第4章杆件的基本变形

合集下载

杠杆变形的4种基本形式

杠杆变形的4种基本形式

杠杆变形的4种基本形式:
1拉伸或压缩:这类变形是由大小相等方向相反,力的作用线与杆件轴线重合的一对力引起的。

在变形上表现为杆件长度的伸长或缩短。

截面上的内力称为轴力。

横截面上的应力分布为沿着轴线反向的正应力。

整个截面应力近似相等。

2剪切:这类变形是由大小相等、方向相反、力的作用线相互平行的力引起的。

在变形上表现为受剪杆件的两部分沿外力作用方向发生相对错动。

截面上的内力称为剪力。

横截面上的应力分布为沿着杆件截面平面内的的切应力。

整个截面应力近似相等。

3扭转:这类变形是由大小相等、方向相反、作用面都垂直于杆轴的两个力偶引起的。

表现为杆件上的任意两个截面发生绕轴线的相对转动。

截面上的内力称为扭矩。

横截面上的应力分布为沿着杆件截面平面内的的切应力。

越靠近截面边缘,应力越大。

4弯曲:这类变形由垂直于杆件轴线的横向力,或由包含杆件轴线在内的纵向平面内的一对大小相等、方向相反的力偶引起,表现为杆件轴线由直线变成曲线。

截面上的内力称为弯矩和剪力。

在垂直于轴线的横截面上,弯矩产生垂直于截面的正应力,剪力产生平行于截面的切应力。

另外,受弯构件的内力有可能只有弯矩,没有剪力,这时称之为纯剪构件。

越靠近构件截面边缘,弯矩产生的正应力越大。

第四单元 构件基本变形的分析

第四单元 构件基本变形的分析
由于杆件原来处于平衡状态,故截开后的两段 也应处于平衡状态。
由平衡方程
FX 0
FN F 0 FN F
左右
截面法求内力的步骤
1、截:在欲求处假想用截面将构件截成两段。 2、取:取其中任意一段为研究对象。 3、代:用作用于截面上的内力,代替切去部
分对留下部分的作用力。 4、平:对研究对象列平衡方程,由外力确定
图4-10
解:(1)计算外力(设约束反力FR)如图 ΣFx = 0 - FR - F1 +F2 = 0
FR = - F1 + F2 = - 50 + 140 = 90KN (FR方向是正确的)
FR
X
(2)计算各截面上的轴力并画出轴力图
1-1截面上的轴力
FN1= - F 1
= - 50KN FR
(杆受压)
第四单元 构件基本变形的分析
学习目标
通过本单元的学习,了解有关构件基 本变形的概念及形式,明确求解构件在各 种基本变形状态下的内力和应力,掌握强 度条件和刚度条件的公式,并能应用其解 决简单的工程问题。
综合知识模块一 基本变形分析的基础
能力知识点1
变形分析的基本概念
一、变形固体及其基本假设
任何物体受载荷(外力)作用后其内部质 点都将产生相对运动,从而导致物体的形状和 尺寸发生变化,称为变形。
构件的承载能力分为:
强度、刚度、稳定性。
一、强度
构件抵抗破坏的能力。 构件在外力作用下不破坏必须具有足够 的强度,例如房屋大梁、机器中的传动轴不 能断裂,压力容器不能爆破等。
强度要求是对构 件的最基本要求。
二、刚度
构件抵抗变形的能力。 在某些情况下,构件虽有足够的强度,但若 受力后变形过大,即刚度不够,也会影响正常工 作。例如机床主轴变形过大,将影响加工精度; 吊车梁变形过大,吊车行驶时会产生较大振动, 使行驶不平稳,有时还会产生“爬坡”现象,需要 更大的驱动力。因此对这类构件要保证有足够的 刚度。

