开关电源控制环设计原理

合集下载

开关电源恒压恒流控制回路的工作原理和参数计算

开关电源恒压恒流控制回路的工作原理和参数计算

开关电源恒压恒流控制回路的工作原理和参数计算1.电压控制环的设计恒压源的输出电压由下式确定U O=U Z+U F+U R1=U Z+U F+I R1R1其中,U Z=6.2V(即稳压管VD1的稳定电压),光耦合器PC817A中红外 LED的正向压降U F=1.2V (典型值),需要确定的只是R1上的压降U R1。

令R1上的电流为I R1,VT2的集电极电流为I C2,光耦合器输入电流(即LED工作电流)为I F,显然I R1=I C2=I F,并且它们随u、I C和光耦合器的电流传输比CTR值而变化。

已知单片LED 驱动电源的控制端电流I C变化范围是2.5mA(对应于最大占空比D MAX)~6.5mA(对应于最小占空比D MIN),现取中间值I C=4.5mA。

因I C是从光敏三极管的发射极流入控制端的,故有关系式I R1=I C CTR采用线性光耦合器时,要求CTR=80%~160%,可取中间值:120%。

在I C和CTR 值确定之后,很容易求出I R1。

将I C=4.5mA,CTR=120%代入式中得到,I R1=3.75mA。

令R=39R时,U R1=0.146V。

最后计算出U O=U Z+U F+U R1=6.2V+1.2V+0.146V=7.546V=7.5V2.电流控制环的设计电流控制环由VT1、VT2、R1~R6、C1和PC817A等构成。

下面要最终计算出恒定输出电流I OH 的期望值。

R2为VT1的基极偏置电阻,因基极电流很小,而R3上的电流很大,故可认为VT1的发射结压降U BE1全部降落在R3上。

有公式I OH=U BE1 R3利用下面两式可估算出VT1、VT2的发射结压降U BE1=kTqln(I C1I S)U BE2=kTqln(I C2I S)式中:k为玻尔兹曼常数;T为环境温度(用热力学温度表示);q是电子电量;当T A=25℃时,T=298K,kTq=0.0262(V);I C1、I C2分别为VT1、VT2的集电极电流;I S为晶体管的反向饱和电流,对于小功率管,I S=4×10−14A。

开关电源控制原理

开关电源控制原理

开关电源控制原理开关电源是一种非常常见的电源类型,它通过开关管的开关控制来实现电压或电流的调节。

开关电源的控制原理涉及到多个方面,主要包括以下几个方面:一、开关管的控制开关电源的基本原理就是通过开关管的开关来实现电压或电流的调节。

因此控制开关管的开关是非常关键的一环。

对于这方面,通常使用PWM 控制方式。

PWM(Pulse Width Modulation)是一种脉冲宽度调制技术,它通过改变开关管的开合时间来控制电源输出的电压或电流。

二、参考电压的产生在开关电源中,通常需要使用参考电压来作为基准电压,对电源输出进行调节。

参考电压的产生主要有两种方式:一种是通过基准电路产生,另一种是通过反馈电路产生。

其中反馈电路产生的参考电压更为常见。

三、反馈电路的设计反馈电路是开关电源中一个非常重要的部分。

它通过比较参考电压和输出电压之间的差异来控制开关管的开合。

反馈电路的设计需要考虑很多因素,如误差、抗干扰能力、响应速度等。

四、过流保护开关电源在使用过程中,可能会出现过流现象,导致电源损坏或电路失效。

因此在设计开关电源的控制原理时,需要考虑到过流保护机制的设计。

开关电源的过流保护通常采用限流或短路保护的方式,通过检测电流大小来实现。

五、过压保护在开关电源输出电压过高时,可能会对电路产生损害,甚至可能对使用者造成危害。

因此,需要在开关电源控制原理设计中,考虑到过压保护。

过压保护可以通过输入过滤、过压保护电路等多种方式实现。

综上所述,开关电源的控制原理是一个涉及多个方面的复杂问题,需要进行全面的考虑和设计。

在设计过程中,需要根据实际情况综合考虑各种因素,确保电源能够稳定可靠的工作。

反激式开关电源(flyback)环路设计基础

反激式开关电源(flyback)环路设计基础

反激式开关电源(flyback)是一种常见的电源结构,广泛应用于电子设备中。

它具有结构简单、成本低廉、效率高等优点,在消费电子、工业控制和通信设备等领域被广泛应用。

本文旨在介绍反激式开关电源环路设计的基础知识,包括工作原理、设计步骤和注意事项。

一、反激式开关电源的工作原理1.1 反激式开关电源的基本结构反激式开关电源由输入滤波器、整流桥、高频变压器、功率开关器件、输出整流滤波器、控制电路等组成。

其中,高频变压器是反激式开关电源的关键部件,通过变压器实现输入电压的隔离和变换,功率开关器件则控制变压器的工作状态,实现电源的调节和稳定输出。

1.2 反激式开关电源的工作原理反激式开关电源通过功率开关器件周期性地将输入电压斩波,将输入电能存储在变压器的磁场中,然后再将其转换为输出电压。

在工作周期的后半段,存储的能量释放到输出负载上,从而实现对输出电压的调节。

通过控制功率开关器件的导通时间和断态时间,可以实现对输出电压的调节和稳定。

二、反激式开关电源环路设计的基础知识2.1 反激式开关电源的设计步骤(1)确定电源的输入输出参数:包括输入电压范围、输出电压、输出电流、负载调整范围等;(2)选择功率开关器件和高频变压器:根据电源的输入输出参数和工作频率选择合适的功率开关器件和高频变压器;(3)设计反激式开关电源的控制电路:根据所选的功率开关器件和高频变压器设计相应的控制电路,包括PWM控制电路、电源启动电路等;(4)设计输入输出滤波器和保护电路:设计输入输出滤波器,保证电源的输入输出稳定和干净,设计过压、过流、过温等保护电路,保证电源的安全稳定工作。

