干旱区资源与环境-基于流形学习的土壤高光谱数据特征提取研究_吕杰

合集下载

不同含水量黄棕壤反射光谱特征研究

不同含水量黄棕壤反射光谱特征研究

不同含水量黄棕壤反射光谱特征研究吕雄杰①,潘剑君①,张佳宝②(①南京农业大学资源与环境学院,南京210095;②中国科学院南京土壤研究所,南京210008)摘要:采用多光谱辐射仪(MSR-16R)对自然条件下不同水分含量黄棕壤光谱特征进行了研究,试验结果表明在可见光部分(460~710nm),土壤含水量与光谱反射率相关性差,而在红外部分(760~1650nm)土壤含水量与光谱反射率达到极显著负相关,模式方程拟合度都在0.86以上,因此通过测定土壤光谱反射率来推算土壤含水量是可行的。

应用地面光谱测量试验的结果,本文讨论了由地面光谱测量来推算土壤含水量向由卫星遥感影像反演土壤含水量过渡的可能性,进而对采用TM遥感影像对黄棕壤分布区土壤水分状况实施遥感监测的可行性作了一些探讨。

关键词:含水量;土壤;反射光谱;黄棕壤中图分类号:TP7 文献标识码:A 文章编号:1000-3177(2004)75-0010-03引 言土壤水分状况在农业、气象、水文及地理等学科都具有重要作用。

土壤水分是植物生长、发育的必要条件,它是指示土壤墒情、确定农业生产春耕时间、补偿灌溉管理和评价产量高低的重要参数[1~2]。

土壤水分状况的监测历来受到人们的重视,但传统的观测方法,如取土烘干法、中子水分仪法及张力计方法等均是以点测量为基础,它们都存在着较大的取样误差。

土壤是含多种成分的复杂的自然综合体,土壤光谱受土壤母质、有机质、水分等多种复杂因素的影响,在母质等其他因素固定的情况下,土壤光谱受土壤水分的制约比较明显。

不同土壤类型随水分变化稍有差别,一般随土壤水分的增加而反射率降低,这为用遥感方法探测土壤水分提供了可能[3]。

早在1965年,Bowers等就发现裸地土壤湿度的增加会引起土壤反射率的降低,这成为后来利用遥感方法进行土壤水分遥感监测研究的理论依据[4]。

1973年日本学者在札幌研究了5种土壤的反射率,建立了蓝波段和绿波段的胶片密度和土壤含水量的多元回归方程[5]。

枸杞土壤含水量间接光谱估测模型

枸杞土壤含水量间接光谱估测模型
大范围、高精度的快速监测土壤水分动态成为可能,弥补了
传统土壤水分监测方法的缺点,成为研究的热点[8] 。 随着高
光谱与土壤水分关系的研究,光谱数据处理技术日趋成熟。
研究表明,350 ~ 2 500 nm 波长范围内的高光谱反射率可以反
映土壤水分特征值的细微差异,进而反演土壤水分含量。 国
内外学者[9-11] 已得出较为一致的结论,在一定的土壤含水量
期 180 d。 棚内施肥、修剪等管理措施与田间管理一致。 该
区域枸杞田属于盐碱地,地下水位为 1. 2 ~ 1. 8 m, pH 8. 67 ~
Copyright©博看网. All Rights Reserved.
172
安徽农业科学 2023 年
model equation is:Y = 25. 001-56. 485X 673 -115. 923X 1 893 +100. 631X 1 872 . The model has good accuracy and less input in predicting soil water
content, which can provide reference for soil water content prediction model.
model of soil moisture content was established. The results show that the multiple linear regression model based on reflectance characteristic
values of 754,1 844,1 855 and 1 900 nm bands has low inversion accuracy for soil moisture,R 2 = 0. 326; the multiple stepwise regression analysis method with 673, 1 893 and 1 872 nm band reflectance as characteristic values can better predict soil water content, R 2 = 0. 716. The

连续小波变换的土壤有机质含量高光谱估测

连续小波变换的土壤有机质含量高光谱估测

连续小波变换的土壤有机质含量高光谱估测玉米提·买明;王雪梅【期刊名称】《光谱学与光谱分析》【年(卷),期】2022(42)4【摘要】土壤有机质含量的高光谱估测可快速、准确监测土壤肥力,对现代化农业生产进行精准施肥提供科学依据。

以新疆渭干河-库车河三角洲绿洲耕层土壤为研究对象,对采集的98个土壤样品的原始光谱反射率R分别进行传统倒数对数lg(1/R)、一阶微分R′和倒数对数一阶微分[lg(1/R)]′数学变换,以及基于小波母函数Bior1.3不同尺度分解的连续小波变换(CWT),并与实测土壤有机质含量进行相关分析,从而筛选出各类变换下与土壤有机质含量密切相关的特征波段和小波系数(p<0.01)。

分别以原始光谱反射率(R)以及不同变换处理下的特征波段反射率和敏感小波系数作为自变量,土壤有机质含量作为因变量,采用偏最小二乘回归和支持向量机回归方法构建土壤有机质含量的估测模型。

结果表明:(1)各类光谱变换方法有效提升光谱与土壤有机质含量之间的敏感性,其中经CWT变换后的土壤光谱反射率与有机质含量的相关性得到显著提高,相关系数由0.39提高到0.54(p<0.01)。

(2)传统的[lg(1/R)]′变换构建的支持向量机回归模型,其决定系数(R^(2))高于lg(1/R)和R′变换构建的模型,说明倒数对数一阶微分变换可有助于提高估测模型的精度,且支持向量机回归模型的精度和稳定性高于偏最小二乘回归模型。

(3)经过CWT分解后,以原始光谱反射率在不同尺度上的敏感小波系数作为自变量建立的模型,估测精度和稳定性均有明显的提高,构建的R-CWT-2^(3)-SVMR模型的决定系数(R^(2))为0.84,均方根误差(RMSE)为1.48,相对分析误差(RPD)等于2.11,模型精度达到最高并拥有极好的预测能力。

高光谱数据经多种变换处理后可有效去除白噪声,而连续小波变换处理比传统的数学变换方法更适合于挖掘土壤有效信息,实现光谱信号的近似特征和细节特征的有效分离,建立的反演模型可更加精准估测土壤有机质含量。

干旱半干旱地区湖泊周围盐碱土固体表面荧光光谱特征研究

干旱半干旱地区湖泊周围盐碱土固体表面荧光光谱特征研究



荧光是 由具有芳香结构或共轭生色团以及 未饱 和脂肪链 的物质产生的 ,可以评价土壤 腐殖化程度 。
该技术广泛用 于检测土壤腐殖质水溶液荧光 , 少用于直接 检测土壤 固体表 面荧光 。本文选 取乌梁素海 周 很 围盐 角草 、碱蓬、 爪爪 和苫 豆子群落 的土壤作为研究对象 , 盐 分别采集 O o 2  ̄4 ~2 , 0 0和 4  ̄6 m 的 1 个 0 0c 2
物特 征 , 结合 Mi r等I l i 研究成果提 出一个基于 固体表面荧 o 光光谱 的土壤腐殖 化指 数 ( u f ai d xbsdo oi h mict ni e ae nsl i o n d
sr c u rsec pcrso y uf ef oecn eset c p ,HJ S ) a l o X s 。通 过 与 K li F abt z 等E 、Mi r 嘲 和 Z on y等 提 出 的腐 殖 化 指 数 进 行相 关 l 等 o s la 性 分 析 , 证 该指 数 的 叮靠 性 。 H j s与 盐 度 相 关性 分析 验 在 Xs F
中圈分类 号:¥ 5 1
引 言
土壤的化学顽拗性 ( 物理保护和有 机矿物的相互作用等 ) 是土壤 有机 物稳定机 制之一 ,是 由土壤 有机物分 子特征 ( 元 素组成 、 分子芳化与缩合程度以及功能团种类 等) 决定 的l 。 】 ] 在土壤腐殖化过程 中,芳族碳 、 烷基碳 以及分 子缩 合结构增 加是土壤有 机物 抗生 物 降解 能力 的 重要 标 志。K ao i ki rsv si t 等E 认为 :当一种 物质 在 固态 、液态 和气 态 之 间相互 转 化 。 ]
且在 湖? 周 围形 成 了 自然 盐 分 梯 度 带 ( 湖 边 向外 围 土 壤 盐 白 从

作者姓名:阿布都瓦斯提·吾拉木

作者姓名:阿布都瓦斯提·吾拉木

作者姓名:阿布都瓦斯提·吾拉木论文题目:基于n维光谱特征空间的农田干旱遥感监测作者简介:阿布都瓦斯提·吾拉木,男,1975年2月出生,于2006年7月获北京大学理学博士学位。

2006年12月至今任美国圣路易斯大学环境科学中心Geospatial Analyst/Research Professor。

中文摘要农田生态系统是一个水分、土壤、植被、大气等诸多因素耦合的复杂系统(SPAC,Soil-Plant-Atmosphere Continuum)。

在农田生态系统水循环中,水分亏缺的积累使农田供水量在一定的时间段内不能满足作物需水量,导致农田干旱的发生。

农田干旱直接和间接地影响人类生存、社会稳定、农业生产、资源与环境可持续发展。

正确评价或预防农田干旱,对促进农业生产和区域可持续发展具有重要的现实意义。

遥感具有客观反映农田水分时空变化的监测能力。

国内外农田遥感干旱监测研究表明:在复杂地表环境下,单纯采用可见光、近红外、热红外或微波波段都无法全面、准确反映农田水分信息,其方法在农田水分监测中暴露出诸多问题,如水分监测的滞后效应、模型复杂、参数的不确定性和过度依赖于田间和气象观测资料等,不能适应全面、动态的农田干旱监测与农田水分信息提取的迫切需求。

利用定量遥感方法,实现准确的农田干旱信息提取一直是遥感应用领域亟待解决的重要科学问题之一。

基于多维光谱特征空间的农田干旱信息提取,可以综合多源遥感的优势,为干旱监测提供更丰富、更高分辨率的农田水分信息,有望去除以往的遥感干旱模型带来的监测效果滞后、模型复杂、参数的不确定性等问题,形成农田干旱遥感监测新方法。

本论文以可见光近红外2维光谱空间干旱建模为切入点,通过加入短波红外,进一步拓宽遥感干旱监测的波段和地表生态物理参数,构建了反演土壤水分、叶片/冠层含水量(EWT)和叶片/冠层相对含水量(FMC)等参数的遥感模型,针对农田干旱最关键的两个指标土壤水分和叶片/冠层含水量,建立了多个干旱监测模型,形成了以n维光谱特征空间为基础的农田遥感干旱监测的新方法。

不同含水量土壤光谱响应特征分析

不同含水量土壤光谱响应特征分析

不同含水量土壤光谱响应特征分析
托里肯·阿布扎别克;吉别克·哈力克巴义
【期刊名称】《安徽农业科学》
【年(卷),期】2013(041)011
【摘要】[目的]揭示土壤水分对土壤光谱的影响机理,并为其他土壤参数的遥感监测提供理论支持.[方法]以新疆塔里木盆地北缘渭干河—库车河三角洲野外光谱反射数据为研究对象,运用光谱分析法研究土壤水分光谱特征及土壤水分特征波段.[结果]波长740、1 768、1 962、1 450、2 216 nm是土壤水分的吸收带.[结论]土壤光谱反射率比变化主要依赖于土壤含水量状况和波长.在波长较短的部分,土壤反射率随土壤水分变化迅速,而对于波长较长的部分,水分的吸收起显著的作用,反射率变化缓慢.
【总页数】2页(P4819,4944)
【作者】托里肯·阿布扎别克;吉别克·哈力克巴义
【作者单位】阿勒泰地区国土资源勘测规划院,新疆阿勒泰836500;阿勒泰地区国土资源勘测规划院,新疆阿勒泰836500
【正文语种】中文
【中图分类】S152.7
【相关文献】
1.不同种植模式下土壤含水量变化特征分析 [J], 陈峨印;康彦付
2.松嫩平原北部不同含水量梯度下土壤有机碳含量空间特征分析 [J], 薄欣;臧淑英;
张玉兰;刘晨;周文强
3.不同尺度的微分窗口下土壤有机质的一阶导数光谱响应特征分析 [J], 刘炜;常庆瑞;郭曼;邢东兴;员永生
4.不同灌溉条件下冬小麦冠层含水量的光谱响应 [J], 孙乾; 顾晓鹤; 孙林; 王淼; 周龙飞; 杨贵军; 李卫国; 束美艳
5.中国不同气候区模拟土壤含水量的时空特征分析 [J], 陆桂华;匡亚红;吴志勇;何海
因版权原因,仅展示原文概要,查看原文内容请购买。

干旱区绿洲植被高光谱与浅层土壤含水率拟合研究

干旱区绿洲植被高光谱与浅层土壤含水率拟合研究

干旱区绿洲植被高光谱与浅层土壤含水率拟合研究陈文倩;丁建丽;谭娇;李相【期刊名称】《农业机械学报》【年(卷),期】2017(48)12【摘要】Water resources have become a key factor for restricting the social,economic and agricultural development of arid area in Northwest China.In recent years,agriculture in arid oasis has developed rapidly,and human activities have seriously affected balance on the regional soil moisture,resulting in a large area of salinization.Therefore,the monitoring of soil moisture is of great practical significance to the development of oasis agriculture and economy.Taking the oasis of Weiku in Xinjiang as the study area,totally 41 soil moisture samples and hyperspectral data of the oasis vegetation in arid area were collected,and the vegetation index was taken as bridge.Multiple regression (MLSR),partial least squares (PLS) regression and support vector machine regression (SVR) were used to establish the inversion model of soil water content in oasis,respectively,the regression models were tested respectively.The experimental results showed that the accuracy of different models was different.Through the optimization of parameters and extraction of optimal test set.,the fitting effect from good to bad was improved SVR model,PLS model and M LSR model,which were based on the vegetation The improved SVR model had a good fitting effect,R2 was 0.891 6,RMSE was only 2.004,the analysisaccuracy in the oasis of arid area reached the practical prediction accuracy.The R2 values of MLSR model and PLS model were 0.630 0 and 0.654 9,and RMSE were 3.001 and 2.749,respectively.The results showed that it was an effective method to improve the monitoring accuracy of shallow soil water content in oasis,and it can also provide more data for monitoring soil moisture in arid area.%水资源一直是制约我国西北干旱区农业发展的关键因素.以新疆渭库绿洲为研究区域,选取41个土壤含水率与干旱区绿洲植被实测高光谱样本,以植被指数为桥梁,采用支持向量机回归(SVR)方法,建立干旱区绿洲土壤含水率与植被指数之间的拟合方程模型,并与多元回归(MLSR)、偏最小二乘回归(PLS)2种模型进行对比.实验结果表明:不同模型的精度各异,拟合效果由优到劣为:改进的SVR模型、PLS模型、MLSR模型,其中基于干旱区绿洲实测的植被光谱数据改进的SVR模型对土壤含水率具有较好的拟合效果,通过最优参数的定值与最优测试集的抽取,R2高达0.891 6,RMSE仅为2.004,在干旱区绿洲的土壤含水率拟合中获得比较高的预测精度.而MLSR模型与PLS模型,R2分别为0.6300、0.654 9,RMSE分别为3.001与2.749.研究结果表明,因地制宜开展合理的土壤含水率反演模型规则制定是提高干旱区绿洲土壤浅层含水率监测精度的有效手段,也可为干旱区农业作物生长提供更精准的数据积累.【总页数】8页(P229-236)【作者】陈文倩;丁建丽;谭娇;李相【作者单位】新疆大学资源与环境科学学院,乌鲁木齐830046;新疆大学绿洲生态教育部重点实验室,乌鲁木齐830046;新疆大学资源与环境科学学院,乌鲁木齐830046;新疆大学绿洲生态教育部重点实验室,乌鲁木齐830046;新疆大学资源与环境科学学院,乌鲁木齐830046;新疆大学绿洲生态教育部重点实验室,乌鲁木齐830046;北京师范大学地理学与遥感科学学院,北京100875【正文语种】中文【中图分类】S273【相关文献】1.基于高光谱与电磁感应技术的干旱区绿洲土壤含水量反演研究 [J], 宁娟;丁建丽;杨爱霞;苏雯;李焕;曹雷;缪琛;地力夏提·艾木热拉2.干旱区绿洲植被动态变化研究与分析 [J], 王宏;范英霞3.干旱区典型绿洲热场分布规律研究——以渭干河-库车河三角洲绿洲为例 [J], 张兆永;海米提·依米提4.极端干旱区绿洲外缘地带植被现状及其恢复可行性研究——以策勒县为例 [J], 丁建丽;潘晓玲;朱启疆;黄培祐5.新疆渭干河——库车河三角洲绿洲天然植被生态需水研究 [J], 满苏尔.沙比提;李艳红;阿里木.卡斯木因版权原因,仅展示原文概要,查看原文内容请购买。