材料力学 杆件的变形计算

材料力学 杆件的变形计算

例题4-2: 已知:l = 54 mm ,di = 15.3 mm,E=200 GPa, ν = 0.3,拧紧后,△l =0.04 mm。 试求:(a) 螺栓横截面上的正应力 σ (b) 螺栓的横向变形△d
解:1) 求横截面正应力 :
ε=
∆l 0.04 = = 7.41×10-4 l 54
l = 54 mm ,di = 15.3 mm, E=200 GPa, ν = 0.3, △l =0.04 mm
∆ac = a ′c′ − ac
∆ac ε′ = ac
二、拉压杆的弹性定律 1、等内力拉压杆的弹性定律 P P
PL NL dL = = EA EA
PL dL ∝ A
2、变内力拉压杆的弹性定律
N(x) N(x)
x dx dx 内力在n段中分别为常量时 内力在 段中分别为常量时
※“EA”称为杆的抗拉压刚度。 ※“ ”称为杆的抗拉压刚度。
C1
C点总位移: 点总位移:
∆C = ∆C y + ∆C x = 1.47mm
2 2
C0
Cx
(此问题若用圆弧精确求解) 此问题若用圆弧精确求解)
∆C x = 0.278mm ∆C y = 1.44mm
第二节 圆轴的扭转变形及相对扭转角
为 dx 的两个相邻截面之间有相对转角dϕ 的两个相邻截面之间有相对转角d
800 π × 0.04 4 80 ×109 32 = 0.03978rad / m
综合两段, 综合两段,最大单位扭转角应在BC 段 为 0.03978 rad/m
例4-5 图示一等直圆杆, 图示一等直圆杆,已知 d =40mm a =400mm G =80GPa, ϕ DB=1O , 求 : 1) 最大切应力 2)ϕ AC

直杆的基本变形

直杆的基本变形

直杆的基本变形
1、 轴向拉伸与压缩
拉伸: 在轴向力大作用下,杠杆产生伸长变形 压缩: 在轴向力大作用下,杠杆产生缩短变形
受力特点:沿杆件轴向作用一对等值、反向的拉力或
压力
变形特点:杆件沿轴向伸长或者缩短。

公式:
Fn 表示横截面轴力 A 表示横截面积
2、 剪切 剪切:杆件受到一定垂直于杆轴方向的大小相等、方
向相反、作用线相距很近大外力作用做引起大变形。

受力特点:截面两侧受一对等值、反向、作用线相近
的横向力
变形特点:截面沿着力的作用方向很对错动。

3、 扭转
扭转:直杆在两端受到作用于杆断面的大小相等方向
想法大力矩(扭矩)作用,则发生扭转。

受力特点:在很截面内作用一对等值、方向的力偶 N F A σ=
变形特点:轴表面的纵线变成螺旋线。

4、弯曲
弯曲:杆件在垂直于其轴线的载荷作用下,使原为直线大轴线变成曲线的变形
受力特点:受垂直于梁轴线的外力或在轴线平面内作用的力偶
变形特点:使梁的轴线由直变弯。

材料力学第四章平面弯曲

材料力学第四章平面弯曲


∫ A ydA =0
M
dA
z
y z ζdA
My
横截面对中性轴 zdA 的面积矩为零, A 中性轴过形心。 E yzdA 0

A
y
Iyz =0——梁发生平面弯曲的条件
E I E 2 ∫ AσdA· z ∫ A y dA = Mz= y = ρ ρ 1 Mz = EIz —— 梁的弯曲刚度 中性层曲率公式 EI ρ z
y
m MB=-40kN· m MD=22.5kN· B M y B截面 上部受拉、下部受压 tBmax B t max 21.4MPa Iz B yt max 100mm B M y I z 186.6 106 m 4 B B c max 38.6MPa B c max yc max 180mm Iz
max
FQ S
* z max
Izd
d FQ 4 FQ 12 4 d 3 A d 64
3
d/2
z
max
四、薄壁圆环截面梁 中性轴处:
r0
z
max 2
FQ A
max
例 如图所示一T形截面。某截面上的剪力FQ=50kN,与y 轴重合。试求腹板的最大切应力,并画出腹板上的切应力分布图。
1
* FQ S z 1
I zd
4.13MPa
例 一矩形截面外伸梁,如图所示。现自梁中1、2、 3、4点处分别取四个单元体,试画出单元体上的应力,并 写出应力的表达式。
q
1 2 h/4 4 3
z l/4 b
l/4
l
解: (1)求支座反力:
FRA
FRB
1 l/4