2.2 反激式开关电源环路设计的注意事项(1)磁性元件的设计:高频变压器和输出感应元件的设计是整个反激式开关电源设计的关键,应合理设计磁芯、线圈匝数等参数,保证磁性元件承载功率、效率和体积的平衡;(2)功率开关器件的选择和驱动:应选择合适的功率开关器件,并设计合理的驱动电路,保证功率开关器件的可靠工作和转换效率;(3)控制电路的设计:应根据功率开关器件的工作特性和工作频率设计合适的PWM控制电路和反馈控制电路,保证电源的稳定可调;(4)输入输出滤波器和保护电路的设计:应合理设计输入输出滤波器和保护电路,保证电源的输入输出稳定和安全可靠。

开关电源中的比较常见的双重环路及其应用

开关电源中的比较常见的双重环路及其应用

开关电源中的比较常见的双重环路及其应用
工程师都知道,开关电源中离不开环路设计。

环路影响到开关电源的诸多性能指标,譬如输出纹波,动态特性,稳定性,保护特性等。

这篇文章将从下面四个方面讲一讲开关电源中的比较常见的双重环路及其应用:
 1.单电压环与单电流环
 2.电压环和电流环的双环竞争
 3.电压外环电流内环
 4.两种双环控制在车载电源产品中的应用
 一、单电压环与单电流环
 闭环就是通过对被控制变量进行负反馈与设定值进行比较,得到他们之间的偏差,然后通过控制偏差,来实现被控变量稳定在设定值附近。

