(线性代数)矩阵秩的8大性质、重要定理以及关系
2.5 矩阵的秩及其求法
求 R( A).
1 0 2 −4 1 0 2 −4 −4 → 0 1 −1 2 r 2r , 解 A 2 − 0 1 −1 2 r1 → r3 + 1 0 −1 1 − 2 0 0 0 0
R(A) = 2
13
1 −1 1 2 例5 设A = 3 λ −1 2, 且R(A) 2 = ,求λ, µ 5 3 µ 6
∴ R( A) = 3
A为满秩方阵。
19
若求A 若求 的标准型矩阵
1 − 2 1 − 4 0 −1 −1 3 → 0 0 1 9 0 0 0 0
2 1 1 0 →0 2 0 0
0 −1 2 1 0 0
4 0 12 3 1 9 2 0 0 0
矩阵A 的第一、三行,第二、四列相交处的元素 所构成的二阶子式为
2 −1 D2 = 0 −1
3 5 为 A 的一个三阶子式。
而
1 2 D3 = 4 6
1 0 −1
k k m× n 矩阵 A 共有 cmcn 个 k 阶子式。 显然,
4
设
A = (aij )m×n 当 A=0 时,它的任何子式都为零。
⑤ R(AB)≤ min{R(A),R(B)} ⑥ 若 Am×nBn×s=0,则 R(A)+R(B)≤n
24
例8
设A为n阶矩阵,证明R(A+E)+R(A-E)≥n 证: ∴ 而 ∴ ∵ (A+E)+(E-A)=2E r(A+E)+ r( E-A )≥ r(2E)=n r( E-A )= r( A-E ) r(A+E)+r(A-E)≥n
7
矩阵秩的求法 二、矩阵秩的求法 1、子式判别法 定义 。 、子式判别法(定义 定义)。
27矩阵的秩及向量组的极大无关组求法
解法2: 用初等行变换将A化成行阶梯形矩阵,得
1 0
1 2
2
1
1 r 32 r1 0
1 2
21 r 31 2 r2 1 0
1 2
2 1
2 3 1
0 1 3
0 0 52
所以r(A)=3,A满秩,故A可逆.
《线性代数》
返回
下页
结束
7.3 向量组方面的一些重要方法
定义4 矩阵A的行向量组的秩称为矩阵A的行秩,列向量组的秩 称为矩阵A的列秩. 即
解2:以1,2,3为行向量作成矩阵A,用初等变换将A化为
阶梯形矩阵后可求.
1 2
2 3
3 4
4 5
r2 r3
2 3
r1 r1
1 0
2 1
3 2
4 3
r3 2r2
1 0
23 1 2
4 3
3 4 5 6
0 2 4 6
0 0 0 0
因为阶梯形矩阵的秩为2,所以向量组的秩为2.
1 1 0 0 2
r 3 r 4 0 5 0 2 3 r 35 3 r2 0 5 0 2 1
0 3 3 2 0
0 0 3 165 95
0 0 0 0 0
0 0 0 0 0
所以, r(A)=3.
《线性代数》
返回
下页
结束
例3. 设方阵
1 A 0
1 2
2 1
2 3 1
判断A是否可逆.
11 2 解法1: 因为 | A| 0 2 1 5 0 , 所以,A满秩(可逆).
0 02
0 32 032
《线性代数》
返回
下页
结束
定义2 若矩阵A有一个r阶子式不为零,而所有r+1阶子式 (如果存在的话)全等于零,则r称为矩阵A的秩,记作r(A).
线性代数 矩阵的秩与逆矩阵
BP1 P2
Ps = X
AP1 P2
Ps = E
3. AXC = B, A, C可逆。 解法I : X = A BC
解法II : AX = BC
−1
−1
−1
−1
XC = A B
求解矩阵方程时,一定要记住:先化简,再求解。
1 .已知 A, 且 AB = A − B , 求 B .