辽西半干旱区典型城市土壤入渗特性

辽西半干旱区典型城市土壤入渗特性

第18卷第6期2020年12月中国水土保持科学Science of Soil and Water ConservationVol.18No.6Dec.2020辽西半干旱区典型城市土壤入渗特性李坤衡1,吕冈卩覮,秦伟2,马君蕙1,李叶鑫1(1.辽宁工程技术大学环境科学与工程学院,123000,辽宁阜新;2.中国水利水电科学研究院泥沙所,100048,北京)摘要:为揭示辽西半干旱区典型城市土壤的入渗特性及影响因素,以阜新市为例,采用野外双环入渗和室内分析相结合的方法,针对8种不同类型城市土壤的理化性质和入渗特性进行系统分析,并进行入渗模型拟合。

结果表明:阜新市城市土壤密度为1.23-1.44g/cm3,土壤整体呈现有机质质量分数低、砂粒比例高(均〉72%)和土壤黏性差的特点;城区内土壤与城郊原生土壤相比,土壤紧实度和质地均存在显著差异;公园绿地重塑土稳定入渗率为2.04mm/min,与城郊原生土稳定入渗速率间差异不显著,是其他类型城市土壤的1.15-4.00倍。

不同类型城市土壤的稳定入渗率与密度呈显著负相关,与总孔隙度呈显著正相关;不同类型城市土壤入渗过程的回归模型的拟合优度依次为Horton模型〉Kostiakov模型〉Philip模型,Horton模型可作为模拟和预测阜新城市土壤入渗过程的最优模型;阜新市城市土壤稳定入渗速率等级分布相对集中,较慢和中等入渗速率级别分别占12.5%和75.0%,城市土壤入渗能力较低;增加城市绿地面积和增强城市绿地的管理维护改善土壤结构是提升城市土壤水源涵养功能的关键。

关键词:城市土壤;入渗特性;城市绿地;入渗模型;土壤水文中图分类号:S152.7+2文献标志码:A文章编号:2096-2673(2020)06-0053-09DOI:10.16843/j.sswc.2020.06.007Infiltration characteristics of urban soil in semi-arid area ofwestern Liaoning provinceLI Kunheng1,LU Gang1,QIN Wei2,MA Junhui1,LI Yexin1(1.College of Environmental Science and Engineering,Liaoning Technical University,123000,Fuxin,Liaoning,China;2.Department of Sediment Research,China Institute of Water Resource and Hydropower Research,100048,Beijing,China)Abstract:[Background]In order to reveal the infiltration characteristics and influencing factors of typical urban soils in semi-arid areas of western Liaoning,taking Fuxin city located in the western Liaoning region as an example,the infiltration capacity of urban soil in Fuxin city and its influencing factors were studied,from the angle of the soil infiltration to discuss the reason of urban waterlogging in western Liaoning flood season.[Methods]The method of combining the field double ring infiltration with the indoor analysis was used to systematically analyze the physical and chemical properties and infiltration characteristics of eight different types of urban soils,Using Horton model,Kostiakov model and Philip model,the urban soil infiltration was fitted by Origin9.1software.[Results]The bulk density of urban soil in Fuxin is1.23-1.44g/cm3,and the bulk density of green land is the smallest.The overall soil shows the characteristics of low organic matter content,high sand content(all above 72%)and poor soil pared with the original soil in the suburb,the soil compactness and收稿日期:20200323修回日期:20200410项目名称:国家自然科学基金“辽河上游缓冲带对农业非点源污染的阻控作用研究”(41501548)第一作者简介:李坤衡(1993—),男,硕士研究生。