第四章 杆件的变形计算

第四章 杆件的变形计算

第四章杆件的变形计算杆件在载荷作用下都将发生变形,过大的变形将影响杆件的正常使用,必须加以限制,而有时又希望杆件能有较大的变形,以起缓冲作用,如弹簧等,因此必须计算杆件的变形。

本章具体讨论了拉伸(压缩)、扭转、弯曲三种情况的杆件变形计算。

第一节拉(压)杆的轴向变形直杆在沿其轴线的外力作用下,纵向发生伸长或缩短变形,而其横向相应变细或变粗,如图4-1所示。

设杆原长l,宽b,在力F作用下产生变形,变形后长l1,宽b1。

则杆件在轴线方向的伸长为纵向应变为根据虎克定律和拉(压)杆横截面正应力公式,可以得到(4-1)上式表明,杆的轴向变形值与轴力F N及杆长l成正比,与材料的杨氏模量及杆的横截面面积成反比。

因此EA称为拉(压)杆的抗拉(压)刚度,EA值越大,杆件刚度越大,在一定外力作用下单位长度变形量就越小。

另一方面,横向变形,横向应变。

通过试验发现,当材料在弹性范围内时,拉(压)杆的纵向应变与横向应变之间存在如下比例关系:(4-2a)或=-(4-2b)式中比例常数称为泊松比。

弹性模量E、泊松比及切变模量G均是材料的弹性常数,可由实验测得。

对于各向同性材料,可以证明这三个弹性常数之间存在下列关系:(4-3)材料的值小于0.5,表4-1列出几种常见金属材料的E和的值。

例4-1 阶梯形直杆受轴力如图4-2,已知该杆AB段横截面面积A1=800mm2 , 段横截面面积A2=240mm2,杆件材料的弹性模量为E=200GPa。

试求该杆总伸长量。

解(1)求AB、BC段轴力F NAB=40kN(拉),F NBC=-20kN(压)(2)求AB、BC段伸长量AB段BC段由以上计算可以看出,AB段是伸长,而BC段是缩短。

(3)AC杆总伸长AC杆计算结果为负,说明AC杆是缩短而不是伸长。

例4-2 图示桁架,钢杆AC横截面面积A1=960mm ,弹性模量E1=200GPa。

木杆BC横截面,杨氏模量E2=10GPa 。

求铰节点C的位移。

简述杆件基本变形的类型及内力和应力的特点。

简述杆件基本变形的类型及内力和应力的特点。

简述杆件基本变形的类型及内力和应力的特点。

杆件基本变形是指杆件的基本构造和变形,按照变形的特点主要分为弯曲变形和转角变形。

弯曲变形:杆件在受力后,弯曲变形是其形状改变最大的形式,一般杆件由一定的中心轴受力后,呈泊散变形,但也有按曲率弯曲的状态,如拉伸、挤压等。

转角变形:杆件受力后,呈旋转状态,一般情况只有一个转角,但也有多个转角的状态,如滚动、滑动等。

内力和应力的特点
杆件受力后,内力的大小和变形的特点之间有着密切的关系,一般来说,内力的大小与变形的特点成正比,而杆件内部的应力则是由变形特点决定的,主要以拉力、挤压、剪切等不同的应力形式存在。

