推理与证明专题练习15题集
高二文科推理与证明练习题
推理与证明练习题命题人:赵红艳 审核:高二数学组 日期:2012-3-23一.选择题:本大题共10小题,每小题5分,共50分.1、下列表述正确的是( ).①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理. A .①②③; B .②③④; C .②④⑤; D .①③⑤.2、下面使用类比推理正确的是 ( ). A.“若33a b ⋅=⋅,则a b =”类推出“若00a b ⋅=⋅,则a b =” B.“若()a b c ac bc +=+”类推出“()a b c ac bc ⋅=⋅”C.“若()a b c ac bc +=+” 类推出“a b a bc c c+=+ (c ≠0)” D.“n n a a b =n (b )” 类推出“n n a a b +=+n(b )” 3、有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b ⊆/平面α,直线a ⊂平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的,这是因为( )A.大前提错误B.小前提错误C.推理形式错误D.非以上错误 4、用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是( )。
(A)假设三内角都不大于60度; (B) 假设三内角都大于60度; (C) 假设三内角至多有一个大于60度;(D) 假设三内角至多有两个大于60度。
5、已知数列的前n 项和,且,通过计算猜 想( )A 、B 、C 、D 、6、设条件甲:x =0,条件乙:x +yi (x ,y ∈R )是纯虚数,则( )A 、甲是乙的充分非必要条件B 、甲是乙的必要非充分条件C 、甲是乙的充分必要条件D 、甲是乙的既不充分,又不必要条件 7、黑白两种颜色的正六形地面砖块按如图的规律拼成若干个图案,则第五个图案中有白色地面砖( )块.A.21B.22C.20D.23 8、用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n 个“金鱼”图需要火柴棒的根数为( )A .62n -B .82n -C .62n +D .82n +… ① ② ③9、下面几种推理是合情推理的是( ) (1)由正三角形的性质,推测正四面体的性质;(2)由平行四边形、梯形内角和是360︒,归纳出所有四边形的内角和都是360︒; (3)某次考试金卫同学成绩是90分,由此推出全班同学成绩都是90分;(4)三角形内角和是180︒,四边形内角和是360︒,五边形内角和是540︒,由此得凸多边形内角和是()2180n -︒A .(1)(2)B .(1)(3)C .(1)(2)(4)D .(2)(4)10、数列{}n a 中,a 1=1,S n 表示前n 项和,且S n ,S n+1,2S 1成等差数列,通过计算S 1,S 2,S 3,猜想当n ≥1时,S n =( )A .1212-+n nB .1212--n n C .n n n 2)1(+ D .1-121-n11、二.填空题:本大题共5小题,每小题5分,共25分.12、“开心辞典”中有这样的问题:给出一组数,要你根据规律填出后面的第几个数,现给出一组数:12 ,-12 ,38 ,-14 ,532,它的第8个数可以是 。
初中数学数学推理与证明练习题及参考答案
初中数学数学推理与证明练习题及参考答案一、选择题1. 已知直角三角形的斜边长度为10,一个锐角的正弦值等于斜边长度与斜边过相交直角边的长方形边的和的二倍,那么这个锐角的度数是A. 60°B. 30°C. 45°D. 15°2. 若a、b、c为正数,且满足abc=1,则a^2+b^2+c^2的最小值为A. 1B. 2C. 3D. 43. 若函数f(x) = 2x + a与g(x) = ax + 1有且仅有一个交点,则实数a 的值为A. 2B. -2C. 1/2D. -1/24. 如果A和B是两个正整数,且A的平方加上B的平方等于2017,那么AB的最大值是A. 2006B. 2932C. 1960D. 28725. 设正整数a与b满足a/b的值是0.4162,且a与b的最大公约数为8,那么a的个位数是A. 2B. 4C. 6D. 8二、填空题1. 根据等腰三角形的性质,如果一条边是等腰三角形的底边,则该边上的角度为____度。
2. 已知集合A={1, 2, 3, 4, 5},集合B={3, 4, 5, 6, 7},则集合A∪B的元素个数为____。
3. 设a、b、c为正整数,且满足a+b=c,则c除以7的余数是____。
4. 定义函数f(x) = 2x + b,若f(3)=7,则b的值为____。
5. 设正整数x与y满足x/y = 2/3,且x与y的最大公约数为6,那么y的值为____。
三、解答题1. 已知直角三角形的两个锐角辅助角等于40°和50°,那么直角边之间的比是多少?解析:由于直角三角形的两个锐角辅助角等于180°-90°=90°,所以另一个锐角的度数为90°-40°-50°=90°。
根据正弦定理可得:sin40°/a = sin50°/b = sin90°/c,其中a和b分别表示斜边上的两个角的对边的长度,c表示直角边的长度。
(典型题)高中数学选修1-2第三章《推理与证明》测试题(含答案解析)
一、选择题1.正整数按下表的规律排列,则上起第2005行,左起第2006列的数应为( )A .22005B .22006C .20052006+D .20052006⨯2.李雷、韩梅梅、张亮、刘静四人考上大学后,就读于法学、教育学、医学和管理学四个学科,就他们分别就读于哪个学科,同学们做了如下猜测: 同学甲猜,李雷就读于管理学,张亮就读于法学; 同学乙猜,韩梅梅就读于管理学,刘静就读于医学; 同学丙猜,李雷就读于管理学,张亮就读于教育学; 同学丁猜,韩梅梅就读于法学,刘静就读于教育学.结果恰有三位同学的猜测各对一半,只有一位同学全部猜对,那么李雷、韩梅梅、张亮、刘静四人分别就读的学科是( ) A .管理学、医学、法学、教育学 B .教育学、管理学、医学、法学 C .管理学、法学、教育学、医学D .管理学、教育学、医学、法学3.我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣,”其体现的是一种无限与有限的转化过程,比如在222+++⋅⋅⋅“…”.即代表无限次重复,但原式却是个定值x ,这可以通过方程2x x +=确定出来2x =,类似地不难得到12122+=++⋅⋅⋅( )A .122 B .122C 21D .21-4.在我校学科月活动中,老师推荐了一本古典名著.为了解学生诵读情况,老师随机问了甲,乙,丙,丁四名学生,但这四名学生中仅有一人阅读了老师推荐的这本名著,当他们被问到谁阅读了这本名著时,甲说:“丙或丁阅读了”;乙说:“丙阅读了” ;丙说:“甲和丁都没有阅读” ;丁说:“乙阅读了”. 假设这四名学生中只有两人说的是对的,那么读了该名著的学生是( ) A .甲B .乙C .丙D .丁5.我国的刺绣有着悠久的历史,如图,(1)(2)(3)(4)为刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形个数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含()f n 个小正方形,则()f n 的表达式为( )A .()21f n n =-B .2()2f n n =C .2()22f n n n=-D .2()221f n n n =-+6.一位老师有两个推理能力很强的学生甲和乙,他告诉学生他手里拿着与以下扑克牌中的一张相同的牌:黑桃:3,5,Q ,K 红心:7,8,Q 梅花:3,8,J ,Q 方块:2,7,9老师只给甲同学说这张牌的数字(或字母),只给乙同学说这张牌的花色,接着老师让这两个同学猜这是张什么牌:甲同学说:我不知道这是张什么牌,乙同学说:我知道这是张什么牌. 甲同学说:现在我们知道了. 则这张牌是( ) A .梅花3B .方块7C .红心7D .黑桃Q7.定义两个运算:1212a b a lgb ⊗=+,132a b lga b -⊕=+.若925M =⊗,1227N =⊕,则(M N += ) A .6B .7C .8D .98.观察下面数阵,则该数阵中第9行,从左往右数的第20个数是( ) A .545B .547C .549D .5519.下列说法中不正确的是()A .命题:“∈,x y R ,若110x y -+-=,则1x y ==”,用反证法证明时应假设x ≠1或y ≠1.B .若2a b +>,则a ,b 中至少有一个大于1.C .若14-,,,,-x y z 成等比数列,则2y =±. D .命题:“[0,1]∃∈m ,使得12+<m x x”的否定形式是:“[0,1]∀∈m ,总有12m x x+≥”. 10.下列说法中正确的个数是( )①命题:“x 、y R ∈,若110x y -+-=,则1x y ==”,用反证法证明时应假设1x ≠或1y ≠;②若2a b +>,则a 、b 中至少有一个大于1; ③若1-、x 、y 、z 、4-成等比数列,则2y =±; ④命题:“[]0,1m ∃∈,使得12+<m x x”的否定形式是:“[]0,1m ∀∈,总有12m x x +≥”.A .1B .2C .3D .411.下面使用类比推理正确的是( )A .直线a ∥b ,b ∥c ,则a ∥c ,类推出:向量a b b c ,,则a cB .同一平面内,直线a ,b ,c ,若a ⊥c ,b ⊥c ,则a ∥b .类推出:空间中,直线a ,b ,c ,若a ⊥c ,b ⊥c ,则a ∥bC .实数a ,b ,若方程x 2+ax +b =0有实数根,则a 2≥4b .类推出:复数a ,b ,若方程x 2+ax +b =0有实数根,则a 2≥4bD .以点(0,0)为圆心,r 为半径的圆的方程为x 2+y 2=r 2.类推出:以点(0,0,0)为球心,r 为半径的球的方程为x 2+y 2+z 2=r 2 12.在二维空间中,圆的一维测度(周长),二维测度(面积);在三维空间中,球的二维测度(表面积),三维测度(体积).应用合情推理,若在四维空间中,“特级球”的三维测度,则其四维测度为( ) A .B .C .D .二、填空题13.从11,14(12),149123,14916(1234),=-=-+-+=++-+-=-+++⋅⋅⋅,概括出第n 个式子为___________.14.已知对任意正实数1a 、2a 、1b 、2b 都有22212121212()b b b b a a a a ++≥+,类比可得对任意正实数1a 、2a 、3a 、1b 、2b 、3b 都有________.15.现将甲、乙、丙、丁四个人安排到座位号分别是1,2,3,4的四个座位上,他们分别有以下要求:甲:我不坐座位号为1和2的座位;乙:我不坐座位号为1和4的座位;丙:我的要求和乙一样;丁:如果乙不坐座位号为2的座位,那么我就不坐座位号为1的座位.那么坐在座位号为3的座位上的是________.16.已知数列{}n a 的通项公式是2n a n =,若将数列{}n a 中的项从小到大按如下方式分组:第一组:(2,4),第二组:(6,8,10,12),第三组:(14,16,18,20,22,24),…,则2018位于第________组.17.我国南宋数学家杨辉所著的《详解九章算术》一书中,用图①的数表列出了一些正整数在三角形中的一种几何排列,俗称“杨辉三角形”,该数表的规律是每行首尾数字均为1,从第三行开始,其余的数字是它“上方”左右两个数字之和.现将杨辉三角形中的奇数换成1,偶数换成0,得到图②所示的由数字0和1组成的三角形数表,由上往下数,记第n 行各数字的和为n S ,如123451,2,2,4,2,S S S S S =====⋯⋯,则33S =____________① ②18.在如下数表中,已知每行、每列中的数都成等差数列, 那么,位于下表中的第n 行第n+1列的数是_______19.我国齐梁时代的数学家祖暅提出了一条原理:“幂势既同,则积不容异”.意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.椭球体是椭圆绕其轴旋转所成的旋转体.如图,将底面直径都为2b ,高皆为a 的椭半球体和已被挖去了圆锥体的圆柱放置于同一平面β上,用平行于平面β且与平面β任意距离d 处的平面截这两个几何体,可横截得到S 圆及S 环两截面.可以证明圆环=S S 总成立.据此,半短轴长为1,半长轴长为3的椭球体的体积是_______.20.如图所示,满足如下条件: ①第n 行首尾两数均为n ; ②表中的递推关系类似“杨辉三角”.则第n 行的第2个数是__________.三、解答题21.三角比内容丰富,公式很多,若仔细观察、大胆猜想、科学求证,你也能发现其中的一些奥秘.请你完成以下问题: (1)计算:cos 2cos88sin 47sin133︒︒+︒︒,cos5cos85sin 50sin130︒︒+︒︒,cos12cos78sin 57sin123︒︒+︒︒; (2)根据(1)的计算结果,请你猜出一个一般的结论用数学式子加以表达,并证明你的结论,写出推理过程.22.某同学再一次研究性学习中发现,以下三个式子的值都等于一个常数. ①.22sin 13cos 17sin13cos17︒︒︒︒+- ②.22sin 18cos 12sin18cos12︒︒︒+- ③.()()22sin25cos55sin 25cos55︒︒︒︒-+--(1)试从上述三个式子中选出一个计算出这个常数.(2)猜想出反映一般规律的等式,并对等式的正确性作出证明.23.已知函数()2f x ax bx c =++及函数g (x )=﹣bx (a ,b ,c ∈R ),若a >b >c 且a+b+c =0.(1)证明:f (x )的图象与g (x )的图象一定有两个交点; (2)请用反证法证明:122c a --<<; 24.证明下列不等式.(1)当1a >时,求证:2110a a a -+>;(2)设0a >,0b >,若0a b ab +-=,求证:2322a b +≥+ 25.已知数列{}n a 满足11a =,121()n n a a n N ++=+∈ (1)求2a ,3a ,4a ,5a ;(2)归纳猜想出通项公式n a ,并且用数学归纳法证明; (3)求证100a 能被15整除.26.求证:一个三角形中,最大的角不小于60o..【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】由给出排列规律可知,第一列的每个数为所该数所在行数的平方,而第一行的数则满足列数减1的平方再加1.由此能求出上起第2005行,左起第2006列的数.【详解】解:由给出排列规律可知,第一列的每个数为所该数所在行数的平方,而第一行的数则满足列数减1的平方再加1.依题意有,左起第2006列的第一个数为20052+1,故按连线规律可知,上起第2005行,左起第2006列的数应为20052+2005=2005×2006.故选D.【点睛】本题考查数列的性质和应用,解题时要认真审题,仔细解答.其中分析出数的排列规律是解答的关键.2.C解析:C【分析】根据只有一位同学全部猜对,逐项一一假设,利用合情推理求解.【详解】假设同学甲猜全正确,即李雷就读于管理学,张亮就读于法学;则同学乙猜,韩梅梅就读于管理学错误,故刘静就读于医学正确;同学丁猜,韩梅梅就读于法学错误,刘静就读于教育学正确;矛盾,假设错误;假设同学乙猜全正确,即韩梅梅就读于管理学,刘静就读于医学;则同学甲猜,李雷就读于管理学错误,张亮就读于法学正确;同学丙猜,李雷就读于管理学错误,张亮就读于教育学正确;矛盾,假设错误;假设同学丙猜全正确,即李雷就读于管理学,张亮就读于教育学;则同学乙猜,韩梅梅就读于管理学错误,刘静就读于医学正确;同学甲猜,李雷就读于管理学正确,张亮就读于法学错误;同学丁猜,韩梅梅就读于法学错误,刘静就读于教育学正确.假设同学丁猜全正确,即韩梅梅就读于法学,刘静就读于教育学.则同学甲猜,李雷就读于管理学正确,张亮就读于法学错误;同学乙猜,韩梅梅就读于管理学错误,刘静就读于医学正确;矛盾,假设错误;综上:李雷、韩梅梅、张亮、刘静四人分别就读的学科是管理学、法学、教育学、医学,.【点睛】本题主要考查合情推理的应用,还考查了逻辑推理的能力,属于中档题.3.C解析:C 【分析】本题依照题干中的例子进行类比推理进行计算即可得到结果. 【详解】 由题意,令12(0)122x x +=>++⋯,即12x x+=, 即2210x x --=,解得1x =或1x =(舍去)121122∴+=++⋅⋅⋅,故选:C 【点睛】 本题主要考查类比推理方法的应用,以及一元二次方程的解法,属于中档题.4.B解析:B 【分析】先阅读题意,再结合简单的合情推理逐一检验即可得解. 【详解】解:①当读了该篇文章的学生是甲,则四位同学都错了,与题设矛盾,故读了该篇文章的学生不是甲,②当读了该篇文章的学生是乙,则丙,丁说的是对的,与题设相符,故读了该篇文章的学生是乙,③当读了该篇文章的学生是丙,则甲,乙,丙说的是对的,与题设矛盾,故读了该篇文章的学生不是丙,④当读了该篇文章的学生是丁,则甲说的是对的,与题设矛盾,故读了该篇文章的学生不是丁,综合①②③④得: 读了该篇文章的学生是乙, 故选:B . 【点睛】本题考查了阅读能力及简单的合情推理,属于中档题.5.D解析:D先分别观察给出正方体的个数为:1,14+,148++,⋯⋯,总结一般性的规律,将一般性的数列转化为特殊的数列再求解. 【详解】解:根据前面四个发现规律: ()()2141f f -=⨯, ()()3242f f -=⨯,()()4343f f -=⨯,⋯⋯,()(1)4(1)f n f n n --=-, 累加得: ()()2(1)14[12(1)]42(1)222n n f n f n n n n n --=⨯++⋯⋯+-=⨯=-=-, ()11f =2()221f n n n ∴=-+,故选:D . 【点睛】本题主要考查了归纳推理,属于中档题.6.B解析:B 【分析】根据老师告诉甲牌的点数,告诉乙的是花色,结合甲乙对话进行推理判断即可. 【详解】解:甲不知道,说明通过数字不能判断出来,因此排除有单一数字的牌:黑桃5,K,梅花J ,方块2,9.而乙知道牌的颜色,如果是方片的话,即可断定是方片7, 故选:B 【点睛】本题主要考查合情推理的应用,结合甲乙了解的情况进行推理是解决本题的关键.考查学生的推理分析能力.7.B解析:B 【分析】根据定义的新运算,求出M 、N 的值,相加即可得答案. 【详解】根据题意,121925925352M lg lg =⊗=+=+, 13112()232727N lg -===+,则(35)(23)1337M N lg lg +=+++=++=。
推理及证明试题及答案
推理及证明试题及答案一、单项选择题(每题5分,共20分)1. 如果一个命题的逆命题为真,那么原命题的真假性是:A. 真B. 假C. 不确定D. 以上都不对答案:C2. 下列哪个推理是演绎推理?A. 因为小明是学生,所以小明会做作业。
B. 因为小明会做作业,所以小明是学生。
C. 因为小明是学生,所以小明是人。
D. 因为小明是人,所以小明会做作业。
答案:C3. 如果一个命题的否定为真,那么原命题的真假性是:A. 真B. 假C. 不确定D. 以上都不对答案:B4. 以下哪个选项是直接证明?A. 反证法B. 归纳法C. 构造法D. 排除法答案:C二、填空题(每题5分,共20分)1. 一个命题的逆否命题与原命题的真假性是________。
答案:相同2. 归纳推理的结论是________的。
答案:或然3. 演绎推理的结论是________的。
答案:必然4. 反证法的证明过程是先假设命题的________,然后推导出矛盾。
答案:否定三、解答题(每题10分,共20分)1. 证明:若a > b,b > c,则a > c。
证明:假设a > b,b > c,则a - b > 0,b - c > 0,所以a - c = (a - b) + (b - c) > 0,因此a > c。
证毕。
2. 证明:若a,b,c是正整数,且a^2 + b^2 = c^2,则a,b,c中至少有一个是偶数。
证明:假设a,b,c都是奇数,则a^2,b^2,c^2都是奇数,但a^2 + b^2 = c^2,这与奇数加奇数等于偶数矛盾,因此假设不成立,所以a,b,c中至少有一个是偶数。
证毕。
四、论述题(每题20分,共20分)1. 论述归纳推理与演绎推理的区别。
论述:归纳推理是从个别事实出发,通过观察和分析,得出一般性结论的推理方法。
它的结论是或然的,即结论的正确性不是必然的,但有一定的可信度。
归纳推理的结论需要通过进一步的观察和验证来确认。
推理与证明解答题精选(含答案)
19 . 数 列
的前 项组成集合
,从集合 中任取
个数,其所有可能的 个数的乘积的和为 (若只取一个数,规定乘积为此
数本身),记
.例如:当
时,
,
,
;当
时,
,
,
.