−1 ⇒ B = ( A + E ) A ⇒ AB + B = A ⇒ ( A + E ) B = A
⎛1 − 1 − 1 ⎜ → ⎜0 −1 − 2 ⎜0 0 −1 ⎝
⎛1 0 0 ⎜ → ⎜0 1 0 ⎜0 0 1 ⎝ 2
1 0 0⎞ ⎟ 3 1 0⎟ 4 2 1⎟ ⎠
1 ⎞ ⎟ 5 3 2⎟ − 4 − 2 − 1⎟ ⎠ 1
∴A
−1
=
1 1 ⎞ ⎛ 2 ⎜ ⎟ 3 2⎟ ⎜ 5 ⎜ − 4 − 2 − 1⎟ ⎝ ⎠
⎛2 ⎛1 − 1 ⎞ 3 . C = ⎜ 2.B = ⎜ ⎟ ⎜0 ⎜1 − 2 ⎟ ⎝ ⎝ ⎠
− 2⎞ ⎟ ⎟ 1 ⎠
⎛2 1 ⎛ 1 1⎞ −1 2. B = ⎜ = ⎜ ⎟ ⎜ ⎟ ⎜1 3 ⎝ − 2 1⎠ ⎝
− 1⎞ −1 1 ⎛ 1 2 ⎞ ⎜ ⎟ = C 3 . ⎟ ⎜ ⎟ ⎟ 0 2 2 − 1⎠ ⎝ ⎠
?? ⎛ 1 − 1 − 1⎞ ⎜ ⎟ 的逆怎样求? ? A = ⎜− 3 2 1 ⎟
⎜ 2 ⎝ 0 1 ⎟ ⎠
逆阵的性质
1 (i ) A可逆 ⇒ A = ; A (ii ) A可逆 ⇒ A−1可逆, ( A−1 ) −1 = A;
−1
(iii ) AB = E (or BA = E ) ⇒ B = A ;
线性代数 矩阵的秩
小结. 求m × n 矩阵A 的秩r(A), 可用以下方法: 1. 对于比较简单的矩阵, 直接用秩的定义 直接用秩的定义. .
∼
1 0 0 0
0 1 0 4
0 1 0 −1 0 0 5 0
2. 用有限次初等变换, 用有限次初等变换, 将矩阵A变为它的等价 标准形 , 则 r = r( A ) . O O 3. 用有限次行初等变换, 用有限次行初等变换,将矩阵A变为梯矩阵, 则 r(A)等于该梯矩阵的非零行的行数 等于该梯矩阵的非零行的行数. (方法2 与方法3 相比, 方法3 较为简单.)
例1 求下列矩阵的秩: 求下列矩阵的秩:
(1) A = 2 2
1 1
2 4 8 (2) B = 1 2 1
(3) C = 2
1 2 4 1 4 8 2 3 6 2 0
.
解 (1)因为
1 1 a = 1 ≠ 0 而 det A = 1 1 = 0 A= 11 , 2 2 2 2 故 r ( A) = 1
又B 并无3阶子式, 阶子式,故 r (B) =2.
8 2 2 0
故, 矩阵C 的秩不小于2.