- 1 -。

第四章杆件的变形

第四章杆件的变形

ql 3 ql 3 ql 3 11ql 3 B Bi 21 24 EI 16 EI 3EI 48EI i 1
3
5ql 4 ql 4 ql 4 11ql 4 wC wCi ( ) 384 EI 48EI 16 EI 384 EI i 1
4
目录
5
目录
当拉(压)杆有两个以上的外力作用时,需要先画出轴力图,然后 分段计算各段的变形,各段变形的代数和即为杆的总伸长量。
6
目录
例题4-1 AB长2m, 面积为200mm2。AC面积为250mm2。E=200GPa。 F=10kN。试求节点A的位移。
解:1、计算轴力。(设斜杆为1杆,水平杆
若C点靠近支座B,则两者相差最大,这时,近似的有
b 0 wmax
两者相差不超过2.6%。
bFl bFl 2 wm 16EI 9 3EI
19
2
目录
第五节 用叠加法求梁的弯曲变形
设梁上有n 个载荷同时作用,任意截面上的转角为 ,挠度为w, 若梁上只有第i个载荷单独作用,同一截面上转角为
由叠加原理知:
讨论题
2数值的大小。 试比较1、2两轴扭转角 1 、
620 N· m
1400 N· m d2
780 N· m
780 N· m
620 N· m
2 1
10
目录
例题4-2 某机器传动轴AC如图所示,已知轴材料的切变模量G=80GPa, 轴直径
d 45mm , M e1 120N mm, M e2 200N m ,
d 2 w1 Fb EI M ( x ) x1 1 2 dx1 l dw Fb 2 EI 1 EI ( x1 ) x1 C1 dx1 2l Fb 3 EIw1 x1 C1 x1 D1 6l

刘鸿文《材料力学》(第5版)笔记和课后习题(含考研真题)详解-弯曲内力(圣才出品)

刘鸿文《材料力学》(第5版)笔记和课后习题(含考研真题)详解-弯曲内力(圣才出品)
1 / 49
圣才电子书 十万种考研考证电子书、题库视频学习平台

图 4-3
2.载荷的简化 (1)集中载荷:载荷的作用范围远小于杆件轴向尺寸。 (2)分布载荷:沿轴向连续分布在杆件上的载荷,常用 q 表示单位长度上的载荷,称 为载荷集度,如风力、水力、重力。常用的有均布载荷,线性分布载荷。 (3)集中力偶
3.静定梁的基本形式 为方便梁的求解,通常将梁简化,以便得到计算简图。当梁上支反力数目与静力平衡方 程式的数目相同时,即支反力通过静力平衡方程即可完全确定时,称之为静定梁,以下三种 形式的梁均为静定梁。 (1)简支梁:一端为固定铰支座,一端为可动铰支座,如图 4-4 所示。
图 4-4 (2)外伸梁:一端或两端向外伸出的简支梁,如图 4-5 所示。
4.2 课后习题详解
5 / 49
圣才电子书 十万种考研考证电子书、题库视频学习平台

4.1 试求图 4-8 所示各梁中截面 1-1,2-2,3-3 上的剪力和弯矩,这些截面无限接近 于截面 C 或截面 D。设 F,q,a 均为已知。
图 4-8 解:(a)①1-1 截面:沿该截面断开,对右部分进行受力分析,根据平衡条件:
④若
FS
(x)
=
0 ,则
dM (x) dx
=
FS
(x)
=
0
。此时该截面上弯矩有极值(极大值或极小
值)。此外,弯矩的极值还可能出现在集中力和集中力偶作用处截面。
3.外力与内力图的内在联系
(1)斜率规律
剪力图在任一截面处的斜率值等于该截面外力分布载荷的集度值,同理弯矩图图在任一
截面处的斜率值等于该截面剪力值:
圣才电子书

十万种考研考证电子书、题库视频学习平台

杆件受力变形的四种基本形式

杆件受力变形的四种基本形式

杆件受力变形的四种基本形式
梁、柱、桁架和悬臂梁是结构力学中最常见的四种支撑件,它们受力变形的基本形式也是结构力学中最重要的内容之一。

首先,梁受力变形的基本形式是弯曲变形。

梁受力时,梁的中部会发生弯曲变形,两端会发生拉伸变形,而两端的变形量要比中部的变形量大得多。

其次,柱受力变形的基本形式是压缩变形。

柱受力时,柱的中部会发生压缩变形,两端会发生拉伸变形,而两端的变形量要比中部的变形量小得多。

第三,桁架受力变形的基本形式是拉伸变形。

桁架受力时,桁架的中部会发生拉伸变形,两端会发生压缩变形,而两端的变形量要比中部的变形量小得多。

最后,悬臂梁受力变形的基本形式是拱形变形。

悬臂梁受力时,悬臂梁的中部会发生拱形变形,两端会发生拉伸变形,而两端的变形量要比中部的变形量大得多。

以上就是梁、柱、桁架和悬臂梁受力变形的四种基本形式,它们是结构力学中最重要的内容之一,在结构设计中,我们必须正确理解这些变形形式,以便正确设计结构,使结构具有足够的强度和刚度。