(Ⅰ)求 ;(Ⅱ)猜想来自,并用数学归纳法证明.20..数列 满足:
,且
(1)设 (3)设
,证明数列 是等差数列;(2)求数列 、 的通项公式;
(3)存在……………………………………13 分
可取
……………………………16 分
注:答案不唯一
11. 【解析】第一问中,利用因为
,则
第二问,若
,则
的
则存在 使得
,
与
矛盾,运用反证法得到结论。
解:(1)因为
,则
--------6 分
(2)若
,则
的
则存在 使得
,
与
矛盾。所以假设不成立,原命题为
真
-----------8 分
,由
①
可知, 当 ≥2时,
②
①-②,得
,即
.
1)当
时,
,∵
,∴
;
2)假设当
( ≥2)时,
.
那么当
时,
,
∵
, ≥2,∴
,
∴
.
这就是说,当
时也成立,
∴
( ≥2). 显然
时,也适合.
故对于 n∈N*,均有
(Ⅲ)要证
≤
,
只要证
≤
,
即
≤
,
将 即要证
代入,得 ≤
≤
,w.w.w.k.s.5 u.c.o.m
数学逻辑练习题进行数学逻辑的推理与证明
数学逻辑练习题进行数学逻辑的推理与证明数学逻辑是数学的一个重要分支,它研究的是数学命题的合理性、推理的方法和结论的正确性。
通过数学逻辑的推理和证明,我们可以深入理解和应用数学知识,提高自己的思维能力和解决问题的能力。
在学习数学逻辑时,经常会遇到各种练习题,这些题目旨在让我们锻炼逻辑思维和分析问题的能力。
下面我将通过几个数学逻辑练习题,进行推理和证明的演示,帮助大家更好地理解数学逻辑推理的过程。
1. 题目一:证明直角三角形的斜边最长。
解析:假设有一个直角三角形ABC,其中∠ABC=90°。
我们需要证明斜边AC最长。
首先,根据勾股定理得知直角三角形中的两个直角边的平方和等于斜边的平方,即AC² = AB² + BC²。
我们知道,平方值大于零,所以AB²和BC²都大于等于零。
假设AB² > 0 且 BC² > 0,则有 AC² > 0。
由于AC²> 0,那么AC也大于零,即AC > 0。
再次根据勾股定理,如果一个直角三角形的两个直角边都大于零,则斜边最长。
因此,我们可以得出结论:直角三角形的斜边最长。
2. 题目二:证明若a、b为正整数,且a² + b²为偶数,则a和b必须同时为偶数或者同时为奇数。
解析:根据题目的条件,a² + b²为偶数。
我们要证明当a、b为正整数时,a和b必须同时为偶数或者同时为奇数。
首先,我们观察到一个规律:任意正整数 n 的平方模4的余数只可能是0或1。
证明如下:当 n 为偶数时,n=2k (k为正整数),则 n² = (2k)² = 4k²,余数为0。
当 n 为奇数时,n=2k+1 (k为正整数),则 n² = (2k+1)² = 4k² + 4k + 1 = 4(k² + k) + 1,余数为1。
(典型题)高中数学选修1-2第三章《推理与证明》测试卷(含答案解析)
一、选择题n+猜想”,是德国数学家洛萨·克拉茨在1950年世界数学家大会1.“克拉茨猜想”又称“31上公布的一个猜想:任给一个正整数n,如果n是偶数,就将它减半;如果n为奇数就将它乘3加1,不断重复这样的运算,经过有限步后,最终都能够得到1,已知正整数m经过6次运算后才得到1,则m的值为()A.5或32 B.10 C.64 D.10或642.将正整数1,2,3,4,按如图所示的方式排成三角形数组,则第20行从左往右数第1个数是()A.381 B.361 C.362 D.4003.在我校学科月活动中,老师推荐了一本古典名著.为了解学生诵读情况,老师随机问了甲,乙,丙,丁四名学生,但这四名学生中仅有一人阅读了老师推荐的这本名著,当他们被问到谁阅读了这本名著时,甲说:“丙或丁阅读了”;乙说:“丙阅读了” ;丙说:“甲和丁都没有阅读” ;丁说:“乙阅读了”. 假设这四名学生中只有两人说的是对的,那么读了该名著的学生是()A.甲B.乙C.丙D.丁4.已知三个月球探测器α,β,γ共发回三张月球照片A,B,C,每个探测器仅发回一张照片.甲说:照片A是α发回的;乙说:β发回的照片不是A就是B;丙说:照片C 不是γ发回的,若甲、乙、丙三人中有且仅有一人说法正确,则发回照片B的探测器是()A.αB.βC.γD.以上都有可能5.甲、乙、丙、丁四位同学一起去向老师询问考试成绩,老师说:你们4人中有2位优秀,2位良好,我给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看完后甲对大家说:我不知道我的成绩,根据以上信息,则()A.乙、丁可以知道自己的成绩B.乙可以知道4人的成绩C.丁可以知道自己的成绩D.丁可以知道4人的成绩6.甲、乙、丙、丁四位同学一起去老师处问他们的成绩.老师说:“你们四人中有2位优秀,2位良好,我现在给丙看甲、乙的成绩,给甲看乙的成绩,给丁看丙的成绩.”看后丙对大家说:“我还是不知道我的成绩.”根据以上信息,则下列结论正确的是( )A.甲可以知道四人的成绩B.丁可以知道自己的成绩C.甲、丙可以知道对方的成绩D.乙、丁可以知道自己的成绩7.我国南宋数学家杨辉在所著的《详解九章算法》一书中用如图所示的三角形解释二项展开式的系数规律,去掉所有为1的项,依次构成2,3,3,4,6,4,5,10,10,5,6…,则此数列的前50项和为( )A .2025B .3052C .3053D .30498.将正偶数排成如图所示的三角形数阵,其中第i 行(从上向下)第j 个(从左向右)的数表示为ij a (),i j N*∈,例如3210a=.若2020ij a =,则i j -( )A .21B .22C .23D .259.分析法又称执果索因法,若用分析法证明:“设a >b >c ,且a +b +c =0,求证23b ac a -<”索的因应是( )A .0a b ->B .0a c ->C .()>0)(a b a c --D .()<0)(a b a c --10.运用祖暅原理计算球的体积时,构造一个底面半径和高都与球半径相等的圆柱,与半球(如图一)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥(如图二),用任何一个平行与底面的平面去截它们时,可证得所截得的两个截面面积相等,由此证明该几何体与半球体积相等.现将椭圆22149x y +=绕y 轴旋转一周后得一橄榄状的几何体(如图三),类比上述方法,运用祖暅原理可求得其体积等于( )A .4πB .8πC .16πD .32π11.设x 、y 、0z >,1a x y =+,1b y z =+,1c z x=+,则a 、b 、c 三数( ) A .都小于2 B .至少有一个不大于2 C .都大于2 D .至少有一个不小于212.在“一带一路”的知识测试后甲、乙、丙三人对成绩进行预测.甲:我的成绩最高. 乙:我的成绩比丙的成绩高 丙:我的成绩不会最差成绩公布后,三人的成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序可能为( ) A .甲、丙、乙 B .乙、丙、甲 C .甲、乙、丙D .丙、甲、乙二、填空题13.设()f x ax b =+(其中a ,b 为实数),()()1f x f x =,()()()1n nf x ff x +=,1,2,3,n =⋅⋅⋅,若22a b +=-,且()243244k f x x =-+,则k =__________.14.关于圆周率π,祖冲之的贡献有二:①3.1415926 3.1415927π<<;②用227作为约率,355113作为密率,其中约率与密率提出了用有理数最佳逼近实数的问题.约率可通过用连分数近似表示的方法得到,如:111223.14159265333170.0625135770.14159265=+≈+≈+=+,舍去0.0625135,得到逼近π的一个有理数为122377+=2化为连分数形式:1111m n kr++++(m ,n ,k 为正整数,r 为0到1之间的无理数),舍去r 得到逼近2的一个有理数为__________.15.已知以区间()0,2上的整数为分子,以2为分母的数组成集合1A ,其所有元素的和为1a ;以区间()20,2上的整数为分子,以22为分母组成不属于集合1A 的数组成集合2A ,其所有元素的和为2a ;……依此类推以区间()0,2n上的整数为分子,以2n为分母组成不属于1A ,2A …1n A -的数组成集合n A ,其所有元素的和为n a ,若数列{}n a 前n 项和为n S ,则20202019S S -=__________.16.观察下列恒等式:12tan tan tan 2ααα=+,14tan 2tan 2tan tan 4αααα=++,18tan 2tan 24tan 4tan tan8ααααα=+++,,请你把结论推广到一般情形,则得到的第n 个等式为___________________________________.17.观察下列等式,211=,22343++=,2345675++++=,2456789107++++++=,从中可以归纳出一个一般性的等式是:__________()2*(21)n n =-∈N .18.我国齐梁时代的数学家祖暅提出了一条原理:“幂势既同,则积不容异”.意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.椭球体是椭圆绕其轴旋转所成的旋转体.如图,将底面直径都为2b ,高皆为a 的椭半球体和已被挖去了圆锥体的圆柱放置于同一平面β上,用平行于平面β且与平面β任意距离d 处的平面截这两个几何体,可横截得到S 圆及S 环两截面.可以证明圆环=S S 总成立.据此,半短轴长为1,半长轴长为3的椭球体的体积是_______.19.某大学进行自主招生时,需要进行逻辑思维和阅读表达两项能力的测试.学校对参加测试的200名学生的逻辑思维成绩、阅读表达成绩以及这两项的总成绩进行了排名.其中甲、乙、丙三位同学的排名情况如下图所示:得出下面四个结论:①甲同学的逻辑排名比乙同学的逻辑排名更靠前②乙同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前 ③甲、乙、丙三位同学的逻辑思维成绩排名中,甲同学更靠前 ④甲同学的阅读表达成绩排名比他的逻辑思维成绩排名更靠前 则所有正确结论的序号是_________. 20.如图所示,满足如下条件: ①第n 行首尾两数均为n ; ②表中的递推关系类似“杨辉三角”. 则第n 行的第2个数是__________.三、解答题21.(1)用分析法证明:当0x ≥,0y ≥22y x y x +;(2)证明:对任意x ∈R ,131x x --+,2x x +,21x --这3个值至少有一个不小于0. 22.某同学再一次研究性学习中发现,以下三个式子的值都等于一个常数. ①.22sin 13cos 17sin13cos17︒︒︒︒+- ②.22sin 18cos 12sin18cos12︒︒︒+- ③.()()22sin25cos55sin 25cos55︒︒︒︒-+--(1)试从上述三个式子中选出一个计算出这个常数.(2)猜想出反映一般规律的等式,并对等式的正确性作出证明.23.在△ABC 中,三个内角A ,B .C 的对边分别为a ,b ,c ,且A ,B ,C 成等差数列,a ,b ,c 成等比数列,求证△ABC 为等边三角形.24.已知函数()2f x ax bx c =++及函数g (x )=﹣bx (a ,b ,c ∈R ),若a >b >c 且a+b+c =0.(1)证明:f (x )的图象与g (x )的图象一定有两个交点; (2)请用反证法证明:122c a --<<; 25.证明:(Ⅰ)已知a b m 、、是正实数,且a b <.求证:a a mb b m+<+; (Ⅱ)已知a b c d R ∈、、、,且1a b +=,1c d +=,1ac bd +>.求证:a b c d 、、、中至少有一个是负数. 26.已知2()(1)1xx f x a a x -=+>+,用反证法证明方程()0f x =没有负数根.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】通过运算结果逐步倒推出m 的值即可. 【详解】根据题意,正整数m 经过6次运算后得到1,利用倒推思想推理如下:乘以2得2,减1再除以3得0(不符合题意),故正整数m 经过5次运算后得到2; 经同理推算,过4次运算后得到4;经过3次运算后得到8或1(不符合题意,舍去); 经过2次运算后得到16; 经过1次运算后得到32或5; 所以正整数m 的值为64或10. 故选:D. 【点睛】本题考查了归纳推理的应用,进行逆向推理验证是解题关键,属于中档题.2.C解析:C 【分析】本题可根据图中数字的排列规律来思考,先观察每行数字的个数的规律,然后找到每行第一个数之间的规律,然后根据规律得出第20行的第1项的数字. 【详解】解:由图中数字排列规律可知:∵第1行有1个数,第2行有3个数,第3行有5个数,第4行有7个数,… ∴第i 行有(21)i -个数.可设第i 行第j 个数字为.i j a ,其中121j i ≤≤-.观察每行的第1项,可得: 1.11a =, 2.12a =, 3.15a =, 4.110a =,… ∴ 1.11a =,2.1 1.11a a -=,3.1 2.13a a -=,4.1 3.15a a -=,….1 1.123i i a a i ---=.以上各项相加,可得:.1113523i a i =++++⋅⋅⋅+-()(1)(123)12i i -+-=+2(1)1i =-+.∴220.1(201)1362a =-+=. 故选:C . 【点睛】本题主要考查数列排列规律,等差数列的特点及求通项和求和.属于中档题.3.B解析:B 【分析】先阅读题意,再结合简单的合情推理逐一检验即可得解. 【详解】解:①当读了该篇文章的学生是甲,则四位同学都错了,与题设矛盾,故读了该篇文章的学生不是甲,②当读了该篇文章的学生是乙,则丙,丁说的是对的,与题设相符,故读了该篇文章的学生是乙,③当读了该篇文章的学生是丙,则甲,乙,丙说的是对的,与题设矛盾,故读了该篇文章的学生不是丙,④当读了该篇文章的学生是丁,则甲说的是对的,与题设矛盾,故读了该篇文章的学生不是丁,综合①②③④得: 读了该篇文章的学生是乙, 故选:B . 【点睛】本题考查了阅读能力及简单的合情推理,属于中档题.4.A【分析】结合题中条件,分别讨论甲对、乙对或丙对的情况,即可得出结果.【详解】如果甲对,则β发回的照片是C,故丙也对,不符合条件,故甲错误;如果乙对,则丙错误,故照片C是γ发回的.得到照片A是由β发回,照片B是由α发回.符合逻辑,故照片B是由α发回;如果丙对,则照片C是由β发出,甲错误,可以推出α发出照片B,γ发出照片A,故照片B是由α发出.故选A【点睛】本题主要考查推理分析,根据合情推理的思想,进行分析即可,属于常考题型.5.A解析:A【分析】根据四人所知只有自己看到,老师所说及最后甲说话,继而可以推出正确答案.【详解】四人所知只有自己看到,老师所说及最后甲说话,甲不知自己的成绩,乙、丙必有一优一良,(若为两优,甲会知道自己的成绩,若为两良,甲也会知道自己的成绩);乙看到了丙的成绩,知道自己的成绩;丁看到甲、丁也为一优一良,丁知自己的成绩,故选A.【点睛】该题是一道逻辑推理的题目,掌握此类题目的推理方法是解题的关键.6.B解析:B【分析】根据题意可逐句进行分析,已知四人中有2位优秀,2位良好,而丙知道甲和乙但不知道自己的成绩可知:甲和乙、丙和丁都只能一个是优秀,一个是良好,接下来,由上一步的结论,当甲知道乙的成绩后,就可以知道自己的成绩,同理,当丁知道丙的成绩后,就可以知道自己的成绩,从而选出答案.【详解】由丙知道甲和乙但不知道自己的成绩可知:甲和乙、丙和丁都只能一个是优秀,一个是良好;当甲知道乙的成绩后,就可以知道自己的成绩,但是甲不知道丙和丁的成绩;当丁知道丙的成绩后,就可以知道自己的成绩,但是丁不知道甲和乙的成绩;综上,只有B选项符合.故选:B.本题是一道逻辑推理题,此类题目的推理方法是综合法和分析法,逐条分析题目条件语句即可,属于中等题.7.D解析:D 【分析】去除所有为1的项后,根据图可知前n 行共有(1)2n n +个数,从而得到前10行共55个数,然后用前10行的和减去后五项,即可得到此数列的前50项和. 【详解】解:去除所有为1的项后,由图可知前n 行共有(1)2n n +个数, 当n =10时,10(101)552⨯+=,即前10行共有55个数. 