高等数学(同济第七版下)课后习题与解答

合集下载

同济大学数学系《高等数学》第7版笔记和课后习题含考研真题详解(函数与极限 下)【圣才出品】

同济大学数学系《高等数学》第7版笔记和课后习题含考研真题详解(函数与极限 下)【圣才出品】

x0
x0
1 cos x2
lim
x0
sin2 x
lim x0
1 2
x2
2
x2
0
所以当 x→0 时,(1-cosx)2 是比 sin2x 高阶的无穷小。
3.当 x→1 时,无穷小 1-x 和(1)1-x3,(2)(1-x2)/2 是否同阶,是否等价?
x0 x
x0 x
(3)
lim
x0
sin sin
2x 5x
;(4)
lim
x0
x
cot
x

(5) lim 1 cos 2x x0 x sin x
;(6) lim 2n n
sin
x 2n
(x
为不等于零的常数)。
解:(1)当ω≠0
时, lim x0
sin x x
lim
x0
sin x
x
lim
x0
sin x x
2 5
lim
x0
sin 2x 2x
lim
x0
5x sin 5x
2 5
(4)
lim
x0
x
cot
x
lim
x0
x sin
x
cos
x
lim
x0
x sin
x
lim x0
cos
x
1
(5) lim 1 cos 2x lim 2sin 2 x 2 lim sin x 2
x0 x sin x x0 x sin x
(4) lim n 1 x 1 x0
(5)
lim
x0
x
1 x
1
证:(1)因1

同济大学《高等数学》第七版上、下册问题详解(详解)

同济大学《高等数学》第七版上、下册问题详解(详解)

练习1-1
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
练习1-2
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
练习1-3
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全。

同济大学《高等数学》第七版上、下册答案(详解),DOC

同济大学《高等数学》第七版上、下册答案(详解),DOC
(4)2 12 (7 z)2 32 52 (2 z)2
解得 z 14
9
即所求点为 M(0,0,14 ).
9
7. 试证:以三点 A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是等腰直角三角形. 证明:因为|AB|=|AC|=7.且有 |AC|2+|AB|2=49+49=98=|BC|2. 故△ABC 为等腰直角三角形. 8. 验证: (a b) c a (b c) .
3 i 14
1 j 14
2 k.
14
14. 三个力 F1=(1,2,3), F2=(-2,3,-4), F3=(3,-4,5)同时作用于一点. 求合力 R 的大小和方向余弦.
解:R=(1-2+3,2+3-4,3-4+5)=(2,1,4)
| R | 22 12 42 21
cos 2 , cos 1 , cos 4 .
故 A 的坐标为 A(-2, 3, 0).
13. 一向量的起点是 P1(4,0,5),终点是 P2(7,1,3),试求:
(1) P1P2 在各坐标轴上的投影; (2) P1P2 的模;
(3) P1P2 的方向余弦;
(4) P1P2 方向的单位向量.
解:(1) ax Pr jx P1P2 3,
ay Pr jy P1P2 1,
练习 5-2
练习 5-3
练习 5-4
总习题五
练习 6-2
练习 6-3
(2) s 22 (3)2 (4)2 29
(3) s (1 2)2 (0 3)2 (3 4)2 67
(4) s (2 4)2 (1 2)2 (3 3)2 3 5 .
5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离.

