由于X’X满秩,故有 β ˆ(XX)1XY
• 将上述过程用矩阵表示如下:
即求解方程组: β ˆ(YXβ ˆ)(YXβ ˆ)0
β ˆ(Y Y β ˆX Y Y X β ˆβ ˆX X β ˆ)0 β ˆ(Y Y 2Y X β ˆβ ˆX X β ˆ)0
一、普通最小二乘估计 *二、最大或然估计 *三、矩估计 四、参数估计量的性质 五、样本容量问题 六、估计实例
说明
估计方法: 3大类方法:OLS、ML或者MM – 在经典模型中多应用OLS – 在非经典模型中多应用ML或者MM – 在本节中, MM为选学内容
一、普通最小二乘估计
• 对于随机抽取的n组观测值 (Y i,X j)ii ,1 ,2 , ,n ,j 0 ,1 ,2 , k
n Xi
X Xi2 i2110552031065 500000
Y1
XYX 11
1 X2
X 1nY Y n 2
XYiiYi3195466784400
可求得: (X X )1 00 .7 .02020 1. 3 63 0.E 0 50 0 0 73
Y ˆ i ˆ 0 ˆ 1 X 1 i ˆ 2 X 2 i ˆ k X i ki
其随机表示式: Y i ˆ 0 ˆ 1 X 1 i ˆ2 X 2 i ˆkX i k ie i
ei称为残差或剩余项(residuals),可看成是
总体回归函数中随机扰动项i的近似替代。
假设3,E(X’)=0,即

E
X1i i




X1i E(i )


0
XKii XKiE(i )
假设4,向量 有一多维正态分布,即
μ~N(0,2I)
同一元回归一样,多元回归还具有如下两个重 要假设:
假设5,样本容量趋于无穷时,各解释变量的 方差趋于有界常数,即n∞时,

X21 Xk1
X22

Xk2



1 X1n
X2n

Xkn
n(k1)
0


1

β


2

k ( k 1 ) 1
1
μ



2



n

n1
用来估计总体回归函数的样本回归函数为:
对对数或然函数求极大值,也就是对
(YX β ˆ)(YX β ˆ)
求极小值。
• 因此,参数的最大或然估计为
β ˆ(XX)1XY
结果与参数的普通最小二乘估计相同
*三、矩估计(Moment Method, MM)
OLS估计是通过得到一个关于参数估计值的
正规方程组
(XXβ ˆ)XY
并对它进行求解而完成的。
第三章 经典单方程计量经济学模型:多 元线性回归模型
• 多元线性回归模型 • 多元线性回归模型的参数估计 • 多元线性回归模型的统计检验 • 多元线性回归模型的预测 • 回归模型的其他形式
§3.1 多元线性回归模型
一、多元线性回归模型 二、多元线性回归模型的基本假定
一、多元线性回归模型
多元线性回归模型:表现在线性回归模型中的 解释变量有多个。


Xki
X1i X12i
XkX i 1i

X X X 1iX k k2kii i ˆˆˆ1 k 0X X 11 k11 X X 11 k22 X X 11 knn Y Y Y1 n 2
计量为:
ˆ2 ei2 ee
nk1 nk1
二、最大或然估计
• 对于多元线性回归模型
Y i 0 1 X 1 i 2 X 2 i k X k ii
易知
Yi ~N(Xiβ,2)
• Y的随机抽取的n组样本观测值的联合概率 L(βˆ, 2) P(Y1,Y2,,Yn )
线性性、无偏性、有效性。
同时,随着样本容量增加,参数估计量具有: 渐近无偏性、渐近有效性、一致性。
1、线性性
β ˆ(X X ) 1X Y CY
其中,C=(X’X)-1 X’ 为一仅与固定的X有关的行 向量
2、无偏性
E(βˆ) E((XX)1 XY) E((XX)1 X(Xβ μ)) β (XX)1 E(Xμ) β
E(X’)=0
• 如果某个解释变量与随机项相关,只要能找到1 个工具变量,仍然可以构成一组矩条件。这就是IV。
• 如果存在>k+1个变量与随机项不相关,可以构 成一组包含>k+1方程的矩条件。这就是GMM。
四、参数估计量的性质
在满足基本假设的情况下,其结构参数的
普通最小二乘估计、最大或然估计及矩估计仍具 有:
一般表现形式:
Y i 0 1 X 1 i 2 X 2 i k X k ii i=1,2…,n
其中:k为解释变量的数目,j称为回归参数
(regression coefficient)。
习惯上:把常数项看成为一虚变量的系 数,该虚变量的样本观测值始终取1。于是: 模型中解释变量的数目为(k+1)
X Y X X β ˆ0
得到:
XYXXβ ˆ
于是:
β ˆ(XX)1XY
例3.2.1:在例2.1.1的家庭收入-消费支出例中,
1 X1
(X 'X )X 11
1 X2
X 1n 1 1 X X n 2
n

12
E


n
1

1n

n2

va1 r)( co1 v,(n) 2 0 2I
con v,(1) varn)( 0 2
i E(i )

1
e 1 2
2
(Yi
(ˆ0
ˆ1X1i
ˆ2
X2i
ˆk
Xki
))2
(2
)
n 2

n

1
1 (YXβˆ )(YXβˆ )
e 22
(2
)
n 2

n
即为变量Y的或然函数
• 对数或然函数

L*L(nL)
nL(n2) 1 (YXβ ˆ)(YXβ ˆ) 22
于是:
β ˆ ˆ ˆ 1 2 0 0 .7 .02 0 1 . 3 2 0 0 .E 0 5 6 0 3 0 3 7 1 09 5 3 6 6 4 0 1 7 .7 .8 1 0 4 7 4 7 3 7
样本回归函数的矩阵表达:
其中:
Yˆ Xβ ˆ
ˆ 0
相关文档
最新文档