因为第n -1行的和为12122n n n n n C C C -+++=-, 所以前10行的和为231112(22)(22)(22)2244072-+-++-=-=.因为第10行最后5个数为1011C ,911C ,811C ,711C ,611C ,所以此数列的前50项的和为4072-11-55-165-330-462=3049. 故选:D . 【点睛】本题考查了归纳推理和等比数列前n 项和的求法,考查了推理能力,属难题.8.D解析:D 【分析】分析题意,求出数表的前n 行的偶数的个数为()12n n +,前n 行的最后一个偶数为()1n n +,当44n =时,44451980⨯=,当45n =时,45462070⨯=,即可判断出结果. 【详解】由题意知,这个数表的前n 行的偶数的个数为()12n n +, 所以,前n 行的最后一个偶数为()1n n +,当44n =时,44451980⨯=,当45n =时,45462070⨯=,所以20201980220ij a ==+⨯,即2020是第45行的第20个偶数,亦即2020这个数位于第45行第20个, 所以452025i j -=-=, 故选:D.本题考查了等差数列与推理能力与计算能力,属于基础题.9.C解析:C 【分析】根据分析法的步骤以及不等式的性质求解即可. 【详解】由a >b >c ,且a +b +c =0得b =-a -c ,a >0,c <0.< 只要证22()3a c ac a ---< 即证2220a ac a c -+-> 即证()()()0a a c a c a c -++-> 即证()()0a a c b a c ---> 即证()()0a c a b -->故求证”索的因应是()()0a c a b -->. 故选:C . 【点睛】本题主要考查了分析法,属于中档题.10.C解析:C 【分析】根据椭圆方程,构造一个底面半径为2,高为3的圆柱,通过计算可知高相等时截面面积相等,因而由祖暅原理可得橄榄球几何体的体积的一半等于圆柱的体积减去圆锥的体积. 【详解】由椭圆方程22149x y +=,构造一个底面半径为2,高为3的圆柱在圆柱中挖去一个以圆柱下底面圆心为顶点、上底面为底面的圆锥 当截面与底面距离为()03h h ≤≤时,截圆锥得到的截面小圆半径为r 则132h r =,即23h r = 所以截面面积为224449h r ππππ-=-把y h =代入椭圆方程22149x y +=,可求得3x =±所以橄榄球形状几何体的截面面积为22449h x πππ=-由祖暅原理可得橄榄球几何体的体积为()12=24343=163V V V πππ⎛⎫=-⨯-⨯⨯ ⎪⎝⎭圆柱圆锥 故选:C 【点睛】本题考查了类比推理的综合应用,空间几何体体积的求法,属于中档题.11.D解析:D 【分析】利用基本不等式计算出6a b c ++≥,于此可得出结论. 【详解】 由基本不等式得111111a b c x y z x y z y z x x y z ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++=+++++=+++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭6≥=,当且仅当1x y z ===时,等号成立,因此,若a 、b 、c 三数都小于2,则6a b c ++<与6a b c ++≥矛盾,即a 、b 、c 三数至少有一个不小于2, 故选D. 【点睛】本题考查了基本不等式的应用,考查反证法的基本概念,解题的关键就是利用基本不等式求最值,考查分析问题和解决问题的能力,属于中等题.12.D解析:D 【解析】 【分析】假设一个人预测正确,然后去推导其他两个人的真假,看是否符合题意. 【详解】若甲正确,则乙丙错,乙比丙成绩低,丙成绩最差,矛盾;若乙正确,则甲丙错,乙比丙高,甲不是最高,丙最差,则成绩由高到低可为乙、甲、丙;若丙正确,则甲乙错,甲不是最高,乙比丙低,丙不是最差,排序可为丙、甲、乙. A 、B 、C 、D 中只有D 可能. 故选D . 【点睛】本题考查合情推理,抓住只有一个人预测正确是解题的关键,属于基础题.二、填空题13.5【分析】首先由可以由代入法结合归纳推理推出再有待定系数法和关系式求出即可得到答案【详解】(其中为实数)23所以又所以有所以解得故答案为:5【点睛】此题主要考查复合函数的解析式考查了归纳推理的应用其解析:5 【分析】首先由()f x ax b =+,1()()f x f x =,1()(())n n f x f f x +=,可以由代入法、结合归纳推理推出()k f x ,再有待定系数法和关系式22a b +=-,求出a ,b ,k .即可得到答案. 【详解】()f x ax b =+(其中a ,b 为实数),1()()f x f x =,1()(())n n f x f f x +=,1n =,2,3,⋯,所以1()f x ax b =+.22()()f x a ax b b a x ab b =++=++ 2323()()f x a a x ab b a x a b ab =++=++⋯12()k k k k f x a x a b a b --=++ , 又()243244k f x x =-+所以有1224324422k k k a a b a b a b --⎧=-+=⎨+=-⎩且所以解得5k =,3a =-,4b =. 故答案为:5. 【点睛】此题主要考查复合函数的解析式,考查了归纳推理的应用,其中应用到待定系数和函数与方程思想,计算量小但有一定的技巧性,需要同学们活学活用,灵活应用知识点.14.【分析】利用题中的定义以及类比推理直接进行求解即可【详解】舍去得到逼近的一个有理数为故答案为:【点睛】本题考查了类比推理解题的关键是理解题中的定义属于基础题解析:1712. 【分析】利用题中的定义以及类比推理直接进行求解即可. 【详解】1111)11111122=+=+=+=+=+++1的一个有理数为11711122122+=++.故答案为:1712【点睛】本题考查了类比推理,解题的关键是理解题中的定义,属于基础题.15.【分析】根据题意可得从而得到然后求出-即可【详解】解:据题意得…∴∴∴故答案为:【点睛】本题考查了数列前n 项和的求法和归纳推理考查了计算和推理能力属中档题 解析:20182【分析】根据题意可得1231221222n n n n na a a a -+++⋅⋅⋅+=++⋅⋅⋅+,从而得到n S ,然后求出2020S -2019S 即可.【详解】 解:据题意,得112a =,21222221312322222a a ⎛⎫=+=++- ⎪⎝⎭,()33213331221222a a a ⎛⎫-=++⋅⋅⋅+-+ ⎪⎝⎭,…,()()12112212222n n n n n n a a a a n -⎛⎫-=++⋅⋅⋅+-+⋅⋅⋅++≥ ⎪⎝⎭,∴1231221222n n n n na a a a -+++⋅⋅⋅+=++⋅⋅⋅+212n -=, ∴123212n n n S a a a a -=+++⋅⋅⋅+=,∴202020192018202020192121222S S ---=-=.故答案为:20182. 【点睛】本题考查了数列前n 项和的求法和归纳推理,考查了计算和推理能力,属中档题.16.【分析】观察等式右边代数式的结构与的关系可得出结果【详解】由由上述规律归纳出第个等式为故答案为:【点睛】本题考查归纳推理解题的关键主要是找出式子的规律考查推理能力属于中等题解析:1112tan 2tan 22tan 2tan tan 2n n n nααααα--=++++. 【分析】观察等式右边代数式的结构与n 的关系可得出结果.【详解】由11122tan tan tan tan 2tan 2ααααα=+=+, 211142tan 2tan 2tan 2tan 2tan tan 4tan 4ααααααα=++=++, 311223182tan 2tan 24tan 4tan 2tan 22tan 2tan tan8tan 2ααααααααα=+++=+++,由上述规律,归纳出第n 个等式为1112tan 2tan 22tan 2tan tan 2nn n n ααααα--=++++. 故答案为:1112tan 2tan 22tan 2tan tan 2nn n nααααα--=++++. 【点睛】本题考查归纳推理,解题的关键主要是找出式子的规律,考查推理能力,属于中等题.17.【解析】【分析】通过观察前几个式子的变化规律总结规律即可得到答案【详解】根据题意第一个式子从1开始左边按顺序加有1项;第二个式子从2开始有3项;第三个式子从3开始有5项于是可归纳出第n 个式子从n 开始 解析:(1)(2)(32)n n n n +++++⋯+-【解析】 【分析】通过观察前几个式子的变化规律,总结规律即可得到答案. 【详解】根据题意,第一个式子从1开始,左边按顺序加有1项;第二个式子从2开始,有3项;第三个式子从3开始,有5项,于是可归纳出,第n 个式子从n 开始,有21n -项,于是答案为:(1)(2)(32)n n n n +++++⋯+-. 【点睛】本题主要考查归纳法,意在考查学生的逻辑推理能力和数感,难度不大.18.【分析】由已知条件推导出椭球体的体积公式然后代入求出结果【详解】总成立则半椭球体的体积为:椭球体的体积椭球体半短轴长为1半长轴长为3即椭球体的体积故答案为【点睛】本题考查了求椭球体体积通过已知条件得 解析:4π【分析】由已知条件推导出椭球体的体积公式,然后代入求出结果 【详解】=S S 环圆总成立则半椭球体的体积为:22212πππ33b a b a b a -=∴椭球体的体积24π3V b a =椭球体半短轴长为1,半长轴长为3 即1,3b a ==∴椭球体的体积2244ππ13433V b a π==⨯⨯= 故答案为4π 【点睛】本题考查了求椭球体体积,通过已知条件得到椭球体体积公式是解题关键,然后再代入相关数值求出结果.19.①③【解析】【分析】通过对两图形的阅读和理解分别比较甲乙丙的纵横坐标可以分析出来甲乙丙的类比情况从而可得结论【详解】对于①由左图可知甲同学的逻辑排名比乙同学的逻辑排名更靠前故①正确;对于②乙同学的总解析:①③ 【解析】 【分析】通过对两图形的阅读和理解,分别比较甲、乙、丙的纵横坐标,可以分析出来甲、乙、丙的类比情况,从而可得结论. 【详解】对于①,由左图可知甲同学的逻辑排名比乙同学的逻辑排名更靠前,故①正确; 对于②,乙同学的总排名比较靠前,但是他的逻辑思维排名比较靠后,说明他的阅读表达排名比逻辑排名成绩更靠前,故②错误;对于③,比较两个图形中甲乙丙的横坐标,可知甲乙丙三位同学的逻辑思维排名顺序是甲、丙、乙,甲同学是靠前,故③正确;对于④,甲同学的逻辑思维能力比较靠前,但是总成绩比较靠后,说明阅读表达能力排名比逻辑思维能力更靠后,故④错误,故答案为①③. 【点睛】本题主要考查阅读理解能力、逻辑思维能力以及数形结合思想的应用,意在考查灵活应用所学知识解答问题的能力,属于中档题.20.【分析】归纳前几行的第二个数发现第行的第2个数可以用来表示化简上式由此可以得到答案【详解】由图表可知第行的第2个数为:故答案为:【点睛】本题是一道找规律的题目考查归纳推理掌握归纳推理找规律的方法是解解析:222n n -+ 【分析】归纳前几行的第二个数,发现,第n 行的第2个数可以用[123(1)]1n +++⋯+-+来表示,化简上式由此可以得到答案.由图表可知第n 行的第2个数为:2(1)2[123(1)]1122n n n n n --++++⋯+-+=+=.故答案为:222n n -+.【点睛】本题是一道找规律的题目,考查归纳推理,掌握归纳推理找规律的方法是解题的关键.三、解答题21.(1)证明见解析;(2)证明见解析. 【分析】(1)先移项,再平方去根式,再根据分析法写法得结论;(2)利用反证法进行证明,先假设,再三式相加,根据范围找到矛盾,否定假设,即得结果. 【详解】(1即证:22≥成立,即证:22x y x y ++≥+成立,0≥成立,因为0,0,x y ≥≥0≥,所以原不等式成立. (2)假设1231,,21x x x x x --++--这个3值都小于0,即12310,0,210x x x x x --+<+<--<则12320x x x -+-<,(*) 而()2112323110x x x x x --+-=+--≥.这与(*)矛盾,所以假设不成立,即原命题成立. 【点睛】本题考查分析法与反证法,考查综合分析论证能力,属中档题. 22.(1)34(2)()()223sin cos 30sin cos 304αααα︒︒+---=,证明见解析 【分析】(1)选择①化简得这个常数为34;(2)找到一般规律:()()223sin cos 30sin cos 304αααα︒︒+---=,再化简证明.解:(1)22sin 13cos 17sin13cos17︒︒︒︒+-()()22sin 13cos 3013sin13cos 3013︒︒︒︒︒︒=+--- ()()22sin 13cos30cos13sin 30sin13sin13cos30cos13sin 30sin13︒︒︒︒︒︒︒︒︒︒=++-+2222311sin 13cos 13sin 13cos13cos13sin 13442︒︒︒︒︒︒︒︒=+++--22333sin 13cos 13444︒︒=+= (2)一般规律:()()223sin cos 30sin cos 304αααα︒︒+---= 证明:()()22sincos 30sin cos 30αααα︒︒+---()()22sin cos30cos sin30sin sin cos30cos sin30sin αααααα︒︒︒︒=++-+2222311sin cos sin cos cos sin 442αααααααα=+++-22333sin cos 444αα=+= 【点睛】本题主要考查归纳推理,考查三角恒等式的证明,意在考查学生对这些知识的理解掌握水平,属于基础题. 23.见解析 【分析】由等差数列和等比数列性质,分别可得2B=A+C ,2b ac =,再利用余弦定理可证结论. 【详解】由题,A ,B ,C 成等差数列,由2B=A+C ,又因为A,B,C 为三角形三内角,3A B C B ππ++=∴=由a ,b ,c 成等比数列,可得2b ac =由余弦定理2222cos b a c ac B =+-化简可得a c = 又因为3B π=所以三角形为等边三角形 【点睛】本题考查了等差等比数列的性质,以及余弦定理解三角形,熟悉公式是解题的关键,属于中档题.24.(1)见解析;(2)见解析 【分析】(1)根据判别式大于零论证结果,(2)先假设,再根据假设推出矛盾,否定假设即得结果. 【详解】(1)证明由2ax bx c bx ++=-得220ax bx c ++= ① ∵,0a b c a b c 且>>++=,∴ ()0,a b a c >=-+∴()22221344444024b ac a c ac a c a ⎡⎤⎛⎫∆=-=+-=++>⎢⎥ ⎪⎝⎭⎢⎥⎣⎦∴①有两个不相等的实数根,即两函数图像一定由两个交点, (2)证明:若结论不成立,则c a ≤-2或c a ≥-12(I )由ca≤-2,结合(1)a>0,得c≤-2a ,即a+c≤-a ,∴-b≤-a ∴a≤b 这与条件中a>b 矛盾 (II )再由c a ≥-12,得2c≥-a ,即c≥-(a+c)=b ∴b≤c 这与条件中b>c 矛盾 故假设不成立,原不等式成立 【点睛】本题考查反证法与函数与方程,考查基本分析论证能力,属中档题. 25.(1)见解析;(2)见解析. 【解析】试题分析:(1)利用分析法将要证不等式转化为整式不等式,再约分得已知条件的不等式,即得结论(2)利用反证法,根据不等式性质可得()()a b c d ++≥ ac bd +,即得与已知条件矛盾的条件,即假设不成立 试题(Ⅰ)因为a b m 、、均为正数,欲证a a mb b m+<+,只要证明()()a b m b a m +<+,也即证am bm <,也即证明a b <,这与已知条件相符,且以上每个步骤都可逆,故不等式成立.(Ⅱ)假设,,,a b c d 都是非负数,因1a b c d +=+=,故()()1a b c d ++=,又()()a b c d ++= ac bd ad bc +++≥ ac bd +, 故1ac bd +≤,与题设矛盾,故假设不成立,原命题成立. 26.见解析 【解析】试题分析:假设命题的结论不成立,即反面成立,即f(x)=0,有负实数根,再推出方程两边不可能相等,矛盾.所以假设不成立,原命题成立. 试题证明:设存在000(1)x x <≠-,满足f(0x )=0,则0x 00x 2ax 1-=-+. 又0<0x a <1,所以0<0021x x --+<1,0 解之得:01x 22<<, 与x0<0(x0≠-1)假设矛盾. 故f(x)=0没有负实数根.。