= −3 ≠ 0
另外, 因为矩阵 C 不存在高于3阶的子式, 可知r (C) ≤ 3. 又因矩阵C 的第1, 2行元是对应成比例的, 行元是对应成比例的, 故C 的任一 3阶 子式皆等于零. 子式皆等于零.因此
0 0 1 0
4 3 −3 4
1 0 B= 0 0
0 1 0 0
−1 −1 2 0
0 0 1 0
4 3 −3 4
1 0 (2) 每个台阶只有一行, 每个台阶只有一行,台阶 A = 0 数即是非零行的行数, ,阶梯 数即是非零行的行数 0 线的竖线后面的第一个元素
[线性代数知识点总结(免费)]线性代数期末知识点总结
[线性代数知识点总结(免费)]线性代数期末知识点总结1、行列式1.行列式共有个元素,展开后有项,可分解为行列式;2.代数余子式的性质:①、和的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;③、某行(列)的元素乘以该行(列)元素的代数余子式为;3.代数余子式和余子式的关系:4.设行列式:将上、下翻转或左右翻转,所得行列式为,则;将顺时针或逆时针旋转,所得行列式为,则;将主对角线翻转后(转置),所得行列式为,则;将主副角线翻转后,所得行列式为,则;5.行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积;③、上、下三角行列式():主对角元素的乘积;④、和:副对角元素的乘积;⑤、拉普拉斯展开式:、⑥、范德蒙行列式:大指标减小指标的连乘积;⑦、特征值;6.对于阶行列式,恒有:,其中为阶主子式;7.证明的方法:①、;②、反证法;③、构造齐次方程组,证明其有非零解;④、利用秩,证明;⑤、证明0是其特征值;2、矩阵1.是阶可逆矩阵:(是非奇异矩阵);(是满秩矩阵)的行(列)向量组线性无关;齐次方程组有非零解;,总有唯一解;与等价;可表示成若干个初等矩阵的乘积;的特征值全不为0;是正定矩阵;的行(列)向量组是的一组基;是中某两组基的过渡矩阵;2.对于阶矩阵:无条件恒成立;3.4.矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5.关于分块矩阵的重要结论,其中均、可逆:若,则:Ⅰ、;Ⅱ、;②、;(主对角分块)③、;(副对角分块)④、;(拉普拉斯)⑤、;(拉普拉斯)3、矩阵的初等变换与线性方程组1.一个矩阵,总可经过初等变换化为标准形,其标准形是唯一确定的:;等价类:所有与等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵、,若;2.行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3.初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若,则可逆,且;②、对矩阵做初等行变化,当变为时,就变成,即:;③、求解线形方程组:对于个未知数个方程,如果,则可逆,且;4.初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、,左乘矩阵,乘的各行元素;右乘,乘的各列元素;③、对调两行或两列,符号,且,例如:;④、倍乘某行或某列,符号,且,例如:;⑤、倍加某行或某列,符号,且,如:;5.矩阵秩的基本性质:①、;②、;③、若,则;④、若、可逆,则;(可逆矩阵不影响矩阵的秩)⑤、;(※)⑥、;(※)⑦、;(※)⑧、如果是矩阵,是矩阵,且,则:(※)Ⅰ、的列向量全部是齐次方程组解(转置运算后的结论);Ⅱ、⑨、若、均为阶方阵,则;6.三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)行矩阵(向量)的形式,再采用结合律;②、型如的矩阵:利用二项展开式;二项展开式:;注:Ⅰ、展开后有项;Ⅱ、Ⅲ、组合的性质:;③、利用特征值和相似对角化:7.伴随矩阵:①、伴随矩阵的秩:;②、伴随矩阵的特征值:;③、、8.关于矩阵秩的描述:①、,中有阶子式不为0,阶子式全部为0;(两句话)②、,中有阶子式全部为0;③、,中有阶子式不为0;9.线性方程组:,其中为矩阵,则:①、与方程的个数相同,即方程组有个方程;②、与方程组得未知数个数相同,方程组为元方程;10.