3.1杆件四种基本变形及组合变形

3.1杆件四种基本变形及组合变形

《杆件的四种基本变形及组合变形、直杆轴向拉、压横截面上的内力》教学设计剪切变形的受力特点是作用在构件上的横向外力大小相等、方向相反、作用线平行且距离很近。

剪切变形的变形特点是介于两横向力之间的各2.剪切【工程实例】如图a所示为一个铆钉连接的简图。

钢板在拉力F的作用下使铆钉的左上侧和右下侧受力(图b),这时,铆钉的上、下两部分将发生水平方向的相互错动(图c)。

当拉力很大时,铆钉将沿水平截面被剪断,这种破坏形式称为剪切破坏。

3. 扭转用改锥拧螺钉时,在改锥柄上手指的作用力构成了一个力偶,螺钉的阻力在改锥的刀口上构成了一个方向相反的力偶,这两个力偶都作用在垂直于杆轴的平面内,就使改锥产生了扭转变形,如图a所示。

例如汽车的转向轴(图b)。

当驾驶员转动方向盘时,相当于在转向轴A端施加了一个力偶,与此同时,转向轴的B端受到了来自转向器的阻抗力偶。

于是在轴AB的两端受到了一对大小相等、转向相反的力偶作用,使转向轴发生了扭转变形。

弯曲【试一试】两手支撑一把长尺子,中间放一重物,尺子会发生怎样的变形呢?纵向对称面:梁的横截面多为矩形、工字形、等(图),它们都有一根竖向对称轴,这根对称轴与梁轴线所构成的平面称为纵向对称面。

平面弯曲:梁的弯曲平面与外力作用面相重合的3.2直杆轴向拉、压横截面上的内力 内力的概念 轴力的计算 1)轴力为了显示并计算杆件的内力,通常采用截面法。

假设用一个截面m-m (图a )将杆件“切”成左右两部分,取左边部分为研究对象(图b ),要保持这部分与原来杆件一样处于平衡状态,就必须在被切开处加上,这个内力F N 就是右部分对左部分的作用力。

在轴向拉(压)杆中横截面中的内力称为由于直杆整体是平衡的,左部分也是平衡的,对这部分建立平衡方程:=0 0=-N F F若取右部分为研究对象,则可得0='-N F F 可以看出,取任一部分为研究对象,都可以得到相同的结果,其实F N 与F ′N 是一对作用力与反作用力,其数值必然相等。

第四章 杆件的变形计算

第四章 杆件的变形计算

3)分别作AC1和BC2的垂线交于C0
A F B 30oC2 C
Cx CC2 0.277mm C y CC1 / sin30 CC 2 cot30
C1
1.44mm
C点总位移:
Cy
C C y C x 1.47mm
(此问题若用圆弧精确求解)
2
2
Cx
C0
T3 C
1)根据题意,首先画出扭矩图
T1 d1 A Mx N· m B T2 d2 C T3
2)AB 段单位长度扭转角:
1400
800
AB
M xAB GI pAB
+
x
1400 4 π 0.06 80 10 9 32 0.01375rad / m
3)BC 段单位长度扭转角: M xBC BC
M xi li j i 1 GI pi
n
请注意单位长度扭转角和相对扭转角的区别
例4-3 一受扭圆轴如图所示,已知:T1=1400N· m, T2=600N· m, T3=800N· m, d1=60mm,d2=40mm,剪切弹性模量G=80GPa,计 算最大单位长度扭转角。
T1 d1 A
T2 d2 B
第四章
• • • • •
杆件的变形计算
本部分主要内容:
拉压杆的轴向变形 圆轴的扭转变形与相对扭转角 梁的弯曲变形、挠曲线近似微分方程 用积分法求梁的弯曲变形 用叠加法求梁的弯曲变形
第一节 拉压杆的轴向变形
直杆在其轴线的外力作用下,纵向发生伸长或缩短变形, 而其横向变形相应变细或变粗 杆件在轴线方向的伸长