生活中最常见的一个负反馈闭环就是骑自行车,如果我们想走一条直线,而实际往左偏了,就会将车把手往右调整,如果往右偏了,就往左调整。

最后肯定稳定在这条想走的路线的附近。

如果自行车整个过程一直都是向左偏离一个角度,这个就是静差,也叫稳态误差。

如果自行车稳定在设定路线的左右偏差一点,这个就是误差摆幅,有些场景下也叫纹波峰峰值。

车辆一直行使在设定路线附近,而且偏差小,遇到紧急避让的情况下(动态扰动)也绝不摔倒——这就是好的环路设计。

 在比较简单的开关电源中,只需要一个单闭环就可以实现产品的恒压或者恒流输出。

对于恒压源,只需要控制输出电压稳定,对于恒流源只需要控制输出电流稳定。

这里通过最常见的buck电路的单电压闭环和单电流闭环来来分析一下。

以最常见的PI控制作为补偿控制环节。

 1)其电压单环的控制闭环框图如下:其中Kadc为采样及反馈环节,Plant。

开关电源控制环路设计

开关电源控制环路设计

开关电源控制环路设计前馈环节通常由开关电源的输出电压或电流采样电路、误差放大器、比较器和PWM控制器等组成。

开关电源的输出电压或电流通过采样电路进行实时的电压或电流测量,并将测量值与设定值进行比较。

误差放大器将比较器输出的误差信号放大,并输出给PWM控制器。

PWM控制器根据误差信号调整开关管的导通和关断时间,从而控制开关电源输出电压或电流的稳定性。

反馈环节通常由输出电压或电流反馈回路组成。

反馈回路通过将开关电源输出电压或电流与参考电压或电流进行比较,得到误差信号,并将其输入到前馈环节的比较器中。

反馈环节的作用是通过不断地调整开关电源的工作状态,使输出电压或电流尽量接近设定值,并抵消部分外部环境的影响,以保持开关电源稳定工作。

在开关电源控制环路设计中,需要考虑诸多因素。

首先是前馈环节的设计。

前馈环节应具有高增益和低失真的特性,能够准确地将输出电压或电流的变化转换为误差信号,并将其输出给PWM控制器。

其次是PWM控制器的设计。

PWM控制器应能够按照误差信号的大小和方向,精确地调整开关管的导通和关断时间,并保持开关电源输出电压或电流的稳定性。

最后是反馈环节的设计。

反馈环节应能够准确地测量开关电源的输出电压或电流,并将其输入到前馈环节的比较器中。

同时,反馈环节还需考虑去除噪声和抑制振荡等问题,以保证闭环控制系统的稳定性和可靠性。

开关电源控制环路设计的关键是要平衡稳定性和动态响应速度。

稳定性是指开关电源在加载变化或输入电压波动等情况下,输出电压或电流能够尽快地恢复到设定值并保持稳定;而动态响应速度则是指开关电源对设定值的变化能够迅速地响应。

在设计中,需要根据具体的应用需求和制约条件,选择合适的控制算法、滤波器和补偿网络等,以使开关电源控制环路设计达到较好的稳定性和动态响应速度。

总之,开关电源控制环路设计是一个复杂而关键的任务。

它需要综合考虑前馈环节、反馈环节以及稳定性和动态响应速度等因素,以实现开关电源的稳定性和输出精度要求。

最详细的开关电源反馈回路设计

最详细的开关电源反馈回路设计

最详细的开关电源反馈回路设计开关电源反馈回路设计是个挺有意思的话题。

听起来高深,其实很多细节值得我们好好琢磨。

今天我们就从几个方面聊聊,深入浅出,轻松搞定这些概念。

一、反馈回路的基本概念1.1 什么是反馈回路首先,反馈回路就是把输出信号的一部分送回输入。

这么做的目的是调节输出,使其稳定。

想象一下,开关电源就像一个小孩,时不时需要父母的指导。

没有这些反馈,小孩可能就会偏离轨道,输出的电压也可能出现大起大落。

1.2 反馈类型反馈可以分为两种:正反馈和负反馈。

正反馈就像是推波助澜,鼓励小孩继续做某件事情。

而负反馈则是提醒小孩停下来,纠正错误。

大部分情况下,我们更喜欢负反馈,因为它能帮助系统保持稳定。

通过负反馈,输出电压的波动会被抑制,电源的性能也会更可靠。

二、开关电源的基本结构2.1 开关管的作用开关电源的核心是开关管。

它负责控制电流的开关,调节输出电压。

可以把它想象成一个开关,时而打开,时而关闭。

这个过程中,它的工作频率决定了电源的效率。

频率高了,能量损失就小,输出稳定;频率低了,损失就增加,系统也会变得不稳定。

2.2 变压器的功能变压器在这里也占据重要位置。

它的作用是将输入的高压电压转换为适合的低压电压。

变压器就像是一个聪明的调酒师,能将各种成分混合,调配出最合适的“鸡尾酒”。

这里的鸡尾酒就是我们所需的电压。

2.3 整流与滤波整流和滤波是最后一步,确保我们得到的是平滑的直流电。

整流就像是把粗糙的石头打磨成光滑的宝石。

滤波则是去除电流中的杂音,确保输出的电流干净。

这个过程至关重要,稍有不慎,电源的稳定性就会受到影响。

三、反馈回路设计的要点3.1 控制环路设计设计反馈回路时,控制环路的选择非常关键。

控制环路决定了系统的响应速度和稳定性。

要确保环路的增益合适。

增益太高,系统可能会出现震荡;增益太低,系统反应迟缓。

这里的平衡就像走钢丝,得小心翼翼。

3.2 选择合适的传感器在设计反馈回路时,传感器的选择也不能忽视。

开关电源工作原理与设计

开关电源工作原理与设计

开关电源工作原理与设计1. 概述开关电源是一种将电能从一种形式转换成另一种形式的电源装置。

它通过开关器件(如晶体管、MOSFET等)来精确控制电路的通断,从而实现对电能的高效调节和转换。

本文将详细介绍开关电源的工作原理和设计。

2. 开关电源工作原理2.1 输入电路开关电源的输入电路通常包括输入滤波电路、整流电路和功率因数校正电路。

-输入滤波电路用于去除输入电源中的高频噪声和杂散信号。

- 整流电路将交流输入转换为直流信号,常见的整流方式有单相整流桥和三相整流桥。

- 功率因数校正电路主要用于改善电源对电网的功率因数,提高电能的利用率。

2.2 PFC控制电路功率因数校正(PFC)是开关电源中的一个重要环节,通过控制输入电流和输入电压之间的相位关系,提高整体效率和功率因数。

常见的PFC控制技术有边界模式控制和谐振模式控制。

2.3 DC-DC变换器DC-DC变换器是开关电源的核心部分,它将输入的直流电压转换为需要的输出电压。

常见的DC-DC变换器包括降压、升压、降压升压和反激式变换器。

2.4 控制电路开关电源中的控制电路主要负责检测输出电压和输出电流,并通过反馈回路对开关器件的导通和断开进行精确控制。

常见的控制技术有电压模式控制和电流模式控制。

3. 开关电源的设计要点3.1 选型与设计在开关电源的设计过程中,需要根据实际需求选择合适的开关器件、电容和电感等元件,并进行适当的参数计算和仿真分析,以保证整体性能和稳定性。

3.2 效率和功率因数开关电源的效率和功率因数是评估其性能的重要指标。

通过合理的拓扑结构设计、优化控制算法和合适的滤波电路,可以提高开关电源的效率和功率因数。

3.3 温度管理由于开关电源中包含许多功率器件,温度管理是开关电源设计中需要重点考虑的问题。

合理的散热设计和温度保护措施可以提高开关电源的可靠性和寿命。

3.4 EMI/EMC设计开关电源可能会产生电磁干扰和接收外部干扰,因此应进行合适的EMI/EMC设计,包括滤波、屏蔽和接地等,以满足相关标准和要求。

恒压恒流输出式单片开关电源的设计原理

恒压恒流输出式单片开关电源的设计原理

恒压/恒流输出式单片开关电源可简称为恒压/恒流源。

其特点是具有两个控制环路,一个是电压控制环,另一个为电流控制环。

当输出电流较小时,电压控制环起作用,具有稳压特性,它相当于恒压源;当输出电流接近或达到额定值时,通过电流控制环使IO维持恒定,它又变成恒流源。

这种电源特别适用于电池充电器和特种电机驱动器。

下面介绍一种低成本恒压/恒流输出式开关电源,其电流控制环是由晶体管构成的,电路简单,成本低,易于制作。

1.恒压/恒流输出式开关电源的工作原理7.5V、1A恒压/恒流输出式开关电源的电路如图1所示。

它采用一片TOP200Y型开关电源(IC1),配PC817A型线性光耦合器(IC2)。

85V~256V交流输入电压u经过EMI滤波器L2、C6)、整流桥(BR)和输入滤波电容(C1),得到大约为82V~375V的直流高压UI,再通过初级绕组接TOP200Y的漏极。

由VDZ1和VD1构成的漏极箝位保护电路,将高频变压器漏感形成的尖峰电压限定在安全范围之内。

VDZ1采用BZY97C200型瞬态电压抑制器,其箝位电压UB=200V。

VD1选用UF4005型超快恢复二极管。

次级电压经过VD2、C2整流滤波后,再通过L1、C3滤波,获得+7.5V输出。

VD2采用3A/70V的肖特基二极管。

反馈绕组的输出电压经过VD3、C4整流滤波后,得到反馈电压UFB=26V,给光敏三极管提供偏压。

C5为旁路电容,兼作频率补偿电容并决定自动重启频率。

R2为反馈绕组的假负载,空载时能限制反馈电压UFB不致升高。

该电源有两个控制环路。

电压控制环是由1N5234B型62V稳压管(VDZ2)和光耦合器PC817A(IC2)构成的。

其作用是当输出电流较小时令开关电源工作在恒压输出模式,此时VDZ2上有电流通过,输出电压由VDZ2的稳压值(UZ2)和光耦中led的正向压降(UF)所确定。

电流控制环则由晶体管VT1和VT2、电流检测电阻R3、光耦IC2、电阻R4~R7、电容C8构成。

开关电源环路设计(详细)

开关电源环路设计(详细)