线性方程组的求解:①、对增广矩阵进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解;③、特解:自由变量赋初值后求得;11.由个未知数个方程的方程组构成元线性方程:①、;②、(向量方程,为矩阵,个方程,个未知数)③、(全部按列分块,其中);④、(线性表出)⑤、有解的充要条件:(为未知数的个数或维数)4、向量组的线性相关性1.个维列向量所组成的向量组:构成矩阵;个维行向量所组成的向量组:构成矩阵;含有有限个向量的有序向量组与矩阵一一对应;2.①、向量组的线性相关、无关有、无非零解;(齐次线性方程组)②、向量的线性表出是否有解;(线性方程组)③、向量组的相互线性表示是否有解;(矩阵方程)3.矩阵与行向量组等价的充分必要条件是:齐次方程组和同解;(例14)4.;(例15)5.维向量线性相关的几何意义:①、线性相关;②、线性相关坐标成比例或共线(平行);③、线性相关共面;6.线性相关与无关的两套定理:若线性相关,则必线性相关;若线性无关,则必线性无关;(向量的个数加加减减,二者为对偶)若维向量组的每个向量上添上个分量,构成维向量组:若线性无关,则也线性无关;反之若线性相关,则也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;7.向量组(个数为)能由向量组(个数为)线性表示,且线性无关,则(二版定理7);向量组能由向量组线性表示,则;(定理3)向量组能由向量组线性表示有解;(定理2)向量组能由向量组等价(定理2推论)8.方阵可逆存在有限个初等矩阵,使;①、矩阵行等价:(左乘,可逆)与同解②、矩阵列等价:(右乘,可逆);③、矩阵等价:(、可逆);9.对于矩阵与:①、若与行等价,则与的行秩相等;②、若与行等价,则与同解,且与的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩;④、矩阵的行秩等于列秩;10.若,则:①、的列向量组能由的列向量组线性表示,为系数矩阵;②、的行向量组能由的行向量组线性表示,为系数矩阵;(转置)11.齐次方程组的解一定是的解,考试中可以直接作为定理使用,而无需证明;①、只有零解只有零解;②、有非零解一定存在非零解;12.设向量组可由向量组线性表示为:(题19结论)()其中为,且线性无关,则组线性无关;(与的列向量组具有相同线性相关性)(必要性:;充分性:反证法)注:当时,为方阵,可当作定理使用;13.①、对矩阵,存在,、的列向量线性无关;()②、对矩阵,存在,、的行向量线性无关;14.线性相关存在一组不全为0的数,使得成立;(定义)有非零解,即有非零解;,系数矩阵的秩小于未知数的个数;15.设的矩阵的秩为,则元齐次线性方程组的解集的秩为:;16.若为的一个解,为的一个基础解系,则线性无关;(题33结论)5、相似矩阵和二次型1.正交矩阵或(定义),性质:①、的列向量都是单位向量,且两两正交,即;②、若为正交矩阵,则也为正交阵,且;③、若、正交阵,则也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化;2.施密特正交化:;;3.对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4.①、与等价经过初等变换得到;,、可逆;,、同型;②、与合同,其中可逆;与有相同的正、负惯性指数;③、与相似;5.相似一定合同、合同未必相似;若为正交矩阵,则,(合同、相似的约束条件不同,相似的更严格);6.为对称阵,则为二次型矩阵;7.元二次型为正定:的正惯性指数为;与合同,即存在可逆矩阵,使;的所有特征值均为正数;的各阶顺序主子式均大于0;;(必要条件)。
第一章 第五讲 矩阵的秩
第五讲 矩阵的秩矩阵的秩是线性代数中又一重要概念,它描述了矩阵的一个重要的数值特征:在判定向量组的线性相关性,线性方程组是否有解,求矩阵的特征值以及在多项式、空间几何中等多个方面都有广泛的应用。
本讲我们主要了解矩阵秩的求方法以及其与方程组各类型解的关系。
5.1.1 矩阵秩的定义在第二讲中,我们通过矩阵的初等变换定义了矩阵的行阶梯形、矩阵的行最简形以及矩阵的标准形。
其中矩阵行阶梯形与矩阵行最简形不唯一,但矩阵的标准形唯一。