高中数学《推理与证明》练习题(附答案解析)
高中数学《推理与证明》练习题(附答案解析)一、单选题1.记凸k 边形的内角和为f (k ),则凸k +1边形的内角和f (k +1)=f (k )+( ) A .2π B .πC .32π D .2π2.用数学归纳法证明()11111231n n n n ++++>∈+++N ,在验证1n =时,左边的代数式为( ) A .111234++ B .1123+C .12D .13.两个正方体1M 、2M ,棱长分别a 、b ,则对于正方体1M 、2M 有:棱长的比为a:b ,表面积的比为22:a b ,体积比为33:a b .我们把满足类似条件的几何体称为“相似体”,下列给出的几何体中是“相似体”的是( ) A .两个球B .两个长方体C .两个圆柱D .两个圆锥4.用数学归纳法证明1115 (1236)n n n +++≥++时,从n k =到1n k =+,不等式左边需添加的项是( ) A .111313233k k k +++++ B .11113132331k k k k ++-++++ C .131k + D .133k + 5.现有下列四个命题: 甲:直线l 经过点(0,1)-; 乙:直线l 经过点(1,0); 丙:直线l 经过点(1,1)-; 丁:直线l 的倾斜角为锐角.如果只有一个假命题,则假命题是( ) A .甲B .乙C .丙D .丁6.用数学归纳法证明242123()2n n n n N *+++++=∈,则当1n k =+时,等式左边应该在n k =的基础上加上( ) A .21k +B .2(1)k +C .2(2)k +D .222(1)(2)(1)k k k ++++++7.已知数列{}n a 中,11a =,()*111nn na a n a +=+∈+N ,用数学归纳法证明:1n n a a +<,在验证1n =成立时,不等式右边计算所得结果是( )A .12B .1C .32D .28.设平面内有k 条直线,其中任何两条不平行,任何三条不共点,设k 条直线的交点个数为()f k ,则()1f k +与()f k 的关系是( ) A .()()11f k f k k +=++ B .()()11f k f k k +=+- C .()()1f k f k k +=+D .()()12f k f k k +=++9.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为 ( ) A .甲、乙、丙 B .乙、甲、丙 C .丙、乙、甲D .甲、丙、乙10.在正整数数列中,由1开始依次按如下规则取它的项:第一次取1;第二次取2个连续偶数2,4;第三次取3个连续奇数5,7,9;第四次取4个连续偶数10,12,14,16;第五次取5个连续奇数17,19,21,23,25,按此规律取下去,得到一个子数列1,2,4,5,7,9,10,12,14,16,17,19…,则在这个子数列中第2 020个数是( ) A .3976 B .3974 C .3978D .3973二、填空题11.用数学归纳法证明111111111234212122n n n n n-+-++-=+++-++(n 为正整数)时,第一步应验证的等式是______.12.用数学归纳法证明命题“1+1123++…+1222n n +>(n ∈N +,且n ≥2)”时,第一步要证明的结论是________.13.用反证法证明“自然数a ,b ,c 中至多有一个偶数”时,假设应为_______.14.已知等差数列{}()*n a n N ∈中,若10100a =,则等式()121220192019,*n n a a a a a a n n N -+++=+++<∈恒成立;运用类比思想方法,可知在等比数列{}()*n b n N ∈中,若1001b =,则与此相应的等式_________________恒成立.三、解答题15.(1)请用文字语言叙述异面直线的判定定理;(2)把(1)中的定理写成“已知:...,求证:...”的形式,并用反证法证明.16.把空间图形“正四面体”与平面图形“正三角形”对应,类比“正三角形内一点到三边距离之和是一个定值”得到的相应结论为___________.17.下列各题在应用数学归纳法证明的过程中,有没有错误?如果有错误,错在哪里? (1)求证:当N*n ∈时,1=+n n .证明:假设当(*)n k k N =∈时,等式成立,即1k k =+. 则当1n k =+时,左边1(11)k k =+=++=右边. 所以当1n k =+时,等式也成立.由此得出,对任何N*n ∈,等式1=+n n 都成立. (2)用数学归纳法证明等差数列的前n 项和公式是1()2n n n a a S +=. 证明,∈当1n =时,左边=11S a =,右边1a =,等式成立. ∈假设当(*)n k k N =∈时,等式成立,即1()2k k k a a S +=.则当1n k =+时, 11231k k k S a a a x a a ++=+++++, 11121k k k k S a a a a a ++-=+++++.上面两式相加并除以2,可得 111(1)()2k k k a a S ++++=,即当1n k =+时,等式也成立.由∈∈可知,等差数列的前n 项和公式是1()2n n n a a S +=18.一本旧教材上有一个关于正整数n 的恒等式22211223(1)(1)12n n n n ⨯+⨯+++=+? 其中问号处由于年代久远,只能看出它是关于n 的二次三项式,具体的系数已经看不清楚了.请你猜想这个恒等式的形式,并用数学归纳法证明.参考答案与解析:1.B【分析】根据题意相当于增加了一个三角形,从而得出选项. 【详解】由凸k 边形变为凸k +1边形时, 增加了一个三角形,故f (k +1)=f (k )+π. 故选:B 2.A【分析】将1n =代入计算可得结果. 【详解】解:1111231n n n ++++++代入1n =为:111234++. 故选:A 3.A【分析】分别使用表面积公式、体积公式计算后即可发现结论. 【详解】设两个球的半径分别为R ,r . 这两个球的半径比为::R r , 表面积比为:22224:4:R r R r ππ=, 体积比为:333344::33R r R r ππ=, 所以,两个球是相似体. 故选:A . 4.B【分析】比较n k =、1n k =+时不等式左边代数式的差异后可得需添加的项,从而得到正确的选项. 【详解】当n k =时,所假设的不等式为1115 (1236)k k k +++≥++, 当1n k =+时,要证明的不等式为1111115 (2233132336)k k k k k k ++++++≥+++++, 故需添加的项为:11113132331k k k k ++-++++, 故选:B.【点睛】本题考查数学归纳法,应用数学归纳法时,要注意归纳证明的结论和归纳假设之间的联系,必要时和式的开端和结尾处需多写几项,便于寻找差异.本题属于基础题. 5.C【分析】设(0,1)A -,(1,0)B ,(1,1)C -,计算AB k 和BC k ,可判断三点共线,可知假命题是甲、乙、丙中的一个,再由斜率即可求解.【详解】设(0,1)A -,(1,0)B ,(1,1)C -则10101AB k --==-,101112BC k -==---,因为AB BC k k ≠,所以,,A B C 三点不共线,所以假命题必是甲、乙、丙中的一个,丁是真命题,即直线l 的斜率大于0, 而0AB k >,0BC k <,0AC k <,故丙是假命题. 故选:C. 6.D【分析】由n =k+1时,等式左端2123k =+++++222(1)(2)(1)k k k ++++++可得答案.【详解】当n =k 时,等式左端2123k =++++,当n =k+1时,等式左端2123k =+++++222(1)(2)(1)k k k ++++++,增加了项222(1)(2)(1)k k k ++++++.故选:D . 7.C【分析】将1n =代入即可得结果. 【详解】当1n =时,不等式右边为1211311122a a a =+=+=+. 故选:C. 8.C【分析】考虑当1n k =+时,任取其中1条直线,记为l ,由于直线l 与前面n 条直线任何两条不平行,任何三条不共点,所以要多出k 个交点,从而得出结果. 【详解】当1n k =+时,任取其中1条直线,记为l , 则除l 外的其他k 条直线的交点的个数为()f k , 因为已知任何两条直线不平行,所以直线l 必与平面内其他k 条直线都相交(有k 个交点); 又因为任何三条直线不过同一点, 所以上面的k 个交点两两不相同,且与平面内其它的()f k 个交点也两两不相同, 从而1n k =+时交点的个数是()()1f k k f k +=+, 故选:C 9.A【分析】利用逐一验证的方法进行求解.【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A .【点睛】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查. 10.A【分析】根据题意分析出第n 次取n 个数,前n 次共取(1)2n n +个数,且第n 次取的最后一个数为n 2,然后算出前63次共取了2016个数,从而能得到数列中第2 020个数是3976.【详解】由题意可得,奇数次取奇数个数,偶数次取偶数个数,前n 次共取了(1)1232n n n ++++⋯+=个数,且第n 次取的最后一个数为n 2, 当63n =时,()6363120162⨯+=, 即前63次共取了2016个数,第63次取的数都为奇数,并且最后一个数为2633969=, 即第2 016个数为3 969,所以当n =64时,依次取3 970,3 972,3 974,3 976,…,所以第2 020个数是3 976. 故选:A. 11.11122-= 【分析】根据数学归纳法的一般步骤,令1n =即可得出结论. 【详解】依题意,当1n =时, 1112121-=⨯⨯, 即11122-=, 故答案为:11122-=.12.1112212342++++> 【解析】根据数学归纳法的步骤可知第一步要证明2n =时的不等式成立.【详解】因为n ≥2,所以第一步要证的是当n=2时结论成立,即1+111222342+++>. 故答案为:1112212342++++> 13.a ,b ,c 中至少有两个偶数【分析】用反证法证明某命题是,应先假设命题的否定成立,所以找出命题的否定是解题的关键. 【详解】用反证法证明某命题是,应先假设命题的否定成立.因为“自然数a ,b ,c 中至多有一个偶数”的否定是:“a ,b ,c 中至少有两个偶数”,所以用反证法证明“自然数a ,b ,c 中至多有一个偶数”时,假设应为“a ,b ,c 中至少有两个偶数”, 故答案为:a ,b ,c 中至少有两个偶数. 14.()*12112199199,N n n n b b b b b b b n n --=<∈【解析】根据等差数列的性质有12019101020n n a a a +-+==,等比数列的性质有21199100=1n n b b b +-=,类比即可得到结论.【详解】已知等差数列{}()*n a n N ∈中,12122019n n a a a a a a -+++=+++ 1122019n n n a a a a a +-++=++++,12201820190n n n a a a a ++-∴++++=.10100a =,由等差数列的性质得, 1201922018101020n n n n a a a a a +-+-+=+===.等比数列{}()*n b n N ∈,且1001b =,有等比数列的性质得,211992198100===1n n n n b b b b b +-+-=.所以类比等式()*121220192019,n n a n a a a a a n N -+++=+++<∈,可得()*12112199199,N n n n b b b b b b b n n --=<∈. 故答案为:()*12112199199,N n n n b b b b b b b n n --=<∈.【点睛】本题考查等差数列和等比数列的性质,结合类比的规则,和类比积,加类比乘,得出结论,属于中档题.15.(1)见解析; (2)见解析.【分析】(1)将判定定理用文字表述即可;(2)根据(1)中的前提和结论可得定理的形式,利用反证法可证该结论.【详解】(1)异面直线的判定定理:平面外一点与平面内一点的连线与平面内不过该点直线是异面直线. (2)(1)中的定理写成“已知:...,求证:...”的形式如下: ,,,P Q l Q l ααα∉∈⊂∉,求证:,PQ l 为异面直线.证明:若,PQ l 不为异面直线,则,PQ l 共面于β,故,,Q l ββ∈⊂ 而Q l ∉,故,αβ为同一平面,而P β∈,故P α∈, 这与P α∉矛盾,故,PQ l 为异面直线.16.正四面体内一点到四个面的距离之和为定值 【分析】将边类比为面,从而得出正确结论.【详解】把空间图形“正四面体”与平面图形“正三角形”对应,类比“正三角形内一点到三边距离之和是一个定值”得到的相应结论为“正四面体内一点到四个面的距离之和为定值”. 故答案为:正四面体内一点到四个面的距离之和为定值 17.(1)有错误,理由见解析;(2)有错误,理由详见解析.【分析】根据数学归纳法分为两步,∈证明当1n =时,结论成立,∈假设当n k =时,结论成立,当1n k =+时,应用归纳假设,证明1n k =+时,命题也成立,根据数学归纳法的步骤判断过程的错误之处. 【详解】(1)有错误,错误在于没有证明第(1)步,即没有证明1n =时等式成立;(2)有错误,错误在于证明1n k =+时,没有应用n k =时的假设,而是应用了倒序相加法,这不符合数学归纳法的证明过程. 18.222211223(1)(1)(31110)12n n n n n n ⨯+⨯+++=+++,证明见解析 【分析】设222()1223(1)f n n n =⋅+⋅+⋅⋅⋅++即可求得f (1),f (2),f (3);假设存在常数a ,b ,c 使得2(1)()()12n n f n an bn c +=++对一切自然数n 都成立,由f (1),f (2),f (3)的值可求得a ,b ,c ;再用数学归纳法证明即可.【详解】设222()1223(1)f n n n =⋅+⋅+⋅⋅⋅++, f ∴(1)2124=⋅=,f (2)22122322=⋅+⋅=, f (3)22212233470⋅+⋅+⋅=; 假设存在常数a ,b ,c 使得2(1)()()12n n f n an bn c +=++对一切自然数n 都成立, 则f (1)12()412a b c ⨯=++=, 24a b c ∴++=∈,同理,由f (2)22=得4244a b c ++=∈, 由f (3)70=得9370a b c ++=∈ 联立∈∈∈,解得3a =,11b =,10c =.2(1)()(31110)12n n f n n n +∴=++. 证明:1︒当1n =时,显然成立;2︒假设n k =时,2(1)(1)(2)(35)()(31110)1212k k k k k k f k k k ++++=++=, 则1n k =+时,2(1)()(1)[(1)1]f k f k k k +=++++2(1)(2)(35)(1)[(1)1]12k k k k k k +++=++++2(1)(2)(31724)12k k k k ++=++ (1)(2)(3)(38)12k k k k ++++=(1)[(1)1][(2)1][3(1)5]12k k k k +++++++=,即1n k =+时,结论也成立.综合1︒,2︒知,存在常数3a =,11b =,10c =使得2(1)()(31110)12n n f n n n +=++对一切自然数n 都成立。
推理与证明专题培训
根据一种或几种已知旳判断来拟定一种
新旳判断旳思维过程就叫推理.