干旱胁迫下油菜素内酯对植物

干旱胁迫下油菜素内酯对植物

第32卷 第4期V o l .32 No .4草 地 学 报A C T A A G R E S T I A S I N I C A2024年 4月A pr . 2024d o i :10.11733/j.i s s n .1007-0435.2024.04.009引用格式:李铭怡,王 冉,贾濠基,等.干旱胁迫下油菜素内酯对植物-土壤化学计量特征及内稳性的影响[J ].草地学报,2024,32(4):1068-1077L IM i n g -y i ,WA N GR a n ,J I A H a o -j i ,e t a l .E f f e c t s o f B r a s s i n o s t e r o i d o nP l a n t -s o i l S t o i c h i o m e t r i cC h a r a c t e r i s t i c s a n d H o m e o s t a s i su n d e rD r o u g h t S t r e s s [J ].A c t aA gr e s t i aS i n i c a ,2024,32(4):1068-1077干旱胁迫下油菜素内酯对植物-土壤化学计量特征及内稳性的影响李铭怡1,2,3,王 冉1,2,贾濠基1,2,耿启明1,2*,郭士维1,2,3,王福豪1,2,刘黎明1,2,3,董文豪4,许文年1,2,3(1.三峡库区地质灾害教育部重点实验室(三峡大学),湖北宜昌443002;2.三峡大学土木与建筑学院,湖北宜昌443002;3.水泥基生态修复技术湖北省工程研究中心(三峡大学),湖北宜昌443002;4.湖北润智生态科技有限公司,湖北宜昌443002)收稿日期:2023-09-28;修回日期:2024-01-26基金项目:国家自然科学基金项目(42207544);三峡库区地质灾害教育部重点实验室(三峡大学)开放基金(2023K D Z 11)资助作者简介:李铭怡(1988-),女,汉族,河北邯郸人,副教授,主要从事边坡与生态防护研究,E -m a i l :l i m i n g y i @c t gu .e d u .c n ;*通信作者A u -t h o r f o r c o r r e s p o n d e n c e ,E -m a i l :g e n g q i m i n g c t gu @163.c o m 摘要:为探究施用油菜素内酯(B r a s s i n o s t e r o i d ,B R )对不同干旱条件下植物与土壤的生态化学计量特征及其相互关系,本研究以黄花决明(C a s s i a g l a u c a L a m.)为研究对象,采用盆栽控水法,设置正常水分㊁中度胁迫㊁重度胁迫处理(田间持水量的75%ʃ5%,55%ʃ5%,35%ʃ5%)及4种B R 浓度处理(0,0.05,0.2和0.5m g ㊃L -1),在干旱90天后测定株高㊁生物量和植物㊁土壤的养分含量及化学计量特征㊂研究发现:干旱胁迫导致株高㊁地上和地下生物量降低;随着施用B R 浓度的增加,株高㊁生物量表现为先上升后下降;0.2m g ㊃L -1B R 有利于植物养分含量提升,地上部提升效果更好;干旱区生态修复中黄花决明的生长对N 元素的供应需求较大;施用B R 有助于提高黄花决明株高和生物量,调节养分分配策略,缓解干旱对植物的不利影响㊂本研究可为干旱地区的生态修复和植被重建提供新思路与新方法㊂关键词:生态修复;干旱胁迫;油菜素内酯;化学计量;养分特征;内稳性中图分类号:X 171.4 文献标识码:A 文章编号:1007-0435(2024)04-1068-10E f f e c t s o fB r a s s i n o s t e r o i do nP l a n t -s o i l S t o i c h i o m e t r i cC h a r a c t e r i s t i c s a n dH o m e o s t a s i s u n d e rD r o u gh t S t r e s s L IM i n g -y i 1,2,3,WA N G R a n 1,2,J I A H a o -j i 1,2,G E N G Q i -m i n g 1,2*,G U OS h i -w e i 1,2,3,WA N GF u -h a o 1,2,L I U L i -m i n g 1,2,3,D O N G W e n -h a o 4,X U W e n -n i a n 1,2,3(1.K e y L a b o r a t o r y o fG e o l o g i c a lH a z a r d s o nT h r e eG o r g e sR e s e r v o i rA r e a ,M i n i s t r y o fE d u c a t i o n (C h i n aT h r e eG o r g e sU n i v e r s i t y ),Y i c h a n g ,H u b e i P r o v i n c e 443002,C h i n a ;2.C o l l e g e o fC i v i l E n g i n e e r i n g &A r c h i t e c t u r e ,C h i n aT h r e eG o r g e sU n i v e r s i t y ,Y i c h a n g,H u b e i P r o v i n c e 443002,C h i n a ;3.H u b e i P r o v i n c i a l E n g i n e e r i n g R e s e a r c hC e n t e r o fC e m e n t -b a s e dE c o l o g i c a lR e s t o r a t i o nT e c h n o l o g y(C h i n aT h r e eG o r g e sU n i v e r s i t y ),Y i c h a n g ,H u b e i P r o v i n c e 443002,C h i n a ;4.H u b e i R u n z h i E c o l o g i c a lT e c h n o l o g y C o .,L t d ,Y i c h a n g,H u b e i P r o v i n c e 443002,C h i n a)A b s t r a c t :T o i n v e s t i g a t e t h ee c o l o g i c a l s t o i c h i o m e t r i cc h a r a c t e r i s t i c sa n dt h e i r i n t e r r e l a t i o n s h i pso f p l a n t s a n d s o i l t h a t s u b j e c t e d t o e x t e r n a l l y a p p l y i n g b r a s s i n o s t e r o i d (B R )u n d e rd i f f e r e n t d r o u gh t c o n d i t i o n s .I n t h i s s t u d y ,C a s s i a g l a u c a L a m.w a s u s e d a s t h e r e s e a r c h o b je c t ,a n d t h e p o t -w a t e r c o n t r o lm e t h o dw a s u s e d b y s e t t i n g u p w e l l w a t e r ,m o d e r a t e d r o u g h t a n d s e v e r e d r o u gh t t r e a t m e n t s (75%ʃ5%,55%ʃ5%a n d 35%ʃ5%o f t h ew a t e r h o l d i n g c a p a c i t yi n t h e f i e l d )a n d f o u r B Rc o n c e n t r a t i o n t r e a t m e n t s (0,0.05,0.2a n d 0.5m g ㊃L -1).P l a n th e i gh t ,b i o m a s s ,n u t r i e n t c o n t e n t a n ds t o i c h i o m e t r i cc h a r a c t e r i s t i c so f p l a n t sa n ds o i l w e r e d e t e r m i n e d a f t e r 90d a y s o f d r o u g h t t r e a t m e n t .I tw a s f o u n d t h a t d r o u g h t s t r e s s c a u s e d p l a n t h e i g h t ,a b o v e -g r o u n d a n db e l o w -g r o u n db i o m a s s t od e c r e a s e .W i t ht h e i n c r e a s eo fB Ra p pl i c a t i o nc o n c e n t r a t i o n ,第4期李铭怡等:干旱胁迫下油菜素内酯对植物-土壤化学计量特征及内稳性的影响p l a n t h e i g h t a n db i o m a s s s h o w e d a n i n c r e a s e a n d t h e n a d e c r e a s e.0.2m g㊃L-1B Rw a s b e n e f i c i a l t o p l a n t n u t r i e n t c o n t e n t,w i t h am o r e s i g n i f i c a n t e f f e c t o n a b o v e g r o u n d g r o w t h.T h e g r o w t h o f C a s s i a g l a u c a h a d a h i g hd e m a n d f o r t h e s u p p l y o f n i t r o g e ne l e m e n t i n t h e e c o l o g i c a l r e s t o r a t i o no f a r i d a r e a s.T h e a p p l i c a t i o n o f B Rc a nh e l p t o i n c r e a s e t h e p l a n th e i g h t a n db i o m a s so f C a s s i a g l a u c a,r e g u l a t e t h en u t r i e n t a l l o c a t i o n s t r a t e g y,a n d a l l e v i a t e t h e a d v e r s e e f f e c t s o f d r o u g h t o n p l a n t s.T h i s s t u d yp r o v i d e s n e w i d e a s a n dm e t h o d s f o r e c o l o g i c a l r e s t o r a t i o na n d r e v e g e t a t i o n i na r i d a r e a s.K e y w o r d s:E c o l o g i c a l r e s t o r a t i o n;D r o u g h t s t r e s s;B r a s s i n o s t e r o i d;S t o i c h i o m e t r y;N u t r i e n t c h a r a c t e r i s t i c s;I n t e r a l s t a b i l i t y交通㊁采矿㊁水电等基础工程建设不可避免地对生态环境产生影响,生态系统受到严重干扰,特别是土石方开挖形成的边坡创面,生境条件基本丧失进而导致水土流失㊁生态破坏以及景观失调问题等,因此边坡治理越来越受到重视[1,2]㊂兼具工程防护与生态绿色双重功能的植被混凝土生态防护技术成为实施生态恢复的有效手段之一[3],相较于传统的工程护坡,该技术在改善生态㊁促进环保㊁增进景观方面有着不可比拟的优点[4]㊂然而,植被恢复初期,高陡的地形,导致坡面水分未充分下渗即形成地表径流,同时,由于基材蒸散效应,植物易处于干旱胁迫环境中,加之全球气候变化带来的干旱环境加剧[5],这些因子严重影响植物的生长和发育,阻碍生态工程产生正向生态效应,影响生态恢复的有效性和可持续性㊂干旱条件下,植物群落的稳定演替和土壤环境的协调发展是生态系统成功恢复的关键[6-7]㊂植物在特定环境中持续生存和繁衍取决于其自身对资源的获取和利用㊂植物与土壤之间的互馈作用可以通过生态化学计量手段还原为简单的化学元素,在不同组织水平之间流动㊁转移㊁化合和重组,使有机体与环境之间的交互反应联系起来,并与生态系统的生产力㊁可持续性及其稳定性密切相关[8]㊂碳(C)㊁氮(N)㊁磷(P)作为植被恢复系统中养分交换㊁利用㊁累积的核心组成部分,对于生态系统生产力㊁可持续性及其稳定性具有重要的指示作用[9,10]㊂因此,研究土壤-植被系统及C,N,P元素间的平衡协调状况,对于掌握生态系统的养分周转过程和养分限制机制具有重要的科学价值和实际意义㊂目前,生态恢复过程中常采取输入式调控方法如设置永久灌溉系统㊁植物补种等措施来缓解干旱胁迫,然而这种方式对植物养分利用及生态系统自我维持能力并无长久改善与恢复作用,不能满足生态环境保护和可持续发展的日益增长的要求[11]㊂因此,如何提升生态恢复植物的抗逆性及养分利用效率,促进生态系统养分耦合平衡和持续恢复是亟需解决的科学问题㊂油菜素内酯(B r a s s i n o s t e r o i d,B R)是一种内源性激素,可增强植物体内抗氧化酶的活性,清除多余活性氧(R O S),保护植物细胞免受氧化伤害,有助于维持植物膜系统的稳定性和完整性,并作为抗氧化剂发挥作用[12,13]㊂众多研究表明,适宜浓度的B R 可以增强植物抵御干旱胁迫[14]㊁盐胁迫[15]㊁重金属胁迫[16]㊁温度胁迫[17]等非生物胁迫能力,在植物的生长发育过程中有着重要的调节作用㊂郑豪亮等[18]的研究表明,叶面喷施B R可以提高叶绿素含量,增强光合作用,促进光合产物的积累,调控碳水化合物代谢机理㊂董亚茹等[19]的研究表明,外施E B R能够缓解P E G胁迫对桑树幼苗根系生长抑制作用,使得根系的抗氧化酶活性显著增加,显著降低R O S的产生和积累及膜脂过氧化水平,缓解干旱胁迫对桑树幼苗根系造成的氧化损伤增强桑树幼苗耐旱性㊂为了进一步明确干旱条件施用B R对植物-土壤化学计量特征的影响,认识植物-土壤相互作用的养分调控机制,揭示生态系统中各营养元素之间的相互作用与平衡制约关系[20],本研究通过探讨干旱胁迫下施用B R对植物-土壤化学计量变化特征㊁相互关系及内稳性的影响,以期为利用B R提高生态修复中先锋植物的抗旱性和干旱区植被重建提供科学依据㊂1材料与方法1.1试验材料研究区位于湖北省宜昌市三峡大学植物繁育基地(30ʎ43'10.164ᵡN㊁111ʎ19'2.028ᵡE)㊂供试植物选择植被混凝土护坡中常见的先锋植物黄花决明(C a s s i a g l a u c a L a m.),其种子由植被混凝土护坡工程项目提供;试验土壤为工程客土宜昌本地黄棕壤,风干粉碎过2m m筛后使用;水泥由华新水泥有限公司(宜昌)提供,为P.O42.5普通硅酸盐水泥;生境基材改良剂为三峡大学专利转化产品(专利号: Z L01138343.7),由湖北润智生态科技有限公司提供;有机物料选用锯末,购自湖北宜昌夜明珠路华新9601草地学报第32卷木材厂㊂配制的植被混凝土各干料质量比为土壤ʒ水泥ʒ有机物料ʒ改良剂=100ʒ8ʒ6ʒ4㊂1.2试验设计本研究采用双因素试验,因素1为不同的水分梯度:正常水分(W e l lw a t e r,WW)㊁中度干旱(M o d-e r a t ed r o u g h t,M D)㊁重度干旱(S e v e r ed r o u g h t, S D),分别为田间最大持水量的75%ʃ5%,55%ʃ5%,35%ʃ5%;因素2为不同的油菜素内酯浓度:Ⅰ(0m g㊃L-1)㊁Ⅱ(0.05m g㊃L-1)㊁Ⅲ(0.2 m g㊃L-1)㊁Ⅳ(0.5m g㊃L-1),每个处理做3个重复,共36盆㊂根据植被混凝土规范‘水电工程陡边坡植被混凝土生态修复技术规范“(N B/T35082 2016)配制植被混凝土,将配制好的制备混凝土进行装盆,先铺基层(不含种子),再铺面层(含种子),每盆装2.3k g,正常浇水养护30d后开始干旱实验㊂干旱开始后喷施不同浓度的油菜素内酯,每株植物的喷施量为10m L,此含量下喷施程度能够使叶片和茎表面湿润但无液滴凝聚下落,早上和傍晚各喷一次,连续喷施3天㊂并同时采用称重法来控制基材含水量进行干旱胁迫处理㊂1.3指标测定及方法干旱胁迫90天后,每盆选取3株长势相当的植株,每个处理测定9个植株,测量株高㊂植物分为地上部及地下部,在烘箱中105ħ杀青30m i n,再于75ħ烘干48h后,测定植物的生物量㊂将样品研磨并过0.15m m筛后测定植物地上部及地下部C,N, P含量㊂收集土壤样本,捡除土壤中的枯物及植物残根等,在室内风干过2m m筛后,用于测定土壤中的有机碳(S o i lo r g a n i cc a r b o n,S O C)㊁全氮(T o t a l n i t r o g e n,T N)㊁全磷(T o t a l p h o s p h o r u s,T P)含量㊂植物及土壤中的C含量采用重铬酸钾-浓硫酸外加热法测定,植物N含量采用H2S O4-H2O2消化蒸馏法测定,植物P含量采用钒钼黄比色法测定,土壤T N采用连续流动分析仪(S K A L A RS a n++型)测定,土壤T P采用氢氧化钠熔融-钼锑抗比色法测定㊂试验所用土壤的养分含量S O C为7.63 g㊃k g-1,T N为1.97g㊃k g-1,T P为0.86g㊃k g-1㊂1.4数据分析与处理内稳态指数(H o m e o s t a s i s i n d e x,H)采用如下公式计算[21]:l g(y)=1Hˑl g(x)+l g(c)式中,H为内稳态指数,y为植物C,N,P含量及其化学计量比,x为土壤C,N,P含量及其化学计量比,c为拟合常数,多用1/H的绝对值作为衡量植物内稳性强弱的指标㊂当方程拟合显著时(P< 0.05),分别将1/H的绝对值在0~0.25,0.25~ 0.5,0.5~0.75及>0.75时,认为y是内稳态㊁弱内稳态㊁弱敏感态㊁敏感态;当方程拟合不显著时(P>0.05),认为y是绝对稳态㊂利用M i c r o s o f t e x c e l2021软件和S P S S26软件进行数据整理,D u n c a n法进行显著性比较,采用P e a r s o n法分析植物-土壤间化学计量特征间的相关性,利用G r a p h P a dP r i s m9软件进行双因素方差(T w o-w a y A N O V A)分析并作图㊂2结果与分析2.1油菜素内酯对黄花决明株高㊁生物量的影响如图1所示,干旱及B R的交互作用极显著影响了植物地上㊁地下生物量(P<0.01)㊂随干旱程度的加剧,植物株高整体呈下降趋势,但不同浓度的B R处理对其具有一定的缓解作用,其中正常水分Ⅲ处理组及重度干旱Ⅳ处理组显著高于Ⅰ对照组,分别提高了20.46%,28.17%;与Ⅰ对照组相比,Ⅲ处理下地上生物量增加11.34%~44.69%,并在正常水分和中度干旱时呈现显著差异;植物地下生物量随B R浓度的提高,在不同干旱程度下均呈现出先增后减的趋势,Ⅲ组在正常水分及重度干旱下均高于Ⅰ组10.42%,20.18%,Ⅱ组在中度干旱下高于Ⅰ组12.50%㊂2.2油菜素内酯对黄花决明C㊁N㊁P含量的影响如图2所示,干旱和B R的交互作用极显著影响地上部N㊁P含量以及地下部C㊁N含量(P< 0.01)㊂植物地上㊁地下C含量受干旱程度加重的影响整体均表现为WW>M D>S D,正常水分及重度干旱下,地上部C含量Ⅲ处理组高于Ⅰ对照组,但并无显著性差异,地下部C含量仅在重度干旱下Ⅱ㊁Ⅲ㊁Ⅳ处理组显著高于Ⅰ对照组,分别提高了25.01%,28.63%,46.81%㊂植物地上部N含量在不同的干旱程度下均随B R浓度的提高先减后增,且在中度干旱下Ⅱ处理组的地上部N含量较正常水分及中度干旱显著提高了14.06%和28.42%㊂地下N含量在正常水分及中度干旱下表现为Ⅲ处理组最高,分别高于Ⅰ组8.41%,12.18%,而在重0701第4期李铭怡等:干旱胁迫下油菜素内酯对植物-土壤化学计量特征及内稳性的影响度干旱下,地下部N 含量最高则表现在Ⅱ处理组,为Ⅰ对照组的115.02%㊂正常水分及重度干旱下,地上部P 含量最高均表现在Ⅲ处理组,较Ⅰ组分别显著提高了26.33%,55.12%,而地下部P 含量最高则分别表现在Ⅳ,Ⅲ处理组,较Ⅰ组显著提高了39.81%,50.49%㊂图1 干旱条件下油菜素内酯对黄花决明株高、生物量的影响F i g .1 E f f e c t s o fB Ro n C a s s i a g l a u c a p l a n t h e i g h t a n db i o m a s su n d e r d r o u gh t c o n d i t i o n s 注:不同小写字母表示相同干旱条件下不同油菜素内酯浓度间的差异显著(P <0.05);不同大写字母表示相同油菜素内酯浓度下不同干旱条件间差异显著(P <0.05);WW ㊁M D ㊁S D 表示干旱程度,分别为正常水分㊁中度干旱㊁重度干旱;Ⅰ,Ⅱ,Ⅲ,Ⅳ表示施用油菜素内酯浓度,分别为0m g ㊃L -1,0.05m g ㊃L -1,0.2m g ㊃L -1,0.5m g ㊃L -1;双因素方差分析中,D 表示干旱,B 表示油菜素内酯,ˑ表示交互,*表示P <0.05,**表示P <0.01㊂下同N o t e :D i f f e r e n t l o w e r c a s e l e t t e r s i n d i c a t es i g n i f i c a n td i f f e r e n c e sb e t w e e nd i f f e r e n tB Rc o n c e n t r a t i o n su n d e r t h es a m ed r o u g h t c o n d i t i o n s (P <0.05).D i f f e r e n t u p p e r c a s e l e t t e r s i n d i c a t es i g n i f i c a n t d i f f e r e n c e sb e t w e e nd i f f e r e n td r o u g h t c o n d i t i o n su n d e r t h es a m eB Rc o n c e n t r a t i o n (P <0.05);WW ,M D ,a n dS Dd e n o t e t h e d e g r e e o f d r o u g h t ,w h i c h i sw e l l w a t e r ,m o d e r a t e d r o u g h t ,a n d s e v e r e d r o u g h t ,r e s p e c t i v e l y .