泊松比ν 、弹性模量 E 、切变模量G 都是材料的弹性常数, 可以通过实验测得。对于各向同性材料,可以证明三者之间存 在着下面的关系

第四章 杆件的变形 · 简单超静定问题

第四章 杆件的变形 · 简单超静定问题

A1
、物理方程-变形与受力关系
FN 1 L1 FN 3 L3 cos E1 A1 E3 A3 补 充 方 程 (3)
F
FN1
A
FN3 FN2

、联立方程(1)、(2)、(3)可得:
x
FN1 FN 2 E3 A3 F E1 A1F cos2 ; FN 3 3 2E1 A1 cos E3 A3 2E1 A1 cos3 E3 A3

0.02 2 160 106
[ FN ] AD sin 50.24 1 0.75 / 0.752 1 [F ] 12.06 KN 2.5 AB
C 0.75m A 1m D D
(2)、B点位移
lCD
B lCD
[ FN ]lCD EA
D1 1.5m
l l
虎克定律 实验证明: 引入比例常数E,则
Fl l A FN l (虎克定律) Fl l EA EA
E——表示材料弹性性质的一个常数,称为拉压弹 性模量,亦称杨氏模量。单位:MPa、GPa. 例如一般钢材: E=200GPa。
EA——杆件的抗拉/压刚度
1)
O
1
B 4F
B
1
α α
2
FNAB FNAC
C
F F
X
0 0
FNAC sin FNAB sin 0
Y
A
LAB
FNAC cos FNAB cos F 0 F FNAC FNAB 2 cos F L FL LAC NAC EA 2 EA cos
轴向拉伸或压缩时的变形 刚度条件 超静定问题
轴向拉伸或压缩时的变形

第4章杆件的变形和刚度

第4章杆件的变形和刚度

拉刚度为EA,B点处受F作用,试求B点位移B。
a
【解】 M A 0,
F

L

1 2
L
cos

FCD
FNCD

2F
cos
FNCD
A
C
C
αD
F
B
LCD

FNCD LCD EA

2Fa
EAcos2
C1
L/2
L/2
B1
CC1
CC LCD
cos cos
B

BB1

2CC1
形。实验结果表明,若在弹性范围内加载,轴向应变x与 横向应变y之间存在下列关系:
y x
为材料的一个弹性常数,称为泊松比(Poisson ratio)。
第4章 杆件的变形和刚度
拉压杆件 的变形分析
【例4-1】 变截面直杆,ADE段为铜制,EBC段为钢制;
在A、D、B、C等4处承受轴向载荷。已知:ADEB段杆的
第4章 杆件的变形和刚度
拉压杆件 的变形分析
【例4-2】 已知杆长L=2m,杆直径d=25mm,=300,材料
的 弹 性 模 量 E=2.1×105MPa , 设 在 结 点 A 处 悬 挂 一 重 物
F=100kN,试求结点A的位移A。
【解】 1. 求轴力
Fx 0,
FNAC sin FNAB sin 0
B1
2C
FNAB FNAC
αα
Fy 0,
FNAC cos FNAB cos F 0
FNAC

FNAB

F
2 cos
A

《杆件的四种基本变形及组合变形、 直杆轴向拉、压横截面上的内力》教学设计

《杆件的四种基本变形及组合变形、 直杆轴向拉、压横截面上的内力》教学设计

《杆件的四种基本变形及组合变形、直杆轴向拉、压横截面上的内力》教学设计课题 3.1杆件四种基本变形及组合变形教学时间2课时教学目标知识与技能认识杆件的基本变形和组合变形;过程与方法通过分析工程实例、生活实例中的受力及变形掌握杆件的基本变形的受力及变形特点;情感、态度、价值观通过分析工程结构中的受力及变形并口头描述,培养归纳、总结、语言表达的能力;教学重点1、杆件的基本变形受力特点、变形特点;教学难点1、杆件力学模型的理解2、杆件四种基本变形的区分教学内容及其过程学生活动教师导学一、引入手拉弹簧弹簧会发生什么变化?小朋友双臂吊在单杠上,人双手撑地倒立起来,胳膊都有什么样的感觉,胳膊的形状有改变吗?二、导学提纲3.1杆件四种基本变形及组合变形1.杆件是指其纵向长度远大于横向尺寸的构件,轴线是直线的杆件称为直杆。