6.4 开关电源闭环设计从反馈基本概念知道:放大器在深度负反馈时,如输入不变,电路参数变化、负载变化或干扰对输出影响减小。

反馈越深,干扰引起的输出误差越小。

但是,深反馈时,反馈环路在某一频率附加相位移如达到180°,同时输出信号等于输入信号,就会产生自激振荡。

开关电源不同于一般放大器,放大器加负反馈是为了有足够的通频带,足够的稳定增益,减少干扰和减少线性和非线性失真。

而开关电源,如果要等效为放大器的话,输入信号是基准(参考)电压U ref ,一般说来,基准电压是不变的;反馈网络就是取样电路,一般是一个分压器,当输出电压和基准一定时,取样电路分压比(k v )也是固定的(U o =k v U ref )。

开关电源不同于放大器,内部(开关频率)和外部干扰(输入电源和负载变化)非常严重,闭环设计目的不仅要求对以上的内部和外部干扰有很强抑制能力,保证静态精度,而且要有良好的动态响应。

对于恒压输出开关电源,就其反馈拓扑而言,输入信号(基准)相当于放大器的输入电压,分压器是反馈网络,这就是一个电压串联负反馈。

如果恒流输出,就是电流串联负反馈。

如果是恒压输出,对电压取样,闭环稳定输出电压。

因此,首先选择稳定的参考电压,通常为5~6V 或2.5V ,要求极小的动态电阻和温度漂移。

其次要求开环增益高,使得反馈为深度反馈,输出电压才不受电源电压和负载(干扰)影响和对开关频率纹波抑制。

一般功率电路、滤波和PWM 发生电路增益低,只有采用运放(误差放大器)来获得高增益。

再有,由于输出滤波器有两个极点,最大相移180°,如果直接加入运放组成反馈,很容易自激振荡,因此需要相位补偿。

根据不同的电路条件,可以采用Venable 三种补偿放大器。

补偿结果既满足稳态要求,又要获得良好的瞬态响应,同时能够抑制低频纹波和对高频分量衰减。

6.4.1 概述图6.31为一个典型的正激变换器闭环调节的例子。

可以看出是一个负反馈系统。

ti 开关电源的原理和设计手册

ti 开关电源的原理和设计手册

开关电源指的是利用开关管进行开关控制的电源,相较于传统的线性电源,开关电源具有体积小、效率高、可靠性强等优点,因此得到了广泛的应用。

开关电源的原理和设计手册是开发和应用工程师们必备的基础知识,本文将围绕开关电源的原理和设计手册展开详细的介绍。

一、开关电源的工作原理1. 开关电源的基本结构开关电源一般由整流器、滤波器、开关管、变压器、控制电路、稳压电路等部分组成。

其中开关管作为关键部件,通过不断地打开和关闭来控制电压的变化,从而实现电源的输出。

2. 开关电源的工作原理开关电源的工作原理是通过开关管控制输入电压的断断续续,将高压直流电转换成低压直流电,再通过稳压电路保证输出电压的稳定性。

在开关管导通时,电压源充电,并将能量储存在电感中;在开关管关断时,电感释放能量,输出电压使负载得到供电。

二、开关电源的设计手册1. 开关电源设计的基本流程(1)确定设计需求和规格要求在设计开关电源之前,需要明确所需的电压、电流、功率等参数,以及工作环境、安全标准等规格要求。

(2)选择合适的开关元件和辅助元件根据设计需求,选择合适的开关管、变压器、电感、电容等元件,保证电源的性能和可靠性。

(3)设计控制电路和稳压电路通过合理的控制电路和稳压电路设计,实现对输入电压的精确控制和输出电压的稳定性。

(4)进行系统仿真和调试利用仿真软件对设计的开关电源进行系统仿真,验证电源的性能和稳定性,并在实际电路中进行调试和优化。

2. 开关电源的设计要点(1)电源的高效率高效率是开关电源设计的重要目标,可通过合理选择元件和优化电路结构来提高电源的效率。

(2)电源的稳定性稳定的输出电压是电源设计的关键,需要通过稳压电路和反馈控制来保证电源输出的稳定性。

(3)电源的过流、过压、过温保护为了保护电源和负载安全,需要在设计中考虑过流、过压、过温保护功能,避免出现意外故障和损坏。

(4)电源的EMI设计开关电源在工作时会产生电磁干扰,需要在设计中考虑电源的EMI设计,减小对周围电路的干扰。

开关电源控制环路设计

开关电源控制环路设计

开关电源控制环路设计稳压电源工作原理我们需要什么样的电源?2、与环路相关的基本概念电源系统框图Bode图(由奈奎斯特图测定稳态裕量是很麻烦的)穿越频率和相位裕量,增益裕量■ 穿越频率fc(crossover frequency):增益曲线穿越0dB线的频率点■ 相位裕量phase margin):相位曲线在穿越频率处的相位和-180度之间的相位差■ 增益裕量(Gain margin):增益曲线在相位曲线达到-180度的频率处对应的增益环路稳定性判据根据奈奎斯特稳定性判据,当系统的相位裕量大于0度时,此系统是稳定的。

■ 准则1:在穿越频率处,总开环系统要有大于30度的相位裕量;■ 准则2:为防止-2增益斜率的电路相位快速变化,系统的开环增益曲线在穿越频率附近的增益斜率应为-1( -20db/10倍频程)■ 准则3: 增益裕量是开环系统的模的度量,该变化可能导致曲线刚好通过-1 点。

一般需要6db的增益裕量。

备注:应当注意,并不是绝对要求开环增益曲线在穿越频率附近的增益斜率为必须为-1,但是由于-1增益斜率对应的相位曲线相位延迟较小,且变化相对缓慢,因此它能够保证,当某些环节的相位变化被忽略时,相位曲线仍将具有足够的相位裕量,使系统保持稳定。