Ⅰ,Ⅱ,Ⅲ,a n dⅣd e n o t e t h e c o n c e n t r a t i o n o f a p p l i e dB R ,0m g ㊃L -1,0.05m g ㊃L -1,0.2m g ㊃L -1,0.5m g ㊃L -1,r e s p e c t i v e l y .I n t w o -w a y A N O V A ,D i n d i c a t e s d r o u gh t ,B i n d i c a t e s o l e o r e s i n o l i d e ,ˑi n d i c a t e s i n t e r a c t i o n ,*i n d i c a t e s P <0.05,**i n d i c a t e s P <0.01.T h e s a m e a s b e l ow 1701草 地 学 报第32卷图2 干旱条件下油菜素内酯对黄花决明C ㊁N ㊁P 含量的影响F i g .2 E f f e c t s o fB Ro n C a s s i a g l a u c a C ,Na n dPc o n t e n t su n d e r d r o u gh t c o n d i t i o n s 2.3 油菜素内酯对黄花决明化学计量比的影响如图3所示,干旱和B R 的交互作用极显著影响了植物地上部C /P ㊁N /P ,地下部C /N ㊁N /P (P <0.01)㊂植物地上㊁地下部C /N ㊁C /P ㊁N /P 分别在41.30~61.83,111.25~250.63,2.16~4.41,42.02~76.24,239.68~593.90,4.08~8.85之间㊂地上部C /N 在各干旱程度下均随B R 浓度的提高先减后增,Ⅱ组在正常水分及重度干旱下均高于Ⅰ组8.03%,23.25%,Ⅲ组在中度干旱下高于Ⅰ组27.79%㊂地下部C /N 则在中度干旱下随B R 浓度提高先减后增,Ⅲ组下C /N 最低,低于Ⅰ组21.90%㊂地上㊁地下部C /P分别与地上㊁地下部N /P 的变化趋于相近,正常水分下,地上部C /P ㊁N /P 在Ⅱ㊁Ⅲ组均显著低于Ⅰ组,分别下降15.49%,14.07%和21.64%,19.50%㊂图3 干旱条件下油菜素内酯对黄花决明C /N ㊁C /P ㊁N /P 的影响F i g .3 E f f e c t s o fB Ro n C a s s i a g l a u c a C /N ,C /P ,a n dN /Pu n d e r d r o u gh t c o n d i t i o n s 2701第4期李铭怡等:干旱胁迫下油菜素内酯对植物-土壤化学计量特征及内稳性的影响2.4 油菜素内酯对土壤C ,N ,P 含量及化学计量比的影响干旱胁迫对不同B R 浓度处理的土壤C ,N ,P含量及其化学计量比影响不同(图4)㊂干旱㊁B R 及其交互作用对土壤C ㊁N ㊁P 含量及C /N ㊁N /P 均产生极显著的影响(P <0.01),而土壤C /P 仅在干旱及其与B R 的交互下有极显著的影响(P <0.01)㊂在各个水分处理下,Ⅱ㊁Ⅲ处理组的土壤C 含量均高于Ⅰ对照组㊂正常水分下Ⅲ处理组的土壤C 含量最高,高于Ⅰ对照组8.69%,而Ⅳ处理组的土壤C 含量最低,显著低于Ⅰ对照组14.98%㊂在中度干旱下,Ⅲ处理组的土壤N 含量较Ⅰ对照组显著提高了25.51%,同时较正常水分下Ⅲ处理组显著提高26.48%㊂土壤P 含量最高表现在中度干旱下Ⅲ处理组,较Ⅰ对照组显著提高了14.90%㊂土壤C/N ㊁C /P ㊁N /P 分别在2.54~4.41,3.64~7.16,1.00~2.21之间㊂在整个干旱条件下,Ⅱ组的土壤C /N 最低,而C /P ㊁N /P 最高㊂综上,黄花决明施用B R 能够在一定程度上影响土壤的C ㊁N ㊁P 含量及化学计量比㊂图4 干旱条件下油菜素内酯对土壤化学计量特征的影响F i g .4 E f f e c t s o fB Ro n s o i l s t o i c h i o m e t r i c c h a r a c t e r i s t i c su n d e r d r o u gh t c o n d i t i o n s 2.5 植物化学计量内稳性特征分析根据生态化学计量内稳性模型,植物N ㊁P ㊁C/N ㊁N /P 及C /P 的内稳性模型方程拟合结果不显著,均表现为绝对稳态(图5)㊂植物C 及地下部C /P 的内稳性模型方程拟合结果显著(P <0.05),其中地上部C ㊁地下部C 的1/H 的绝对值分别为0.76,1.32,均大于0.75,表现为敏感态(图5)㊂综合分析表明,干旱及B R 的影响下,土壤中的C 对黄花决明的生长和发育具有较大的影响,且植物地上部内稳性高于地下部㊂3701草地学报第32卷图5黄花决明化学计量内稳性特征F i g.5 C h a r a c t e r i z a t i o no f C a s s i a g l a u c a s t o i c h i o m e t r i ch o m e o s t a s i s2.6植物-土壤化学计量特征相关性分析干旱条件下外施B R对植物-土壤C㊁N㊁P含量及其化学计量比相关性的影响如表1所示㊂黄花决明与土壤化学计量特征间具有不同的相关关系,黄花决明地上部㊁地下部C均与土壤C㊁C/P呈极显著正相关(P<0.01),与土壤P呈极显著负相关(P< 0.01);地上部N与土壤N呈显著负相关(P< 0.05),与土壤N/P呈极显著负相关(P<0.01),而地下部N与土壤N/P呈极显著正相关(P<0.01);地上部㊁地下部P均与土壤P呈极显著正相关(P< 0.01);地上部C/N与土壤C呈极显著正相关(P< 0.01),与土壤C/N呈显著正相关(P<0.05),而地下部C/N与土壤化学计量特征间并无显著相关性;地上部㊁地下部C/P均与土壤P呈极显著负相关(P<0.01);地上部N/P与土壤N呈极显著负相关(P<0.01),与土壤C/N呈显著正相关(P<0.05),地上部㊁地下部N/P均与土壤N/P呈极显著正相关(P<0.01)㊂表1植物-土壤化学计量特征相关性表T a b l e1 P l a n t-s o i l s t o i c h i o m e t r i c c h a r a c t e r i z a t i o n c o r r e l a t i o n t a b l e地上部S h o o t地下部R o o tC N P C/N C/P N/P C N P C/N C/P S o i lC0.558**-0.005-0.0820.489**0.2820.0130.651**0.687**-0.2220.1690.533** S o i lN-0.160-0.337*0.1070.050-0.255-0.377*0.1700.327-0.068-0.0560.142 S o i lP-0.446**0.414*0.475**-0.606**-0.494**-0.220-0.552**-0.463**0.434**-0.250-0.610** S o i lC/N0.545**0.206-0.2220.357*0.490**0.383*0.3000.156-0.1120.1770.252 S o i lC/P0.574**-0.274-0.3280.646**0.461**0.1400.696**0.591**-0.392*0.2850.689** S o i lN/P0.196-0.478**-0.2380.430**0.173-0.0820.453**0.495**-0.2760.1160.461**注:*和**分别表示P<0.05和0.01N o t e s:*a n d**i n d i c a t e dt h a tP i s l e s s t h a n0.05a n d0.013讨论3.1外施油菜素内酯下植物株高㊁生物量特征外部形态和生长状况是植物受到干旱胁迫伤害最直观的表现,植物在逆境胁迫下可以通过调整代谢途径和方向,改变碳同化产物分配比例和方向,从而调节自身地上和地下生物量,改变植株形态,以适应或抵御逆境胁迫[22]㊂B R可以调节细胞伸长,调控细胞壁合成基因,影响细胞壁的合成,进而促进植株的生长[23]㊂本研究中,干旱胁迫对黄花决明的生长具有显著的抑制作用,施用B R增加了干旱胁迫下黄花决明的株高和地上㊁地下生物量,说明施用B R可以在一定程度上促进植物生长发育,缓解干旱胁迫所产生的抑制作用㊂3.2外施油菜素内酯下植物C,N,P含量及化学计量比特征干旱抑制植物气孔开放,减少蒸腾作用,影响植4701第4期李铭怡等:干旱胁迫下油菜素内酯对植物-土壤化学计量特征及内稳性的影响物的光合作用,降低碳同化效率[24]㊂施用B R可以通过提高植物抗氧化酶活性,减少R O S过度积累,稳定细胞膜结构与功能,从而提高植物的光能利用效率,促进光合产物的积累[25]㊂本研究中,植物地上部㊁地下部C含量随干旱程度的加剧而减少,虽施用B R对地上部C含量并无显著提高作用,但在重度干旱下喷施B R处理组的地下部C含量有着显著提高了25.01%~46.81%㊂干旱胁迫严重影响植物的生理代谢,影响植物对N的吸收和利用,喷施B R能够促进氮的积累,提高氮吸收效率[26-28]㊂而本研究中,施用0.5m g㊃L-1的B R处理的地下部N含量随干旱程度加剧显著降低,这可能是由于高浓度地B R对氮素地积累起到了抑制作用[29]㊂此外,干旱胁迫下植物地上部㊁地下部P含量均表现为Ⅲ>Ⅳ>Ⅱ>Ⅰ,这说明施用一定浓度的B R 有助于促进植物P含量提高,最优浓度为0.2 m g㊃L-1,这与毛雪等[29]研究结果一致,不同的B R 浓度处理对植物营养元素含量的影响存在差异㊂C㊁N㊁P化学计量比是生态系统过程及其功能的重要特征,体现了C积累动态及N㊁P养分限制格局,揭示了生长速率与养分分配的关系[30]㊂植物C/N和C/P能够表示固C效率的高低,揭示植物在吸收营养的过程中对C的同化能力,反映植物的养分利用效率[31]㊂本研究发现,植物地上部C/N随干旱程度加剧整体呈下降趋势,而施用B R后地上部C/N出现一定程度的增高,表明B R能够提高黄花决明地上部的C同化能力及养分利用效率,同时外源B R能够促进干旱胁迫下幼苗根系的生长,增加其总根长㊁表面积㊁根体积和平均直径,缓解干旱胁迫对根系生长的抑制作用,这也有利于植物更深入吸收土壤中的水分及营养元素,维持植物正常生长[32]㊂而正常水分下,植物地下部C/N随B R浓度的提高呈下降趋势,这说明B R可能积极增加了对地上部C的分配,影响了植物地下部C/N[33]㊂正常水分条件下施用0.05m g㊃L-1及0.2m g㊃L-1的B R处理中,其植物地上部㊁地下部C/P㊁N/P均明显低于未施用B R的处理,这说明一定浓度的B R 可能会促进黄花决明对P的吸收㊂N/P是判断植物生产力元素限制的关键指标,一般认为N/P低于14表明植物生长受到N的限制,高于16则表明植物生长受到P的限制[34]㊂本研究中,干旱条件下黄花决明地上部㊁地下部N/P均小于14,对N元素的需求较大,这可能与植物功能特性及其对土壤养分和水分的利用策略有关,干旱影响了豆科植物黄花决明和根瘤菌共生体系中的光合作用㊁水分关系㊁生长活动㊁固氮酶活性等生理生化指标,导致N元素的利用效率降低[35]㊂3.3外施油菜素内酯下土壤C㊁N㊁P含量及化学计量比特征土壤作为植物营养元素的主要来源之一,其养分含量对植物的生长发育产生至关重要的影响[36]㊂通常情况下,干旱会抑制土壤中C㊁N元素的矿化效率,进而导致土壤中N和P含量的减少,影响植物对养分的吸收和利用[34]㊂研究发现,B R能够促进土壤无机物的转化,增加土壤中速效N的含量,改善根系的土壤环境,有利于植物生长发育[24]㊂本研究发现,土壤C㊁N㊁P含量整体均表现为Ⅱ㊁Ⅲ处理组较高,这可能与B R能够促进植物根系活动有密切联系,表明施用一定浓度B R的黄花决明更有利于土壤养分的积累,改善土壤质量㊂土壤化学计量比是衡量土壤质量的重要参数[37]㊂土壤C/N能够有效衡量微生物矿化有机物质与氮的矿化能力,在一定范围内其值越小越有利有机物质的分解,氮的有效性越高[37,38]㊂正常水分下,土壤C/N随B R浓度增加而提高,说明土壤中N的供应能力相对较弱,相对而言,微生物的分解能力下降,促进了土壤C含量的积累[39]㊂土壤C/P 被认为是磷元素矿化能力的重要指标,较低的C/P 利于微生物在有机质分解过程中的养分吸收,使得土壤中有效磷含量增多[37,40]㊂本研究发现,正常水分下施用B R的处理使得土壤C/P显著下降,这说明土壤磷的有效性得到提升,进而有利于提高植物根部对P元素的吸收能力[41]㊂此外,土壤N/P是评估土壤氮磷限制作用的重要指标,并用于确定养分限制的阈值㊂本研究中土壤N/P的变化范围为1.00~2.21之间,远低于中国土壤N/P平均值9.3,且由于土壤中的P元素迁移率较低且含量相对稳定,说明土壤中N元素是限制黄花决明生长的重要因子,这与阿的哈则等[42]研究结果较为一致,植被恢复过程中可适当增加氮素施肥量来改善土壤养分平衡㊂3.4外施油菜素内酯下植物-土壤化学计量特征的协同关联性内稳性能够反应植物对环境变化的适应能力,其大小通常与植物的适应策略以及对环境适应性的强弱有关[42]㊂植物对C,N,P元素的吸收途径不5701草地学报第32卷同,研究表明,植物地上部C元素可通过光合作用从大气中固定,因此其对土壤养分的依赖较弱,变化较为平稳[44]㊂而在本研究中,无论植物地上部㊁地下部C元素均表现为敏感态,这可能是由于植物地上部㊁地下部C含量均受到干旱程度的显著影响,进而使得C含量的整体变化趋势比较大,导致植物C的内稳性较差㊂此外,不同器官的内稳态表现出一定的差异,地上部元素及其比值的稳定性较地下部更强㊂干旱胁迫使黄花决明在生长中受到养分限制,而B R的施用可以缓解其限制条件,对植物根系活动有一定的激发作用,促进植物根系将养分传输到地上部器官中,从而优先调节并维持植物地上部的内稳性,使其适应外界的环境变化[43]㊂B R影响植物的资源分配策略,有效缓解干旱胁迫㊂植物和土壤间的C,N,P及化学计量互作关联,是养分循环在生态系统中的内在调控机制[45]㊂本研究中,干旱胁迫下施用B R后植物养分与土壤养分之间均存在不同程度的相关性㊂余杭等[46]的研究表明土壤C含量与叶㊁根系C含量均无显著相关性,但本研究中黄花决明地上部㊁地下部C分别与土壤C具有极显著的相关性,这可能是因为干旱影响了植物的光合作用,进而影响植物在大气中吸收固定C元素,从而加强了植物与土壤间的物质交互㊂植物地下部N与土壤N间无显著相关性,而地上部N与土壤N间显著负相关,这说明黄花决明不同器官与土壤养分特征有着不同的关系,可能与植物不同器官执行的功能及不同元素参与的生理过程不同有关㊂黄花决明地上部㊁地下部P与土壤P具有明显正相关关系,可知土壤P含量的高低很大程度上决定了植物对P的吸收能力,这与罗艳等[47]的研究一致㊂此外,黄花决明地上部C/N㊁C/P分别与土壤C/N㊁C/P呈正相关,这说明土壤养分状况对黄花决明的养分利用效率有较大的影响㊂4结论干旱胁迫显著影响了黄花决明的生长,施用B R能够调节植物的养分吸收策略,进而提升黄花决明对干旱胁迫的抵御能力,一定程度上提高了植株高度,增加了地上㊁地下生物量㊂黄花决明与土壤中C,N,P等元素以及化学计量比之间存在密切的相关性,体现了黄花决明对特定生境的适应能力㊂此外,N元素限制影响了植物的生长及土壤养分的积累,因此,充分考虑土壤中N元素供应状况,合理补给N元素可为植被混凝土生态修复提供一定的参考价值㊂参考文献[1]赵冰琴,夏振尧,许文年,等.工程扰动区边坡生态修复技术研究综述[J].水利水电技术,2017,48(2):130-137[2] F A I Z H,N G S,R A HMA N M.As t a t e-o f-t h e-a r tr e v i e w o nt h ea d v a n c e m e n to fs u s t a i n a b l ev e g e t a t i o nc o n c r e t ei ns l o p e s t a b i l i t y[J].C o n s t r u c t i o na n dB u i l d i n g M a t e r i a l s,2022(326): 126502[3]刘黎明,宋岩松,钟斌,等.植被混凝土生态修复技术研究进展[J].环境工程技术学报,2022,12(3):916-927[4]吉乔伟,邹世俊,丁哲,等.香根草在边坡支护中的应用[J].环境工程,2023,41(S1):532-534,611[5]潘婵娟,李鸿铭,洪焕.坡度对植被混凝土基材早期蒸散效应的影响[J].价值工程,2018,37(5):90-92[6] L IM Y,D O N G W H,WA N GR,e t a l.E c o l o g i c a l S t o i c h i o m e t-r i cC h a n g e s a n d t h e S y n e r g i s t i cR e s t o r a t i o n o fV e g e t a t i o nC o n-c r e t eR e s t o r a t i o nS y s t e m s u nde rD if f e r e n t P r e c i p i t a t i o nC o n d i-t i o n s[J].W a t e r,2022,14(16):2558[7]赵文武,赵鑫,谢文辉,等.干旱胁迫下白刺花幼苗根系生长和生理特性的响应[J].草地学报,2023,31(1):120-129[8] L E A L M C,S E E HA U S E N O,MA T T H E W SB.T h ee c o l o g ya n d e v o l u t i o n o f s t o i c h i o m e t r i c p h e n o t y p e s[J].T r e n d s i nE c o l-o g y&E v o l u t i o n,2017,32(2):108-117[9] Z H A N G C,L IQ,F E N G R,e ta l.C:N:Ps t o i c h i o m e t r y o fp l a n t-s o i l-m i c r o b e i nt h es e c o n d a r y s u c c e s s i o no fz o k o r-m a d e m o u n d so n Q i n g h a i-T i b e t P l a t e a u[J].E n v i r o n m e n t a l R e-s e a r c h,2023(222):115333[10]Z HU Q,R I L E Y WJ,I V E R S E NC M,e t a l.A s s e s s i n g i m p a c t so f p l a n ts t o i c h i o m e t r i ct r a i t so nt e r r e s t r i a le c o s y s t e m c a r b o na c c u m u l a t i o nu s i n g t h eE3S Ml a n d m o d e l[J].J o u r n a l o fA d-v a n c e s i n M o d e l i n g E a r t h S y s t e m s,2020,12(4): e2019M S001841[11]S HU Q,X I A D,MA Y,e t a l.R e s p o n s eo f p h y s i o l o g i c a l c h a r-a c t e r i s t i c so f e c o l o g i c a l r e s t o r a t i o n p l a n t s t os ub s t r a t ec e m e n tc o n t e n t u nde r e x o g e n o u s a r b u s c u l a rm y c o r r h i z a lf u ng a l i n o c u-l a t i o n[J].F r o n t i e r s i nP l a n t S c i e n c e,2022(13):1028553 [12]ÇO B A NÖ,GÖK TÜR K B A Y D A R N.B r a s s i n o s t e r o i de f f e c t so n s o m e p h y s i c a l a n d b i o c h e m i c a l p r o p e r t i e s a n d s e c o n d a r y m e-t a b o l i t e a c c u m u l a t i o n i n p e p p e r m i n t(M e n t h a p i p e r i t a L.)u n-d e r s a l t s t r e s s[J].I n d u s t r i a lC r o p sa n dP r o d u c t s,2016(86):251-258[13]C H A U D HU R IA,H A L D E R K,A B D I N M Z,e ta l.A b i o t i cs t r e s s t o l e r a n c e i n p l a n t s:B r a s s i n o s t e r o i d s n a v i g a t e c o m p e t e n t-l y[J].I n t e r n a t i o n a lJ o u r n a lo f M o l e c u l a rS c i e n c e s,2022,23(23):14577[14]缐旭林,张德,张仲兴,等.2,4-表油菜素内酯对干旱胁迫下垂丝海棠生理特性的影响[J].干旱地区农业研究,2022,40(3): 37-45[15]王文静,麻冬梅,赵丽娟,等.2,4-表油菜素内酯对盐胁迫下紫6701。