因此,下面就利用矩阵标准形的唯一性来给出矩阵秩的概念。
定义5.1 对于给定的m n ⨯矩阵A ,它的标准形(-)(-)(-)(-)rr n r m r r m r n r m nE OF O O ⨯⨯⨯⨯⎛⎫=⎪⎝⎭由数r 完全确定,我们称数r 为矩阵m n A ⨯的秩(rank ),记作()R A 。
其中, r E 是r 阶单位矩阵;其余都是零矩阵。
注:(1) 零矩阵的秩为零:()0R O =;(2) 矩阵的秩就是矩阵标准形中左上角单位矩阵的阶数。
(3)对于n 阶方阵A ,当()R A n =时,称A 为满秩矩阵。
当()R A n <时,称A 为降秩矩阵.例5.1 求矩阵111610121210A ⎛⎫⎪=-- ⎪ ⎪-⎝⎭的秩。
解 先将A 通过初等变换化为标准形111610121210A ⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭2131111601280306r r r r --⎛⎫⎪−−−→ ⎪ ⎪⎝⎭323111601280026r r -⎛⎫ ⎪−−−→ ⎪ ⎪⎝⎭111601280013⎛⎫ ⎪→ ⎪ ⎪⎝⎭12312101201280013r r r ---⎛⎫ ⎪−−−→ ⎪ ⎪⎝⎭13232100101020013r r r r +-⎛⎫ ⎪−−−→ ⎪ ⎪⎝⎭ ()4142433312,3100001000010c c c c c c E O -⨯--⎛⎫⎪−−−−−→= ⎪ ⎪⎝⎭可看出,矩阵A 的标准形中左上角是3阶单位矩阵,所以()3R A =. 矩阵秩有如下性质 性质5.1 ()()T R A R A =; 性质5.2 }{0()min ,R A m n ≤≤;性质5.3 如果n 阶方阵A 可逆,则()R A n =;(可逆矩阵也称为满秩矩阵) 性质5.4 {}()min (),()R PA R P R A ≤; 当P 可逆时,()()R PA R A =;若 P Q 、都可逆,且有PAQ B =,则()()R A R B =.性质5.5 max {}(),()()()+()R A R B R A B R A R B ≤≤ ;特别地,当B 为列矩阵时,有max {}(),()()()+1R A R B R A B R A ≤≤ ;性质5.6 ()()();()()().r A B r A r B r A B r A r B +≤+-≥-性质5.7 设A 为m n ⨯矩阵,(),r A r =则A 的任意S 行组成的矩阵B ,有().r B r s n ≥+-下面只证明性质5.3和性质5.4,其余的性质请学生自证。
(线性代数)矩阵秩的8大性质、重要定理以及关系
矩阵秩的8大性质:①A,宀)冬mini加小I ;③若A〜叭则R(A) = K(B)j④若可逆•则R(PAQ) = R(A),下面再介绍几个常用的矩阵秩的性质:⑤maxi R( A )>R(B)|^J R(A t B)^J R(A) + P (B), 特别地,当B = b为非零列向量时,有R(A)MR(A』)MR(A)+ 1.⑦R(AB)^min{K(A)t K(B)|,(见下节定理7)⑧若A…B“二0,则R(A) + R(B)Mm(见下章例13)设AB= O■若A为列满秩矩阵,则B-0.线性方程组的解:定理3 H元线性方程组A x=&(i)无解的充分必要条件是K(A)CR(A』);(ii)有惟一解的充分必要条件是R(A) = R(A,b)=n;(iii)有无限多解的充分必要条件是R(A) = R(A』)Cr?・定理4 n元齐次线性方程组Ax=OW零解的充分必要条件是R(A)Cm £35翹方聽AE鬧械酬髓件默⑷=R(A"定理6解方gAX=£有解的充分必要条件是R(A) = R(A,B).定理7 «AB = C,则R(C)Wmin|R(A),R(B)h向量组的线性相关性:定鰹1向跖能由向量组严心线憐示的充分必要桑件是j£^A=(a H fl J1»<t a w )的秩等于矩阵B =(爲卫?广』册』)的税.定理2向虽组B4訥严上能由向蚩组A0 叫…心 线性表示的 充分必要条件是矩阵A = («i 严心)的秩等于矩阵(A,B)=(釦严心, 27啲秩,即 R(A} = R(A,B)・推论向輦组宀%与向HfflB :*1(h lt -s6,等价的充分必要 条件是J?