2. 轴向拉伸和压缩受力特点是直杆的两端沿杆轴线方向作用一对大小相等、方向相反的力;变形特点是在外力作用下产生杆轴线方向的伸长或缩短。

3. 产生轴向拉伸变形的杆件,其当作用力背离杆端时,作用力是拉力(图a);产生轴向压缩变形的杆件,其作用力指向杆端,作用力是压力,(图b)。

4. 剪切变形的受力特点是作用在构件上的横向外力大小相等、方向相反、作用线平行且距离很近。

5. 剪切变形的变形特点是介于两横向力之间的各截面沿外力作用方向发生相对错动。

6. 剪切面是指两横向力之间的横截面,破坏常在剪切面上发生。

7. 扭转变形的受力特点:在垂直于杆轴线的平面内,作用有大小相等、转向相反的一对力偶。

8. 扭转变形的变形特点:各横截面绕杆轴线发生让同学来回答弹簧、胳膊的受力和形状改变。

1、自主学习自学教材、自主完成导学提纲,记录疑点或无法解决的问题,为交流作准备。

2、组内交流在小组长的组织下,有序开展交流与探讨,共通过引导学生回答问题,引出物体在力的作用下变形是客观存在的,进入课题。

当有学生问到,或对有兴趣的学生可适当介绍如下关系:1、布置前置作业课前精心预设前置作业,(由导学提纲、探究与感悟组成)组织学生自主学习。

材料力学 杆件的变形计算

材料力学 杆件的变形计算
必知弓力三石者,当弛其弦以绳缓擐之者,谓不张之,别以 一条 绳系两箭,乃加物一石张一尺、二石张二尺、三石张三 尺。其中 “两萧” 就是指弓的两端。 胡:郑老先生讲“每加物一石,则张一尺”。和我讲的完全是同一 个意思。您比我早1500 中就记录下这种正比关系,的确了不起, 真是令人佩服之至』我在1686 年《关于中国文字和语言的研究 和推测》一文中早就推崇过贵国的古代文化:“目前我们还只 是刚刚走到这个知识领域的边缘,然而一旦对它有了充分的认 识,就将会在我们面 前展现出一个迄今为止只被人们神话般
B
30oC2
C
C1
1.44mm
胡:请问,“ 弛其弦,以绳缓援之” 是什么意思 ?
郑:这是讲测量弓力时,先将弓的弦 松开,另外用绳子松松地套住弓 的两端,然后加重物,测量。
胡:我明白了。这样弓体就没有初始应力,处于自然状态。
郑:后来,到了唐代初期,贾公彦对我的注释又作了注疏,他说: 郑又云假令弓力胜三石,引之 中三尺者,此即三石力弓也。
400
400
FN KN 40
2)求伸长量
+
x l l AB lBC

20
l AB
FNABl AB EAAB
40 10 3 400 200 10 3 800
0.1mm
伸长
lBC
FNBC l BC EABC
20103 400 0.167mm
200103 240
缩短
l lAB lBC 0.1 0.167 0.067mm 缩短
A
1m
F
B
30o
C
分析
A
B
通过节点C的受力分析可以判断AC 杆受拉而BC杆受压,AC杆将伸长,而 F BC杆将缩短。