干旱区发展的资源环境基础评价:以新疆为例

干旱区发展的资源环境基础评价:以新疆为例

干旱区发展的资源环境基础评价:以新疆为例
张雷;杨波;程晓凌
【期刊名称】《干旱区地理》
【年(卷),期】2011()5
【摘要】作为生态脆弱的干旱地区,新疆的社会经济发展受到资源环境基础的极大制约。

一方面,资源环境综合评价的结果表明,新疆的资源环境基础脆弱、要素结构的稳定性差。

此种特征决定了新疆的现代化发展有赖于资源环境基础的稳定,其中尤以淡水资源来源和农用地(主要为草场和耕地)的稳定最为重要。

另一方面,资源环境空间组合的分析结果表明,北疆和南疆的资源环境开发是全疆社会经济发展的关键,东疆生态系统的安全和稳定则决定着全疆资源环境开发的效果和政治稳定。

【总页数】6页(P713-718)
【关键词】资源环境基础;可持续发展;干旱区;新疆
【作者】张雷;杨波;程晓凌
【作者单位】中国科学院地理科学与资源研究所;中国科学院区域可持续发展分析与模拟重点实验室;中国科学院研究生院
【正文语种】中文
【中图分类】P9
【相关文献】
1.干旱区城市环境保护评价模型构建与实证分析——以新疆石河子市为例 [J], 汪海霞;王力;张磊
2.西北干旱区水资源利用与生态环境响应研究--以新疆白杨河流域为例 [J], 孟江丽
3.干旱区绿洲后备耕地资源开发评价分析--以渭干河-库车河三角洲绿洲为例 [J], 顾思佳
4.干旱区绿洲农业人口、资源与环境协调发展研究——以新疆维吾尔自治区新和县为例 [J], 许涛;赵连荣;张秋菊
因版权原因,仅展示原文概要,查看原文内容请购买。