高等数学(同济第七版下)课后习题及解答

高等数学(同济第七版下)课后习题及解答

1.设u=a-b+2c,v=-a+3b-c.试用a,b,c表示2u-3v.解2u-3v=2(a-b+2c)-3(-a+3b-c)=5a-11b+7c.2.如果平面上一个四边形的对角线互相平分,试用向量证明它是平行四边形.证如图8-1,设四边形ABCD中AC与BD交于M,已知AM=MC,DM MB.故AB AM MB MC DM DC.即AB//DC且|A B|=|DC|,因此四边形ABCD是平行四边形.3.把△ABC的BC边五等分,设分点依次为D1,D2,D3,D4,再把各分点与点A连接.试以AB=c,BC=a表向量D1A,D2A,D3A,D A4.证如图8-2,根据题意知1 BD a,151D1D a,251D2D a,351 D3D a,45故D A1=-(AB BD1)=- 15a-cD2A=-(AB BD2)=- 25a-cD3A=-(AB BD3)=- 35a-cD4 A=-(AB BD)=-445a-c.4.已知两点M1(0,1,2)和M2(1,-1,0).试用坐标表示式表示向量M1M2及-2M1M2.解M1M2=(1-0,-1-1,0-2)=(1,-2,-2).-2M1M2=-2(1,-2,-2)=(-2,4,4).5.求平行于向量a=(6,7,-6)的单位向量.解向量a的单位向量为aa,故平行向量a的单位向量为a a =1(6,7,-6)=1167,,1111611 ,22 2其中a67(6)11.6.在空间直角坐标系中,指出下列各点在哪个卦限?A(1,-2,3),B(2,3,-4),C(2,-3,-4),D(-2,-3,1).解A点在第四卦限,B点在第五卦限,C点在第八卦限,D点在第三卦限.7.在坐标面上和在坐标轴上的点的坐标各有什么特征?指出下列各点的位置:A(3,4,0),B(0,4,3),C(3,0,0),D(0,-1,0).解在坐标面上的点的坐标,其特征是表示坐标的三个有序数中至少有一个为零,比如xOy面上的点的坐标为(x0,y0,0),xOz面上的点的坐标为(x0,0,z0),yOz面上的点的坐标为(0,y0,z0).在坐标轴上的点的坐标,其特征是表示坐标的三个有序数中至少有两个为零,比如x轴上的点的坐标为(x0,0,0),y轴上的点的坐标为(0,y0,0),z轴上的点的坐标为(0,0,z0).A点在xOy面上,B点在yOz面上,C点在x轴上,D点在y轴上.8.求点(a,b,c)关于(1)各坐标面;(2)各坐标轴;(3)坐标原点的对称点的坐标.解(1)点(a,b,c)关于xOy面的对称点(a,b,-c),为关于yOz面的对称点为(-a,b,c),关于zOx面的对称点为(a,-b,c).(2)点(a,b,c)关于x轴的对称点为(a,-b,-c),关于y 轴的对称点为(-a,b,-c),关于z轴的对称点为(-a,-b,c).(3)点(a,b,c)关于坐标原点的对称点是(-a,-b,-c). 9.自点P(0x0,y0,z0)分别作各坐标面和各坐标轴的垂线,写出各垂足的坐标.解设空间直角坐标系如图8-3,根据题意,P0F为点P0关于xOz 面的垂线,垂足F坐标为(x0,0,z0);P0D为点P0关于xOy面的垂线,垂足D坐标为(,,0)x0y;P0E为点P0关于yOz面的垂线,垂足E坐标为(0),y0,z o.P0A为点P0关于x轴的垂线,垂足A坐标为(x o,0,0);P0B为点P0关于y轴的垂线,垂足B坐标为(0,y0,0);P0C为点P0关于z轴的垂线,垂足C坐标为(0,0,)z.10.过点P(0x0,y0,z0)分别作平行于z轴的直线和平行于xOy面的平面,问在它们上面的点的坐标各有什么特点?解如图8-4,过P0且平行于z轴的直线l上的点的坐标,其特点是,它们的横坐标均相同,纵坐标也均相同.而过点P0且平行于xOy面的平面上的点的坐标,其特点是,它们的竖坐标均相同.11.一边长为a的正方体放置在xOy面上,其底面的中心在坐标原点,底面的顶点在x轴和y轴上,求它各顶点的坐标.2 解 如图 8-5,已知 AB=a ,故 OA=OB=a2,于是各顶点的坐 22 2 标分别为 A0 0)(a ,, ,B ((0,a ,0)),C (-a222,0,0),D 2 (0,- a 2 2 ,0),E ( a 2 2 ,0,a ),F (0, a 2 2 ,a ),G (- a2, 2 0,a ),H (0,- a 2,a ). 12.求点 M (4,-3,5)到各坐标轴的距离 .2 2解 点 M 到 x 轴的距离为 d 1=( 3) 534,点 M 到 y 22轴 的 距 离 为 d 2=4541, 点 M 到 z 轴 的 距 离 为 22.d 3=4 ( 3) 25 513.在 yOz 面上,求与三点 A (3,1,2),B (4,-2,-2),C (0,5, 1)等距离的点 .解 所求点在 yOz 面上,不妨设为 P (0,y ,z ),点 P 与三点 A ,2y 2 z 2B ,C 等距离, PA 3( 1) ( 2) , PB2 y 2 z 4 ( 2)(2) 2,PC(y 2z1) 2 .5)(由 PAPBPC 知,2( 1)2 ( 2)2 42 (2)( 2)223yz yz2( 1)2( y 5)z ,即9 ( y 1) 9 ( y 1) 2 2 2 (z 2) 16 ( y 2) 22 2 (z 2) ( y 5)( z( z21) . 2 2), 解上述方程组,得 y=1,z=-2.故所求点坐标为( 0,1,-2). 14.试证明以三点 A (4,1,9),B (10,-1,6),C (2,4,3)为顶 点的三角形是等腰直角三角形 .证 由AB (10 24)( 1 1) 2( 6 29)7, AC (2 24)( 4 1)22(3 9)7,BC(2 210)(4 1) 2(3 26)98 7 2 222知.ABAC 及 BCABAC 故△ABC 为等腰直角三角形.15. 设已知两点为 M 1(4, 2 ,1),M 2(3,0,2),计算向量 M 1M 2的模、方向余弦和方向角 .解 向量M 1M=(3-4,0-2 ,2-1)=(-1,- 2 ,-1),2其模-1 2- 2 2 12 4 2M1M()().其方向余弦分2别为cos=- 12,cos=-22,cos=12.方向角分别为23,34,3.16.设向量的方向余弦分别满足(1)cos=0;(2)cos=1;(3)cos=cos=0,问这些向量与坐标轴或坐标面的关系如何?解(1)由cos=0得知,故向量与x轴垂直,平行于2yOz面.(2)由cos=1得知=0,故向量与y轴同向,垂直于xOz面.(3)由cos=cos=0知,故向量垂直于x轴和y轴,2即与z轴平行,垂直于xOy面.,求r在u轴上的投影.17.设向量r的模是4,它与u轴的夹角为3解已知|r|=4,则Prju r=|r|cos=4?cos 3 =4×12 =2.18.一向量的终点在点B(2,-1,7),它在x轴、y轴和z轴上的投影依次为4,-4和7,求这向量的起点A的坐标.解设A点坐标为(x,y,z),则AB=(2-x,-1-y,7-z),由题意知2-x=4,-1-y=-4,7-z=7,故x=-2,y=3,z=0,因此A点坐标为(-2,-3,0).19.设m=3i+4j+8k,n=2i-4j-7k和p=5i+j-4k.求向量a=4m+3n-p在x轴上的投影及在y轴上的分向量.解a=4m+3n-p=4(3i+5j+8k)+3(2i-4j-7k)-(5i+j-4k)=13i+7j+15k,a在x轴上的投影为13,在y轴上的分向量为7j.1.设a3i j2k,b i2j k,求(1)a b及a b;(2)(-2a)3b及a2b;(3)a,b的夹角的余弦.解(1)a b(3,-1,-2)(1,2,-1)31(-12-2-1 3)()(),i j ka b31 2=(5,1,7).12 1(2)(2a)3b6(a b)6318a2b2(a b)2(5,1,7)(10,2,14)(3 cos(a,b) aabb32(1)(2)12(1)222 232 3 31462212.设a,b,c为单位向量,满足a b c0,求a b b c c a.解已知a b c1,a b c0,故(a b c)(a b c)0.22 2即2220a b c a b b c c a.因此a b b c c a 122 2(a b c)2-323.已知M1(1,-1,2),M2(3,3,1)M3(3,1,3).求与M1M2,M2M3同时垂直的单位向量.解M1M2=(3-1,3-(-1),1-2)=(2,4,-1)M 2M=(3-3,1-3,3-1)=(0,-2,2)3由于 M 1M 2 M 2M 3 与M 1M 2,M 2M 3 同时垂直,故所求向量可取为a(M M1 2M M12M M23M M2)3,ij k 由M 1M 2 M 2M 3 =2 4 1 022=(6,-4,-4),M 1M M M2 232 6 ( 24) ( 24)68 2 17 132 2知). a(6, 4, 4)(, , 2 171717174. 设质量为 100kg 的物体从点 M1(3,1,8)沿直线移动到点 M2(1,4,2), 计算重力所作的功(坐标系长度单位为 m ,重力方向为 z 轴负方向).解M 1M 2 =(1-3,4-1,2-8)=(-2,3,-6)F=(0,0,-100×9.8)=(0,0,-980)W=F?M 1M 2 =(0,0,-980)?(-2,3 ,-6 )=588(0 J ).1处,有一与O P 1 5.在杠杆上支点 O 的一侧与点 O 的距离为 x 1 的点 P 成角 1 的力 F1作用着;在 O 的另一侧与点 O 的距离为 x 2 的点 P2处,有一与OP2成角2的力F2,F1,F2作用着(图8-6),问1,2,x1,x2符合怎样的条件才能使杠杆保持平衡?解如图8-6,已知有固定转轴的物体的平衡条件是力矩的代数和为零,又由对力矩正负符号的规定可得杠杆保持平衡的条件为F1x sin1F2x2sin20,1即F1x1sin1F2x2sin2.6.求向量a(4,-3,4)在向量b(2,2,1)上的投影.a b(4,3,4)(2,2,1) 6解 2Pr j b a.22 2b 322 17.设a(3,5,2),b(2,1,4),问与有怎样的关系,能使a b与z轴垂直?解a b=(3,5,-2)+(2,1,4)=(32,5,24).要a b与z轴垂直,即要(a b)(0,0,1),即(a b)?(0,0,1)=0,亦即(32,5,24)?(0,0,1)=0,故(24)=0,因此2时能使a b与z轴垂直.8.试用向量证明直径所对的圆周角是直角.证如图8-7,设AB是圆O的直径,C点在圆周上,要证∠ACB=,2 只要证明AC BC0即可.由AC BC=(AO OC)(BO OC)2AO BO AO OC OC BO OC =2 2=0AO AO OC AO OC OC.故AC BC,∠ACB为直角.9.已知向量a2i3j k,b i j3k和c i2j,计算:(1)(a b)c(a c)b(2)(a b)(b c)(3)(a b) c 解(1)a b(2,3,1)(1,1,3)8,a c(2,3,1)(1,2,0)8,(a b)c(a c)b8(1,2,0)8(1,1,3)(0,8,24)8i24k.(2)a b=(2,-3,1)+(1,-1,3)=(3,-4,4),b c=(1,-1,3)+(1,-2,0)=(2,-3,3),i j k(a b)(b c)344(0,1,1)j k.23323 1(3)(ab) c2. 1 1 3 12 010. 已知OA i 3k,OB j 3k ,求△OAB 的面积.解 由向量积的几何意义知1△OAB= OA OB S2,ij kOA OB 1 0 3 ( 3, 3,1) , 0 1 32 2OA OB( 3) ( 3) 119S△OAB19 211. 已知( , , ), ( , , ), ( , , )a a x a a bb b b cc c c ,试利用yzxyzxyz行列式的性质证明:(a b) c (b c) a (c a) baxa yazbxbybz证因为(), a b c bbbx y z (b c) acxcyczcxc yc zaxayazcx cy cz(c a) baxayaz,bxbybz而由行列式的性质知a x a y a zb x b y b zc x c y cz b x b y b z c x c y c z = a x a y a z ,故 c x c y c z a x a y a zb x b ybz(a b) c (b c) a (c a) b .12. 试用向量证明不等式:222222a 1aabbba ba b a b ,231231 12 23 3其中a 1,a 2 ,a 3,b 1,b 2,b 3 为任意实数 . 并指出等号成立的条件.证 设向量 a ( a 1,a ,a ),b (b 1,b 2,b 3).23由ab a b cos(a, b ) a b ,从而222222 a 1ba ba baaa bbb ,1 2 23 3121 233当a 1,a 2 ,a 3与b 1,b 2 ,b 3 成比例,即a1b1a 2b2a 3b3时,上述等式成立.1.求过点(3,0,-1)且与平面3x7y5z120平行的平面方程.解所求平面与已知平面3x7y5z120平行.因此所求平面的法向量可取为n=(3,-7,5),设所求平面为3x7y5z D0.将点(3,0,-1)代入上式得D=-4.故所求平面方程为3x7y5z40.2.求过点M0(2,9,-6)且与连接坐标原点及点M0的线段OM0垂直的平面方程.解OM(2,9,6.所求平面与0)O M垂直,可取n=OM0,0设所求平面方程为2x9y6z D0.将点M0(2,9,-6)代入上式得D=-121.故所求平面方程为2x9y6z1210.3.求过(1,1,-1),(-2,-2,2)和(1,-1,2)三点的平面方程.x1y1z 1解由021212 1,得x3y2z0,11112 1即为所求平面方程.注设M(x,y,z)为平面上任意一点,M(x,y,z)(i1,2,3)i为i i i平面上已知点.由()0,M1M M M M M即1213x x1 y y1z z1x 2 x1y2y1z2z10,x 3 x1y3y1z3z1它就表示过已知三点M i(i=1,2,3)的平面方程.4.指出下列各平面的特殊位置,并画出各平面:(1)x=0;(2)3y-1=0;(3)2x-3y-6=0;(4)x-3y=0;(5)y+z=1;(6)x-2z=0;(7)6x+5y-z=0.解(1)—(7)的平面分别如图8—8(a)—(g). (1)x=0表示yOz坐标面.1(2)3y-1=0表示过点(,00,)且与y轴垂直的平面.3(3)2x-3y-6=0表示与z轴平行的平面.(4)x-3y=0表示过z轴的平面.(5)y+z=1表示平行于x轴的平面.(6)x-2z=0表示过y轴的平面.(7)6x+5y-z=0表示过原点的平面.5.求平面2x2y z50与各坐标面的夹角的余弦.解平面的法向量为n=(2,-2,1),设平面与三个坐标面xOy,yOz,zOx的夹角分别为1,2,3.