你有这么旳思维体验吗?
由已知旳判断
拟定
新旳判断
归纳推理 合情推理
类比推理
推理类比演是绎怎推样理旳思维过程?
鱼 潜水艇
小光和小明是一对孪生弟兄,刚上小学一年级。 有一天,他们旳爸爸带他们去水库游玩,看到野鸭子。 小光说:“野鸭子吃小鱼。”小明说:“野鸭子吃小
1.习题2.1A组第5题;
2.类比等差数列和等比数列,列出它们相同旳 性质;
3.阅读与思索:平面和空间中旳余弦定理。
O O
O2
A
O 1
B
虾。”哥试俩一说着试说去着就抽争象论概起来括,类非要比爸推爸给理评评理。
你们弟兄俩旳爱旳好思几乎维一模样,式只?是对饮料旳爱好不同。
一种喜欢可乐,一种喜欢雪碧。你妈妈就不在乎,可乐、 雪碧都行。来自比推理旳思维过程:对象1
观察比较 某些类似特征
对象2
猜测
某些已知特征
类比推理
由两类对象具有某些类似特征和 其中一类对象旳某些已知特征,推出 另一类对象也具有这些特征旳推理 称为类比推理(简称类比).
• 圆心与弦(不是直径) 旳中点旳连线垂直于弦
球旳体积
4 R3
3
球心与截面圆(不是大
圆)旳圆心旳连线垂直于
截面圆
探究活动
类比平面内直角三角形旳勾股定
理,试给出空间四面体性质旳猜测。
B
P
C2=a2+b2
a
c
Cb
A
S1 DS2
S3
F
E S2=S12+S22+S32
应用
在平面上,设ha,hb,hc是三角形ABC三条边上旳 高.P为三角形内任一点,P到相应三边旳距离分 别为pa,pb,pc,我们能够得到结论:
高考数学压轴专题新备战高考《推理与证明》全集汇编及解析
新《推理与证明》专题一、选择题1.设函数()()02x f x x x =>+,观察下列各式:()()12x f x f x x ==+,()()()2134x f x f f x x ==+,()()()3278x f x f f x x ==+,()()()431516x f x f f x x ==+,…,()()()1n n f x f f x -=,…,根据以上规律,若1122018n f ⎛⎫> ⎪⎝⎭,则整数n 的最大值为( ) A .7B .8C .9D .10【答案】C【解析】 分析:由已知所给的前几函数的特点:分子都是x ,分母是关于x 的一次式,其常数项为2n ,一次项的系数比常数项小1,据此即可得出答案.详解:观察:()()12x f x f x x ==+,()()()2134x f x f f x x ==+,()()()3278x f x f f x x ==+,()()()431516x f x f f x x ==+,…,()()()1n n f x f f x -=,…可知:分子都是x ,分母是关于x 的一次式,其常数项为2n ,一次项的系数比常数项小1,故f n (x )=(21)2n nx x -+,所以111112()(21)2212201822n n n n nf +==>--++,即12122018n n +-+<20192673103n n ⇒<=⇒<,故n 的最大值为9,选C. 点睛:善于分析、猜想、归纳所给的式子的规律特点是解题的关键.然后再结合函数的最值分析思维即可解决问题.2.平面内的一条直线将平面分成2部分,两条相交直线将平面分成4部分,三条两两相交且不共点的直线将平面分成7部分,…则平面内的六条两两相交且任意三条不共点的直线将平面分成的部分数为( )A .20B .21C .22D .23【答案】C【解析】【分析】一条直线可以把平面分成两部分,两条直线最多可以把平面分成4部分,三条直线最多可以把平面分成7部分,四条直线最多可以把平面分成11部分,可以发现,两条直线时多了2部分,三条直线比原来多了3部分,四条直线时比原来多了4部分,即可求得答案.【详解】设画n 条直线,最多可将面分成()f n 个部分,1,(1)112n f ==+=Q ;2,(2)(1)24n f f ==+=;3,(3)(2)37n f f ==+=;,4,(4)(3)411n f f ==+=; ,5,(5)(4)516n f f ==+=;6,(6)(5)622n f f ==+=.故选:C.【点睛】本题解题关键是掌握根据题意能写出函数递推关系,在求解中寻找规律,考查了分析能力和推理能力,属于中档题.3.观察下列各式:a+b=1.a 2+b 2=3,a 3+b 3=4 ,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( ) A .28B .76C .123D .199【答案】C【解析】【分析】【详解】由题观察可发现, 347,4711,71118+=+=+=,111829,182947+=+=,294776,4776123+=+=,即1010123a b +=,故选C.考点:观察和归纳推理能力.4.已知0x >,不等式12x x +≥,243x x +≥,3274x x+≥,…,可推广为1n a x n x+≥+ ,则a 的值为( ) A .2nB .n nC .2nD .222n - 【答案】B【解析】【分析】由题意归纳推理得到a 的值即可.【详解】由题意,当分母的指数为1时,分子为111=;当分母的指数为2时,分子为224=;当分母的指数为3时,分子为3327=; 据此归纳可得:1n a x n x+≥+中,a 的值为n n . 本题选择B 选项.【点睛】归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.5.甲、乙、丙三人参加某公司的面试,最终只有一人能够被该公司录用,得到面试结果以后甲说:丙被录用了;乙说:甲被录用了;丙说:我没被录用.若这三人中仅有一人说法错误,则下列结论正确的是( )A .丙被录用了B .乙被录用了C .甲被录用了D .无法确定谁被录用了【答案】C【解析】【分析】假设若甲被录用了,若乙被录用了,若丙被录用了,再逐一判断即可.【详解】解:若甲被录用了,则甲的说法错误,乙,丙的说法正确,满足题意,若乙被录用了,则甲、乙的说法错误,丙的说法正确,不符合题意,若丙被录用了,则乙、丙的说法错误,甲的说法正确,不符合题意,综上可得甲被录用了,故选:C.【点睛】本题考查了逻辑推理能力,属基础题.6.分子间作用力只存在于分子与分子之间或惰性气体原子间的作用力,在一定条件下两个原子接近,则彼此因静电作用产生极化,从而导致有相互作用力,称范德瓦尔斯相互作用.今有两个惰性气体原子,原子核正电荷的电荷量为q ,这两个相距R 的惰性气体原子组成体系的能量中有静电相互作用能U .其计算式子为212121111U kcq R R x x R x R x ⎛⎫=+-- ⎪+-+-⎝⎭,其中,kc 为静电常量,1x 、2x 分别表示两个原子的负电中心相对各自原子核的位移.已知12121x x R x x R R -⎛⎫+-=+ ⎪⎝⎭,111x R x R R ⎛⎫+=+ ⎪⎝⎭,221x R x R R ⎛⎫-=- ⎪⎝⎭,且()1211x x x -+≈-+,则U 的近似值为( )A .2123kcq x x RB .2123kcq x x R -C .21232kcq x x RD .21232kcq x x R - 【答案】D【解析】【分析】 将12121x x R x x R R -⎛⎫+-=+ ⎪⎝⎭,111x R x R R ⎛⎫+=+ ⎪⎝⎭,221x R x R R ⎛⎫-=- ⎪⎝⎭代入U ,结合()1211x x x -+≈-+化简计算可得出U 的近似值.【详解】221212121211111111111U kcq kcq x x x x R R x x R x R x R R R R R R R ⎡⎤⎢⎥⎛⎫⎢⎥=+--=+-- ⎪-+-+-⎛⎫⎛⎫⎛⎫⎢⎥⎝⎭++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2222121211221111x x x x x x x x kcq R R R R R R R ⎡⎤--⎛⎫⎛⎫⎛⎫=+-+-+----⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦21232kcq x x R =-. 故选:D.【点睛】本题考查U 的近似计算,充分理解题中的计算方法是解答的关键,考查推理能力与计算能力,属于中等题.7.小赵、小钱、小孙、小李四位同学被问到谁去过北京时,小赵说:我没去过;小钱说:小李去过;小孙说;小钱去过;小李说:我没去过.假定四人中只有一人说的是假话,由此可判断一定去过北京的是( )A .小钱B .小李C .小孙D .小赵 【答案】A【解析】由题意的,如果小赵去过长城,则小赵说谎,小钱说谎,不满足题意;如果小钱去过长城,则小赵说真话,小钱说谎,小孙、小李说真话,满足题意,故选A.8.小正方形按照下图中的规律排列,每个图形中的小正方形的个数构成数列{}n a 有以下结论:①515a =;②{}n a 是一个等差数列;③数列{}n a 是一个等比数列;④数列{}n a 的递堆公式11(),n n a a n n N *+=++∈其中正确的是( )A .①②④B .①③④C .①②D .①④【答案】D【解析】 由图形可得:a 1=1,a 2=1+2,…∴()1122n n n a n +=++⋯+= .所以①a 5=15; 正确;②an −a n −1= n ,所以数列{a n }不是一个等差数列;故②错误;③数列{an }不是一个等比数列;③错误;④数列{a n }的递推关系是a n +1=a n +n +1(n ∈N ∗).正确;本题选择D 选项.点睛: 数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项.9.下面几种推理中是演绎推理的为( )A .由金、银、铜、铁可导电,猜想:金属都可导电B .猜想数列111122334⋯⋯⨯⨯⨯,,,的通项公式为1()(1)n a n N n n *=∈+ C .半径为r 的圆的面积2S r π=,则单位圆的面积S π=D .由平面直角坐标系中圆的方程为222()()x a y b r -+-=,推测空间直角坐标系中球的方程为2222()()()x a y b z c r -+-+-=【答案】C【解析】【分析】根据合情推理与演绎推理的概念,得到A 是归纳推理,B 是归纳推理,C 是演绎推理,D 是类比推理,即可求解.【详解】根据合情推理与演绎推理的概念,可得:对于A 中, 由金、银、铜、铁可导电,猜想:金属都可导电,属于归纳推理;对于B 中, 猜想数列111122334⋯⋯⨯⨯⨯,,,的通项公式为1()(1)n a n N n n *=∈+,属于归纳推理,不是演绎推理;对于C 中,半径为r 的圆的面积2S r π=,则单位圆的面积S π=,属于演绎推理; 对于D 中, 由平面直角坐标系中圆的方程为222()()x a y b r -+-=,推测空间直角坐标系中球的方程为2222()()()x a y b z c r -+-+-=,属于类比推理,综上,可演绎推理的C 项,故选C .【点睛】本题主要考查了合情推理与演绎推理的概念及判定,其中解答中熟记合情推理和演绎推理的概念,以及推理的规则是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.10.学校艺术节对同一类的A 、B 、C 、D 四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“是C 或D 作品获得一等奖” 乙说:“B 作品获得一等奖”丙说:“A 、D 两项作品未获得一等奖” 丁说:“是C 作品获得一等奖”若这四位同学中只有两位说的话是对的,则获得一等奖的作品为( )A .C 作品B .D 作品C .B 作品D .A 作品【答案】C【解析】分析:根据学校艺术节对同一类的A ,B ,C ,D 四项参赛作品,只评一项一等奖,故假设A ,B ,C ,D 分别为一等奖,判断甲、乙、丙、丁的说法的正确性,即可判断.详解:若A 为一等奖,则甲,丙,丁的说法均错误,故不满足题意,若B 为一等奖,则乙,丙说法正确,甲,丁的说法错误,故满足题意,若C 为一等奖,则甲,丙,丁的说法均正确,故不满足题意,若D 为一等奖,则只有甲的说法正确,故不合题意,故若这四位同学中只有两位说的话是对的,则获得一等奖的作品是B故答案为:C.点睛:本题考查推理的应用,意在考查学生的分析、推理能力.这类题的特点是:通过几组命题来创设问题情景,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.对于逻辑推理问题,应耐心读题,找准突破点,一般可以通过假设前提依次验证即可.11.用数学归纳法证明“1112n n ++++…111()24n N n n +≥∈+”时,由n k =到1n k =+时,不等试左边应添加的项是( ) A .12(1)k + B .112122k k +++C .11121221k k k +-+++ D .1111212212k k k k +--++++ 【答案】C【解析】【分析】分别代入,1n k n k ==+,两式作差可得左边应添加项。
推理与证明精选训练题(有答案)
推理与证明精选训练题一、选择题1.如下图所示将若干个点摆成三角形图案,每条边(色括两个端点)有n(n>l ,n ∈N *)个点,相应的图案中总的点数记为a n ,则239a a +349a a +459a a +…+201220139a a =A .20102011B .20112012C .20122013D .201320122.设△ABC 的三边长分别为a 、b 、c ,△ABC 的面积为S ,内切圆半径为r ,则cb a S r ++=2;类比这个结论可知:四面体S -ABC 的四个面的面积分别为1S 、2S 、3S 、4S ,内切球半径为R ,四面体P -ABC 的体积为V ,则R =( ) A .4321S S S S V+++ B .43212S S S S V+++C .43213S S S S V+++ D .43214S S S S V+++3.下面使用类比推理正确的是( )A .“若a·3=b·3,则a=b”类推出“若a·0=b·0,则a=b”B .“若(a+b )c=ac+bc”类推出“(a·b )c=ac·bc”C .“若(a+b )c=ac+bc”类推出“(0)a b a b c ccc+=+≠”D .“()nnnab a b =”类推出“()nnna b a b +=+”4.已知“*”表示一种运算,定义如下关系:①1*1=a ②)*(3*)1(a n a n =+(n ∈N *)则=a n * ( )A .23-nB .13+nC .13-nD .n 3 5.观察下图,可推断出“?”应该填的数字是 ( )A .19B .192C .117D .118?81642475947165316.我们知道十进制数有10个数码即0~9,进位规则是“逢十进一”,如47+56=103;由此可知八进制数有8个数码即0~7,进位规则是“逢八进一”,则在八进制下做如下运算47+56= ( ) A .85 B .103 C .125 D .185 7.下列说法正确的是 A .合情推理就是归纳推理B .合情推理的结论不一定正确,有待证明C .演绎推理的结论一定正确,不需证明D .类比推理是从特殊到一般的推理8.有一段演绎推理是这样的:“指数函数都是增函数;已知x y )21(=是指数函数;则x y )21(=是增函数”的结论显然是错误的,这是因为 ( ) A .大前提错误 B .小前提错误 C .推理形式错误 D .非以上错误9.下列几种推理过程是演绎推理的是 ( )A .两条平行直线与第三条直线相交,内错角相等,如果A ∠和B ∠是两条平行直线的内错角,则B A ∠=∠B .金导电,银导电,铜导电,铁导电,所以一切金属都导电C .由圆的性质推测球的性质D .科学家利用鱼的沉浮原理制造潜艇10.如下图,根据图中的数构成的规律,a 所表示的数是 ( )A .12B .48C .60D .14411.长方形的对角线与过同一个顶点的两边所成的角为βα,,则1cos cos 22=+βα,将长方形与长方体进行类比,长方体的一条体对角线与长方体过同一个顶点的三个面所成的角分别为γβα,,,则正确的结论为 ( ) A .1cos cos cos 222=++γβαB .2cos cos cos 222=++γβαC .3cos cos cos 222=++γβαD .4cos cos cos 222=++γβα12.