木本植物应对干旱胁迫的响应机制:基于水力学性状视角

木本植物应对干旱胁迫的响应机制:基于水力学性状视角

第44卷第7期2024年4月生态学报ACTAECOLOGICASINICAVol.44,No.7Apr.,2024基金项目:国家自然科学基金项目(32071845);甘肃省科技计划资助(23JRRA572);内蒙古自治区科技重大专项(2021ZD0015);甘肃省科技计划资助(23JRRA671)收稿日期:2023⁃05⁃20;㊀㊀网络出版日期:2024⁃01⁃12∗通讯作者Correspondingauthor.E⁃mail:liyl@lzb.ac.cnDOI:10.20103/j.stxb.202305201065程莉,李玉霖,宁志英,杨红玲,詹瑾,姚博.木本植物应对干旱胁迫的响应机制:基于水力学性状视角.生态学报,2024,44(7):2688⁃2705.ChengL,LiYL,NingZY,YangHL,ZhanJ,YaoB.Responsemechanismsofwoodyplantstodroughtstress:areviewbasedonplanthydraulictraits.ActaEcologicaSinica,2024,44(7):2688⁃2705.木本植物应对干旱胁迫的响应机制:基于水力学性状视角程㊀莉1,2,李玉霖1,2,3,∗,宁志英1,2,杨红玲1,2,詹㊀瑾1,2,姚㊀博1,21中国科学院西北生态环境资源研究院,兰州㊀7300002中国科学院大学,北京㊀1000493中国科学院西北生态环境资源研究院奈曼沙漠化研究站,通辽㊀028300摘要:干旱最显著的影响表现在区域尺度的森林死亡事件中,可以在短时间内杀死数百万棵树木㊂鉴于未来极端干旱事件的频率和强度可能随温度的升高而增加,迫切需要明确树木对干旱胁迫的响应对策以及衰退死亡机理,揭示木本植物在干旱环境中存活和死亡的生理机制,了解树木在未来气候下的适应机制,提高预测树木对干旱反应的准确性㊂在常用植物功能性状的基础上,重点纳入与植物水分运输能力及耐旱性相关的水力学性状,系统总结了:1)植物木质部水分运输的物理机制;2)植物应对干旱胁迫的水力响应过程:3)干旱胁迫下木本植物水分利用对策;以及4)干旱胁迫下木本植物衰退/死亡机理㊂最后,提出3个尚待解决的主要问题:1)加强纳入水力性状阐明植物对干旱胁迫的响应和调节机制;2)加强从全株植物的角度考虑植物不同组织性状间的关系;3)深入探究树木干旱致死机理㊂关键词:木本植物;干旱胁迫;水力性状;水分运输策略;干旱致死机理Responsemechanismsofwoodyplantstodroughtstress:areviewbasedonplanthydraulictraitsCHENGLi1,2,LIYulin1,2,3,∗,NINGZhiying1,2,YANGHongling1,2,ZHANJin1,2,YAOBo1,21NorthwestInstituteofEco⁃EnvironmentandResources,ChineseAcademyofSciences,Lanzhou730000,China2UniversityofChineseAcademyofSciences,Beijing100049,China3NaimanDesertificationResearchStation,NorthwestInstituteofEco⁃EnvironmentandResources,ChineseAcademyofSciences,Tongliao028300,ChinaAbstract:Themostnotableeffectsofdroughtaremanifestedinregional⁃scaleforestmortalityevents,whichcankillmillionsoftreesinashorttime,furtheraffectingregionalclimateandecosystemstructureandfunction.Giventhatthefrequencyandintensityofextremedroughteventsinthefuturemayincreasewithincreasingtemperature,itisurgenttoclarifytheresponsestrategiesoftreestodroughtstressandthemechanismsoftheirsurvivalanddeath,revealthephysiologicalmechanismofwoodyplantsinaridenvironment,understandtheadaptationmechanismoftreesinfutureclimates,andimprovetheaccuracyofpredictingtheresponseoftreestodroughtstress.Plantfunctionaltraitsrefertothemorphological,physiological,orphenologicalcharacteristicsofplantsattheindividuallevel,whichindirectlyaffecttheperformanceofplantsbydirectlyaffectingthegrowth,survivalorreproductionofplants,andatthesametimereflectthelong⁃termadaptationofplantstothegrowthenvironment.Plantfunctionaltraitsandtheirvariationregulationscanbeusedtoexplaintheadaptivemechanismandfunctionaloptimizationmechanismofplantstotheenvironment,andhelptopredicttheresponseoftreestodrought.Comparedwithcommonlyusedplantfunctionaltraits,hydraulictraitsmaybetterdescribetheresponseoftreestodroughtstress.Onthebasisofcommonplantfunctionaltraits,weincreasedthehydraulictraitswhicharerelatedtowatertransportcapacityanddroughttoleranceandsystematicallysummarized:1)thephysicalmechanismoflong⁃distancewatertransportinxylem;2)phasesofdroughtstressandtheresponseofplants;3)plasticityinplantfunctionaltraitsandwaterregulationstrategies:Isohydricregulationstrategyandanisohydricregulationstrategy,xylemefficiency⁃safetytrade⁃offstrategy,conservativewaterusestrategyandrisk⁃takingwaterusestrategy;and4)mechanismsofdrought⁃relatedmortality:hydraulicfailurehypothesis,carbonstarvationhypothesisandbioticagentshypothesis.Finally,threemainproblemswereputforwardtobesolved:1)strengtheningtheinclusionofhydraulictraitstoclarifytheresponseandregulationmechanismofplantstodroughtstress,understandingandpredictingplantsurvival,growth,distributionanddeathinthecontextofglobalchange.2)strengtheningtheconsiderationoftherelationshipbetweendifferentplanttissuetraitsfromtheperspectiveofthewholeplant,revealingthedistributioncharacteristicsofplantsintheecosystem,andpredictingcommunitycomposition;3)theprecisephysiologicalmechanismbehindtreedeathisstillunclear,futurestudiesneedtofurtherexplorethemechanismsofdrought⁃relatedmortality.KeyWords:woodyplants;droughtstress;hydraulictraits;waterregulationstrategies;drought⁃relatedmortalitymechanisms㊀自工业革命以来,不断增强的人类活动导致了全球变暖[1 2]㊂联合国政府间气候变化专门委员会(IPCC)评估报告表明,2011 2020年全球地表温度比1850 1900年高出1.1ħ,预计在2021 2040年全球升温或将达到1.5ħ㊂随着气温上升,未来干旱肯定会恶化(当自然干旱发生时,它们会来的更快,强度更大)[3]㊂较高的温度通常会导致更大的蒸散,与温度较低时相比,土壤和植物会更快的干燥[4]㊂这种 全球变化型干旱 已经对生态系统产生了严重影响,比如大量树木死亡[5 6]㊂区域尺度上的树木死亡事件改变了地表反照率以及地表⁃大气能量和潜热交换,对区域气候产生反馈[7];广泛的树木死亡事件有能力在十年以下的时间尺度内从根本上改变区域尺度的景观,对生态系统结构和功能产生重大影响[8]㊂在此背景下,我们必须提高预测树木对干旱反应的准确性,以了解树木在未来气候制度下的适应能力[9]㊂植物功能性状是指植物在个体水平上的形态㊁生理或物候特征,它们通过直接影响植物的生长㊁存活或繁殖,从而间接影响植物的性能[10 11],同时反映植物对生长环境的长期适应[12]㊂植物功能性状有助于预测树木对干旱的响应[12 13]㊂近30多年来,科研人员常使用植物功能性状及其变异规律来解释植物对环境的适应机制和功能优化机制㊂然而,随着研究的深入,人们逐步发现自然界生长的植物均是通过多个功能性状共同来完成其适应或功能优化,或者说任何一种功能均是通过多种功能性状来协同实现㊂准确量化这些多性状间的权衡和依赖关系,有助于我们更好地揭示植物的生境适应策略㊂然而,研究发现:1)常用植物功能性状的变异性与降水梯度并不一致,例如平均年降水量(Meanannualprecipitation,MAP)对全球尺度上自然生物群系比叶面积(Specificleafarea,SLA)变异的解释率不到1%;2)常用植物功能性状与干旱引起的树木死亡率的跨物种模式仅存在微弱的相关性,例如纳入SLA和木材密度(Wooddensity,WD)时,模型对物种死亡率的解释率从只考虑干旱的30%增加到37%[14]㊂相比之下,水力性状可能更好地描述树木对干旱胁迫的响应㊂近年来发现反映植物水分运输能力或植物耐旱性的水力性状如叶片的最大导水率(Kmax)㊁膨压消失点叶水势(Ψtlp)㊁水力安全边际(Hydraulicsafetymargin,HSM)等与降水梯度高度吻合[15 17]㊂因此纳入水力性状阐明植物对干旱的响应和调节机制,对于理解和预测全球变化背景下植物生存㊁生长㊁分布以及死亡有着重要意义㊂鉴于未来极端干旱事件的频率和强度可能随温度的升高而增加,迫切需要更好地了解植物对干旱胁迫的应对和调节机制以及不同植物的干旱致死机制,本文重点阐述了:1)植物木质部水分运输的物理机制;2)干旱胁迫下植物的水力响应过程;3)植物水分利用策略的多样性;以及4)植物干旱致死机理㊂9862㊀7期㊀㊀㊀程莉㊀等:木本植物应对干旱胁迫的响应机制:基于水力学性状视角㊀1㊀植物体内的水分传输与所有维管植物一样,木本植物通过一个复杂的中空死亡细胞(导管或管胞)管道系统,即木质部,将水分从土壤输送到叶片来防止干燥损伤[9]㊂植物木质部长距离水分运输是保证植物体内水分平衡㊁叶片气孔运动㊁光合作用以及其它各种代谢活动的主要纽带,被称为 植物生理学的支柱 [18]㊂综述植物体内木质部长距离水分运输过程,特别是了解防止植物蒸腾速率(E)超过临界速率(Ecrit)的结构和生理机制,有助于理解植物发生水力失败和碳饥饿的风险:1)临界蒸腾速率会导致与水力失败和共质体失败相关的木质部水势阈值(Ψcrit)的发生;2)此外,避免Ecrit(关闭气孔)对光合作用的影响以及随后对碳水化合物储备的影响对理解碳饥饿至关重要[19 20]㊂为了维持组织的水合和光合作用,植物必须补充蒸腾作用损失的水分[8]㊂内聚力⁃张力假说(C⁃T理论)认为,蒸腾拉力是水分沿木质部上升的主要驱动力,叶面的蒸腾拉力将土壤中的水分通过植物木质部长距离运输提升到冠层并扩散到大气中[8,21 22],这样从根系到叶片的水就能补充蒸腾作用损失的水分[23]㊂其中,蒸腾拉力(E)可以通过土壤⁃植物⁃大气水力连续体的稳态公式明确描述[8]:E=K1(Ψs-Ψleaf-hρwg)式中,E为叶片蒸腾拉力,K1为叶片水力导度,Ψs是土壤水势,Ψleaf是叶水势,hρwg是高度为h,密度为ρw的水柱的重力拉力㊂当E为0时,Ψleaf=Ψs(图1A,a点)㊂随着E的增加,当K1保持不变时,导管并未发生空穴化,植物体内的张力差(Ψs-Ψleaf)与E成正比,Ψleaf逐渐下降(图1左,虚线a b)㊂然而气种假说表明:木质部导管中的水柱在张力作用下处于亚稳定状态,导管中的亚稳态液流所承受的张力随E的增加而增加,此时空气经由木质部导管壁上的纹孔膜进入导管,导管开始发生空穴化,空穴化的发展逐渐加重木质部导管栓塞程度,K1逐渐下降㊂当E每增加一个单位时,由于K1的下降,会导致Ψleaf的下降逐渐增大(图1左,实线a c)㊂当E超过Ecrit时,木质部水势(Ψ)超过Ψcrit,则会发生水力失败㊂在干旱胁迫发生时,干旱降低了根区的Ψs,植物在E较低时便会发生水力失败(图1右,将实线a c和实线d e进行比较)㊂在昼夜尺度上,植物通过关闭气孔保持E低于Ecrit(植物通过降低气孔导度(Gs)来响应增加的E[24],气孔闭合程度与导致栓塞的Ψcrit有关[25])㊂减少Gs的好处是减少水分损失,但他的代价是减少二氧化碳(CO2)从大气扩散到羧基化位点,从而限制光合作用对CO2的吸收[20],这种水分流失和CO2吸收之间的平衡可能会在干旱期间导致植物出现生存㊁水力衰竭和碳饥饿三种结果㊂图1㊀基于达西定律模型求解的蒸腾拉力(E)与叶水势(Ψleaf)的变化Fig.1㊀Thetranspirationrate(E)versusleafwaterpotential(Ψleaf)isbasedonthemodelsolutionofDarcyᶄslawΨs是土壤水势;Ecrit是最大蒸腾速率,取决于Ψs;Ψcrit是Ecrit处的Ψleaf,也是允许水分吸收的最低Ψs2㊀植物应对干旱胁迫的水力响应过程植物应对干旱胁迫的响应过程主要分为两个阶段:1)干旱胁迫开始到气孔闭合期间;2)气孔闭合到木质0962㊀生㊀态㊀学㊀报㊀㊀㊀44卷㊀部完全栓塞期间[26]㊂在干旱期间,降水减少导致土壤湿度下降,这往往伴随着更高的温度和增加的大气蒸发需求,这些因素结合在一起引起植物的水分胁迫,导致植物Ψx下降(木质部水柱所受张力增加),因此植物关闭气孔以限制水分流失和延缓Ψx的下降㊂最近研究表明,尽管气孔关闭会造成一系列负面影响,但气孔仍旧会在木质部水势达到明显的气穴化形成阈值(气孔导度损失88%对应的水势值,thewaterpotentialat88%lossofstomatalconductance,Pgs88)之前关闭[26 28]㊂气孔关闭后,Ψx随着水分通过气孔渗漏[29]以及表皮和树皮等其他组织损失而继续缓慢下降,植物通过释放内部储存水来缓冲Ψx的下降[30]㊂与此同时,植物整个水力途径的水力导度通过一系列生物物理和生理机制而下降,比如叶脉的可逆塌缩[31]㊁细胞膜水通道蛋白调节[32]和细根皮层腔隙的形成[33]等㊂这一阶段的失水速率通常比气孔完全打开时低100 1000倍[29]㊂如果持续干旱,水势持续下降最终达到一个临界阈值(水力导度损失50%对应的水势值,thewaterpotentialat50%lossofhydraulicconductance,P50)时,栓塞开始在木质部中扩散[34 35],这一过程发生在包括植物根茎叶在内的整个水力系统中[36 37]㊂由于栓塞大大减少了向冠层的水分输送,这种水力功能障碍导致了分支斑块性死亡和冠层叶面积显著减少[38]㊂随着栓塞逐渐遍布整个输水网络,造成植物水力系统不可逆的损伤(水力导度损失80%对应的水势值,thewaterpotentialat88%lossofhydraulicconductance,P88),最终导致整株植株死亡㊂图2㊀植物对干旱胁迫的水力响应过程Fig.2㊀Phaseofdroughtresponsetodroughtstressinplants随干旱胁迫增加,虚线代表气孔和表皮导度变化趋势,实线代表木质部水力导度损失率;Pgs88代表气孔关闭时的水势;P50和P88分别代表水力导度下降50%和88%的水势3㊀植物水分运输策略的多样性植物功能性状对植物的建立㊁存活㊁生长和繁殖有很大影响,可以很好地表征植物的生长策略[39]㊂然而,在哪些性状可以用来评估生态耐旱性方面,我们的知识仍然有限㊂3.1㊀衡量植物抗旱性的性状3.1.1㊀压力⁃容积曲线(Pressure⁃volumecurve,简称P⁃V曲线)基于P⁃V曲线计算得到的参数(如膨压消失点叶水势(Ψtlp)㊁质壁分离时的相对含水量(RWCtlp)㊁饱和含水时的叶渗透势(π0)和细胞体积弹性模量(ε))在机制上均与耐旱性有关[40 41]㊂其中,Ψtlp代表了引起萎蔫的叶片和土壤的干燥程度[40],被认为是最直接量化植物耐旱性的 更高级别 的性状[42 43]㊂植物会改变其他P⁃V参数:1)渗透调节:积累溶质(减少π0);2)质外体调节:通过将更多的水重新分配到细胞壁外部来减少共质体水分(增加af);3)弹性调节:增加细胞壁的弹性(减少ε)以达到足够负的Ψtlp值[41 43],提高他们的耐1962㊀7期㊀㊀㊀程莉㊀等:木本植物应对干旱胁迫的响应机制:基于水力学性状视角㊀2962㊀生㊀态㊀学㊀报㊀㊀㊀44卷㊀旱性㊂然而,由于这些参数通常是同时调整的,因此他们在影响Ψtlp方面的相对重要性仍然存在争议㊂前人的研究表明,Ψtlp与干旱指数呈显著正相关,湿润地区的生物群系比干旱区的生物群系具有更小的负值,这支持了膨压消失点叶水势在木本生物群系尺度上反映耐旱性的观点㊂尽管大多数人认为负值较大的Ψtlp有利于耐旱性,但也有人提出了相反的观点,认为负值较小的Ψtlp是有益的㊂当Ψleaf下降时,负值较小的Ψtlp使叶片迅速失去膨压并关闭气孔,从而保持较高的RWCtlp㊂RWCtlp,也被认为是植物耐旱性的重要衡量标准㊂尽管大多数研究认为更负的Ψtlp有利于耐旱,一些研究则认为维持细胞水合比维持膨压更重要,因为脱水会导致细胞收缩,细胞壁结构损伤以及由于高离子浓度而产生的潜在渗透压,最终破坏代谢过程㊂除此之外,细胞总相对含水量低于75%时会严重抑制ATP,RUBP和蛋白质的产生[44]㊂Ψtlp和RWCtlp作为耐旱性预测因子的重要性经常受到争议,但没有得到解决㊂一个最近的meta分析表明Ψtlp而不是RWCtlp驱动物种与栖息地水分供应的关系[41]㊂3.1.2㊀木质部栓塞脆弱性曲线(Vulnerabilitycurves,简称VCs)木质部栓塞抗性是决定植物抗旱性的最重要性状之一,也是解释近年来干旱导致植物死亡的重要性状之一[45]㊂木质部栓塞抗性通常由VCs决定,该曲线描述了当Ψx降低时,水力导度丧失百分比(Precentlossofconductivity,PLC)如何增加㊂VCs可以提供有关特定植物干旱响应的有价值的信息,并已被用于量化植物抗旱性和生态适应性㊂例如,P50或P88以及水力安全范围被广泛用于量化抗旱性和水力失败的风险[46]㊂大量研究表明,当Ψx降到P50或P88以下后,Ψx很小的变化将引起水分传导速率大幅下降,树木也因此面临严重栓塞及死亡风险㊂P50是最常用的栓塞抗性指标㊂Lamy等对地中海松树的513种基因型的研究发现,气候差异明显的不同种群其P50的遗传和表型变异均有限,P50可能是松树固有特征[45]㊂但是关于栓塞脆弱性的遗传变异和表型可塑性的研究仅限于少数物种,仍需进一步的研究来确定这一结论是否在所有树种中适用㊂物种水平上,对栓塞抗性在木本种中种间变异的meta分析表明,不同树种木质部栓塞脆弱性存在巨大差异,植物木质部栓塞脆弱性与其生长环境的年平均降水量和干旱程度相关,来自干燥气候的物种比来自湿润气候的物种具有更大的P50值,对干旱的忍耐力越强[47 48]㊂然而在群落水平上,在较干燥的栖息地,植物脆弱性的变化往往很大,这表明脆弱性和干旱在某些情况下是解耦的[49]㊂这种解耦是因为一些物种所使用的水分胁迫规避策略,如深根系植物或干旱落叶,这些策略使得它们在干旱时期保持较高的Ψx[9]㊂具有系统发生学差异的植物,其致死的水势临界点(即木质部导水性不能再恢复)与P50或P88的关系有所差异㊂裸子植物中的水势临界点与P50具有很大正相关性,但被子植物的水势临界点却与P88有更高的相关度[9]㊂水力安全范围有2种计算方式:1)HSM:树种木质部最低水势(Ψmin)与栓塞抗性(P50或P88)的差值(即Ψmin-P50或Ψmin-P88),是预测树木干旱死亡率的关键指标[50]㊂HSM值越小,说明树种面临水力失败的风险越大,反之树种面临水力失败的风险越小[51]㊂然而,Choat等针对全球81个地点226种森林的研究结果发现,70%的森林在应对干旱胁迫时的HSM很窄(约<1MPa),安全边际在很大程度上与年降水量无关,森林对干旱的脆弱性存在全球趋同:所有森林生物群落无论当前的降雨环境如何,都同样容易遭受水力失败[48]㊂因为Ψmin集成了与环境相关的植物结构(例如,生根深度)和生理(例如,气孔行为)性状的许多重要方面,在不同森林类型中发现的狭窄水力安全边际为植物生态学提供了一个重要视角,这表明植物的水力策略是根据其环境进行微调的,允许最大限度的碳获得,但在干旱期间将植物暴露在水力失败的风险中[9]㊂这也表明了一种普遍存在的 有风险 的策略,即植物对环境的快速变化做出反应的生理潜力有限[9]㊂这加剧了气候变化下极端干旱事件增加所构成的威胁[9]㊂2)气孔安全边际(Stomatalsafemargin,SSM):气孔闭合时的水势(Pgs88)与抗栓塞能力(P50或P88)的差值(即Pgs88-P50或Pgs88-P88),用来反映树种的气孔调控策略[52],更直接地将气孔对水势的响应和木质部栓塞抗性结合起来㊂正的SSM表明气孔关闭发生在茎严重栓塞之前,而负的SSM表明气孔关闭发生在栓塞之后;SSM宽的物种的耐旱时间更长㊂有明确证据表明,等水和非等水植物的部分死亡和完全死亡与水力失败有关,这进一步凸显了气孔调节和木质部栓塞抗性之间协调的重要性㊂总的来说,气孔安全边际随着栓塞抗性的增加而持续增加,并且气孔安全边际与水力安全边际相关[53]㊂最重要的是,将气孔调节策略与木质部水力策略相结合有助于更全面地表达植物对干旱的适应[54]㊂3.1.3㊀非结构性碳水化合物(NSC)NSC包括淀粉和可溶性糖[55 56],在树木的抗旱性中发挥重要作用[57]㊂淀粉是一种长期的碳储存分子,它以一种紧凑的㊁不溶性的形式存在,允许植物在高光合速率的情况下储存碳水化合物㊂可溶性糖为植物提供能量和底物,同时也可充当中间代谢产物㊁信号分子或渗透物㊂植物通过光合作用将CO2固定为碳水化合物,然后用于呼吸㊁防御㊁生长㊁繁殖或在光合作用无法发生时(如夜间㊁休眠季节或环境压力时期)为植物提供能量储备[58]㊂在干旱胁迫下,NSC扮演着两种角色[59],缓冲了植物的碳供应不足[60 61]:1)作为 碳饥饿 的缓冲㊂在 碳饥饿 过程中,光合作用受到干旱胁迫,植物缓慢地消耗他们储存的碳水化合物直到死亡[8]㊂因此,生活在炎热和干燥气候中的植物比生活在潮湿气候中的植物分配更多的碳储存,作为应对干旱胁迫的保守缓冲[62]㊂2)作为渗透缓冲剂㊂当水分胁迫激活淀粉降解酶时,植物可以将不溶性淀粉转化回可溶性糖[63]㊂这种从淀粉到糖的转化可以降低植物的渗透势,从而在干旱期间维持细胞膨压[64 65]㊂因此,有人认为在干燥环境中进化或生长的植物将保持较高的NSC储存量,并保持更大比例的可溶性糖储存,以防止细胞失水,保持细胞稳定,在干旱条件下生存更长时间[41,66 68]㊂3.1.4㊀结构性状结构性状可以很好地反映不同树种面对干旱胁迫时的适应能力㊂比如,叶片厚度(Leafthickness,LT)与植物获取㊁利用资源的策略紧密相关㊂具有较高LT的植物可以增强蓄水能力,避免环境胁迫造成伤害㊂叶干物质含量(Leafdrymattercontent,LDMC)常用干重和鲜重的比值来表示,干旱地区的植物LDMC也较高,对环境胁迫有较强的抗性[69]㊂比叶重(Leafmassperunitarea,LMA)和叶密度(Leafdensity,LD)是表示干旱容忍能力的重要叶片功能性状,因为LMA较高和LD较高表明细胞壁较厚或者较密,从而能够较大程度地防止由于叶水势下降引起的变型诱导的损坏㊂LMA常用叶片单位面积的干物质量来表示[70]㊂LMA高的植物因其较强的碳同化能力能够更好地生长㊂干旱地区的植物通过提高比叶重来提高植物固持资源(碳㊁氮)的效率,从而提高竞争力㊂LD反映叶片的紧实程度及植物对外界干旱环境的忍耐能力㊂具有较高LD的植物通常适应于干旱的生境㊂通常LD高,则叶片细胞小且细胞壁较厚,能够高效积累渗透物质同时减少水分损失,从而减弱水分可利用性低对叶片造成的破坏㊂胡伯尔值(AL:AS)与WD都是物种对不同水分可利用环境进行水力调节的重要性状㊂AL:AS表征枝条对叶片的供水能力,反映蒸腾叶面积与茎输导供水之间的权衡[71 72]㊂低AL:AS可以避免蒸腾过程过度失水,促进叶片水平供水以适应干旱条件,降低水力紊乱的风险㊂WD常用植物对单位体积木材投资的生物量来表示,反应植物机械支撑㊁水分运输和生长速率[73]㊂低WD意味着储水能力较高,有利于木质部再充水而修复栓塞;高WD意味着较厚的导管壁或较丰富的机械组织,结构紧密,相应的导管面积较小㊂在干旱胁迫的环境中,植物通常具有较高的WD,保护木质部避免空穴化[72]㊂根系与土壤环境直接接触,负责吸收养分和水分,但由于其藏匿于地下,根系性状成为了植物对干旱响应的一个重要但被忽视的预测因子[74]㊂有关根系性状对干旱反应的数据仅限于少数几种植物[74]㊂因此,关于植物根性状响应策略的结论似乎很特殊,或者年代太久远[74]㊂例如,有研究报告称,一些植物种因干旱而产生更细的根,具有高比根长(Specificrootlength,SRL)和比根表面积(Specificrootsurfacearea,SRSA),这一策略被解释为以低投资改善水资源获取[75]㊂相比之下,其他研究报告称,植物种产生的根更粗,SRL和SRSA较低,这已被证明可以降低水力失败的风险[76]㊂更粗的根与通过真菌营养获得高养分和高水分有关[77 78],并与由于储存非结构性碳水化合物而产生的渗透调节有关[79]㊂植物性状有助于预测树木对干旱的响应[73]㊂相比于常用功能性状,现在已经出现了一套经过充分研究的与耐旱性机制相关的水力性状(表1),被寄予厚望用于预测植物对干旱胁迫的响应,这代表了未来研究的方向[9]㊂3962㊀7期㊀㊀㊀程莉㊀等:木本植物应对干旱胁迫的响应机制:基于水力学性状视角㊀表1㊀与树木耐旱性相关的植物水力性状列表Table1㊀Listofhydraulictraits(physiological,morphological,andanatomical)associatedwithdroughttoleranceintrees性状Trait性状描述Traitdescription参考文献References叶片Leaves气孔响应Stomatalresponse气孔闭合速率和敏感性对VPD和叶片水势变化[80 87]膨压消失点和渗透调节Turgorlosspoint&osmoticregulation叶片叶肉细胞失去膨压和叶片枯萎的水势,以及叶片叶肉细胞渗透含量的适应性调节[41,43,88 98]最小气孔导度Minimumstomatalconductance当气孔处于最小孔径时,叶片角质层的水分损失率[99 101]木质部外通路Extraxylarypathways液体和蒸汽通过叶肉和支持组织的阻力变化[102 104]叶脱落Leafshedding在干旱期间通过叶片脱落减少叶面积可以减缓干燥速度,减轻水分对剩余叶片的压力[87,105 106]气孔解剖结构Stomatalanatomy气孔的形状㊁大小和分布,影响失水相关的叶片生理性状[42,107]根系Roots皮层空腔形成Corticallacunaeformation根皮层细胞解体,使维管组织从表皮及周围干燥土壤分离[33,108 109]细根损失Finerootloss细根脱落,减少根系与土壤接触的总表面积,重新平衡根枝比[33,108 111]根系深度Rootingdepth深层根系生长,获得更稳定的水源[112 118]组织性状Traitsamongtissues栓塞脆弱性Vulnerabilitytocavitation木质部汁液的负压导致木质部最大水力导度损失50%或88%㊂如,裸子植物的生理临界点(P50);被子植物的生理临界点(P88)[47 48,100,119 138]水容Capacitance在木质部周围组织中储存的水分,可以缓冲导致空穴化事件的木质部汁液负液压[30,113,139 141]细胞膜通透性Cellmembranepermeability水通道蛋白的活性可以改变细胞膜的通透性,导致跨膜通路的水力导度降低[32,103,142 143]木质部解剖性状Xylemanatomicaltraits木质部导管尺寸㊁数量和连通性Xylemconduit木质部导管(管胞和导管)的直径㊁长度和连通性影响最大水力导度和空穴化脆弱性㊂[132,144 145]纹孔膜孔隙度/厚度Pitmembraneporosity/thickness纹孔膜解剖结构决定了木质部导管之间的空气传播阈值,并影响水力导度和空穴化脆弱性㊂[121 122,131,146 147]木材密度Wooddensity木材密度由木质部解剖性状决定,并与许多生理性状相关㊂[28,127,148]连接性Sectoriality维管组织的空间分离,防止栓塞在分支间扩散[149 154]㊀㊀VPD:饱和水汽压差Vaporpressuredeficit3.2㊀植物水分利用策略鉴于植物在异质环境中争夺空间㊁阳光㊁水和养分的策略多种多样,任何单一植物功能性状均不足以表征植物在干旱胁迫下的生存力,常需结合一系列形态功能性状㊁生理功能性状㊁生物化学功能性状来阐明植物的水分调节对策及机制,进一步揭示植物对气候变化的响应和适应[155]㊂3.2.1㊀等水和非等水调节策略1936年,Berger提出等水/非等水概念,基于叶片水势或者蒸腾来描述植物昼夜水分调节关系㊂在昼夜转换间,等水植物会在正午来临时,及时关闭气孔,维持较高的正午叶片水势㊂而非等水植物气孔则持续张开,保持水碳交换,故而正午叶片水势较低㊂近期,研究者将等水/非等水概念用于长期干旱条件下的水分管理[86]㊂即随着土壤水势的持续降低,等水植物的叶片水势会保持较高水平,然后缓慢降低,而非等水植物的叶片水势会持续降低㊂等水植物的叶片蒸腾随着土壤变干而迅速降低,而非等水植物则先缓慢降低而后加快4962㊀生㊀态㊀学㊀报㊀㊀㊀44卷㊀。