则根据平面的方向余弦知cosn kcos1n k(2,222,1)(0,0,1)21( 22)113,cos2cos nnii(2, 2,1)3(1,0,0)123,cos3 cos nnjj(2, 2,1)3(10,1,0)23.6.一平面过点(1,0,-1)且平行于向量a(2,1,1)和b(1,1,0),试求这个平面方程.解所求平面平行于向量a和b,可取平面的法向量i j kn a b211(1,1,3).110故所求平面为1(x1)1(y0)3(z1)0,即x y3z40.7.求三平面x3y z1,2x y z0,x2y2z3的交点.解联立三平面方程x3y z1,2x y z0,x2y2z 3.解此方程组得x1,y1,z 3.故所求交点为(1,-1,3). 8.分别按下列条件求平面方程:(1)平行于xOz面且经过点(2,-5,3);(2)通过z轴和点(-3,1,-2);(3)平行于x轴且经过两点(4,0,-2)和(5,1,7).解(1)所求平面平行于xOz面,故设所求平面方程为By D0.将点(2,-5,3)代入,得5B D0,即D5B.因此所求平面方程为By5B0,即y50.(2)所求平面过z轴,故设所求平面为Ax By0.将点(-3,1,-2)代入,得3A B0,即B3A.因此所求平面方程为Ax3Ay0,即x3y0.(3)所求平面平行于x轴,故设所求平面方程为By Cz D0. 将点(4,0,-2)及(5,1,7)分别代入方程得2C D0及B7C D0.C D2, B92D .因此,所求平面方程为9 2DDy z D0,2即9y z20.9.求点(1,2,1)到平面x2y2z100的距离.解利用点(,,)M0x y o z o到平面Ax By Cz D0的距离公式dA xABy2B2CzC2D1 2212 22212210 331.1.求过点(4,-1,3)且平行于直线x3y z21 51的直线方程.解所求直线与已知直线平行,故所求直线的方向向量s(2,1,5),直线方程即为x 4y1z 21 5 3 .2.求过两点M1(3,2,1)和M2(1,0,2)的直线方程.解取所求直线的方向向量s M1M(13,0(2),21)(4,2,1),2因此所求直线方程为x 3y2z4 2 1 1 .3.用对称式方程及参数方程表示直线x y z1,2x y z 4.解根据题意可知已知直线的方向向量i j ks111(2,1,3).21 1取x=0,代入直线方程得yzy z1,4.3 5解得.y,z这2 2样就得到直线经过的一点(3 50,,).因此直线的对称式方程为2 2x30y z22 1 352 .参数方程为x2t,y 32t ,z 523t.注由于所取的直线上的点可以不同,因此所得到的直线对称式方程或参数方程得表达式也可以是不同的.4.求过点(2,0,-3)且与直线x2y4z70,3x5y2z10垂直的平面方程.解根据题意,所求平面的法向量可取已知直线的方向向量,即i j kn s124(16,14,11),35 2故所求平面方程为16(x2)14(y0)11(z3)0.即16x14y11z650.5.求直线5x3x3y2y3zz91 00,与直线2x3x28yyzz23180,的夹角的余弦.解两已知直线的方向向量分别为i j k i j ks533(3,4,1),s221(10,5,10), 1 232138 1因此,两直线的夹角的余弦cos(cos s1,)s2 s1s1s2s22 332410(1)4252101(1025)2100.6.证明直线x 2yz2xyz7,7与直线3x2x6yy 3zz 08,平行.证已知直线的方向向量分别是i j k i j ks 1 121(3,1,5),s2363(9,3,15), 21121 1由s23s1知两直线互相平行.7.求过点(0,2,4)且与两平面x2z1和y3z2平行的直线方程.解所求直线与已知的两个平面平行,因此所求直线的方向向量可取i j ks n1 n102(201 32,3,1),故所求直线方程为x 2 0y2z3 14.注本题也可以这样解:由于所求直线与已知的两个平面平行,则可视所求直线是分别与已知平面平行的两平面的交线,不妨设所求直线为x2z a,y3z b.将点(0,2,4)代入上式,得a8,b10.故所求直线为x2z8,y3z10.8.求过点(3,1,-2)且通过直线x54y3z2 1的平面方程.解利用平面束方程,过直线x54y3z2 1的平面束方程为x4y3y 3(z)0,52 211将点(3,1,-2)代入上式得.因此所求平面方程为20x4y311y5220 23(z) 0,即8x9y22z590.9.求直线xxyy3zz0,与平面x y z10的夹角.i j k解已知直线的方向向量(2,4,2),s113平面11 1的法向量n(1,1,1).设直线与平面的夹角为,则sin cos(n, s) ssnn 2221244((1)22)21(2)((1) 21)( 21)0,即0.10.试确定下列各组中的直线和平面间的关系;(1)x3y4z27 3和4x2y2z3;(2)x3y2z7 和3x2y7z8;(3)x32y2z134和x y z 3.解设直线的方向向量为s,平面的法向量为n,直线与平面的夹角为,且s nsin cos(n,s).s n (1)s(2,7,3),n(4,2,2),sin ( 2) ( 2 2) ( 4 2 7) ( 7) 2 3 ( 2) 2 4 3 ( ( 2 2)2) ( 2) 20, 则0.故直线平行于平面或在平面上, 现将直线上的点 A (-3,-4,0)代入平面方程,方程不成立 .故点 A 不在平面上,因此直线不在平 面上,直线与平面平行 . (2)s(3, 2,7), n (3, 2,7),由于s n 或sin 2 3 3( 3 2) 2( 2) 2 7 ( 2)2 3 7 ( 7 2) 22 71,知,故直线与平面垂直 .2(3)s( 3,1, 4), n (1,1,1),由于s n 0或sin 2 3 3 2 1 1 ( 1 1 4) 2( 4) 2 1 1 2 1 21 0, 知0,将直线上的点 A (2,-2,3)代入平面方程,方程成立,即点 A 在平面上 .故直线在平面上 . 11.求过点(1,2,1)而与两直线x x2 yy z 1 0, 2x y z z 1 0xy z 00,和 平行的平面的方程.解 两直线的方向向量为i j k i j ks 1 121(1,2,3),s2211(0,1,1), 11111 1i j k取(1,1,1),n s s12 31 201 1则过点(1,2,1),以n为法向量的平面方程为1(x1)1(y2)1(z1)0,即x y z0.12.求点(-1,2,0)在平面x2y z10上的投影.解作过已知点且与已知平面垂直的直线.该直线与平面的交点即为所求.根据题意,过点(-1,2,0)与平面x2y z10垂直的直线为x 1 1y2z21,将它化为参数方程x1t,y22t,z t,代入平面方程得1t2(22t)(t)10,整理得2t.从而所求点(-1,2,0)在平面x2y z10上的3投影为(53,23,23).13.求点P(3,-1,2)到直线x2xy z 1y z 40,的距离.i j k解直线的方向向量(0,3,3).s11 121 1在直线上取点(1,-2,0),这样,直线的方程可表示成参数方程形式x 1, y 2 3t,z 3t.(1)又,过点 P (3,-1,2),以s (0, 3, 3)为法向量的平面方程为3(y 1) 3(z 2) 0,即y z 1 0.(2)将式(1)代入式(2)得11 3t,于是直线与平面的交点为 (1, , ),2 2 2故所求距离为 d (321) ( 1 1 2 ) 2 (2 3 2 ) 2322.14.设 M 0 是直线 L 外一点,M 是直线 L 上任意一点,且直线的方向向 量为s ,试证:点 M 0 到直线 L 的距离dM M ss.证 如图 8-9,点 M 0 到直线 L 的距离为 d.由向量积的几何意义知M 0 表示以 M 0M ,s 为邻边的平行四边形的面积 .而M s M 0Mss表示以 s为边长的该平面四边形的高, 即为点 M 0 到直线L 的距离.于是dM 0 Mss.15.求直线2x3x4yy z2z0,9 0在平面4x y z1上的投影直线的方程.解作过已知直线的平面束,在该平面束中找出与已知平面垂直的平面,该平面与已知平面的交线即为所求.设过直线2x3x4yy z2z0,9 0的平面束方程为2x4y z(3x y2z9)0,经整理得(23)x(4)y(12)z90. 由(23)4(4)(1)(12)10,得1311.代入平面束方程,得17x31y37z1170.因此所求投影直线的方程为17x31y37z1170,4x y z 1.16.画出下列各平面所围成的立体的图形.(1)x0,y0,z0,x2,y1,3x4y2z120;y(2).x0,z0,x1,y2,z4解(1)如图8-10(a);(2)如图8-10(b).1.一球面过原点及A(4,0,0),B(1,3,0)和C(0,0,-4)三点,求球面的方程及球心的坐标和半径.解设所求球面的方程为2()()2 22(x a)y b z c R,将已知点的坐标代入上式,得2b c R22 2a,(1)2b2c2R2(a4),(2)( 2b2c2R2a1)(3),(3)2b2(4c)2R2a,(4)联立(1)(2)得a2,联立(1)(4)得c2,将a2代入(2)(3)并联立得b=1,故R=3.因此所求球面方程为(x2y2z2)(1)(2) 2 9,其中球心坐标为(2,1,2),半径为3.2.建立以点(1,3,-2)为球心,且通过坐标原点的球面方程.解设以点(1,3,-2)为球心,R为半径的球面方程为(x1)2y z R22 2(3)(2),球面经过原点,故2R (021) ( 0 3)2 2(02) 14,从而所求球面方程为(x1)2(y3)2(z2)214.2y z x y z2 23.方程x2420表示什么曲面?解将已知方程整理成(x2y2z1)(2)( 1) 2 2(6) ,所以此方程表示以(1,-2,-1)为球心,以6为半径的球面.4.求与坐标原点O及点(2,3,4)的距离之比为1:2的点的全体所组成的曲面的方程,它表示怎样的曲面?解设动点坐标为(x,y,z),根据题意有2(x0) (y (x22) ( y220)3)((zz220)4)12,化简整理得(x 232y2z)(1)(43)2 (它表示以(23,1,43 2)为球心,以293为25.将xOz坐标面上的抛物线z5x 绕x轴旋转一周,求所生成的旋转曲面的方程.解以2z 22y代替抛物线方程z5x中的z,得22)2(y z5x,即y2z25x.注xOz面上的曲线F(x,z)0绕x轴旋转一周所生成的旋转2z2曲面方程为(,)0F x y.2z26.将xOz坐标面上的圆x9绕z轴旋转一周,求所生成的旋转曲面的方程.解以2y22z2x代替圆方程x9中的x,得9,( 2y22z2x)2y2z2即9.x2y27.将xOy坐标面上的双曲线4x936分别绕x轴及y轴旋转一周,求所生成的旋转曲面的方程.解以2z22y2y代替双曲线方程4936x中的y,得该双曲线绕x轴旋转一周而生成的旋转曲面方程为4 2y2z2 x9(2) 36,即4x29(y2z2)36.以2z22y2x代替双曲线方程4936x中的x,得该双曲线绕y轴旋转一周而生成的旋转曲面方程为4( 2z y22 2x)936,即4(x2z2)9y236.8.画出下列各方程所表示的曲面:2y2 a2a x2 2(1));(x)y((2)1;22492z2x(3)1;9 4(4)y2z0;(5)z2x2.解(1)如图8-11(a);(2)如图8-11(b);(3)如图8-11(c);(4)如图8-11(d);(5)如图8-11(e).9.指出下列方程在平面解析几何中和在空间解析几何中分别表示什么图形:(1)x2;(2)y x1;2y22y2(3)4;x(4)x 1.解(1)x2在平面解析几何中表示平行于y轴的一条直线,在空间解析几何中表示与yOz面平行的平面.(2)y x1在平面解析几何中表示斜率为1,y轴截距也为1的一条直线,在空间解析几何中表示平行于z轴的平面.2y2(3) 4x在平面解析几何中表示圆心在原点,半径为2的圆,在空间解析几何中表示母线平行于z轴,准线为2x2y4, z0的圆柱面.(4)x2y21在平面解析几何中表示以x轴为实轴,y轴为虚轴的双曲线,在空间解析几何中表示母线平行于z轴,准线为2 x2y1,的双曲柱面.z010.说明下列旋转曲面是怎样形成的:2y2z2x(1)1;49922y z2 (2)1;x4(3)x2y2z21;(4)(z a)2x2y2.2y2z22y2 xx解(1)1表示x Oy面上的椭圆 1绕x 499492z2 x轴旋转一周而生成的旋转曲面,或表示xOz面的椭圆 1绕49x轴旋转一周而生成的旋转曲面.2 22y z2y2(2) 1x表示xOy面上的双曲线x1绕y轴4 42y2旋转一周而生成的旋转曲面,或表示yOz面的双曲线 1z4绕y轴旋转一周而生成的旋转曲面.(3)x2y2z21表示xOy面上的双曲线x2y21绕x轴2z2旋转一周而生成的旋转曲面,或表示xOz面的双曲线 1x绕x轴旋转一周而生成的旋转曲面.(4)22 2(z a)x y表示x Oz面上的直线z x a或z x a绕z轴旋转一周而生成的旋转曲面,或表示yOz面的直线z y a或z y a绕z轴旋转一周而生成的旋转曲面.11.画出下列方程所表示的曲面:(1)4x2y2z24;(2)x2y24z24;2y2z x(3).349解(1)如图8-12(a);(2)如图8-12(b);(3)如图8-12(c);12.画出下列各曲面所围立体的图形:(1)z0,z3,x y0,x3y0,x2y21(在第一卦限内);222,22 2 x0,y0,z0,x y R y z R(在第一卦(2)限内).解(1)如图8-13所示;(2)如图8-14所示.1.画出下列曲线在第一卦限内的图形;(1)xy1,2;(2)zx y4 2 x0;y 2 ,(3)2x2x2y2z2a,2a.解(1)如图8-15(a);(2)如图8-15(b);(3)如图8-15(c).2.指出下列方程组在平面解析几何中与在空间解析几何中分别表示什么图形:(1)yy5x2x1,3;(2)2x4y2y3.91,解(1)yy5x2x1,3在平面解析几何中表示两直线的交点.在空间解析几何中表示两平面的交线,即空间直线.(2)2xy 32y91,2y2x在平面解析几何中表示椭圆 1与449 其切线y3的交点,即切点.在空间解析几何中表示椭圆柱面2y2 x49与其切平面y3的交线,即空间直线. 13.分别求母线平行于x轴及y轴而且通过曲线22x2x2y2z2z2y16,的柱面方程.解在22x2x2y2zy2z216,中消去x,得3 2z2y16,即为母线平行于x轴且通过已知曲线的柱面方程.在22x2xy2z2y2z216,中消去y,得2z23x 216,即为母线平行于y轴且通过已知曲线多的柱面方程.2y z2 2x与平面x z1的交线在xOy面上的投4.求球面9影的方程.解在2x2y2z 9, 中消去z,得x z 12y2x2x y2 2 x(1)9,即2x28,它表示母线平行于z轴的柱面,故2 22x2x yz08,表示已知交线在xOy面上的投影的方程.5.将下列曲线的一般方程化为参数方程:(1)2x(x1)y x;z0.2y2z 9, (2)2 2y ( z21) 4,。