若点P 是正三角形ABC 的内部任一点,且P 到三边的距离分别为321,,h h h ,正三角形ABC的高为h ,根据等面积法可以得到321h h h h ++=,由此可以类推到空间中,若点P 是正四面体A -BCD 的内部任一点,且P 到四个面的距离分别为4321,,,h h h h ,正四面体A -BCD 的高为h ,则有 ( )A .4321h h h h h +++>B .4321h h h h h +++=C .4321h h h h h +++<D .4321,,,h h h h 与h 的关系不定13.已知(0,)x ∈+∞,观察下列各式:21≥+xx ,3422422≥++=+xx x xx ,4273332733≥+++=+xx x x xx ,...,类比有nxa x n≥+(n ∈N *),则=a( )A .nB .2nC .2nD .n n二、填空题14.空间任一点O 和不共线三点A 、B 、C ,则)1(=++++=z y x OC z OB y OA x OP 是P ,A ,B ,C四点共面的充要条件.在平面中,类似的定理是 .15.已知213cos=π,4152cos5cos=ππ,8173cos 72cos7cos=πππ,…,根据以上等式,可猜想出的一般结论是 .16.经计算发现下列正确的等式:231323133333++=++,352535253333++=++,682868283333++=++,...,根据以上等式的规律,试写出一个对正实数b a ,成立的等式 .17.在数学解题中,常会碰到形如“xyy x -+1”的结构,这时可类比正切的和角公式.如:设ba ,是非零实数,且满足158tan 5sin5cos 5cos5sinπππππ=-+b a b a ,则ab = ( )A .4B .15C .2D .318.四个小动物换座位,开始是鼠、猴、兔、猫分别坐1,2,3,4号位子上(如下图),第一次前后排动物互换座位,第二次左右列动物互换座位,…,这样交替进行下去,那么第2012次互换座位后,小兔的座位对应的是 ( )A .编号1B .编号2C .编号3D .编号4三、解答题19.设N =2n (n ∈N *,n ≥2),将N 个数x 1,x 2,…,x N 依次放入编号为1,2,…,N 的N 个位置,得到排列P 0=x 1x 2…x N .将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前2N 和后2N 个位置,得到排列P 1=x 1x 3…x N-1x 2x 4…x N ,将此操作称为C 变换,将P 1分成两段,每段2N 个数,并对每段作C 变换,得到2p ;当2≤i ≤n-2时,将P i 分成2i段,每段2iN 个数,并对每段C 变换,得到P i+1,例如,当N=8时,P 2=x 1x 5x 3x 7x 2x 6x 4x 8,此时x 7位于P 2中的第4个位置.(1)当N=16时,x 7位于P 2中的第___个位置;(2)当N=2n (n ≥8)时,x 173位于P 4中的第___个位置.试卷答案1.B2.C因为a h a S ⋅⋅=21,h S V ⋅⋅=底21,所以S 2类比V 3,故选择C 。
(典型题)高中数学选修1-2第三章《推理与证明》测试(答案解析)
一、选择题1.类比推理是一种重要的推理方法.已知1l ,2l ,3l 是三条互不重合的直线,则下列在平面中关于1l ,2l ,3l 正确的结论类比到空间中仍然正确的是( )①若13//l l ,23//l l ,则12l l //;②若13l l ⊥,23l l ⊥,则12l l //;③若1l 与2l 相交,则3l 必与其中一条相交;④若12l l //,则3l 与1l ,2l 相交所成的同位角相等 A .①④B .②③C .①③D .②④2.下列推理过程不是演绎推理的是( )①一切奇数都不能被2整除,2019是奇数,2019不能被2整除; ②由“正方形面积为边长的平方”得到结论:正方体的体积为棱长的立方; ③在数列{}n a 中,()111,312n n a a a n -==-≥,由此归纳出{}n a 的通项公式; ④由“三角形内角和为180︒”得到结论:直角三角形内角和为180︒. A .①②B .③④C .②③D .②④3.学校艺术节对同一类的A 、B 、C 、D 四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下: 甲说:“是C 或D 作品获得一等奖” 乙说:“B 作品获得一等奖” 丙说:“A 、D 两项作品未获得一等奖” 丁说:“是C 作品获得一等奖” 若这四位同学中只有两位说的话是对的,则获得一等奖的作品为( ) A .C 作品B .D 作品C .B 作品D .A 作品4.在等差数列{}n a 中,若0n a >,公差0d ≠,则有2415a a a a >.类比上述性质,在等比数列{}n b 中,若0n b >,公比1q ≠,则关于3b ,5b ,2b ,6b 的一个不等关系正确的是( ) A .3526b b b b > B .5623b b b b > C .3526b b b b +<+D .5623b b b b +<+5.如图中的三角形图案称为谢宾斯基三角形.在四个三角形图案中,着色的小三角形的个数依次构成数列{}n a 的前4项,则{}n a 的通项公式可以为( )A .21n a n =-B .21nn a =- C .3nn a =D .13-=n n a6.下面几种推理中是演绎推理的为( )A .高二年级有12个班,1班51人,2班53人,3班52人,由此推测各班都超过50人B .猜想数列111,,122334⋯⋯⨯⨯⨯的通项公式为()1(1)n a n N n n +=∈+C .半径为r 的圆的面积2S r π=,则单位圆的面积S π=D .由平面三角形的性质推测空间四面体的性质7.0=,则0x y ==,假设为( )A .,x y 都不为0B .,x y 不都为0C .,x y 都不为0,且x y ≠D .,x y 至少有一个为08.观察下列各式:2749=,37343=,472401=,…,则10097的末两位数字为( )A .49B .43C .07D .019.定义两个运算:1212a b a lgb ⊗=+,132a b lga b -⊕=+.若925M =⊗,127N =,则(M N += ) A .6B .7C .8D .910.小明在期中考后,想急迫地核对答案,于是他来到数学组办公室,寻找出卷的老师.此时办公室正好有四位老师,他们发现小明不认识他们中的任何一位,于是他们每人说了一句话: 甲说:“我这学期还没出过考试卷呢!” 乙说:“丁出的这次考卷!” 丙说:“是乙出的试卷!” 丁说:“出卷的不是我!”他们告诉小明,只有一位老师说了假话,而且出卷老师就在其中,那么请问到底是谁出的期中试卷( ) A .甲B .乙C .丙D .丁11.某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段。
初二数学几何证明与推理练习题及答案20题
初二数学几何证明与推理练习题及答案20题1. 题目:已知ABCD是一个平行四边形,证明AC=BD。
证明:由平行四边形的定义,可知AB∥CD和AD∥BC。
在ABCD中,我们连接AC和BD,假设它们的交点为E。
因为AB∥CD,所以∠ABC+∠BCD=180°(内错角性质)。
又由于AD∥BC,所以∠BCD+∠CDE=180°(内错角性质)。
综上,∠ABC+∠CDE=180°,即△ABC与△CDE互补。
根据互补角的性质,△ABC与△CDE全等,因此AC=BD得证。
2. 题目:已知ABCD是一个矩形,证明BD是直径。
证明:由矩形的定义,可知AB∥CD和AD∥BC。
在矩形ABCD中,我们连接角BAD的角平分线BE和角BCD的角平分线CF,它们相交于点O。
因为角BAD和角BCD都是直角(矩形的性质),所以∠BAE=∠CFO=90°。
由于角平分线的性质,∠BAE=∠CAE,∠CFO=∠CDO。
因此,在△BAE和△CFO中,∠CAE=∠CDO,且∠BAE=∠CFO。
根据AA相似三角形的性质,△BAE与△CFO相似。
因此,AE/CF=BA/CO=1/2(相似三角形的对应边比例相等)。
由此可得,CO=2AE,即CO=2BO。
由于OC=OC(公共边),所以△BOC为等腰三角形,即BO=BC。
综上所述,BD=2BO=2BC,即BD是直径。
3. 题目:已知△ABC中,AB=AC,垂直平分线BM过点B交AC于点M,证明∠ABM=∠ACM。
证明:由题意可得AB=AC,BM⊥AC,且BM平分∠ABC。
连接AM和CM。
在△ABC中,由于AB=AC,所以∠ABC=∠ACB。
由垂直平分线的性质,BM平分了∠ABC,所以∠ABM=∠CBM。
同理,在△ACB中,由于AB=AC,所以∠ACB=∠ABC。
由垂直平分线的性质,BM平分了∠ACB,所以∠CBM=∠ACM。
综上所述,∠ABM=∠CBM=∠ACM得证。
数学北师大版高中选修2-2第一章 推理与证明练习题
第一章 推理与证明练习题1.“蛇、鳄鱼、海龟、蜥蜴等爬行动物是用肺呼吸的,所以所有的爬行动物都是用肺呼吸的.”此推理方法是: ;2.在数列1,2,2,3,3,3,4,4,4,4,…中,第25项为: ;3.证明n +22<1+12+13+14+…+12n<n +1(n >1),当n =2时,中间式等于: ;4.否定结论“至多有两个解”的说法是: ;5.三角形的面积为S =12(a +b +c )r ,a ,b ,c 为三角形的边长,r 为三角形内切圆的半径,利用类比推理可以得出四面体的体积为: ;6.某人在上楼梯时,一步上一个台阶或两个台阶,设他从平地上到第一级台阶时有f (1)种走法,从平地上到第二级台阶时有f (2)种走法……则他从平地上到第n 级(n ≥3)台阶时的走法f (n )等于: ;7.已知f (x )=x 3+x ,a ,b ,c ∈R ,且a +b >0,a +c >0,b +c >0,则f (a )+f (b )+f (c )的值一定: ;8.数列{a n }满足a 1=12,a n +1=1-1a n,则a 2 013等于: ;9.一个数列{a n }的前n 项为35,12,511,37,717,….则猜想它的一个通项公式为a n =________.10.观察下列的图形中小正方形的个数,则第6个图中有________个小正方形,第n 个图中有________个小正方形.图111.用反证法证明命题“若x 2-(a +b )x +ab ≠0,则x ≠a 且x ≠b ”时,应假设为________.12.已知等差数列{a n }中,有a 11+a 12+…+a 2010=a 1+a 2+…+a 3030,则在等比数列{b n }中,会有类似的结论:________________.13.已知a +b +c =0,比较ab +bc +ca 的大值与0的大小;14.观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,….根据上述规律,第五个等式为________________________.15.(本小题满分12分)若a 1>0,a 1≠1,a n +1=2a n1+a n(n =1,2,…).(1)求证:a n +1≠a n ;(2)令a 1=12,写出a 2,a 3,a 4,a 5的值,观察并归纳出这个数列的通项公式a n .16.(2014·银川模拟)用数学归纳法证明“当n 为正奇数时,x n +y n能被x +y 整除”的第二步是( )A .假设n =2k +1时正确,再推n =2k +3时正确(k ∈N +)B .假设n =2k -1时正确,再推n =2k +1时正确(k ∈N +)C .假设n =k 时正确,再推n =k +1时正确(k ∈N +)D .假设n ≤k (k ≥1)时正确,再推n =k +2时正确(k ∈N +)17.f (n )=1+12+13+…+1n (n ∈N *),经计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,f (32)>72.推测:当n ≥2时,有____________.18.(2014·陕西文,14)已知f (x )=x1+x,x ≥0,若f 1(x )=f (x ),f n +1(x )=f (f n (x )),n ∈N +, 则f 2014(x )的表达式为________.19.(本小题满分12分)某少数民族的刺绣有着悠久的历史,图2为她们刺绣中最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形.图2(1)求出f (5)的值;(2)利用合情推理的“归纳推理思想”归纳出f (n +1)与f (n )之间的关系式,并根据你得到的关系式求出f (n )的表达式;(3)求1f +1f -1+1f -1+…+1f n -1的值.20.(本小题满分14分)函数列{f n (x )}满足f 1(x )=x1+x2(x >0),f n +1(x )=f 1[f n (x )].(1)求f 2(x ),f 3(x );(2)猜想f n (x )的表达式,并证明.21.已知数列{a n },a 1=5且S n -1=a n (n ≥2,n ∈N +). (1)求a 2,a 3,a 4,并由此猜想a n 的表达式; (2)用数学归纳法证明{a n }的通项公式.22.(山东高考)等比数列{a n }的前n 项和为S n ,已知对任意的n ∈N +,点(n ,S n )均在函数y =b x+r (b >0且b ≠1,b ,r 均为常数)的图像上.(1)求r 的值;(2)当b =2时,记b n =2(log 2a n +1)(n ∈N +),证明:对任意的n ∈N +,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n>n +1成立.[解析] (1)解:因为对任意n ∈N +,点(n ,S n )均在函数y =b x+r (b >0且b ≠1,b ,r均为常数)的图像上,所以S n =b n+r .当n =1时,a 1=S 1=b +r ,当n ≥2时,a n =S n -S n -1=b n +r -(b n -1+r )=b n -b n -1=(b -1)b n -1,又因为{a n }为等比数列,所以r =-1,公比为b ,a n =(b -1)b n -1.(2)证明:当b =2时,a n =(b -1)b n -1=2n -1, b n =2(log 2a n +1)=2(log 22n -1+1)=2n , 则b n +1b n =2n +12n ,所以b 1+1b 1·b 2+1b 2·…·b n +1b n =32·54·76·…·2n +12n.下面用数学归纳法证明不等式:32·54·76…·2n +12n>n +1.①当n =1时,左边=32,右边=2,因为32>2,所以不等式成立.②假设当n =k (k ∈N +)时,不等式成立, 即32·54·76·…·2k +12k>k +1.则当n =k +1时, 左边=32·54·76·…·2k +12k ·2k +32k +2>k +1·2k +32k +2=k +2k +=k +2+k ++1k +=k ++1+1k +>k ++1, 所以当n =k +1时,不等式也成立.由①②可得,不等式对任何n ∈N +都成立, 即b 1+1b 1·b 2+1b 2·…·b n +1b n >n +1恒成立.【解】 (1)f (5)=41.(2)因为f (2)-f (1)=4=4×1, f (3)-f (2)=8=4×2, f (4)-f (3)=12=4×3, f (5)-f (4)=16=4×4,…由以上规律,可得出f (n +1)-f (n )=4n ,因为f (n +1)-f (n )=4n ,所以f (n +1)=f (n )+4n ,所以f (n )=f (n -1)+4(n -1)=f (n -2)+4(n -1)+4(n -2)=f (n -3)+4(n -1)+4(n -2)+4(n -3)=…=f [n -(n -1)]+4(n -1)+4(n -2)+4(n -3)+…+4[n -(n -1)]=2n 2-2n +1.(3)当n ≥2时,1f n -1=12n n -=12(1n -1-1n),所以1f +1f -1+1f -1+…+1f n -1=1+12(1-12+12-13+13-14+…+1n -1-1n )=1+12(1-1n )=32-12n.18.(本小题满分14分)函数列{f n (x )}满足f 1(x )=x1+x2(x >0),f n +1(x )=f 1[f n (x )].