遥感测绘论文题目GIS测绘学论文题目测绘工程论文题目选题大全毕业论文开题报告参考文献

遥感测绘论文题目GIS测绘学论文题目测绘工程论文题目选题大全毕业论文开题报告参考文献

耕地土壤有机质与速效氮磷钾含量高光谱遥感反演研究 经验模态分解在高光谱遥感数据处理中的应用 面向对象的高分辨率遥感影像的分割与分类研究 多极化星载 SAR 森林覆盖变化检测方法研究 多特征融合的遥感影像变化检测方法研究 近 30 年上海海岸带土地利用变化分析与建模预测 基于矩阵对数累积量和非局部均值方法的极化 SAR 噪声抑制 基于高光谱数据的最大羧化速率遥感定量反演 高分辨率遥感影像道路网提取及变化检测 基于高分辨率遥感影像的城区建筑物提取方法研究 基于高分辨率遥感影像的团场小城镇土地利用变化分析与预测研究 面向对象的草原植被参数反演方法及应用 基于多特征的面向对象高分辨率遥感图像分类 定标缺失情况下的高光谱图像分类研究 基于多波段多极化 SAR 数据的草原地表土壤水分反演方法研究 粒子群优化算法在多时相遥感影像变化检测中的应用研究 基于 Sentinel-1 和 Landsat 8 数据的潮间带盐沼湿地分类研究 高分辨率遥感影像面向对象的绿地信息提取方法研究 基于 HJ-1A HSI 高光谱遥感数据的湟水流域典型植被分类 多源遥感图像融合技术研究 基于 CVA 与光谱解混的高光谱图像变化检测研究 小麦茎基腐与全蚀病高光谱遥感识别研究 基于 Sentinel-1 的近岸海表风场反演研究 雷达卫星 TerraSAR-X 精准测距高原湿地水位反演研究 基于数据挖掘技术的航摄影像土地利用变化检测研究 基于深度神经网络的遥感图像变化检测 基于多空间分辨率遥感数据的山区土地利用/土地覆被分类及变化检测 基于图谱理论的遥感图像分类方法研究 高光谱遥感协同处理黑刺沟岩矿蚀变信息方法研究 基于多核学习的高光谱遥感影像分类方法研究
遥感测绘论文题目 GIS 测绘学论文题目测绘工程论文题目选
题大全毕业论文开题报告参考文献 目录
一、选题技巧............................................................................................................................................1 二、热词分布............................................................................................................................................2 三、测绘学论文题目大全....................................................................................................................... 2 四、知网万方等如何利用................................................................................................................... 104

干旱半干旱区森林蓄积量高光谱遥感估测技术1)

干旱半干旱区森林蓄积量高光谱遥感估测技术1)

干旱半干旱区森林蓄积量高光谱遥感估测技术1)
王靖;吴见
【期刊名称】《东北林业大学学报》
【年(卷),期】2014(000)001
【摘要】为了系统地研究特定区域的森林蓄积量估测技术,比较目前流行的多种高光谱遥感森林蓄积量估测方法,包括:主成分和偏最小二乘回归法、BP和RBF 神经网络法、k-近邻法。

结果表明:PCR和PLSR估测森林蓄积量时,采用植被指数、光谱面积和位置参数同时估测蓄积量,验证精度最好;BP神经网络估测蓄积量时,采用植被指数参数作为变量效果最好;RBF神经网络估测蓄积量时,采用19个变量同时作为输入参数时,精度最高。

k-近邻法对森林蓄积量的估测效果最佳,当k=8时,Rmse的值最小,为9.38,R2值为0.856。

【总页数】6页(P65-70)
【作者】王靖;吴见
【作者单位】滁州学院,滁州,239000;滁州学院,滁州,239000
【正文语种】中文
【中图分类】S718
【相关文献】
1.基于3S技术的山东省森林蓄积量估测 [J], 李亦秋;冯仲科;邓欧;张冬有;张彦林;吴露露
2.基于遥感技术的森林蓄积量估测研究进展 [J], 崔立;闫保银
3.基于ALS数据和哑变量技术森林蓄积量估测 [J], 金京;岳彩荣;李春干;谷雷;罗洪斌;朱泊东
4.基于3S技术和SPSS软件的香格里拉市森林蓄积量估测探析 [J], 华世明;罗燕彬;杨华
5.半干旱区内陆湖泊透明度高光谱估测模型研究——以松嫩平原查干湖为例 [J], 宋开山;张柏;王宗明;段洪涛;张渊智;李方
因版权原因,仅展示原文概要,查看原文内容请购买。

苏尼特左旗达布苏图地区土壤地球化学特征及异常评价

苏尼特左旗达布苏图地区土壤地球化学特征及异常评价

93.7
注:(1)检出限中 Au 元素单位为 10-9,其余各元素为 10-6; (2)准确度无单位。
余元素低于地壳克拉克值。与半干旱草原区平均
3 数据处理
含量2对比,相对富集的元素有 Au、Cu、Sn、 Ag、As、Sb、Bi、W,富集系数大于 1,其余元
研究区化验数据主要由新疆金维软件及
素与半干旱草原区平均含量值相近。
新统宝格达乌拉组(N2b),主要岩性为砖红色泥 岩夹含砾粗砂岩(图 1a)。其中泥鳅河组地层在 研究区分布最广。侵入岩较发育,主要为早石炭
世肉红色中细粒似斑状黑云母正长花岗岩
( C1ξγβbzx ), 出 露 于 研 究 区 南 部 , 侵 入 泥 盆 系 (D1-2n)中,局部隐伏于地层之下;早石炭世浅肉 红色中粗粒黑云母正长花岗岩(C1ξγβzc),出露于 研究区西部,面积较小,被新近系上新统宝格达
124
化工矿产地质
2021 年
英钠长斑岩脉(λπ)、正长花岗斑岩脉(ξγπ)。 研究区内断裂构造发育,在华力西晚期地壳收缩 体制下,发育在晚古生代陆缘增生带上的,呈北 东向、北西向展布的两组断层。北西向断裂以正 断层为特征,北东向断裂以逆滑移为特征。研究 区中部存在一北东向张性断裂,倾向西北,倾角 60°~70°。破碎带宽 15m 左右,具碎裂岩,糜棱
变化系数反映元素变异程度,其值越大, 说明元素在地质体中不均匀分配越强烈,找矿 潜力越高,变化系数大于 1 的元素有 Cu、Sn, 变化系数大于 1.5 的元素有 Au、Mo、Ag、As、 Sb、Bi、W。
4 土壤地球化学特征
4.1 元素参数统计特征 富集系数及变化系数所表现出的元素分散贫
化、集中富集,可以直观反映区内地层、构造、 岩浆岩及矿产地的地球化学特征5。笔者对区内 3307 件样品数据进行了分析(图 2,表 2)。

土壤水分空间变异研究

土壤水分空间变异研究

土壤水分空间变异研究
吕雄杰;陆文龙;宋治文;张昱
【期刊名称】《安徽农业科学》
【年(卷),期】2008(036)005
【摘要】以天津市静海县良种场内一块长约110m,宽约40m的冬小麦田作为试验区,采用规则格网采样,按照10m×10m设置格网,共设48个采样点,通过GPS手持机进行定位,分别于小麦越冬前、拔节期、灌浆期,利用便携式土壤湿度数据采集器对试验地各个采样点0~20、20~40 cm2种深度土壤含水量进行了测定,利用ARC/INFO的地统计分析模块绘制了冬小麦3个不同生育期试验区土壤水分空间分布图,并分析了其垂直和水平方向的空间变异特征,以期为确定最佳灌溉时机和灌溉量提供科学依据.
【总页数】3页(P1999-2001)
【作者】吕雄杰;陆文龙;宋治文;张昱
【作者单位】天津市农业科学院信息研究所,天津,300192;天津市农业科学院信息研究所,天津,300192;天津市农业科学院信息研究所,天津,300192;天津市农业科学院信息研究所,天津,300192
【正文语种】中文
【中图分类】S152.7+3
【相关文献】
1.玛纳斯河流域土壤水分及斥水性空间变异性研究 [J], 邵志一;李毅
2.基于改进插值法的农田土壤水分与养分空间变异研究 [J], 杨昕馨
3.基于WSNs和地统计学的土壤水分空间变异研究 [J], 李建华;刘序;缑武龙;胡月明;程家昌
4.土壤水分变异规律的研究Ⅰ.土壤水分空间变异的研究 [J], 张仁陟;李小刚;李焕峰
5.鞍山市土壤水分空间变异性研究 [J], 蒋懿
因版权原因,仅展示原文概要,查看原文内容请购买。

一种多级再分类技术耕地提取方法

一种多级再分类技术耕地提取方法

一种多级再分类技术耕地提取方法陈磊;周询;陈明叶【摘要】鉴于土地利用中耕地类型的遥感光谱特征差异大,以及我国北方农牧交错带中撂荒地、耕地、裸地和草地混淆严重,耕地信息的获取难度大、精度低,提出了利用长时间序列遥感数据,通过多级再分类技术方法(multilevel reclassification,MLRC)提取可耕种区域.首先利用最大似然法对长时间序列的多期遥感数据进行监督分类,提取出耕地区域,之后在初级分类的基础上,通过统计不同区域在多期分类结果中被判定为耕地的次数进而确定可耕作区域的范围.通过对闪电河湿地实验区的研究表明,利用MLRC方法的精度达到了82.56%.%Due to the difference of the remote sensing spectral characteristics of the cultivated land,and the serious confusion with the abandoned land,cultivated land,grassland and bare land,it is more difficult to get the accurate area of the cultivated land by using remote sensing technology.This paper proposes a multi-level reclassification (MLRC)method to extract the arable area by using long time series remote sensing data.In this method,we use the maximum likelihood method to classify the long time series remote sensing data,and to extract the cultivated land area.After that,we calculate the number of the pixel belonging to cultivated land in the primary classification results as the threshold to extract the arable areas.The study in Shandian River shows that the accuracy of the MLRC method reaches 82.56%.【期刊名称】《遥感信息》【年(卷),期】2017(032)004【总页数】6页(P120-125)【关键词】多级再分类技术;长时间序列;最大似然法;监督分类;可耕种区域【作者】陈磊;周询;陈明叶【作者单位】北京师范大学地理科学学部,北京100875;北京师范大学全球变化与地球系统科学研究院,北京100875;北京师范大学地理科学学部,北京100875;河北农业大学林学院,河北保定071000【正文语种】中文【中图分类】TP753耕地作为重要的土地利用类型,在粮食问题等方面具有极其关键的作用[1-2]。

干旱区艾比湖湿地土壤呼吸的空间异质性

干旱区艾比湖湿地土壤呼吸的空间异质性

干旱区艾比湖湿地土壤呼吸的空间异质性秦璐;吕光辉;张雪妮;何学敏;王合玲【期刊名称】《干旱区地理》【年(卷),期】2014()4【摘要】利用LI-8100土壤呼吸测定系统连续一年测定艾比湖湿地3个典型生态系统土壤呼吸,定量研究其与0~50orll土壤有机碳的关系,在此基础上估算艾比湖湿地97个点的土壤呼吸速率,进一步采用传统和地统计学的方法对土壤呼吸及环境因子的空间异质性进行分析。

结果表明:土壤呼吸速率在0.342~10.848μmol·m-2.s-1之间,平均值为1.109μmol·m-2.s-1,变异系数为167.37%,属强变异;高斯模型能较好地反映土壤呼吸和0~50cm土壤有机碳的空间结构特征;土壤呼吸、土壤有机碳和土壤含水量的c。

/(C0+C)均在0%~0.1%之间,反映了土壤呼吸、土壤有机碳和土壤含水量在此研究尺度上具有强烈的空间异质性,且结构性因子影响其空间变异。

用Kriging插值法绘制的土壤呼吸空间分布图表明土壤呼吸在空间分布上存在着高度的空间自相关性,在研究区大尺度长时间范围内,土壤有机碳是影响土壤呼吸空间分布的主要因子。

总体上,艾比湖湿地自然保护区土壤呼吸呈现东南、西北方向高,中部低的特点,且具有明显的斑块和连续分布的特点。

【总页数】9页(P704-712)【关键词】地统计学;Kriging插值;艾比湖【作者】秦璐;吕光辉;张雪妮;何学敏;王合玲【作者单位】新疆绿洲生态教育部重点实验室;新疆大学资源与环境科学学院;新疆环境保护科学研究所【正文语种】中文【中图分类】S154.1【相关文献】1.艾比湖湿地典型植物群落土壤养分和盐分的空间异质性 [J], 杜改俊;李艳红;张小萌;赵明亮2.艾比湖湿地盐节木土壤固氮微生物群落结构和丰度的环境异质性特点 [J], 兰鸿珠;胡文革;杨扬;何园;高岩3.艾比湖湿地土壤水分-盐分-养分空间异质性分析 [J], FANG Li-zhang;LI Yan-hong;LI Fa-dong;ZHU Hai-qiang4.苏干湖湿地土壤全盐含量空间异质性及影响因素 [J], 康满萍;赵成章;白雪5.干旱区不同生育期白刺灌丛沙堆土壤呼吸空间异质性 [J], 孙涛;韩福贵;郭树江;段晓峰;张裕年因版权原因,仅展示原文概要,查看原文内容请购买。

与环境和人类相关联的土壤科学——评《土壤发生与系统分类》

与环境和人类相关联的土壤科学——评《土壤发生与系统分类》

与环境和人类相关联的土壤科学——评《土壤发生与系统分
类》
李天杰;赵烨
【期刊名称】《生态环境学报》
【年(卷),期】2008(017)003
【摘要】对科学出版社新近出版的<土壤发生与系统分类>一书的学习体会与评述.该新著很好地将土壤发生学与土壤系统分类整合起来,并依此分析了土壤与地理环境、人类活动之间的相互关系,极大地丰富和发展了土壤科学研究内容,对于促进中国土壤科学研究的标准化、信息化、国际化,以及中国土壤系统分类成果的应用具有重要的意义,对地理学、生态环境科学也有重要的参考价值.
【总页数】2页(P1317-1318)
【作者】李天杰;赵烨
【作者单位】北京师范大学环境学院//水环境模拟国家重点实验室,北京,100875;北京师范大学环境学院//水环境模拟国家重点实验室,北京,100875
【正文语种】中文
【中图分类】S159
【相关文献】
1.基于中国土壤系统分类体系的湖南省土壤系统分类研究Ⅰ.湖南土壤系统分类的原则和指标及高级单元初拟 [J], 张杨珠;周清;黄运湘;盛浩;廖超林
2.基于中国土壤系统分类体系的湖南省土壤系统分类研究Ⅱ.湖南省土壤系统分类
的高级单元检索 [J], 张杨珠;周清;黄运湘;盛浩;廖超林
3.从第17届国际土壤科学大会看土壤科学研究的进展及趋向 [J], 胡学玉
4.从14届国际土壤科学大会看土壤系统分类 [J], 龚子同
5.新世纪土壤科学的现实与面临的挑战——从第17届世界土壤科学大会看土壤学的发展 [J], 杨生茂
因版权原因,仅展示原文概要,查看原文内容请购买。