高等数学同济第七版下册习题与答案完整版

高等数学同济第七版下册习题与答案完整版

高等数学同济第七版下册习题与答案完整版引言在学习高等数学课程中,习题是提高理解和掌握知识的重要方式。

然而,有时候我们在学习的过程中可能会遇到一些难题,不知道如何解答。

为了帮助同学们更好地学习和掌握高等数学知识,我们整理了高等数学同济第七版下册的习题与答案完整版,供大家参考。

第一章无穷级数习题1.11.讨论级数 $\\sum_{n=1}^{\\infty} \\frac{n^3 +2n}{(2n^2 + 3n - 4)^2}$ 的敛散性。

2.求级数 $\\sum_{n=1}^{\\infty} \\frac{(-1)^n}{n^2}$ 的和。

答案1.首先,我们将这个级数进行比较审敛法。

考虑到n3+2n的最高次项为n3,而(2n2+3n−4)2的最高次项为(2n2)2=4n4,因此我们可以得到 $\\frac{n^3 +2n}{(2n^2 + 3n - 4)^2} < \\frac{n^3 + 2n}{4n^4}$。

根据比较审敛法的基本原理,只需讨论 $\\sum_{n=1}^{\\infty} \\frac{n^3 + 2n}{4n^4}$ 的敛散性。

根据级数的性质,我们可以分别求前两项、前三项的和,并观察和的变化规律。

经过计算,可得前两项的和为 $\\frac{1}{16}$,前三项的和为 $\\frac{5}{96}$。

观察可以发现,当 n 的值逐渐增大时,和逐渐减小,并且趋于一个有限值。

因此,根据比较审敛法,原级数$\\sum_{n=1}^{\\infty} \\frac{n^3 + 2n}{(2n^2 + 3n - 4)^2}$ 也收敛。

2.我们可以使用交错级数的性质求解这个问题。

根据交错级数的性质,交错级数 $\\sum_{n=1}^{\\infty}\\frac{(-1)^n}{n^p}$ 的和为 $S = \\ln 2$,其中n=1。

对于这个问题,我们可以发现,级数$\\sum_{n=1}^{\\infty} \\frac{(-1)^n}{n^2}$ 的形式和交错级数一样,只是n=2。

同济大学高等数学第七版上下册答案详解

同济大学高等数学第七版上下册答案详解
同济大学高等数学第七版上下册答案详解
练习1-1
练习1-2
练习1-3
练习1-4
练习1-5
练习1-6
练习1-7
练习1-8
练习1-9
练习1-10
总习题一
练习2-1
练习2-2
练习2-3
练习2-4
练习2-5
总习题二
练习3-1
练习3-2
练习3-3
练习3-4
练习3-5
练习3-6
x
( 2)
2
(2 1)
1
(1 1)
1
(1 )
y
0
+
+
+
0
+
y
+
+
+
0
0
+
yf(x)

17/5
极小值

6/5
拐点

2
拐点

x
0
(0 1)
1
y
+
+
0
-
-
-
y
0
-
-
-
0
+
yf(x)
0
拐点

极大值

拐点

x
1
y
+
+
+
0
-
-
-
y
+
0
-
-
-
0
+
yf(x)

拐点

1
极大值

拐点

x
( 1)
-1

高等数学同济第七版下册习题与答案完整版

高等数学同济第七版下册习题与答案完整版

高等数学同济第七版下册习题与答案完整版引言《高等数学同济第七版下册》是同济大学数学系编写的一本面向高等数学教育的教材。

本书作为高等数学的下册,涵盖了积分学、无穷级数、多元函数微分学等重要内容。

为了帮助学生更好地理解和学习这些知识点,本文档整理了该教材下册的所有习题及其答案,以供学生参考和练习。

目录•第一章积分学•第二章无穷级数•第三章多元函数微分学第一章积分学积分学是高等数学的重要分支,它研究函数的积分与定积分等相关概念和性质。

本章的习题主要围绕定积分、不定积分和定积分的应用展开。

习题11.计算定积分 $\\int_0^1 (3x^2 - 2x + 1) dx$。

答案:$\\frac{2}{3}$2.计算不定积分 $\\int (x^3 - 2x^2 + x - 1) dx$。

答案:$\\frac{1}{4}x^4 - \\frac{2}{3}x^3 + \\frac{1}{2}x^2 - x + C$习题21.计算定积分 $\\int_1^e \\frac{dx}{x}$。

答案:12.计算不定积分 $\\int \\frac{1}{x} dx$。

答案:$\\ln|x| + C$…第二章无穷级数无穷级数是数列求和的一种常见方法,它在数学和物理等领域中有广泛的应用。

本章的习题主要涉及级数的概念、级数的性质和级数的求和等内容。

习题11.判断级数$\\sum_{n=1}^{\\infty} \\frac{1}{n^2}$ 的敛散性。

答案:该级数收敛。

2.计算级数 $\\sum_{n=0}^{\\infty} \\frac{1}{2^n}$ 的和。

答案:该级数的和为2。

…习题21.判断级数$\\sum_{n=1}^{\\infty} \\frac{n!}{n^n}$ 的敛散性。

答案:该级数收敛。

2.计算级数 $\\sum_{n=1}^{\\infty} (-1)^{n+1} \\frac{1}{n}$ 的和。

高等数学(同济第七版)课后答案解析

高等数学(同济第七版)课后答案解析
解当0i时.s(t)二!F.
当I V,w2时,s(!)=I - y(2-/)2=一£f2+ 2/-1 ,
当/>2HhS(f) =1.