要满足上述的3个准则,我们需要知道开环系统所有环节的增益和相位情况,引入传递函数,零极点的概念可以很好的分析这个问题。

传递函数零点极点如果输入和反馈支路是由不同的电阻和电容构成的,则幅频和相频曲线将会有许多种形式。

把阻抗Z1和Z2用复变量s(s=jw)表示,经过一系列的数学运算,将会得到传递函数。

由传递函数就可以绘制增益/相位曲线。

通过代数运算,把G(s)表示为G(s)=N(s)/D(s),其分子和分母都是s的函数,然后将分子和分母进行因式分解,表示成多个因式的乘积,即G(s)=N(s)/D(s)=[(1+s/2*pi*fz1)(1+s/2*pi*fz2)(1+/2*pi*fz3)]/[(s/2*pi*f0)*(1+s/2*pi*fp1)*( 1+s/2*pi*fp2)* (1+s/2*pi*fp3)],分子中对应的频率fz为零点频率,而与分母中对应的频率称fp为极点频率。

开关电源 双环控制原理

开关电源 双环控制原理

开关电源双环控制原理开关电源双环控制原理介绍开关电源是一种用于将输入电源转化为稳定输出电源的电子设备。

它通过开关器件的开关动作,在输入端和输出端之间实现高效能的能量转换。

双环控制原理是开关电源中常用的一种控制方法,可以有效提高电源的稳定性和响应速度。

单环控制原理在了解双环控制原理之前,先来了解一下单环控制原理。

单环控制原理是开关电源中最基本的控制方法之一,它通过对输出电压进行反馈控制来调节开关器件的开关频率。

当输出电压过高时,控制器会减少开关频率,以降低输出电压;反之,当输出电压过低时,控制器会增加开关频率,以提高输出电压。

单环控制原理简单直接,但存在响应速度较慢、稳定性差等缺点。

双环控制原理为了解决单环控制原理存在的问题,双环控制原理被提出并得到广泛应用。

双环控制原理基于单环控制原理,在输出电压反馈之外,额外加入了一个电流环,实现更精准的控制。

电压环电压环负责检测输出电压的变化,并将反馈信号输入到控制器中。

控制器会根据电压环的反馈信号来调节开关频率,确保输出电压稳定在设定值附近。

电流环电流环负责检测输出电流的变化,并将反馈信号输入到控制器中。

控制器根据电流环的反馈信号来动态调整开关器件的工作状态,以控制输出电压的精准度和稳定性。

双环控制的优势相比于单环控制,双环控制具有以下优势: 1. 响应速度更快:双环控制可以同时对电压和电流进行监测和调节,使得电源对负载变化的响应速度更快。

2. 稳定性更好:通过电流环的引入,双环控制可以更精确地控制输出电压,提高电源的稳定性。

3. 适应性更强:双环控制可以根据不同的工作条件和负载变化自动调整参数,适应不同的工作环境。

总结开关电源双环控制原理是一种能够提高电源稳定性和响应速度的控制方法。

通过电压环和电流环的协同作用,双环控制实现了对输出电压和输出电流的精确控制。

双环控制相较于单环控制有着更好的稳定性、更快的响应速度和更强的适应能力。

在实际应用中,双环控制已得到广泛应用,成为开关电源设计中的重要控制方法之一。

开关电源结构及基本原理

开关电源结构及基本原理

应用
开关电源广泛应用于计算机、通 讯、电力、工业控制等领域,为 各种设备提供稳定的直流电源。
发展
随着科技的不断进步,开关电源 技术也在不断发展,未来将朝着 更高效率、更小体积、更高稳定 性、更智能化的方向发展。
02
开关电源的基本结构
输入电路
01
02
03
输入滤波电路
用于滤除电网中的高频噪 声,防止对电源造成干扰。
1 2
选择合适的开关管和二极管
根据电源的输入输出电压、电流和开关频率等参 数,选择合适的开关管和二极管。
计算电感的匝数和电容的容量
根据电源的工作原理和实际需求,计算电感的匝 数和电容的容量,以确保电源的正常运行。
3
考虑热设计和散热
在选择元器件时,应考虑热设计和散热问题,以 确保元器件在工作过程中不会过热损坏。
整流电路
将交流电转换为脉动的直 流电。
滤波电路
平滑整流后的电压,减少 纹波。
功率转换电路
开关管
控制电源的通断,实现电能的高效转 换。Βιβλιοθήκη 变压器输出整流滤波电路
将变压器输出的脉动直流电转换为平 滑的直流电。
实现电压的隔离和转换,传递能量。
输出电路
输出整流滤波电路
滤除脉动直流电中的交流成分,提供 稳定的输出电压。
关态
开关管截止,原边电流减小,变压器 副边产生反电动势,能量回馈到原边 。
电压与电流的转换原理
变压器
利用电磁感应原理,将输入的电 压或电流转换为另一组电压或电
流。
开关管
控制变压器的工作状态,实现电压 和电流的转换。
控制电路
监测输出电压或电流,调整开关管 的工作状态,保持输出电压的稳定。

实现开关电源的环路控制

实现开关电源的环路控制

在 开关模 式 的功率变 换 器中 ,控制 方法 为 一0 B/ O 频 , 2d 1 倍 增益 斜率 为 一 ;±4 d 1 0 B/
大 多采用 脉宽调 制技 术 , 当输入或 者 负载 发 1 倍频 的增 益 曲线 的斜 率为 ±2 O 。
生 变化时 , 过 调节 功率开 关的导 通 时间使 通
确 定 ,这 样 就 可 以 求 得
LC输 出滤 波 器ห้องสมุดไป่ตู้中的参 数 L 、 、 s 和 Ro o Co Rer 。 根 据 式 (1 ), 利 用
2 a反馈环 路增益曲线
wwe .m n 02 重 殪 畦 w.pc . l0 . e w o c 28 孑 品尿 田
维普资讯
1L C输m滤波; } } ;
{ }

由 图 1 以 得 出输 出 滤 波 器 的 传 输 函 数 : 可
G :— 一 :— — …
zf) 2s ssC L Ro C L R + o , I +Zf) lfo o + o o ,) L ] s

f 一



上 一L .
_ L j I
I I 1 0 10 0 f
l }
● 1

— — .