基于植被指数的土壤盐渍化遥感

基于植被指数的土壤盐渍化遥感

作者: 吕杰 刘湘南
作者机构: 中国地质大学(北京)信息工程学院,北京,100083 中国地质大学(北京)信息工程学院,北京,100083
出版物刊名: 科技资讯
页码: 162-163页
主题词: 影像处理 光谱特征 信息提取
摘要:利用遥感技术提取变化较快的生态环境信息是遥感研究的重要内容之一.本文采用美国陆地卫星的TM图像资料,对黄河三角洲TM图像资料进行几何校正和不同的增强处理.在对图像处理的基础上,根据该区各地物类型及其它相关地类的光谱特征,利用比值型植被指数RVI提取出土壤信息.通过研究以期为该区土地利用与可持续发展提供科学依据和决策支持.。

干旱区玉米抽雄期叶绿素含量高光谱最佳模型选择

干旱区玉米抽雄期叶绿素含量高光谱最佳模型选择

干旱区玉米抽雄期叶绿素含量高光谱最佳模型选择武倩雯;熊黑钢;王凯龙;王莉峰;靳彦华【期刊名称】《干旱地区农业研究》【年(卷),期】2015(000)002【摘要】采用相关性、线性和非线性分析法,探讨了玉米抽雄期叶片叶绿素含量与多种高光谱参数之间的关系,并建立了叶绿素含量的定量监测模型。

结果表明:(1)原始光谱反射率与叶绿素含量在713 nm 处具有最大相关系数 r =0.86,光谱反射率一阶微分在760 nm 处与叶绿素含量具有最大相关性 r =0.84。

同时,最大一阶微分分别对应的波长(λr ,λb ,λy )、绿峰反射率(Rg )和其对应的波长λg 、红边内最大一阶微分总和(SDr)、比值植被指数(SDr/SDb ,SDr/SDy ,(Rg - Ro )/(Rg + Ro ))以及归一化植被指数(SDr - SDb)/(SDr +SDb)等10种参数分别与叶绿素含量的相关性达到极显著相关。

(2)采用相关性达到极其显著的12种光谱参数进行建模,其中原始光谱、绿色反射峰以及光谱反射率一阶微分、基于红边面积与蓝边面积的比值植被指数和归一化植被指数所建立的10个模型 R2都不小于0.72,前两者所建立的指数模型优于线性模型,而后三者所建立的线性模型则优于指数模型。

(3)所选取的五个方程中,在760 nm 处的光谱反射率一阶微分值所构建的线性模型:y叶绿素=6912x760nm +44.878因其具有最大决定系数和最小的 RMSE ,并且其模型表达式相对简单,因此是玉米抽雄期叶绿素含量的最佳预测模型,从模型决定系数 R2来看,它比其他模型至少提高了11.4%。

【总页数】6页(P81-86)【作者】武倩雯;熊黑钢;王凯龙;王莉峰;靳彦华【作者单位】新疆大学资源与环境科学学院,教育部绿洲生态重点实验室,新疆乌鲁木齐 830046;北京联合大学应用文理学院城市系,北京 100083;新疆大学资源与环境科学学院,教育部绿洲生态重点实验室,新疆乌鲁木齐 830046;新疆大学资源与环境科学学院,教育部绿洲生态重点实验室,新疆乌鲁木齐 830046;新疆大学资源与环境科学学院,教育部绿洲生态重点实验室,新疆乌鲁木齐830046【正文语种】中文【中图分类】S513【相关文献】1.玉米从大喇叭口期到抽雄期易倒伏的应对措施 [J], 郑学哲2.倒伏胁迫下玉米抽雄期叶面积密度光谱诊断 [J], 周龙飞;顾晓鹤;成枢;杨贵军;孙乾;束美艳3.借助抽雄期长茎段育苗释放多年生饲草玉米茎节扩繁潜力 [J], 严旭; EBENEZER Kofi Sam; 何建美; 荣廷昭; 唐祈林; 吴子周; 李影正; 李晓锋; 何如钰; 杨春燕; 李杨; 周阳; 石建忠4.关中地区夏玉米抽穗期叶绿素含量的高光谱估算 [J], 解飞;齐雁冰;常庆瑞5.玉米抽雄期茎秆木质素含量遗传分析 [J], 赵韦因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第29卷第7期干旱区资源与环境Vol.29No.7 2015年7月Journal of Arid LandResources and Environment July.2015文章编号:1003-7578(2015)07-176-05doi:10.13448/j.cnki.jalre.2015.242基于流形学习的土壤高光谱数据特征提取研究*吕杰,郝宁燕,史晓亮(西安科技大学测绘科学与技术学院,西安710054)提要:尾矿重金属污染是当今矿区环境污染面临的主要问题之一,精确反演土壤重金属含量对矿区土壤污染监测和治理具有非常重要的意义。

以陕西金堆城矿区尾矿为研究区,利用ASD光谱仪测量土壤光谱,通过实验室化学分析获取土壤样本铜元素含量;将Isomap流形学习方法应用于土壤高光谱数据降维,利用随机森林方法对矿区尾矿土壤的Cu含量进行反演建模,并与原始高光谱数据反演结果和PCA降维后的反演结果进行对比。

结果表明:土壤铜含量反演模型在经过Isomap降维后的光谱数据集上预测铜元素含量的相关系数R2为0.7272,均方根误差RMSE为1140.20,在预测的准确性方面均优于原始高光谱数据。

研究结果为探索土壤高光谱数据特征提取提供了理论依据,同时对尾矿重金属污染监测具有重要的现实指导意义。

关键词:流形学习;土壤;铜;随机森林;高光谱中图分类号:O433.1;O433.4文献标识码:A尾矿重金属污染是矿区环境污染最严重问题之一。

重金属具有很高的生物毒性,金属矿在开采过程中产生的重金属离子会随着雨水或灌溉进入土壤,通过一系列物理化学过程迁移转化,以一种或多种形式长期驻留在环境中,最终通过食物链等途径危及人类健康[1]。

因此,如何更好地反演尾矿土壤重金属含量是矿区环境监测和治理的重要课题之一。

通常采用的土壤重金属污染监测和识别方法是从野外采样带回实验室进行化学分析。

化学测试分析普遍要求破坏土壤样本,从大量的土壤样本采集、烘干、称重、研磨到进行测试,在大尺度监测土壤重金属含量时费时、费力。

高光谱遥感技术以其光谱分辨率高、波段连续性强、数据丰富的特点,在土壤盐渍化监测[2-4]、植被叶绿素遥感反演[5]、水质参数定量反演[6-7]、土壤重金属含量的监测研究中得到广泛应用[8]。

但同时也因其数据量大、数据冗余度高和Hughes现象给数据处理带来极大的挑战[9]。

因此,有效减少数据维数的同时保持数据的内在结构信息为高光谱遥感技术的广泛应用开启了一扇新的大门。

目前,针对高光谱数据提出了许多有效的降维方法[10-18],主要包括线性降维中的主成分分析法(PCA),Fisher线性判别分析(LDA)、多维尺度变换(MDS)、局部保留投影(LPP),非线性降维方法中的局部线性嵌入(LLE)、拉普拉斯特征映射(LE)、等距映射(Isomap)等。

流形学习(manifold learning)是模式识别和机器学习研究中的热点,它能够对高维数据空间进行非线性降维,并且揭示其流形分布,从中找出隐藏在高维光谱数据中有特定的低维结构,从而从中提取易于识别的特征,近年来流形学习已被用于遥感影像的降维与特征提取[19-21]。

重金属污染土壤的光谱信息影响微弱,并且重金属含量与土壤的光谱信息是非线性的关系,因此有必要对土壤光谱进行非线性降维处理,将流形学习引入到重金属污染土壤的高光谱数据降维,是一个有意义的尝试。

文中以陕西金堆城矿区尾矿为研究区,以矿区土壤为研究对象,探索运用Isomap流形学习进行高光谱数据降维,利用随机森林构建矿区尾矿铜含量反演模型。

1材料与方法1.1研究区概况*收稿日期:2015-1-21。

基金项目:国家自然科学基金(51409204、41401496);地理空间信息技术国家地方联合工程实验室开放基金项目(2013GSIJJ002);江西省数字国土重点实验室开放研究基金项目(DLLJ201305)资助。

作者简介:吕杰(1982-),男,山东蓬莱人,博士,讲师,主要从事高光谱遥感研究。

Email:rsxust@163.com选取陕西金堆城钼矿尾矿区为研究区域,金堆城钼矿位于秦岭东段著名的西岳华山南麓陕西省华县金堆城,矿区面积4.5km 2,矿区中心地理坐标为东经109ʎ57'22ᵡ,北纬34ʎ19'41ᵡ,海拔高度1211m ,金堆城钼矿床是我国闻名的大型钼矿床,钼精矿产量居全国之冠,已探明钼资源量1011461.22t 。

1.2数据准备2013年8月在研究区域分别采取60个采样点数据,采集0-20cm 的表层土,在20ʎC 风干3d ,碾碎后过2mm 的聚乙烯筛,以筛除碎石、卵石以及植物残骸,研磨后过0.15mm 的聚乙烯筛,将最终筛过的样品分成两份,一份用于土壤铜含量测试分析,一份用于土壤光谱测量。

土壤光谱采用美国ASD (Analytical Spectral Devices ,ASD )野外光谱仪进行测定,光谱仪使用前需要用白板校零。

测量时间为10:30-12:00,在室外自然光照条件下,选择无风的时间,将筛过的土壤样品放满于土壤盘上,并用小平铲铲平土壤表面,使其与盘边缘水平。

光谱仪选用8ʎ视场角探头,探头到土壤样本表面距离为1.35m ,测量1m 2范围内的土壤光谱,每个土壤样本连续获取10条测量光谱,取均值作为土壤的反射率光谱。

土壤铜含量采用盐酸-硝酸-氢氟酸-高氯酸全分解的方法,彻底破坏土壤的矿物晶格,使土壤样本中的铜元素全部进入试液。

接着,将土壤消解液喷入空气-乙炔火焰中。

在火焰的高温下,铜化合物离解为基态原子,该基态原子蒸汽对相应的空心阴极灯发射的特征谱线产生选择性吸收。

在选定的最佳条件处,测定铜的吸光度(GB /T17138-1997)[22]。

1.3Isomap 算法等距特征映射(Isometrio Mapping ,简称Isomap )算法是Tenenbaum 等于2000年提出的一种典型的全局特性保持方法[23]。

它是在MDS 的基础上,使用样本点之间的测地距离代替欧式距离。

Isomap 算法因其在数据降维的过程中力求保持数据点的内在几何特性已经在医学、农业、天文等领域得到广泛应用[24-26]。

Isomap 算法具体描述如下:首先,构造领域图G :计算每个样本点和其余样本点之间的欧氏距离。

如果样本点x i 和x j 的欧氏距离d x (i ,j )小于给定阈值ε或者x i 是x j 的第k 个邻近点,则规定x i 和x j 是相邻的。

即图G 有边,并设边的权重为d x (i ,j )。

其次,计算最短路径:当图G 有边时,初始化最短路径d G (i ,j )=d x (i ,j ),否则d G (i ,j )=ɕ。

根据迪杰斯特拉(Dijkstra )算法求出任意两个样本点之间的最短路径距离d G (i ,j )=min {d G (i ,j ),d G (i ,k )+d G (k ,j )}(k =1,2,...n ;n 为样本数),得到最短路径距离矩阵D G ={d G (i ,j )}。

最后,计算d 维嵌入:令λp 表示矩阵τ(D G )的第p 个特征值(降序),v ip 表示第p 个特征值的第i 个组分。

然后设置d 维坐标矢量y i 的第p 个组分的值为λp v 槡ip 。

图1随机森林的流程图Figure 1Flow chart of random forest1.4随机森林随机森林(Random Forest )是Breiman 于2001年提出的一种非常有效的机器学习算法[27]。

国内外学者已经将随机森林算法广泛应用在生物、遥感和医学领域[28-34]。

随机森林基本思想是利用bootsrap 重抽样方法从原始样本选取多个子样本,并逐一进行决策树建模,每棵树单独完成预测后,由投票得出最终输出的预测结果(图1)。

2实验与分析2.1数据集描述实验采用陕西金堆城钼矿尾矿区采集的60个土壤样本数据,波长范围350nm -1230nm ,维数881以及对应的60个实测土壤Cu 含量结果。

根据实验需求分成43个校正样本和17个测试样本,采用交叉验证(CV ,cross validation )方法优化土壤铜含量反演模型,设定交叉验证的范围N ,即将输入校正样本数据均分成N 组,任意选取其中N -1组子集数据作为训练集,剩余一组作为验证集,所得模型经交叉验证优化·771·第7期吕杰等基于流形学习的土壤高光谱数据特征提取研究图2ASD 光谱仪测量的60条土壤近红外光谱Figure 2NIRspectra of 60samples measured by ASD 土壤铜含量反演模型。

所有土壤样本光谱图(图2)。

Isomap 算法有两个可调的参数:k 为邻域参数,d 为本真维数。

不同的参数设置会产生不同的结果。

文中分别选取k值范围从20-55,d 值范围从7-15对土壤高光谱数据进行Isomap 流形学习降维处理。

2.2结果分析将基于随机森林方法构建的矿区土壤铜含量反演模型应用于原始高光谱测试数据集和经PCA 、Isomap 降维后的测试光谱数据,反演研究区土壤Cu 含量。

结果发现:当d =10,k =55时,经Isomap 降维后的土壤Cu 含量实测值与预测值最接近,其相关系数R2为0.7272,均方根误差RMSE 为1140.20,远远优于原始高光谱数据和PCA 降维后的数据反演结果(表1)。

研究结果表明基于Isomap 和随机森林方法构建的反演模型在获取矿区土壤铜含量获得了较高的精度。

图3随机森林在原始光谱数据集反演Cu 含量的结果Figure 3The inversion result of Cu on originalspectral data sets using random forests表1不同数据集的土壤铜含量反演精度比较Table 1Accuracy comparison of Cu content on different data sets数据RMSER2原始数据集2506.280.3184PCA 降维数据集3080.980.4881Isomap 降维数据集1140.200.7272原始高光谱测试样本的土壤Cu 含量预测值与实测值关系(图3),经PCA 降维后的测试样本土壤Cu 含量预测值与实测值关系(图4),经过Isomap 降维后的测试样本土壤的Cu 含量预测值与实测值关系(图5)。

对比发现:Isomap 降维后的土壤Cu 含量预测值与实测值拟合最好,精度明显高于原始数据和PCA 降维光谱数据。

但是在采样点1、采样点6、采样点8、采样点17处反演模型预测的Cu 含量与实测Cu 含量偏差较大,有可能是这几处的土壤中掺杂了一些其它重金属元素,导致这些采样点的土壤光谱对Cu 元素的光谱响应受到了影响,从而使得在测试组数据上构建的反演模型在这些采样点验证时,反演Cu 含量与实际Cu 含量偏差较大。

相关文档
最新文档