/>2.
Q 16.求联系华氏温度(用F表示)和扱氏温度(用C表示)的转换公式.并求
(1)90叩的等价摄氏温度和-5 °C的等价华氏温度:
(2)是否存在一个温度值.使华氏温度汁和摄氏温度汁的读数是样的?如果存在,那么该温度值是多少?
xi
所以/(存)>/(%),即/(W在(0, + ao)内单调增加.
公5・设/U)为定义在(-/./)内的荷函数.若/(X)在(01)内单调増加,证明/(#)在(-L0)内也单凋増加.
证设-/<X, <X2<0,则0< “2 <-A,</,由/(、)是哉函数,從/g)V(X|)=-/(-知)+f(-旳)■因为/Xx)在(OJ)内单调増加.所以y(-X!)-/(-x2)>0.从而/(旳)>/(旳),即/(X〉在《・"0)内也単调增加.
解设尸.其中叽/,均为常数.
因为〃=32。相当于。=。。/ =212。相当于C= 100°.所以
7 "*=槌
故〃=1.80+32或C=扌(F-32).
(1)F=90°. C =刑90-32)52.2。.
C=-5。,F= 1.Xx(-5)+32= 23°.
(2)设温度値,符合题意.则有
/ = 1.8/ +32,I =-40.
尸銘EC
> =
y=•<>«< w
y=cotZ;
y=arcfiin lx I C1;
G2.卜列各题中,函数/(x)和g(x)是否相同?为什么”⑴/U) =lg/,g⑴=21gx;

同济大学数学系《高等数学》第7版笔记和课后习题含考研真题详解(无穷级数 下)【圣才出品】

同济大学数学系《高等数学》第7版笔记和课后习题含考研真题详解(无穷级数 下)【圣才出品】

k∈Z)
2.将下列函数 f(x)展开成傅里叶级数:
(1)f(x)=2sin(x/3)(-π≤x≤π) ;
(2)
f
(x)
ex ,
1,
x 0 0 x 。
解:(1)设φ(x)是 f(x)经周期延拓而得的函数,φ(x)在(-π,π)内连续,x
=±π是φ(x)的间断点。又φ(x)满足收敛定理的条件,故在(-π,π)内,它的傅里
cosnxdx
0
n
00
ab n
(1) n1
1 sin n
nx
0
a
n
b
(1) n1(
n 1, 2,
)
f(x)满足收敛定理的条件,而在 x=(2k+1)π(k∈z)处不连续,故
f
(x)
4
(a
b)
n1
1
(1)n n2
(b
a)
cos
nx
(1) n 1 (a n
b)
sin
nx
(x≠(2k+1)π,
an
n(1)n n2
e2 e2 4
(n 1, 2,)
f(x)满足收敛定理的条件,而在 x=(2k+1)π(k∈Z)处不连续,故
f
(x)
e2
e2
1
4
n1
(1)n n2 4
(2
cos
nx
n
sin
nx)
(x≠(2k+1)π,k∈Z)

3

a0
1
0 bxdx
axdx
(a b)
圣才电子书 十万种考研考证电子书、题库视频学习平台

同济大学数学系《高等数学》第 7 版笔记和课后习题含考研真题详解 第 12 章 无穷级数 下

高等数学(同济第七版下)课后习题及解答

高等数学(同济第七版下)课后习题及解答

高等数学(同济第七版下)课后习题及解答高等数学(同济第七版下)课后习题及解答一、函数与极限1. 已知函数 f(x) = x^2 + 3x - 2, 求以下极限:(1) lim(x→2) f(x)(2) lim(x→-1) f(x)解答:(1) 当x → 2 时,f(x) = x^2 + 3x - 2 = 2^2 + 3(2) - 2 = 12所以,lim(x→2) f(x) = 12(2) 当x → -1 时,f(x) = (-1)^2 + 3(-1) - 2 = -2所以,lim(x→-1) f(x) = -22. 求以下极限:(1) lim(x→0) (sin3x)/(sin4x)(2) lim(x→∞) (x^2 - 2x)/(x - 1)解答:(1) 利用极限的性质,lim(x→0) (sin3x)/(sin4x)= lim(x→0) (3x)/(4x) = 3/4(2) 利用极限的性质,lim(x→∞) (x^2 - 2x)/(x - 1)= lim(x→∞) x(x - 2)/(x - 1) = ∞二、导数与微分1. 求以下函数的导数:(1) y = x^3 + 2x^2 - 3x + 1(2) y = sin(2x) + cos(3x)(3) y = e^x/(1 + e^x)解答:(1) y' = 3x^2 + 4x - 3(2) y' = 2cos(2x) - 3sin(3x)(3) 利用商链规则和指数函数的导数性质,y' = e^x/(1 + e^x) - e^x*e^x/(1 + e^x)^2= e^x/(1 + e^x) - (e^x)^2/(1 + e^x)^2= e^x(1 - e^x)/(1 + e^x)^22. 求以下函数的微分:(1) y = 3x^2 + 4x - 2(2) y = sin(3x) + cos(2x)(3) y = ln(x) + e^x解答:(1) dy = (6x + 4)dx(2) dy = 3cos(3x)dx - 2sin(2x)dx(3) 利用对数函数和指数函数的微分性质,dy = (1/x)dx + e^xdx三、定积分与不定积分1. 求以下定积分:(1) ∫[0,1] (x^2 + 2x)dx(2) ∫[π/4,π/2] sinx dx解答:(1) ∫[0,1] (x^2 + 2x)dx = (1/3)x^3 + x^2 |[0,1]= (1/3)(1)^3 + (1)^2 - (1/3)(0)^3 - (0)^2= 4/3(2) 利用不定积分的基本公式,∫ sinx dx = -cosx∫[π/4,π/2] sinx dx = [-cosx] |[π/4,π/2] = -cos(π/2) - (-cos(π/4)) = -1 + √2/2 = √2/2 - 12. 求以下不定积分:(1) ∫(x^2 + 2x)dx(2) ∫sinx dx解答:(1) ∫(x^2 + 2x)dx = (1/3)x^3 + x^2 + C(2) ∫sinx dx = -cosx + C四、级数1. 判断以下级数的敛散性:(1) ∑(n=1,∞) (1/n)(2) ∑(n=1,∞) (1/2)^n解答:(1) 这是调和级数,已知调和级数∑(n=1,∞) (1/n) 发散。

(2021年整理)高等数学同济第七版7版下册习题全解

(2021年整理)高等数学同济第七版7版下册习题全解

(完整版)高等数学同济第七版7版下册习题全解编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)高等数学同济第七版7版下册习题全解)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)高等数学同济第七版7版下册习题全解的全部内容。

(完整版)高等数学同济第七版7版下册习题全解编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望(完整版)高等数学同济第七版7版下册习题全解这篇文档能够给您的工作和学习带来便利。

同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为〈(完整版)高等数学同济第七版7版下册习题全解> 这篇文档的全部内容。

数,故/, = Jj( x2 + y1)3d(j = 2jj(x2+ y1) 3dcr。

fh i)i又由于D3关于;t轴对称,被积函数(/ +r2)3关于y是偶函数,故jj(x2+j2)3dcr =2j(x2+y2)3da=2/2.Dy 1):从而得/, = 4/2。