\ 、
— —

/ J _



l I j) ( j) I 0 I
\ j
2 b反馈环路相频 曲线
析 , 们 以正 激变 换器为 例 , 相关 参数为 : 传递 函数 是输 出与输 入 的比值 。 我 其 如果令 上式 输 出 电压 Vo: 2 正常输 出电流 I 1 A; 分 子 N() 0 可得 出系统 的零 点 ; 1 V; o: 0 s为 , 分母 D() s

开关电源(Buck电路)的小信号模型及环路设计

开关电源(Buck电路)的小信号模型及环路设计

0 引言设计一个具有良好动态和静态性能的开关电源时,控制环路的设计是很重要的一个部分。

而环路的设计与主电路的拓扑和参数有极大关系。

为了进行稳定性分析,有必要建立开关电源完整的小信号数学模型。

在频域模型下,波特图提供了一种简单方便的工程分析方法,可用来进行环路增益的计算和稳定性分析。

由于开关电源本质上是一个非线性的控制对象,因此,用解析的办法建模只能近似建立其在稳态时的小信号扰动模型,而用该模型来解释大范围的扰动(例如启动过程和负载剧烈变化过程)并不完全准确。

好在开关电源一般工作在稳态,实践表明,依据小信号扰动模型设计出的控制电路,配合软启动电路、限流电路、钳位电路和其他辅助部分后,完全能使开关电源的性能满足要求。

开关电源一般采用Buck电路,工作在定频PWM控制方式,本文以此为基础进行分析。

采用其他拓扑的开关电源分析方法类似。

1 Buck电路电感电流连续时的小信号模型为理想开图1为典型的Buck电路,为了简化分析,假定功率开关管S和D1关,滤波电感L为理想电感(电阻为0),电路工作在连续电流模式(CCM)下。

R为滤波电容C的等效串联电阻,R o为负载电阻。

各状态变量的正方向定义如图e1中所示。

图1 典型Buck电路S导通时,对电感列状态方程有L=U- U o (1)in续流导通时,状态方程变为S断开,D1L=-U(2)o占空比为D时,一个开关周期过程中,式(1)及式(2)分别持续了DT s和(1-D)T s的时间(T s为开关周期),因此,一个周期内电感的平均状态方程为L=D(U-U o)+(1-D)(-U o)=DU in-U o(3)in稳态时,=0,则DU in=U o。

这说明稳态时输出电压是一个常数,其大小与占空比D和输入电压U in成正比。

由于电路各状态变量总是围绕稳态值波动,因此,由式(3)得L=(D+d)(Uin+)-(U o+) (4)式(4)由式(3)的稳态值加小信号波动值形成。

开关电源控制环路设计(初级篇)

开关电源控制环路设计(初级篇)

开关电源控制环路设计(初级篇)电源联盟---高可靠电源行业第一自媒体在这里有电源技术干货、电源行业发展趋势分析、最新电源产品介绍、众多电源达人与您分享电源技术经验,关注我们,搜索微信公众号:Power-union,与中国电源行业共成长!开关电源控制环路设计(初级篇)1、环路和直流稳压电源的关系稳压电源工作原理我们需要什么样的电源?原文档:开关电源控制环路设计(初级篇)下载方法:请看文章底部第一条留言2、与环路相关的基本概念电源系统框图Bode图(由奈奎斯特图测定稳态裕量是很麻烦的)穿越频率和相位裕量,增益裕量■ 穿越频率fc(crossover frequency):增益曲线穿越0dB线的频率点■ 相位裕量phase margin):相位曲线在穿越频率处的相位和-180度之间的相位差■ 增益裕量(Gain margin):增益曲线在相位曲线达到-180度的频率处对应的增益环路稳定性判据根据奈奎斯特稳定性判据,当系统的相位裕量大于0度时,此系统是稳定的。

■ 准则1:在穿越频率处,总开环系统要有大于30度的相位裕量;■ 准则2:为防止-2增益斜率的电路相位快速变化,系统的开环增益曲线在穿越频率附近的增益斜率应为-1(-20db/10倍频程)■ 准则3: 增益裕量是开环系统的模的度量,该变化可能导致曲线刚好通过-1 点。

一般需要6db的增益裕量。

备注:应当注意,并不是绝对要求开环增益曲线在穿越频率附近的增益斜率为必须为-1,但是由于-1增益斜率对应的相位曲线相位延迟较小,且变化相对缓慢,因此它能够保证,当某些环节的相位变化被忽略时,相位曲线仍将具有足够的相位裕量,使系统保持稳定。

要满足上述的3个准则,我们需要知道开环系统所有环节的增益和相位情况,引入传递函数,零极点的概念可以很好的分析这个问题。

传递函数零点极点如果输入和反馈支路是由不同的电阻和电容构成的,则幅频和相频曲线将会有许多种形式。

把阻抗Z1和Z2用复变量s(s=jw)表示,经过一系列的数学运算,将会得到传递函数。

详解恒压-恒流输出式单片开关电源的设计原理

详解恒压-恒流输出式单片开关电源的设计原理

详解恒压/恒流输出式单片开关电源的设计原理恒压/恒流输出式单片开关电源可简称为恒压/恒流源。

其特点是具有两个控制环路,一个是电压控制环,另一个为电流控制环。

当输出电流较小时,电压控制环起作用,具有稳压特性,它相当于恒压源;当输出电流接近或达到额定值时,通过电流控制环使IO维持恒定,它又变成恒流源。

这种电源特别适用于电池充电器和特种电机驱动器。

下面介绍一种低成本恒压/恒流输出式开关电源,其电流控制环是由晶体管构成的,电路简单,成本低,易于制作。

 恒压/恒流输出式开关电源的工作原理 7.5V、1A恒压/恒流输出式开关电源的电路如图1所示。

它采用一片TOP200Y型开关电源(IC1),配PC817A型线性光耦合器(IC2)。

85V~256V交流输入电压u经过EMI滤波器L2、C6)、整流桥(BR)和输入滤波电容(C1),得到大约为82V~375V的直流高压UI,再通过初级绕组接TOP200Y的漏极。