工程力学 第四章 杆件的基本变形

工程力学 第四章 杆件的基本变形

随外力产生或消失 随外力改变而改变 但有一定限度
截 面 法
根据空间任意力系的六个平衡方程
X 0 M
步骤: 1、切开 2、代替
x
Y 0 M
y
Z 0 M
z
0
0
0
求内力和取分离体求约束反力的方法本质 相同。这里取出的研究对象不是一个物体系统或一个完 整的物体,而是物体的一部分。
第四章 杆件的基本变形
杆件的外力与变形特点 内力及其截面法
杆件的外力与变形特点
一、杆件变形的定义 杆件在外力作用下,形状和尺寸的变化。 二、杆件变形的形式 1、基本变形 轴向拉伸与压缩 剪切变形 扭转变形 弯曲变形 2、组合变形 同时发生两种或两种以上的变形形式
轴向拉伸或压缩变形
受力特点:作用线与杆轴重合的外力引起的。
拉 伸
压 缩
变形特点:杆轴沿外力方向伸长或缩短, 主要变形是长度的改变
屋 架 结 构 中 的 拉 压 杆
塔 式 结 构 中 的 拉 压 杆
桥 梁 结 构 中 的 拉 杆
剪 切 变形
受力特点:由垂直于杆轴方向的一对大小相等、 方向相反、作用线很近的横向外力引起的。
变形特点:二力之间的横截面产生相对错动变形 主要变形是横截面沿外力作用方向发生相对错动。
螺 栓
连 接 键
销钉
螺 栓
扭 转 变 形
受力特点:由垂直于杆轴线平面内的力偶作用引起的
变形特点:相邻横截面绕杆轴产生相对旋转变形。
对称扳手拧紧镙帽
自 行 车 中 轴 受 扭
桥 体 发 生 扭 转 变 形
弯曲变形
受力特点:是由垂直于杆件轴线的横向力或作用 在杆件的纵向平面内的力偶引起的
变形特点:杆轴由直变弯,杆件的轴线变成曲线。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算简图
计算简图
阳台
阳台梁是受弯构件
内力及其截面法
一、内力的概念
1、外力:其它物体对构件作用的力。例如支座反力,荷载等。
2、内力:固有内力--分子内力,它是由构成物体的材料的
物理性质所决定的。
附加内力—由于外力作用而引起的受力构件内部各质 点间相互作用力的改变量。
材料力学研究----附加内力 (简称内力)
随外力产生或消失 随外力改变而改变
但有一定限度
截面法
步骤: 1、切开
根据空间任意力系的六个平衡方程
X 0 Y 0 Z 0 Mx 0 My 0 Mz 0
求出内力分量
2、代替 3、平衡
注意:
用截面法求内力和取分离体求约束反力的方法本质 相同。这里取出的研究对象不是一个物体系统或一个完 整的物体,而是物体的一部分。
拉伸
压缩
变形特点:杆轴沿外力方向伸长或缩短, 主要变形是长度的改变
屋 架 结 构 中 的 拉 压 杆
杆塔 式 结 构 中 的 拉 压
桥 梁 :由垂直于杆轴方向的一对大小相等、 方向相反、作用线很近的横向外力引起的。
变形特点:二力之间的横截面产生相对错动变形 主要变形是横截面沿外力作用方向发生相对错动。
必须指出:用截面法之前 ⑴ 一般不允许用力的可传性原理。
⑵ 不允许用合力来代替力系的作用。
⑶ 不允许把力偶在物体上移动。
第四章 杆件的基本变形
杆件的外力与变形特点 内力及其截面法
杆件的外力与变形特点
一、杆件变形的定义 杆件在外力作用下,形状和尺寸的变化。
二、杆件变形的形式
1、基本变形
轴向拉伸与压缩 剪切变形
扭转变形
弯曲变形
2、组合变形
同时发生两种或两种以上的变形形式
轴向拉伸或压缩变形
受力特点:作用线与杆轴重合的外力引起的。
螺 栓
连 接 键
销钉
螺 栓
扭转变形
受力特点:由垂直于杆轴线平面内的力偶作用引起的
变形特点:相邻横截面绕杆轴产生相对旋转变形。
对称扳手拧紧镙帽 自 行 车 中 轴 受 扭
形桥 体 发 生 扭 转 变
弯曲变形
受力特点:是由垂直于杆件轴线的横向力或作用 在杆件的纵向平面内的力偶引起的
变形特点:杆轴由直变弯,杆件的轴线变成曲线。
相关文档
最新文档