(2)利用对称性来计算二重积分还有以下两个结论值得注意:如果积分区域关于^轴对称,而被积函数/(x,y)关于y是奇函数,即fix, —y)= -f(x,y),PJjf/(x,y)da =0;D如果积分区域D关于:K轴对称,而被积函数/(x,y)关于:c是奇函数,即/(~x,y) = -/(太,y),则=0.D«3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.设u =a -b +2c ,v =-a +3b -c .试用a ,b ,c 表示2u -3v .解2u -3v =2(a -b +2c )-3(-a +3b -c )=5a -11b +7c .2.如果平面上一个四边形的对角线互相平分,试用向量证明它是平行四边形.证如图8-1,设四边形ABCD 中AC 与BD 交于M ,已知AM =MC ,MB DM.故DC DM MC MB AM AB .即DC AB //且|AB |=|DC |,因此四边形ABCD 是平行四边形.3.把△ABC 的BC 边五等分,设分点依次为D 1,D 2,D 3,D 4,再把各分点与点A 连接.试以AB =c,BC =a 表向量A D 1,A D 2,A D 3,A D 4.证如图8-2,根据题意知511BD a,5121D D a,5132D D a,5143D D a,故A D 1=-(1BD AB)=-51a-cA D 2=-(2BD AB )=-52a-cA D 3=-(3BD AB )=-53a-cA D 4=-(4BD AB )=-54a-c.4.已知两点M 1(0,1,2)和M 2(1,-1,0).试用坐标表示式表示向量21M M 及-221M M .解21M M =(1-0,-1-1,0-2)=(1,-2,-2).-221M M =-2(1,-2,-2)=(-2,4,4).5.求平行于向量a =(6,7,-6)的单位向量.解向量a 的单位向量为aa ,故平行向量a 的单位向量为aa =111(6,7,-6)=116,117,116,其中11)6(76222a.6.在空间直角坐标系中,指出下列各点在哪个卦限?A (1,-2,3),B (2,3,-4),C (2,-3,-4),D (-2,-3,1).解A 点在第四卦限,B 点在第五卦限,C 点在第八卦限,D 点在第三卦限.7.在坐标面上和在坐标轴上的点的坐标各有什么特征?指出下列各点的位置:A (3,4,0),B (0,4,3),C (3,0,0),D (0,-1,0).解在坐标面上的点的坐标,其特征是表示坐标的三个有序数中至少有一个为零,比如xOy 面上的点的坐标为(x 0,y 0,0),xOz 面上的点的坐标为(x 0,0,z 0),yOz 面上的点的坐标为(0,y 0,z 0).在坐标轴上的点的坐标,其特征是表示坐标的三个有序数中至少有两个为零,比如x 轴上的点的坐标为(x 0,0,0),y 轴上的点的坐标为(0,y 0,0),z 轴上的点的坐标为(0,0,z 0).A 点在xOy 面上,B 点在yOz 面上,C 点在x 轴上,D 点在y 轴上.8.求点(a ,b ,c )关于(1)各坐标面;(2)各坐标轴;(3)坐标原点的对称点的坐标.解(1)点(a ,b ,c )关于xOy 面的对称点(a ,b ,-c ),为关于yOz 面的对称点为(-a ,b ,c ),关于zOx 面的对称点为(a ,-b ,c ).(2)点(a ,b ,c )关于x 轴的对称点为(a ,-b ,-c ),关于y 轴的对称点为(-a ,b ,-c ),关于z 轴的对称点为(-a ,-b ,c ).(3)点(a ,b ,c )关于坐标原点的对称点是(-a ,-b ,-c ).9.自点P 0),,(000z y x 分别作各坐标面和各坐标轴的垂线,写出各垂足的坐标.解设空间直角坐标系如图8-3,根据题意,P 0F 为点P 0关于xOz面的垂线,垂足F 坐标为),,000(z x ;P 0D 为点P 0关于xOy 面的垂线,垂足D 坐标为),,0(00y x ;P 0E 为点P 0关于yOz 面的垂线,垂足E 坐标为)0(0o z y ,,.P 0A 为点P 0关于x 轴的垂线,垂足A 坐标为),0,0(o x ;P 0B 为点P 0关于y 轴的垂线,垂足B 坐标为)0,,0(0y ;P 0C 为点P 0关于z 轴的垂线,垂足C 坐标为),0,0(0z .10.过点P 0),,(000z y x 分别作平行于z 轴的直线和平行于xOy 面的平面,问在它们上面的点的坐标各有什么特点?解如图8-4,过P 0且平行于z 轴的直线l 上的点的坐标,其特点是,它们的横坐标均相同,纵坐标也均相同.而过点P 0且平行于xOy 面的平面上的点的坐标,其特点是,它们的竖坐标均相同.11.一边长为a 的正方体放置在xOy 面上,其底面的中心在坐标原点,底面的顶点在x 轴和y 轴上,求它各顶点的坐标.解如图8-5,已知AB=a ,故OA=OB=a 22,于是各顶点的坐标分别为A )0022(,,a ,B (),022,0(a ),C (-a 22,0,0),D (0,-a 22,0),E (a 22,0,a ),F (0,a 22,a ),G (-a 22,0,a ),H (0,-a 22,a ).12.求点M (4,-3,5)到各坐标轴的距离.解点M 到x 轴的距离为d 1=345)3(22,点M 到y轴的距离为d 2=415422,点M 到z 轴的距离为d 3=525)3(422.13.在yOz 面上,求与三点A (3,1,2),B (4,-2,-2),C (0,5,1)等距离的点.解所求点在yOz 面上,不妨设为P (0,y ,z ),点P 与三点A ,B ,C 等距离,,)2()1(3222z y PA ,)2()2(4222z yPB .)1()5(22z y PC由PC PBPA知,222222)2()2(4)2()1(3z y zy 22)1()5(z y,即.)1()5()2()1(9,)2()2(16)2()1(922222222z yzy zy z y 解上述方程组,得y=1,z=-2.故所求点坐标为(0,1,-2).14.试证明以三点A (4,1,9),B (10,-1,6),C (2,4,3)为顶点的三角形是等腰直角三角形.证由2798)63()14()102(,7)93()14()42(,7)96()11()410(222222222BCAC AB 知.222AC ABBC AC AB 及故△ABC 为等腰直角三角形.15.设已知两点为M 1(4,2,1),M 2(3,0,2),计算向量21M M 的模、方向余弦和方向角.解向量21M M =(3-4,0-2,2-1)=(-1,-2,-1),其模2412-1-22221)()(M M .其方向余弦分别为cos =-21,cos =-22,cos =21.方向角分别为3,43,32.16.设向量的方向余弦分别满足(1)cos=0;(2)cos=1;(3)cos=cos =0,问这些向量与坐标轴或坐标面的关系如何?解(1)由cos=0得知2,故向量与x 轴垂直,平行于yOz 面.(2)由cos =1得知=0,故向量与y 轴同向,垂直于xOz 面.(3)由cos=cos=0知2,故向量垂直于x 轴和y 轴,即与z 轴平行,垂直于xOy 面.17.设向量r 的模是4,它与u 轴的夹角为3,求r 在u 轴上的投影.解已知|r |=4,则Prj u r=|r |cos=4?cos3=4×21=2.18.一向量的终点在点B (2,-1,7),它在x 轴、y 轴和z 轴上的投影依次为4,-4和7,求这向量的起点A 的坐标.解设A 点坐标为(x ,y ,z ),则AB =(2-x ,-1-y ,7-z ),由题意知2-x=4,-1-y=-4,7-z=7,故x=-2,y=3,z=0,因此A 点坐标为(-2,-3,0).19.设m =3i +4j +8k ,n =2i -4j -7k 和p =5i +j -4k .求向量a =4m +3n -p 在x 轴上的投影及在y轴上的分向量.解a=4m+3n-p=4(3i+5j+8k)+3(2i-4j-7k)-(5i+j-4k)=13i+7j+15k,a在x轴上的投影为13,在y轴上的分向量为7j.1.设k j i b k j i a 2,23,求(1)b a b a 及;(2)b a 2b 3a 2-及)(;(3)b a,的夹角的余弦.解(1)),(),,(1-2,12-1-3b a ,)()()(31-2-21-13b a 121213kj i =(5,1,7).(2)1836)(63)2(b a b a )14,2,10()7,1,5(2)(22b a ba (3222222)1(21)2()1(33),cos(ba ba b a 212361432.设c b a ,,为单位向量,满足.,0a c cb b a cb a 求解已知,0,1cbacb a 故0)()(c bac b a .即0222222ac cb b a cb a.因此23-21222)(c ba a c cb b a 3.已知M 1(1,-1,2),M 2(3,3,1)M 3(3,1,3).求与3221,M M M M 同时垂直的单位向量.解21M M =(3-1,3-(-1),1-2)=(2,4,-1)32M M =(3-3,1-3,3-1)=(0,-2,2)由于3221M M M M 与3221,M M M M 同时垂直,故所求向量可取为32213221M M M M M M M M a)(,由3221M M M M =22142kj i=(6,-4,-4),17268)4()4(62223221M M M M 知).172,172,173()4,4,6(1721a4.设质量为100kg 的物体从点M1(3,1,8)沿直线移动到点M2(1,4,2),计算重力所作的功(坐标系长度单位为m ,重力方向为z 轴负方向).解21M M =(1-3,4-1,2-8)=(-2,3,-6)F=(0,0,-100×9.8)=(0,0,-980)W=F ?21M M =(0,0,-980)?(-2,3,-6)=5880(J ).5.在杠杆上支点O 的一侧与点O 的距离为x 1的点P 1处,有一与1OP 成角1的力F 1作用着;在O 的另一侧与点O 的距离为x 2的点P 2处,有一与2OP 成角2的力F 2作用着(图8-6),问1,2,x 1,x 2,21,F F 符合怎样的条件才能使杠杆保持平衡?解如图8-6,已知有固定转轴的物体的平衡条件是力矩的代数和为零,又由对力矩正负符号的规定可得杠杆保持平衡的条件为0sin sin222111x F x F ,即222111sinsinx F x F .6.求向量),(4,3-4a 在向量)(1,2,2b 上的投影.解236122)1,2,2()4,3,4(Pr 222bb a aj b .7.设)4,1,2(),2,5,3(b a,问与有怎样的关系,能使b a与z 轴垂直?解b a =(3,5,-2)+(2,1,4)=(42,5,23).要b a 与z 轴垂直,即要(b a )(0,0,1),即(b a)?(0,0,1)=0,亦即(42,5,23)?