由VDZ1和VD1构成的漏极箝位保护电路,将高频变压器漏感形成的尖峰电压限定在安全范围之内。

VDZ1采用BZY97 C200型瞬态电压抑制器,其箝位电压UB=200V。

VD1选用UF4005型超快恢复二极管。

次级电压经过VD2、C2整流滤波后,再通过L1、C3滤波,获得+7.5V输出。

VD2采用3A/70V的肖特基二极管。

反馈绕组的输出电压经过VD3、C4整流滤波后,得到反馈电压UFB=26V,给光敏三极管提供偏压。

C5为旁路电容,兼作频率补偿电容并决定自动重启频率。

R2为反馈绕组的假负载,空载时能限制反馈电压UFB不致升高。

 该电源有两个控制环路。

电压控制环是由1N5234B型6 2V稳压管(VDZ2)和。

tl494型开关电源,3脚反馈4脚死区控制功能和原理

tl494型开关电源,3脚反馈4脚死区控制功能和原理

tl494型开关电源,3脚反馈4脚死区控制功能和原理TL494是一种固定频率的脉冲宽度调制(PWM)电路,广泛应用于开关电源设计中。

其3脚反馈和4脚死区控制功能及原理如下:
1. 3脚反馈:TL494的3脚是一个相位校正和增益控制端。

通过连接外部元件,可以对电路的增益和相位进行校正,实现更好的性能。

在反馈控制环路中,如果检测到的输出电压高于期望值,3脚会接收到这个信息,并相应地调整脉宽调制器的输出,从而降低输出电压。

反之,如果检测到的输出电压低于期望值,3脚会发送一个信号,使脉宽调制器的输出增加,从而提高输出电压。

2. 4脚死区控制:死区控制是一种用于防止开关电源中开关管频繁切换的方法。

它通过在开关管的开启和关闭之间设置一个短暂的延迟,防止开关管在输入电压或输出电压的小幅波动下频繁开启和关闭。

在TL494中,4脚是间歇期调理端,可以接受0~
3.3V的电压。

当4脚上加的电压越高,截止时间从2%线怀变化到100%的时间就越长。

通过调整4脚上的电压,可以设置死区时间。

总之,TL494的3脚反馈和4脚死区控制功能及原理是开关电源设计中非常重要的部分。

通过合理地调整这些参数,可以优化电源的性能,提高其稳定性和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开关电源控制环设计原理1. 绪论在开关模式的功率转换器中,功率开关的导通时间是根据输入和输出电压来调节的。