(1)求f 2(x ),f 3(x );(2)猜想f n (x )的表达式,并证明. 解:(1)f 1(x )=x1+x2(x >0),f 2(x )=x1+x21+x 21+x 2=x1+2x 2,f 3(x )=x1+2x 21+x 21+2x2=x 1+2x 2+x 2=x1+3x 2. (2)猜想f n (x )=x1+nx2,下面用数学归纳法证明: ①当n =1时,命题显然成立.②假设当n =k 时,f k (x )=x1+kx2,那么f k +1(x )=x1+kx 21+x21+kx2=x1+kx 2+x2=x 1+k +x 2.这就是说,当n =k +1时命题成立.由①②,可知f n (x )=x1+nx2对所有n ∈N +均成立.20.已知数列{a n },a 1=5且S n -1=a n (n ≥2,n ∈N +). (1)求a 2,a 3,a 4,并由此猜想a n 的表达式; (2)用数学归纳法证明{a n }的通项公式.[分析] 利用不完全归纳法猜想归纳出a n ,然后用数学归纳法证明.解题的关键是根据已知条件和假设寻找a k 与a k +1和S k 与S k +1之间的关系.[解析] (1)由已知,得a 2=S 1=a 1=5,a 3=S 2=a 1+a 2=10,a 4=S 3=a 1+a 2+a3=5+5+10=20,a n =⎩⎪⎨⎪⎧n =5×2n -2n .(2)①当n =2时,a 2=5×22-2=5,表达式成立.当n =1时显然成立,下面用数学归纳法证明n ≥2时结硫化亦成立.②假设n =k (k ≥2,k ∈N +)时表达式成立,即a k =5×2k -2, 则当n =k +1时,由已知条件和假设有 a k +1=S k =a 1+a 2+…+a k=5+5+10+…+5×2k -2=5+-2k -11-2=5×2k -1=5×2(k +1)-2.故当n =k +1时,表达式也成立.由①②可知,对一切n (n ≥2,n ∈N +)都有a n =5×2n -2.[点评] 本题先用不完全归纳法猜想出通项,然后用数学归纳法证明,考查了由特殊到一般的数学思想,也考查了数列知识,在高考中这类题往往是压轴题.解决方法是观察与分析法,也就是说解决这类题要注意观察数列中各项与其序号的变化关系,归纳出构成数列的规律,同时还要注意第一项与其他各项的差异,从而发现其中的规律.21.(山东高考)等比数列{a n }的前n 项和为S n ,已知对任意的n ∈N +,点(n ,S n )均在函数y =b x+r (b >0且b ≠1,b ,r 均为常数)的图像上.(1)求r 的值;(2)当b =2时,记b n =2(log 2a n +1)(n ∈N +),证明:对任意的n ∈N +,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n>n +1成立.[解析] (1)解:因为对任意n ∈N +,点(n ,S n )均在函数y =b x+r (b >0且b ≠1,b ,r均为常数)的图像上,所以S n =b n+r .当n =1时,a 1=S 1=b +r ,当n ≥2时,a n =S n -S n -1=b n +r -(b n -1+r )=b n -b n -1=(b -1)b n -1,又因为{a n }为等比数列,所以r =-1,公比为b ,a n =(b -1)b n -1.(2)证明:当b =2时,a n =(b -1)b n -1=2n -1, b n =2(log 2a n +1)=2(log 22n -1+1)=2n , 则b n +1b n =2n +12n ,所以b 1+1b 1·b 2+1b 2·…·b n +1b n =32·54·76·…·2n +12n.下面用数学归纳法证明不等式:32·54·76…·2n +12n>n +1.①当n =1时,左边=32,右边=2,因为32>2,所以不等式成立.②假设当n =k (k ∈N +)时,不等式成立, 即32·54·76·…·2k +12k>k +1.则当n =k +1时, 左边=32·54·76·…·2k +12k ·2k +32k +2>k +1·2k +32k +2=k +2k +=k +2+k ++1k +=k ++1+1k +>k ++1, 所以当n =k +1时,不等式也成立.由①②可得,不等式对任何n ∈N +都成立, 即b 1+1b 1·b 2+1b 2·…·b n +1b n>n +1恒成立.第一章 推理与证明 (时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.“蛇、鳄鱼、海龟、蜥蜴等爬行动物是用肺呼吸的,所以所有的爬行动物都是用肺呼吸的.”此推理方法是( )A .演绎推理B .归纳推理C .类比推理D .以上都不对【解析】 由部分推断全体,是归纳推理. 【答案】 B2.在数列1,2,2,3,3,3,4,4,4,4,…中,第25项为( ) A .25 B .6 C .7 D .8【解析】 将数列分组得(1),(2,2),(3,3,3),(4,4,4,4),…,这样每一组的个数为1,2,3,4,…;其和为n n +2,令n =6,则有6×72=21,所以第25项在第7组,因此第25项是7.【答案】 C3.证明n +22<1+12+13+14+…+12n<n +1(n >1),当n =2时,中间式等于( )A .1B .1+12C .1+12+13D .1+12+13+14【解析】 中间的式子共有2n 项,故n =2时,中间的式子等于1+12+13+14.【答案】 D4.否定结论“至多有两个解”的说法中,正确的是( ) A .有一个解 B .有两个解C .至少有三个解D .至少有两个解【解析】 “至多有两个解”包含有两解,仅有一解,和无解,故其否定为至少有三个解.【答案】 C5.已知c >1,a =c +1-c ,b =c -c -1,则正确的结论是( ) A .a >b B .a <bC .a =bD .a ,b 大小不定【解析】 a =1c +1+c ,b =1c +c -1,显然a <b .【答案】 B6.三角形的面积为S =12(a +b +c )r ,a ,b ,c 为三角形的边长,r 为三角形内切圆的半径,利用类比推理可以得出四面体的体积为( )A .V =13abcB .V =13ShC .V =13(S 1+S 2+S 3+S 4)r (S 1,S 2,S 3,S 4为四个面的面积,r 为内切球的半径)D .V =13(ab +bc +ac )h (h 为四面体的高)【解析】 设△ABC 的内心为O ,连接OA ,OB ,OC ,将△ABC 分割为三个小三角形,这三个小三角形的高都是r ,底边长分别为a ,b ,c ;类比:设四面体A -BCD 的内切球的球心为O ,连接OA ,OB ,OC ,OD ,将四面体分割为四个以O 为顶点,以原来面为底面的四面体,高都为r ,所以有V =13(S 1+S 2+S 3+S 4)r .【答案】 C 7.某人在上楼梯时,一步上一个台阶或两个台阶,设他从平地上到第一级台阶时有f (1)种走法,从平地上到第二级台阶时有f (2)种走法……则他从平地上到第n 级(n ≥3)台阶时的走法f (n )等于( )A .f (n -1)+1B .f (n -2)+2C .f (n -2)+1D .f (n -1)+f (n -2)【解析】 要到达第n 级台阶有两种走法:(1)在第n -2级的基础上到达;(2)在第n -1级的基础上到达.【答案】 D8.已知f (x )=x 3+x ,a ,b ,c ∈R ,且a +b >0,a +c >0,b +c >0,则f (a )+f (b )+f (c )的值一定( )A .大于零B .等于零C .小于零D .正负都可能【解析】 f (x )=x 3+x 是奇函数且在R 上是增函数,由a +b >0,得a >-b ,故f (a )>f (-b ),可得f (a )+f (b )>0.同理f (a )+f (c )>0,f (b )+f (c )>0.所以f (a )+f (b )+f (c )>0.【答案】 A9.(2012·江西高考)观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .28B .76C .123D .199【解析】 记a n +b n=f (n ),则f (3)=f (1)+f (2)=1+3=4;f (4)=f (2)+f (3)=3+4=7;f (5)=f (3)+f (4)=11.通过观察不难发现f (n )=f (n -1)+f (n -2)(n ∈N *,n ≥3),则f (6)=f (4)+f (5)=18;f (7)=f (5)+f (6)=29;f (8)=f (6)+f (7)=47;f (9)=f (7)+f (8)=76;f (10)=f (8)+f (9)=123.所以a 10+b 10=123.【答案】 C10.数列{a n }满足a 1=12,a n +1=1-1a n,则a 2 013等于( )A.12B .-1C .2D .3【解析】 ∵a 1=12,a n +1=1-1a n,∴a 2=1-1a 1=-1,a 3=1-1a 2=2,a 4=1-1a 3=12,a 5=1-1a 4=-1,a 6=1-1a 5=2,∴a n +3k =a n (n ∈N *,k ∈N *)∴a 2 013=a 3+3×670=a 3=2. 【答案】 C二、填空题(本大题共4小题,每小题5分,共20分,把答案填在横线上)11.一个数列{a n }的前n 项为35,12,511,37,717,….则猜想它的一个通项公式为a n =________.【解析】 数列可写成35,48,511,614,717,….猜想通项公式a n =n +23n +2.【答案】 n +23n +212.观察下列的图形中小正方形的个数,则第6个图中有________个小正方形,第n 个图中有________个小正方形.图1【解析】根据规律和第6个图形中有1+2+3+4+5+6+7=28.第n 个图形中有1+2+…+(n +1)=n +n +2.【答案】 28 n +n +213.用反证法证明命题“若x 2-(a +b )x +ab ≠0,则x ≠a 且x ≠b ”时,应假设为________.【解析】 就x 是否等于a ,b 而言有四种情形:①x =a ,x ≠b ;②x ≠a ,x =b ;③x =a ,x =b ;④x ≠a ,x ≠b .故应假设x =a 或x =b . 【答案】 x =a 或x =b14.已知等差数列{a n }中,有a 11+a 12+…+a 2010=a 1+a 2+…+a 3030,则在等比数列{b n }中,会有类似的结论:________________.【解析】 根据等差、等比数列中运算的性质知: 在等比数列{b n }中会有10a 11·a 12·…·a 20=30a 1·a 2·…·a 30.【答案】 10a 11·a 12·…·a 20=30a 1·a 2·…·a 30三、解答题(本大题共4小题,共50分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分12分)用反证法证明:如果x >12,那么x 2+2x -1≠0.【证明】 假设x 2+2x -1=0, 则解得x 1=2-1,x 2=-2-1.又x 1<12,x 2<12,这与已知x >12矛盾.故假设不成立,x 2+2x -1≠0成立.16.(本小题满分12分)试比较2n 与n 2(n ∈N *)的大小关系,并用数学归纳法证明.【证明】 当n =1时,21>12,即2n >n 2,当n =2时,22=22,即2n =n 2,当n =3时,23<32,即2n <n 2,当n =4时,24=42,即2n =n 2,当n =5时,25>52,即2n >n 2,当n =6时,26>62,即2n >n 2, …猜测,当n ≥5时,2n >n 2.下面用数学归纳法证明猜测成立. ①当n =5时,由上可知猜测成立.②设n =k (k ≥5)时,命题成立,即2k >k 2. ∴2k +1=2·2k >2k 2=k 2+k 2>k 2+(2k +1)=(k +1)2,即n =k +1时命题也成立.由①和②可得,n ≥5时,2n >n 2(n ∈N *).17.(本小题满分12分)某少数民族的刺绣有着悠久的历史,图2为她们刺绣中最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形.图2(1)求出f (5)的值;(2)利用合情推理的“归纳推理思想”归纳出f (n +1)与f (n )之间的关系式,并根据你得到的关系式求出f (n )的表达式;(3)求1f +1f -1+1f -1+…+1f n -1的值.【解】 (1)f (5)=41.(2)因为f (2)-f (1)=4=4×1, f (3)-f (2)=8=4×2, f (4)-f (3)=12=4×3, f (5)-f (4)=16=4×4, …由以上规律,可得出f (n +1)-f (n )=4n ,因为f (n +1)-f (n )=4n ,所以f (n +1)=f (n )+4n ,所以f (n )=f (n -1)+4(n -1)=f (n -2)+4(n -1)+4(n -2)=f (n -3)+4(n -1)+4(n -2)+4(n -3)=…=f [n -(n -1)]+4(n -1)+4(n -2)+4(n -3)+…+4[n -(n -1)]=2n 2-2n +1.(3)当n ≥2时,1f n -1=12n n -=12(1n -1-1n),所以1f +1f -1+1f -1+…+1f n -1=1+12(1-12+12-13+13-14+…+1n-1-1n)=1+12(1-1n)=32-12n.18.(本小题满分14分)已知a、b、c>0,求证:a3+b3+c3≥13(a2+b2+c2)(a+b+c).【证明】∵a、b、c>0,∴a2+b2≥2ab,∴(a2+b2)(a+b)≥2ab(a+b),∴a3+b3+a2b+ab2≥2ab(a+b)=2a2b+2ab2,∴a3+b3≥a2b+ab2.同理,b3+c3≥b2c+bc2,a3+c3≥a2c+ac2,将三式相加得,2(a3+b3+c3)≥a2b+ab2+b2c+bc2+a2c+ac2.∴3(a3+b3+c3)≥(a3+a2b+a2c)+(b3+b2a+b2c)+(c3+c2a+c2b)=(a2+b2+c2)(a+b+c).∴a3+b3+c3≥13(a2+b2+c2)(a+b+c).。
数学高二-专题 推理与证明