(0,0,1)=0,故(42)=0,因此2时能使b a 与z 轴垂直.8.试用向量证明直径所对的圆周角是直角.证如图8-7,设AB 是圆O 的直径,C 点在圆周上,要证∠ACB=2,只要证明0BC AC 即可.由BC AC =)()(OC BO OC AO=2OC BO OC OC AO BOAO =022OCOCAO OCAO AO.故BC AC,∠ACB 为直角.9.已知向量j i c k j i bk j i a 23,32和,计算:(1)bc a c b a)()((2))()(c b b a(3)cb a)(解(1)8)3,1,1()1,3,2(b a,8)0,2,1()1,3,2(ca ,b c a c b a )()()24,8,0()3,1,1(8)0,2,1(8k i248.(2)b a=(2,-3,1)+(1,-1,3)=(3,-4,4),c b =(1,-1,3)+(1,-2,0)=(2,-3,3),)()(c b b a 332443k j ik j )1,1,0(.(3)cb a)(.202131113210.已知k j OB k i OA 3,3,求△OAB 的面积.解由向量积的几何意义知S △OAB=OB OA 21,)1,3,3(310301k j iOBOA ,OBOA 191)3()3(22S △OAB21911.已知),,(),,,(),,,(z y x z y x z y x c c c cb b b b a a a a,试利用行列式的性质证明:b ac a c b c b a )()()(证因为,)(zyxz y x zy xc c c b b b a a a cb a zyxz y x z y x a a a c c c b b b a c b )(ba c )(zyxz y x z y xb b b a a ac c c ,而由行列式的性质知zyxz y x z y x c c c b b b a a a zyxz y x z y x a a a c c c b b b =zyxz y xz y xb b b a a ac c c ,故b ac a c b c b a )()()(.12.试用向量证明不等式:332211232221232221b a b a b a b b b a a a ,其中321321,,,,,b b b a a a 为任意实数.并指出等号成立的条件.证设向量a(321,,a a a ),b(321,,b b b ).由),cos(b a b a b ab a ,从而232221232221332211b b b a a a b a b a b a ,当321,,a a a 与321,,b b b 成比例,即332211b a b a b a 时,上述等式成立.1.求过点(3,0,-1)且与平面012573z y x 平行的平面方程.解所求平面与已知平面012573z yx 平行.因此所求平面的法向量可取为n=(3,-7,5),设所求平面为0573D z y x .将点(3,0,-1)代入上式得D=-4.故所求平面方程为04573z y x .2.求过点M 0(2,9,-6)且与连接坐标原点及点M 0的线段OM 0垂直的平面方程.解.6,9,2(0)OM 所求平面与0OM 垂直,可取n=0OM ,设所求平面方程为0692Dzyx .将点M 0(2,9,-6)代入上式得D=-121.故所求平面方程为0121692z y x .3.求过(1,1,-1),(-2,-2,2)和(1,-1,2)三点的平面方程.解由0121111121212111z y x ,得023z yx ,即为所求平面方程.注设M (x,y,z )为平面上任意一点,)3,2,1)(,,(i z y x M i i i i 为平面上已知点.由,0)(31211M M M M MM 即,0131313121212111z z y y x x z z y y x x z z y y x x 它就表示过已知三点M i (i=1,2,3)的平面方程.4.指出下列各平面的特殊位置,并画出各平面:(1)x=0;(2)3y-1=0;(3)2x-3y-6=0;(4)x-3y=0;(5)y+z=1;(6)x-2z=0;(7)6x+5y-z=0.解(1)—(7)的平面分别如图8—8(a )—(g ).(1)x=0表示yOz 坐标面.(2)3y-1=0表示过点(0,31,0)且与y 轴垂直的平面.(3)2x-3y-6=0表示与z 轴平行的平面.(4)x-3y=0表示过z 轴的平面.(5)y+z=1表示平行于x 轴的平面.(6)x-2z=0表示过y 轴的平面.(7)6x+5y-z=0表示过原点的平面.5.求平面0522z y x 与各坐标面的夹角的余弦.解平面的法向量为n=(2,-2,1),设平面与三个坐标面xOy ,yOz ,zOx 的夹角分别为321,,.则根据平面的方向余弦知,3111)2(2)1,0,0()1,2,2(coscos2221kn kn ,3213)0,0,1()1,2,2(coscos2i n i n 3213)0,1,0()1,2,2(coscos3jn j n .6.一平面过点(1,0,-1)且平行于向量)1,1,2(a 和)0,1,1(b ,试求这个平面方程.解所求平面平行于向量a 和b ,可取平面的法向量)3,1,1(011112k j iba n.故所求平面为0)1(3)0(1)1(1z y x ,即043z y x.7.求三平面322,02,13z y x z yxz y x 的交点.解联立三平面方程.322,02,13zy xzy x z y x 解此方程组得.3,1,1zy x 故所求交点为(1,-1,3).8.分别按下列条件求平面方程:(1)平行于xOz 面且经过点(2,-5,3);(2)通过z 轴和点(-3,1,-2);(3)平行于x 轴且经过两点(4,0,-2)和(5,1,7).解(1)所求平面平行于xOz 面,故设所求平面方程为0D By .将点(2,-5,3)代入,得05DB,即B D5.因此所求平面方程为05B By ,即05y.(2)所求平面过z 轴,故设所求平面为0ByAx.将点(-3,1,-2)代入,得03B A,即A B 3.因此所求平面方程为3Ay Ax ,即03y x .(3)所求平面平行于x 轴,故设所求平面方程为0D Cz By .将点(4,0,-2)及(5,1,7)分别代入方程得2DC及07D C B.D BD C29,2.因此,所求平面方程为0229D z D Dy,即029z y.9.求点(1,2,1)到平面01022z yx的距离.解利用点),,(00o o z y x M 到平面0DCzBy Ax的距离公式222CB ADCz By Ax d.13322110122212221.求过点(4,-1,3)且平行于直线51123z y x 的直线方程.解所求直线与已知直线平行,故所求直线的方向向量)5,1,2(s ,直线方程即为531124z y x .2.求过两点)1,2,3(1M 和)2,0,1(2M 的直线方程.解取所求直线的方向向量)1,2,4()12),2(0,31(21M M s,因此所求直线方程为112243z y x .3.用对称式方程及参数方程表示直线.42,1z y xz y x 解根据题意可知已知直线的方向向量112111k j i s).3,1,2(取x=0,代入直线方程得.4,1z yz y 解得.25,23zy这样就得到直线经过的一点(25,23,0).因此直线的对称式方程为.32512320z y x 参数方程为.325,23,2t zt y t x 注由于所取的直线上的点可以不同,因此所得到的直线对称式方程或参数方程得表达式也可以是不同的.4.求过点(2,0,-3)且与直线1253,0742z yxz y x 垂直的平面方程.解根据题意,所求平面的法向量可取已知直线的方向向量,即),11,14,16(253421k j isn故所求平面方程为.0)3(11)0(14)2(16z y x 即.065111416z y x 5.求直线123,09335z yxz y x 与直线1883,02322z yxzy x 的夹角的余弦.解两已知直线的方向向量分别为),1,4,3(1233351k j i s ),10,5,10(1831222k j i s 因此,两直线的夹角的余弦212121),(cos coss s s s s s .010)5(10)1(43101541032222226.证明直线72,72z yxz y x 与直线2,8363zyxz y x 平行.证已知直线的方向向量分别是),15,3,9(112363),5,1,3(11212121k j is k j i s 由123s s 知两直线互相平行.7.求过点(0,2,4)且与两平面12z x 和23z y 平行的直线方程.解所求直线与已知的两个平面平行,因此所求直线的方向向量可取),1,3,2(3120121k j in n s故所求直线方程为.143220z y x 注本题也可以这样解:由于所求直线与已知的两个平面平行,则可视所求直线是分别与已知平面平行的两平面的交线,不妨设所求直线为.3,2b zya z x 将点(0,2,4)代入上式,得.10,8ba故所求直线为.103,82zyz x 8.求过点(3,1,-2)且通过直线12354zy x 的平面方程.解利用平面束方程,过直线12354zy x 的平面束方程为,0)23(2354z yy x 将点(3,1,-2)代入上式得.2011因此所求平面方程为,0)23(20112354z y y x即.0592298z yx 9.求直线,03zyxz y x 与平面01z yx的夹角.解已知直线的方向向量),2,4,2(111311k j is 平面的法向量).1,1,1(n 设直线与平面的夹角为,则,0)1()1(1)2(42)1()2()1(412),cos(sin222222ns n s s n 即.010.试确定下列各组中的直线和平面间的关系;(1)37423zy x和3224z y x ;(2)723z y x 和8723z y x ;(3)431232z y x 和.3z y x 解设直线的方向向量为s ,平面的法向量为n ,直线与平面的夹角为,且ns n s s n ),cos(sin.(1)),2,2,4(),3,7,2(ns,0)2()2(43)7()2()2(3)2()7(4)2(sin222222则.0故直线平行于平面或在平面上,现将直线上的点A (-3,-4,0)代入平面方程,方程不成立.故点A 不在平面上,因此直线不在平面上,直线与平面平行.(2)),7,2,3(),7,2,3(ns由于n s或,17)2(37)2(377)2()2(33sin222222知2,故直线与平面垂直.(3)),1,1,1(),4,1,3(ns由于0ns 或,0111)4(131)4(1113sin222222知,0将直线上的点A (2,-2,3)代入平面方程,方程成立,即点A 在平面上.故直线在平面上.11.求过点(1,2,1)而与两直线1,012z yxz y x 和,02zyxz y x 平行的平面的方程.