因而,功率转换器是一种反映输入与输出的变化而使其导通时间被调制的独立控制系统。

由于理论近似,控制环的设计往往陷入复杂的方程式中,使开关电源的控制设计面临挑战并且常常走入误区。

下面几页将展示控制环的简单化近似分析,首先大体了解开关电源系统中影响性能的各种参数。

给出一个实际的开关电源作为演示以表明哪些器件与设计控制环的特性有关。

测试结果和测量方法也包含在其中。

2. 基本控制环概念2.1 传输函数和博得图系统的传输函数定义为输出除以输入。

它由增益和相位因素组成并可以在博得图上分别用图形表示。

整个系统的闭环增益是环路里各个部分增益的乘积。

在博得图中,增益用对数图表示。

因为两个数的乘积的对数等于他们各自对数的和,他们的增益可以画成图相加。

系统的相位是整个环路相移之和。

2.2 极点数学上,在传输方程式中,当分母为零时会产生一个极点。

在图形上,当增益以20dB 每十倍频的斜率开始递减时,在博得图上会产生一个极点。

图1举例说明一个低通滤波器通常在系统中产生一个极点。

其传输函数和博得图也一并给出。

图12.3 零点零点是频域范围内的传输函数当分子等于零时产生的。

在博得图中,零点发生在增益以20dB每十倍频的斜率开始递增的点,并伴随有90度的相位超前。

图2描述一个由高通滤波器电路引起的零点。

图2存在第二种零点,即右半平面零点,它引起相位滞后而非超前。

伴随着增益递增,右半平面零点引起90度的相位滞后。

右半平面零点经常出现于BOOST和BUCK-BOOST 转换器中,所以,在设计反馈补偿电路的时候要非常警惕,以使系统的穿越频率大大低于右半平面零点的频率。

右半平面零点的博得图见图3。

图33.0 开关电源的理想增益相位图设计任何控制系统首先必须清楚地定义出目标。

通常,这个目标是建立一个简单的博得图以达到最好的系统动态响应,最紧密的线性和负载调节率和最好的稳定性。

理想的闭环博得图应该包含三个特性:足够的相位裕量,宽的带宽,和高增益。

高的相位裕量能阻尼振荡并缩短瞬态调节时间。

宽的带宽允许电源系统快速响应线性和负载的突变。

高的增益保证良好的线性和负载调节率。

图43.1 相位裕量参看图4,相位裕量是在穿越频率处相位高于0度的数量。

这不同于大多数控制系统教科书里提出的从-180度开始测量相位裕量。

其中包括DC负反馈所提供的180度初始相移。

在实际测量中,这180度相移在DC处被补偿并允许相位裕量从0度开始测量。

根据奈奎斯特稳定性判据,当系统的相位裕量大于0度时,此系统是稳定的。

然而,有一个边界稳定区域存在,此处(指边界稳定区,译注),系统由于瞬态响应引起振荡到经过一个长的调节时间最终稳定下来。

如果相位裕量小于45度,则系统在边界稳定。

当相位裕量超过45度时,能提供最好的动态响应,短的调节时间和最少过冲。

3.2 增益带宽增益带宽是指单位增益时的频率,见图4,增益带宽就是穿越频率Fcs。

最大穿越频率的主要限制因素是电源的开关频率。

根据采样定理,如果采样频率小于2倍信号频率(更严谨一点的说法是应该小于2倍最大信号频率,译注),则被采样的信息就不能被完全读取。

在开关电源中,开关频率可以从输出纹波中看得出来,它是错误的信息,并且必须不被控制环路所传递。

因此,系统的穿越频率必须小于开关频率的一半,否则,开关噪声和纹波会扭曲输出电压中想要得到的信息,并导致系统不稳定。

3.3 增益高的系统增益对于保证好的线性和负载调节率提供重要贡献。

它能够使PWM比较器在响应输入输出电压的变化时精确地改变电源开关的占空比,通常,需要在决定高增益和低相位裕量之间做出权衡。

4. 实际设计分析举例用经典环路控制分析方法,开关调整器的控制环分为四个主要部分:输出滤波器,PWM 电路,误差放大器补偿和反馈。

图5用方块图举例说明这四部分,图6举例说明一个开关电源电路图。

图5图6首先,输出电压被反馈网络降压,然后把这个反馈电压送入误差放大器,使之与基准电压相比较而产生一个误差电压信号。

脉宽调制部分拾取这个误差电压并且把它与功率变压器的电流相比较并转化为合适的占空比去控制输出部分功率脉冲调制的数量。

输出滤波器部分使来自于功率变压器的斩波电压或电流平滑,使反馈控制环完善。

下面确定每一部分的增益和相位,并把他们联合起来形成系统的传输函数和系统的增益相位点。

4.1 反馈网络H(s)反馈网络把输出电压降到误差放大器参考电压的水平,其传输式按简单的电阻分压式得到:4.2 输出滤波部分G1(S)在电流模式控制系统中,输出电流被调节以达到目标的输出电压。

输出滤波部分把脉动的输出电流转换为目标输出电压。

小信号分析得到:输出电容的ESR和反馈网络的电阻(R1+R2=RFB)反映出输出滤波器传输函数的特性。

图7的电路分析给出ESR和RSENSE的影响。

传输函数G1(S)给出RFB的初始低频增益。

这个增益在fPOLE=1/2*π*(RFB+ESR)*C处开始滚降,并在fZERO=1/2*π*ESR*C变为水平。

G1(S)的博得图见图8。

图74.3 PWM电路部分G2(S)光耦电路把误差放大网路产生的误差信号传输到主边。

AS3842 PWM电路把这个误差电压与通过主边功率变压器的电流进行比较。

然后功率场效应管的占空比被调制,以提供足够的电流到副边来维持想要的输出。

光耦的小信号传输函数是与光耦的电流传输比成比例的固定增益。

R5(原文误为R6,式5一并改为R5,译注)是与光耦的二极管串联的限流电阻,并且是AS3842误差放大器的输出阻抗(此句应该理解为R5是这个AS3842开关电源电路中,误差放大器部分的输出阻抗,译注)。

这一点在应用文档“Secondary error amplifier with the AS431”中有深入的阐述。

从误差放大器的输出到AS3842的COMP脚的传输函数是:VCATHODE是AS431的阴极电压,也就是误差补偿放大器的输出电压。

CTR是光耦的电流传输比。

R5(原文为R6,译注)是与光耦的二极管串联的限流电阻。

RCOMP是AS3842的COMP脚当其试图拉电流超过它的最大输出电流时的输出阻抗。

当误差信号传递到补偿脚以后,将其与电流检测信号比较。

图9表示一个电流检测比较器和开关部分的简单框图:在闭环系统中,VCOMP与ISENSE维持同样的电平。

因此,IPRIMARY被VCOMP 有效的调节:从ISECONDARY以后(见图9),副边电流或者说输出电流与主边电流成比例,把等式(4)重新排列表示出副边电流与VCOMP之间的关系。

结合等式(3)和(6)得到PWM部分的传输函数:传输函数G2(s)仅包含增益没有相移。

4.4 误差放大器补偿网络G3(S)一旦输出滤波器和PWM电路部分的传输函数确定下来,然后可以设定误差放大器补偿网络以取得最优化的系统性能。

图10例举出一个在低频时提供高的频率滚降和高增益的补偿方案。

这个补偿方案有一些很好的特性适合于误差放大器的补偿,它有很高的直流增益和易控的滚降。

4.5 整个系统因为这是一个线性系统,可以用叠加的方法得到整个系统的传输函数。

通过把整个环路各部分的增益和相位叠加起来,产生整个系统的博得图。

通过放置补偿网络的极点和零点使系统的性能最优化。

图11把各部分的博得图结合起来,负反馈系统的180度相移也加入进来了。

5. 测量结果构造一个150W的电流模式正激转换器,经过修正的小信号环路特性显示出它在系统瞬态响应时所起的作用。

图13(原文误为图12,译注)给出它的增益-相位图。

与图11所展示的一样,获得了相同的博得图曲线。

此增益相位图显示这个系统有86.7度的相位裕量。

意味着稳定的系统有快速的瞬态响应。

图15(原文误为图13,译注)给出系统的瞬态响应。

为了展示相位裕量的作用,通过增加整个系统的增益和提高穿越频率,系统的相位裕量会减少。

穿越频率提高时系统的相位裕量在减少。

图12(原文误为图14,译注)给出更高的穿越频率和更少的相位裕量(65度)时的系统博得图。

其瞬态响应见图14(原文误为图15,译注),注意更少的相位裕量导致更大的振荡和更长的调节时间。

表1比较了这两个不同增益大小的系统之间线性和负载调节率的变化。

正如前面所述,高的环路增益得到更紧密的线性和负载调节率。

还应该注意需在高的相位裕量和较低的环路增益之间取得平衡。

图12 图13图14 图156. 测量方法为了保证准确的结果,测试信号接入节点的阻抗必须大于它的输出阻抗。

在图6的测试电路中,误差放大器在副边,PWM电路在主边。

测试信号在光耦的输出和AS3842的VCOMP输入之前接入。

输入阻抗是从VCOMP脚看入时的阻抗,输出阻抗是光耦的输出阻抗。

在其他误差放大器和PWM电路没有隔离的应用中,测试信号可以在输出滤波电容之后接入,使其与误差放大器的输入相串联。

相关文档
最新文档