[数据分析] 如何掌握数据化运营的思维方式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“数据驱动决策”,为了不让这句话成为空话,在本章的最后,作者将自己的经验提炼为以下15种思想武器,不求你当下就能掌握,但希望你能不断参悟并修正。
1.信度与效度思维
在指标构建的内容中已经对指标的信度和效度做了阐述。这部分也许是最难理解的,但也最重要。没有这个思维,决策者很有可能在数据中迷失,如图4-57所示。
度与效度思维
信度与效度的概念最早来源于调查分析,但现在可以引申到数据分析工作的各个方面。
所谓信度,是指一个数据或指标自身的可靠程度,包括准确性和稳定性。取数逻辑是否正确?有没有计算错误?这属于准确性;每次计算的算法是否稳定?口径是否一致?以相同的方法计算不同的对象时,
准确性是否有波动?这是稳定性。做到以上两个方面,就是一个好的数据或指标了吗?其实还不够,还有一个更重要的因素,就是效度!
所谓效度,是指一个数据或指标的生成,需贴合它所要衡量的事物,即指标的变化能够代表该事物的变化。
只有在信度和效度上都达标,才是一个有价值的数据指标。举个例子:要衡量身体的肥胖情况,选择穿衣的号码作为指标,一方面,相同的衣服尺码对应的实际衣服大小是不同的,会有美版、韩版等因素,使得准确性很差;另一方面,一会儿穿这个牌子的衣服,一会儿穿那个牌子的衣服,使得该衡量方式形成的结果很不稳定。所以,衣服尺码这个指标的信度不够。尺码大小并不能准确反映肥胖情况,因此效度也不足。体脂率才是信度和效度都比较达标的肥胖衡量指标。
在我们的现实工作中,许多人会想当然地拿了指标就用,这是非常值得警惕的。你要剁骨头却拿了把手术刀,是不是很可悲?信度和效度的本质,其实属于数据质量的问题,这是一切分析的基石,再怎么重视都不过分!
2.平衡思维
说到天平读者都不陌生,平衡的思维相信也都能很快理解。简单来说,在数据分析的过程中,需要经常寻找事情间的平衡关系,且平衡关系往往是关乎企业运转的大问题,如市场的供需关系,薪资与效率关系,工作时长与错误率的关系等。
平衡思维的关键点在于寻找能展示出平衡状态的指标。也就是图4-58所示的框,要通过这个准确的量化指标观察天平的倾斜程度。怎么找这个指标呢?一般先找双向型的问题,即“高也不是低也不是”的问题,然后量化为指标,最后计算成某个比率,长期跟踪后观察它的信度和效度。
平衡思维
举个电商的例子,在电商的用户行为分析中,用户每次访问的深度就是一个“高不成低不就”的问题。若用户访问深度过深,每次都要浏览很多个页面,说明他在这里没有遇到想要的产品,或者页面没有促使他快速购买,这不是一家电商公司想看到的情况;若用户每次访问都很浅,看一两个页面就走掉了,说明你的产品展示、内容引导很有问题。那么,访问深度多少是合适的呢?这就是数据分析人员需要研究的问题——在多深的访问深度时,用户形成购买的概率最大。
3.分类思维
客户分群、产品归类、市场分级、绩效评价等许多事情都需要有分类的思维。主管拍脑袋也可以分类,通过机器学习算法也可以分类,到底分类思维怎么应用呢?
关键点在于,分类后的事物需要在核心关键指标上能拉开距离!也就是说,分类后的结果必须是显著的。如图4-59所示,横轴和纵轴往往是你运营中关注的核心指标(当然不限于二维),而你能看到分类后的对象分布不是随机的,而是有显著的集群的倾向。
分类思维
举个例子,假设图4-59所示反映了某个消费者分群的结果,横轴代表购买频率,纵轴代表客单价,那么图中右上角的这群人,就是明显的“金牌客户”。右下角这个象限的人群,就是“屌丝”群体,他们“频繁地买便宜货”。左上角的人群是精英阶层,他们“选购好商品”。左下角的人群可以归结为长尾客户,不需要我们花精力去维护,让他们自然生长,转变为其他三个象限的人群后,我们再施以针对性的策略。
4.矩阵思维
如图4-60所示,矩阵思维是分类思维的延伸,它不再局限于用量化指标进行分类。许多时候,我们没有数据作支持,只能通过经验做主观的推断,可以把某些重要因素组合成矩阵,大致定义出好坏的方向,然后进行分析。
矩阵思维
我们在上文中提到的“重要—紧急矩阵”,就是矩阵思维的一个例子。
5.管道/漏斗思维
这种思维方式已经比较普及了,注册转化、购买流程、销售管道、浏览路径等,很多分析场景中都能找到这种思维的影子,如图4-61所示。
漏斗思维
作者认为看上去越是普世、越是容易理解的模型,它的应用越得谨慎和小心。在漏斗思维中,我们尤其要注意漏斗的长度。
漏斗从哪里开始到哪里结束?以作者的经验,漏斗的环节不该超过5个,且漏斗中各环节的百分比数值、量级不要超过100倍(漏斗第一个环节从100%开始,到最后一个环节的转化率数值不要低于1%)。若超过了这两个数值标准,建议分为多个漏斗进行观察。当然,这两个是经验数值,仅为读者提供一个参考。
理由是什么呢?超过5个环节,往往会出现多个重点环节,那么在一个漏斗模型中分析多个重要问题容易产生混乱。数值量级差距过大,数值间变化的实际意义很难被察觉,容易遗漏信息。例如,漏斗的第一个环节到第二个环节的转化率从60%变到50%,让你感觉是天大的事情,而漏斗最后环节的转化率发生0.1%的变动,你却不以为然,其实往往是漏斗最后这0.1%的变动非常致命。
6.相关思维
如图4-62所示,我们观察指标,不仅要看单个指标的变化,还需要观察指标间的相互关系。有正相关关系(实线)和负相关关系(虚线)。最好能时常计算指标间的相关系数,定期观察变化。
相关思维
现在很多企业管理层,面对的问题并不是没有数据,而是数据太多,有用的数据太少。相关思维的一个应用,就是帮助我们找到最重要的数据,排除过多杂乱数据的干扰。
如何执行呢?可以计算能收集到的多个指标间的相互关系,挑出与其他指标相关系数都相对较高的数据指标,分析它的产生逻辑、对应的问题,并评估信度和效度,若都满足标准,这个指标就能定位为核心指标。
建议读者养成一个习惯,经常计算指标间的相关系数,仔细思考相关系数背后的逻辑,或许能给你带来惊喜!另外,“没有相关关系”,也会成为惊喜的来源。在第5章中,我们会针对相关系数模型做详细的讨论,你会更多地体会相关思维的好处。
7.远近度思维
在与许多处在管理层的朋友交流后,发现他们往往手握众多数据和报表,注意力却非常跳跃和分散。这当然不是好现象,但如何避免呢?一是通过相关思维,找到最核心的问题和指标;二是建立远进度的思维方式,如图4-63所示。
远近度思维
确定好核心问题后,分析其他业务问题与该核心问题的远近程度,由近及远,有计划地分配自己的精力。例如,近期你的核心任务是提高