推理与证明(推荐时间:50分钟)一、选择题1.(2010·山东)观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x ,由归纳推理可得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则g (-x )等于( )A .f (x )B .-f (x )C .g (x )D .-g (x )2.已知数列{a n }的前n 项和S n =n 2a n (n ≥2),而a 1=1,通过计算a 2,a 3,a 4,猜想a n 等于( )A.2(n +1)2B.2n (n +1)C.22n -1D.22n -13.用反证法证明命题:若整数系数一元二次方程ax 2+bx +c =0 (a ≠0)有有理根,那么a ,b ,c 中至少有一个是偶数时,下列假设中正确的是( )A .假设a ,b ,c 都是偶数B .假设a ,b ,c 都不是偶数C .假设a ,b ,c 至多有一个是偶数D .假设a ,b ,c 至多有两个是偶数4.(2011·江西)观察下列各式:72=49,73=343,74=2 401,…,则72 011的末两位数字为( )A .01B .43C .07D .495.定义一种运算“*”:对于自然数n 满足以下运算性质:(ⅰ)1*1=1,(ⅱ)( n +1)*1= n *1+1,则n *1等于( )A .nB .n +1C .n -1D .n 26.已知数列{a n }中,a n ∈(0,12),a n +1=38+12·a 2n,则数列{a n }是( ) A .单调递增数列B .单调递减数列C .摆动数列D .先递增后递减数列二、填空题7.(2011·北京)设A (0,0),B (4,0),C (t +4,3),D (t,3) (t ∈R ).记N (t )为平行四边形ABCD 内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则N (0)=________;N (t )的所有可能取值为________.8.(2011·山东)设函数f (x )=x x +2(x >0),观察: f 1(x )=f (x )=x x +2, f 2(x )=f (f 1(x ))=x 3x +4, f 3(x )=f (f 2(x ))=x 7x +8, f 4(x )=f (f 3(x ))=x 15x +16, ……根据以上事实,由归纳推理可得:当n ∈N *且n ≥2时,f n (x )=f (f n -1(x ))=________.9.若数列{a n }的通项公式a n =1(n +1)2,记f (n )=2(1-a 1)·(1-a 2)…(1-a n ),试通过计算f (1),f (2),f (3)的值,推测出f (n )=________.10.在公比为4的等比数列{b n }中,若T n 是数列{b n }的前n 项积,则有T 20T 10,T 30T 20,T 40T 30仍成等比数列,且公比为4100;类比上述结论,在公差为3的等差数列{a n }中,若S n 是{a n }的前n 项和,则有________________________也成等差数列,该等差数列的公差为________.三、解答题11.在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S 满足S 2n =a n ⎝⎛⎭⎫S n -12. (1)求1S 2,1S 3,1S 4,…,并求1S n(不需证明); (2)求数列{a n }的通项公式.12.观察下列三角形数表假设第n 行的第二个数为a n (n ≥2,n ∈N *),(1)依次写出第六行的所有6个数字;(2)归纳出a n +1与a n 的关系式并求出a n 的通项公式.13.已知数列{a n }中,a 4=28,且满足a n +1+a n -1a n +1-a n +1=n . (1)求a 1,a 2,a 3;(2)猜想{a n }的通项公式并证明.答案1.D 2.B 3.B 4.B 5.A 6.A7.6 6,7,8 8.x (2n -1)x +2n 9.n +2n +1 10.S 20-S 10,S 30-S 20,S 40-S 30300 11.解 (1)当n ≥2时,由a n =S n -S n -1和S 2n =a n ⎝⎛⎭⎫S n -12,得S 22=(S 2-S 1)⎝⎛⎭⎫S 2-12,得1S 2=1+2S 1S 1=2+11=3,由S 23=(S 3-S 2)⎝⎛⎭⎫S 3-12,得1S 3=2+1S 2=5,由S 24=(S 4-S 3)⎝⎛⎭⎫S 4-12,得1S 4=2+1S 3=7,…由S 2n =(S n -S n -1)⎝⎛⎭⎫S n -12,得1S n =2+1S n -1=2n -1.(2)由(1)知,S n =12n -1,当n ≥2时,a n =S n -S n -1=12n -1-12n -3=-2(2n -1)(2n -3),显然,a 1=1不符合上述表达式,所以数列{a n }的通项公式为a n =⎩⎨⎧ 1,n =1,-2(2n -1)(2n -3),n ≥2.12.解 (1)第六行的所有6个数字分别是6,16,25,25,16,6.(2)依题意a n +1=a n +n (n ≥2),a 2=2,a n =a 2+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1)=2+2+3+…+(n -1)=2+(n -2)(n +1)2, 所以a n =12n 2-12n +1(n ≥2). 13.解 (1)a n +1+a n -1a n +1-a n +1=n . 当n =3时,a 4+a 3-1a 4-a 3+1=3. ∵a 4=28,∴a 3=15;当n =2时,a 3+a 2-1a 3-a 2+1=2. ∵a 3=15,∴a 2=6;当n =1时,a 2+a 1-1a 2-a 1+1=1. ∵a 2=6,∴a 1=1.(2)猜想a n =n (2n -1).①当n =1时,a 1=1,而a 1=1×(2×1-1)=1,等式成立. ②假设当n =k 时,等式成立, 即a k =k (2k -1).则当n =k +1时,a k +1+a k -1a k +1-a k +1=k ,a k +1+k (2k -1)-1a k +1-k (2k -1)+1=k , 整理,得(1-k )a k +1=-2k 3-k 2+2k +1 =(2k +1)(1-k 2),a k +1=(1+k )(2k +1)=(k +1)[2(k +1)-1], 等式也成立.综合①②可知,n ∈N *时,等式成立.。
(典型题)高中数学选修1-2第三章《推理与证明》测试题(包含答案解析)(1)
一、选择题1.我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周盒体而无所失矣.”它体现了一种无限与有限的转化过程.比如在表达式11+11+1+...中“…”即代表无限次重复,但原式却是个定值,它可以通过方程11x x +=,求得x ==( ) A .2 B .1C .2-D .1- 2.某扶贫调研团根据要求从甲、乙、丙、丁、戊五个镇选择调研地点:①若去甲镇,则必须去乙镇;②丁、戊两镇至少去一镇;③乙、丙两镇只去一镇;④丙、丁两镇都去或都不去;⑤若去戊镇,则甲、丁两镇也必须去.该调研团至多去了( )A .丙、丁两镇B .甲、乙两镇C .乙、丁两镇D .甲、丙两镇 3.《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:=====“穿墙术”,则n =( ) A .35B .48C .63D .80 4.祖暅(公元前5~6世纪)是我国齐梁时代的数学家,是祖冲之的儿子,他提出了一条原原理:“幂势既同,则积不容异.”这里的“幂”指水平截面的面积,“势”指高.这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等.设由椭圆22221(0)x y a b a b+=>> 所围成的平面图形绕y 轴旋转一周后,得一橄榄状的几何体(称为椭球体),课本中介绍了应用祖暅原理求球体体积公式的做法,请类比此法,求出椭球体体积,其体积等于( )A .243a b πB .243ab π C .22a b π D .22ab π 5.现有1A ,2A ,…,5A 这5个球队进行单循环比赛(全部比赛过程中任何一队都要分别与其他各队比赛一场且只比赛一场).当比赛进行到一定阶段时,统计1A ,2A ,3A ,4A 这4个球队已经赛过的场数分别为:1A 队4场,2A 队3场, 3A 队2场,4A 队1场,则5A 队比赛过的场数为( )A .1B .2C .3D .46.我国的刺绣有着悠久的历史,如图,(1)(2)(3)(4)为刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形个数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含()f n 个小正方形,则()f n 的表达式为( )A .()21f n n =-B .2()2f n n =C .2()22f n n n =-D .2()221f n n n =-+7.我国南宋数学家杨辉在所著的《详解九章算法》一书中用如图所示的三角形解释二项展开式的系数规律,去掉所有为1的项,依次构成2,3,3,4,6,4,5,10,10,5,6…,则此数列的前50项和为( )A .2025B .3052C .3053D .30498.某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.“平面内平行于同一直线的两直线平行”类比推出“空间中平行于同一平面的两直线平行”
B.“若 ,则 ”类比推出“若 ,则 ”
C.“实数 , , 满足运算 ”类比推出“平面向量 , , 满足运算 ”
D.“正方形的内切圆切于各边的中点”类比推出“正方体的内切球切于各面的中心”
【题文5】
欲证明 ,
只需证 ,
只需证 ,
即证 ,
由已知得最后一个不等式成立,
故原不等式成立;
假设 , , 不都大于零,即至少有一个小于零或等于零
若某一个等于零,由 ,与 矛盾.
若某一个小于零,不妨设 ,由 ,得 ,
由 ,得 ,
那么 ,得 ,即 ,
结合 ,得 与 矛盾.
结合 、 知 , , 都大于零.
【试题解析】本题考查了反证法和分析法,属于较难题.
【分析】
本题考查类比推理的应用,解题时要认真审题,仔细解答,注意等差数列与等比数列的通项公式的合理运用.
根据等差数列与等比数列通项的性质,结合类比的规则,由类比规律得出结论即可.
【解答】
解:在等差数列 中,令 ,
则
所以
,
所以 .
故相应的在等比数列 中,令 .
则 ,
所以 ,
所以 .
故选D.
4.【参考答案】
由此类比,可以求得四维空间中, 的导数 ,
所以 .
本题考查类比推理,初级求导,属于基础题目.
13.【参考答案】
甲
【试题解析】
【分析】
本题考查进行简单的合情推理,考查学生分析解决问题的能力,利用反证法,即可得出结论.
【解答】
解:假设甲说的是真话,则礼物不在乙这,则丙说的也是真话,不成立;
假设乙说的是真话,则甲说的也是真话,不成立;
在 中,平面向量 , , 不满足运算 ,故C错误;
在 中,“正方形的内切圆切于各边的中点”类比推出“正方体的内切球切于各面的中心”,故D正确.
故选D.
5.【参考答案】
【试题解析】解:先整理题干信息,可知:
①猴子观海 妙笔生花 美人梳妆;
②阳关三叠 仙人晒靴;
③禅心向天 仙人晒靴.
依据③可知, 、 其中一个必然是仙人晒靴.若 为真,则位置 必然是美人梳妆,这与题干信息相矛盾,故D为假.
【试题解析】【分析】
本题考查类比推理,线面、线线的位置关系,一元二次方程,向量积,内切圆等,属于基础题.
利用平行于平面的直线的性质、一元二次方程、向量的数量积、正方体的内切球的性质直接求解.
【解答】
解:在 中,空间中平行于同一平面的两直线平行、相交或异面,故A错误;
在 中,若 ,则 或 ,故B错误;
推理与证明专题练习15题集
【题文1】
甲、乙、丙、丁四位同学一起去问老师成语竞赛的成绩.老师说:你们四人中有 位优秀, 位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则
A.乙可以知道四人的成绩
B.丁可以知道四人的成绩
C.乙、丁可以知道对方的成绩
用反证法证明“至少存在一个实数 ,使 成立”时,假设正确的是
A.至少存在两个实数 ,使 成立
B.至多存在一个实数 ,使 成立
C.不存在实数 ,使 成立
D.任意实数 , 恒成立
【题文9】
用数学归纳法证明 则当 时,左端应在 的基础上加上
A.
B.
C.
D.
【题文10】
设 是定义在正整数集上的函数,且 满足:“当 成立时,总可推出 成立” 那么,下列命题总成立的是
两边平方,得 成立,
所以 成立,
要证明 ,
只需证明 ,
两边平方,可得 ,
只需证明, ,
两边平方,得 成立,
所以 成立,
故选A.
7.【参考答案】
【试题解析】【分析】
本题主要考查用分析法证明,属基础题.
利用分析法进行证明,即可得到“索的因”.
【解答】
解:因为 ,
所以 ,
所以要证明 ,
需证明 ,
只需证 ,
【解答】
解:甲不知自己的成绩 乙丙必有一优一良, 若为两优,甲会知道自己的成绩;若是两良,甲也会知道自己的成绩
乙看到了丙的成绩,乙没有说不知道自已的成绩,假定丙是优,则乙是良,乙就知道自己成绩
甲、丁也为一优一良,丁看到甲成绩,假定甲是优,则丁是良,丁肯定知道自已的成绩了.
故选D.
2.【参考答案】
【试题解析】【分析】本题考查归纳推理和等差数列求和,考查推理能力和计算能力,属于一般题.
故选: .
对题干信息进行整理,得到基础的先后顺序,然后进行选项验证即可.
本题考查了基本的逻辑推理能力,要求学生能够分析出基本的顺序,并确定不可能的情况.属于基础题目.
6.【参考答案】
【试题解析】
【分析】
本题主要考查利用分析法证明不等式.
【解答】
解:要证明 ,
只需证明 ,
两边平方,可得 ,
只需证明, ,
归纳猜想 的表达式,并证明;
求 .
【题文15】
已知 , , ,用分析法证明:
已知 , 且 ,用反证法证明: , , 都大于零.
推理与证明专题练习15题集答案
1.【参考答案】
【试题解析】【分析】
本题考查了合情推理的问题,关键掌握四人所知只有自己看到,老师所说及最后甲说话,属于中档题.
根据四人所知只有自己看到,老师所说及最后甲说话,继而可以推出正确答案.
【题文12】
二维空间中,圆的一维测度维测度 表面积 ,三维测度 体积 应用合情推理,若四维空间中,“特级球”的三维测度 ,则其四维测度 ______.
【题文13】
在某班举行的成人典礼上,甲、乙、丙三名同学中的一人获得了礼物.
甲说:“礼物不在我这”;乙说:“礼物在我这”;丙说:“礼物不在乙处”.
只需证明 ,
时,显然成立,
所以原不等式成立.
所以用分析法证明 时,索的因是 .
故选C.
8.【参考答案】
【试题解析】【分析】
本题主要考查了反证法原理的应用,属于基础题.
根据反证法的原理可直接判断得到结果.
【解答】
解:反证法证明即只需证明该命题的否定命题,
由题意可知,
“至少存在一个”的否定是“不存在任意实数”
D.乙、丁可以知道自己的成绩
【题文2】
如图,有一个六边形的点阵,它的中心是 个点 算第 层 ,第 层每边有 个点,第 层每边有 个点, ,依此类推,如果一个六边形点阵共有 个点,那么它的层数为
A.
B.
C.
D.
【题文3】
已知 为等差数列, , 若 为等比数列, ,则 类似的结论是
A.
B.
C.
D.
【题文4】
A.若 成立,则 成立
B.若 成立,则 成立
C.若 成立,则当 时,均有 成立
D.若 成立,则当 时,均有 成立
【题文11】
聊斋志异 中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术 得诀自诩无所阻,额上坟起终不悟 ”在这里,我们称形如以下形式的等式具有“穿墙术” , , , , ,则按照以上规律,若 具有“穿墙术”,则 .
某著名风景区有“妙笔生花”“猴子观海”“仙人晒靴”“美人梳妆”“阳关三叠”和“禅心向天”六个景点,为方便游人游览,景区提示如下:
只有先游“猴子观海”,才能游“妙笔生花”;
只有先游“阳光三叠”,才能游“仙人晒靴”;
如果游“美人梳妆”,就要先游“妙笔生花”;
“禅心向天”应第四个游览,之后才可游览“仙人晒靴”.
对 ,因为“原命题成立,则逆否命题一定成立”,所以只能得出:若 成立,则 成立,不能得出:若 成立,则 成立;
对 ,当 或 时,不一定有 成立;
对 , ,
对于任意的 ,均有 成立.
故选D.
11.参考答案】
【试题解析】【分析】本题考查归纳推理,属于中档题.
由特殊到一般找规律进而得出 ,可得 .
【解答】解: ,
即“至少存在一个实数 ,使 成立”的否定命题为“不存在实数 ,使 成立”
故选C.
9.【参考答案】
【试题解析】【分析】
本题考查的知识点是数学归纳法. 数学归纳法常用来证明一个与自然数集 相关的性质,属于基础题.
其步骤为:设 是关于自然数 的命题,若 奠基
在 时成立; 归纳 在 为任意自然数 成立的假设下可以推出 成立,则 对一切自然数 都成立.
某同学按照上述提示,顺利游览了上述六个景点,则下列表述一定错误的是
A.第一个游览“猴子观海”
B.第二个游览“阳关三叠”
C.第三个游览“美人梳妆”
D.第五个游览“妙笔生花”
【题文6】
设实数 , , ,则
A.
B.
C.
D.
【题文7】
分析法又称执果索因法,已知 ,用分析法证明 时,索的因是
A.
B.
C.
D.
【题文8】
如果三人中只有一人说的是真的,请问__________ 填“甲”、“乙”或“丙” 获得了礼物.
【题文14】
一种计算装置,有一个数据输入口 和一个运算结果输出口 ,执行的运算程序是:
①当从 口输入自然数 时,从 口输出实数 ,记为 ;
②当从 口输入自然数 时,在 口得到的结果 是前一结果 的 倍.
求 , 的值;
根据分析法的步骤证明即可,
假设 , , 不都大于零,即至少有一个小于零或等于零,这时需要逐个讨论 , , 不是正数的情形.但注意到条件的特点 任意交换 , , 的位置不改变命题的条件 ,我们只要讨论其中一个数 例如 ,其他两个数 例如 , 与这种情形类似.
【解答】