解两直线的方向向量为),1,1,0(111112),3,2,1(11112121kj i s k j i s取),1,1,1(1132121k j is s n则过点(1,2,1),以n 为法向量的平面方程为,0)1(1)2(1)1(1z yx 即.0zy x 12.求点(-1,2,0)在平面012z y x上的投影.解作过已知点且与已知平面垂直的直线.该直线与平面的交点即为所求.根据题意,过点(-1,2,0)与平面012z y x 垂直的直线为,12211z y x 将它化为参数方程,,22,1t zt y t x 代入平面方程得,01)()22(21t t t整理得32t .从而所求点(-1,2,0)在平面012z yx 上的投影为(32,32,35).13.求点P (3,-1,2)到直线42,01z y x z y x 的距离.解直线的方向向量).3,3,0(112111k j i s 在直线上取点(1,-2,0),这样,直线的方程可表示成参数方程形式.3,32,1t z t y x (1)又,过点P (3,-1,2),以)3,3,0(s 为法向量的平面方程为,0)2(3)1(3z y 即.01z y (2)将式(1)代入式(2)得21t ,于是直线与平面的交点为(23,21,1),故所求距离为.223)232()211()13(222d 14.设M 0是直线L 外一点,M 是直线L 上任意一点,且直线的方向向量为s ,试证:点M 0到直线L 的距离ssMM d0.证如图8-9,点M 0到直线L 的距离为d.由向量积的几何意义知s MM 0表示以MM 0,s 为邻边的平行四边形的面积.而ssMM 0表示以s 为边长的该平面四边形的高,即为点M 0到直线L 的距离.于是ssMM d0.15.求直线0923,042z yxz y x 在平面14z y x 上的投影直线的方程.解作过已知直线的平面束,在该平面束中找出与已知平面垂直的平面,该平面与已知平面的交线即为所求.设过直线923,042zyxz y x 的平面束方程为,0)923(42z y x z y x经整理得.09)21()4()32(z yx 由,01)21()1()4(4)32(得1113.代入平面束方程,得.0117373117z yx 因此所求投影直线的方程为.14,0117373117zyxz y x 16.画出下列各平面所围成的立体的图形.(1);012243,1,2,0,0,0z y x y x z y x(2).4,2,1,0,0y zy x z x 解(1)如图8-10(a );(2)如图8-10(b ).1.一球面过原点及A (4,0,0),B (1,3,0)和C (0,0,-4)三点,求球面的方程及球心的坐标和半径.解设所求球面的方程为2222)()()(R c z b y a x ,将已知点的坐标代入上式,得,2222R cba (1),)4(2222R c b a(2),)3()1(2222R cb a (3)2222)4(R c b a,(4)联立(1)(2)得,2a 联立(1)(4)得,2c 将2a 代入(2)(3)并联立得b=1,故R=3.因此所求球面方程为,9)2()1()2(222z y x其中球心坐标为),2,1,2(半径为3.2.建立以点(1,3,-2)为球心,且通过坐标原点的球面方程.解设以点(1,3,-2)为球心,R 为半径的球面方程为,)2()3()1(2222R z y x 球面经过原点,故,14)20()30()10(2222R从而所求球面方程为.14)2()3()1(222zyx 3.方程0242222zyxzyx表示什么曲面?解将已知方程整理成,)6()1()2()1(2222z y x所以此方程表示以(1,-2,-1)为球心,以6为半径的球面.4.求与坐标原点O 及点(2,3,4)的距离之比为1:2的点的全体所组成的曲面的方程,它表示怎样的曲面?解设动点坐标为(z y x ,,),根据题意有,21)4()3()2()0()0()0(222222z yxz y x 化简整理得.)2932()34()1()32(2222z y x它表示以(34,1,32)为球心,以2932为半径的球面.5.将xOz 坐标面上的抛物线x z52绕x 轴旋转一周,求所生成的旋转曲面的方程.解以22z y代替抛物线方程x z 52中的z ,得222)(z yx 5,即x zy522.注xOz 面上的曲线0),(z x F 绕x 轴旋转一周所生成的旋转曲面方程为0),(22z yx F .6.将xOz 坐标面上的圆922zx 绕z 轴旋转一周,求所生成的旋转曲面的方程.解以22y x代替圆方程922z x 中的x ,得,9)(2222z y x 即.9222zyx7.将xOy 坐标面上的双曲线369422yx分别绕x 轴及y 轴旋转一周,求所生成的旋转曲面的方程.解以22zy代替双曲线方程369422yx中的y ,得该双曲线绕x 轴旋转一周而生成的旋转曲面方程为,36)(942222z yx即.36)(94222z yx 以22zx代替双曲线方程369422yx中的x ,得该双曲线绕y 轴旋转一周而生成的旋转曲面方程为,369)(42222y z x即.369)(4222yz x 8.画出下列各方程所表示的曲面:(1);)2()2(222a ya x(2);19422y x (3);14922z x (4);02zy(5)22x z .解(1)如图8-11(a );(2)如图8-11(b );(3)如图8-11(c );(4)如图8-11(d );(5)如图8-11(e ).9.指出下列方程在平面解析几何中和在空间解析几何中分别表示什么图形:(1);2x (2);1x y (3);422yx (4).122yx 解(1)2x 在平面解析几何中表示平行于y 轴的一条直线,在空间解析几何中表示与yOz 面平行的平面.(2)1x y在平面解析几何中表示斜率为1,y 轴截距也为1的一条直线,在空间解析几何中表示平行于z 轴的平面.(3)422yx在平面解析几何中表示圆心在原点,半径为2的圆,在空间解析几何中表示母线平行于z 轴,准线为,422zy x 的圆柱面.(4)122yx在平面解析几何中表示以x 轴为实轴,y 轴为虚轴的双曲线,在空间解析几何中表示母线平行于z 轴,准线为,122zy x 的双曲柱面.10.说明下列旋转曲面是怎样形成的:(1);1994222z y x (2);14222zy x(3);1222zyx (4).)(222y xa z解(1)1994222z y x 表示xOy 面上的椭圆19422y x 绕x轴旋转一周而生成的旋转曲面,或表示xOz 面的椭圆19422zx 绕x 轴旋转一周而生成的旋转曲面.(2)14222zyx表示xOy 面上的双曲线1422yx绕y 轴旋转一周而生成的旋转曲面,或表示yOz 面的双曲线1422zy 绕y 轴旋转一周而生成的旋转曲面.(3)1222zyx表示xOy 面上的双曲线122y x绕x 轴旋转一周而生成的旋转曲面,或表示xOz 面的双曲线122zx绕x 轴旋转一周而生成的旋转曲面.(4)222)(y xa z表示xOz 面上的直线a x z或a x z绕z 轴旋转一周而生成的旋转曲面,或表示yOz 面的直线a yz或a yz绕z 轴旋转一周而生成的旋转曲面.11.画出下列方程所表示的曲面:(1);44222zyx (2);44222zyx(3).94322yxz 解(1)如图8-12(a );(2)如图8-12(b );(3)如图8-12(c );12.画出下列各曲面所围立体的图形:(1)1,03,0,3,022yxyxyxz z (在第一卦限内);(2)222222,,0,0,0R z y R y x z y x (在第一卦限内).解(1)如图8-13所示;(2)如图8-14所示.1.画出下列曲线在第一卦限内的图形;(1);2,1yx (2);0,422yxy x z (3).,222222a zxa y x 解(1)如图8-15(a );(2)如图8-15(b );(3)如图8-15(c ).2.指出下列方程组在平面解析几何中与在空间解析几何中分别表示什么图形:(1);32,15xyx y (2).3,19422y yx解(1)32,15xyx y 在平面解析几何中表示两直线的交点.在空间解析几何中表示两平面的交线,即空间直线.(2)3,19422y yx在平面解析几何中表示椭圆19422yx与其切线3y 的交点,即切点.在空间解析几何中表示椭圆柱面19422yx与其切平面3y的交线,即空间直线.3.分别求母线平行于x 轴及y 轴而且通过曲线0,162222222yzxz y x 的柱面方程.解在0,162222222yzxz y x 中消去x ,得,16322zy 即为母线平行于x 轴且通过已知曲线的柱面方程.在0,162222222yzxz y x 中消去y ,得,162322z x即为母线平行于y 轴且通过已知曲线多的柱面方程.4.求球面9222zyx与平面1z x 的交线在xOy 面上的投影的方程.解在1,9222z x zyx 中消去z ,得,9)1(222x yx即,82222yx x 它表示母线平行于z 轴的柱面,故,82222zyx x 表示已知交线在xOy 面上的投影的方程.5.将下列曲线的一般方程化为参数方程:(1);,9222x yzy x(2).0,4)1()1(222z z yx解(1)将x y 代入,9222z y x得,9222zx取,cos 23t x则,sin 3t z 从而可得该曲线的参数方程tz t y t x sin 3,cos 23,cos 23(t 0?2)(2)将z=0代入,4)1()1(222z yx得,3)1(22yx 取,cos 31t x则,sin 3t y 从而可得该曲线的参数方程0,sin 3,cos 31z t y t x (t 0?2)6.求螺旋线b za y a x ,sin ,cos 在三个坐标面上的投影曲线的直角坐标方程.解由sin,cos a ya x得,222a y x故该螺旋线在xOy 面上的投影曲线的直角坐标方程为,222za yx 由bz a y ,sin 得bza ysin ,故该螺旋线在yOz 面上的投影曲线的直角坐标方程为,sin x b za y 由bz a x ,cos 得,cos b za x故故该螺旋线在yOz 面上的投影曲线的直角坐标方程为.0,cos y bza x 7.求上半球2220y xaz 与圆柱体a ax yx(22>0)的公共部分在xOy 面和xOz 面上的投影.解如图8-16.所求立体在xOy 面上的投影即为ax yx22,而由axyxy xa z 22222,得.2ax a z 故所求立体在xOz 面上的投影为由x 轴,z 轴及曲线ax az2所围成的区域.8.求旋转抛物面)40(22zy xz 在三坐标面上的投影解联立422zyx z ,得422yx.故旋转抛物面在xOy面上的投影为.0,422zy x 如图8-17.联立,22xy x z 得,2y z故旋转抛物面在yOz 面上的投影为2y z及4z 所围成的区域.同理,联立,22yy xz 得,2x z故旋转抛物面在xOz 面上的投影为2x z及4z 所围成的区域.。

相关文档
最新文档