(A) = R(B)-J?(A,B)t其中A 和月是向僮组A 和B 所构成的矩阵”定理3设向員组Bl 】』?「讪能由向證组A a 厲厂心线性表示. 则R(h 』W 血KR 仏曲宀仇)・阵A = g 曲严松)的秩小于向懂个数奶向咼组线性无关曲充分必要条件 是R ⑷二皿血“也线性相关成盲之,若向储组B 线性无关侧向A 也线性无关.(2) 7«个"维向虽组成的向量组,当维数«小于向虽个数加时一定钱牲相 关•特别地,n + ltwt 向量一定线性相关,(3) 设向量组人:叭』2,线性无关,而向量组线性 相关侧向虽b 必能由向鈕组A 钱性表示,且表示式是惟一的.定理4,%线性相关的充分必要条件是它所构成的矩 定理5 (1)若向员组A0严心线性相关』IJ 向量組SW *对比:矩阵A =(叭』加小,%)的秧等于矩阵B = 的税,定理5线性方程组曲M 有解的充分必要憑件是R ⑷= R(A ;b)?l定理2向虽组时血严血能由向量组A :釘』线性表示的 充分必要条件是矩阵4二(尙,伽「・,心)的秩等于矩阵= 儿7)的秩,即R(A) = R(A 』}.条件是定理1 JSA 仙疋“5—线性表示的充分必要条件是 推论 向量组A :%与向 组…出等价的充分必要曬b 能由向 R(A) = R(B) = R(A t B),其中A 和B 是向世组A 和B 所构成的矩阵・定理6矩阵方程AX=B 有解的充分必要条件是R(A) = R(A t B).则RO】』?严,h)WR(a*2严叫)・n定理4向燧组小勺严心黠相关的充分必要条件是它所构成的矩阵亦⑴曲「心)的秩小于向齢数用洞鞠黠无关的充分必縣件是R(A)n||能4 "元制:黠方翻X0有鶴繃充分必要条瞬丽石~|觀5如騎次難方翻(13)的系協行臟D判屈粽黠方翱(13)蹣粹館定理5’如果撅黠方翩(13)辭輔』陀的系舫脱必腮.。
大学课程大一数学线性代数上册14.矩阵的秩课件
或
A
2
r1r2
B
1
2
,
s
s
则 A 的行向量组与 B 的行向量组等价, 由书上第127页推论
可知 A 的行向量组的秩与 B 的行向量组的秩相等.
(2) 用初等行变换化 A 为阶梯形矩阵 U;
(3) U 的行向量组的秩与 A 的行向量组的秩相同.
4
例1 求下列矩阵 A 行向量组的一个
1 2 1 0 1
(4) 阶梯形矩阵 U 的列向量组的极大无关组就是 U 中每个非
零行第一个非零元所在的列向量所组成的向量组.
3
向量组秩的求法之二
(1) 将向量组 1, 2, , s 按行排成矩阵,并作行初等变换,
例如 1
1
A
2
r2
B
2
,
0,
或
1
2
A
2
r1r2
B
1
,
s
s
s
s
1
1
其非零行的行数为 r(A), B 通过初等行变换化为阶梯形矩阵, 其非零行的行数为 r(B), 则
行 A0数为B0 r(A通)过+ 初r(B等),行故变r换 可A0以化B0 为 阶r梯(A形) 矩r阵(B,);其非零行的
9
(2) r(A+B) r(A) + r(B);
证法一 记 A = (1, 2 ,, n), B = (1, 2 , , n).
如果引入下列定义, 则可以把以上两个结论叙述的更简练.
定义1 矩阵 A = (aij)mn 中行向量组的秩称为行秩, 列向量组 的秩称为列秩.
定理1 初等变换不改变矩阵行秩和列秩.
线性代数1同济大学第五版课件3-2
机动
目录
上页
下页
返回
设 A 经初等列变换变为
B,
则 A
T
经初等行变换变为
T T
B ,
T
R ( A ) R ( B ),
T T
且 R ( A ) R ( A ), R ( B ) R ( B ),
R ( A ) R ( B ).
R ( B ) 3,
机动
目录
上页
下页
返回
故 B 中必有
3 阶非零子式
. 且共有
4 个.
计算 B 的前三行构成的子式
3 2 3
2 0 2
5
3
2 0 0
5 5 11
5 2 6 6
2
2 6
5 11
16 0 .
则这个子式便是A 的一个最高阶非零子式.
机动
目录
上页
下页
返回
例4
1 2 设A 2 3
则 D r D r 0 , 也有 R ( B ) r .
若A经一次初等行变换变为 ,则 R( A ) R( B ). B
由于 B 也可经过一次初等行变 换变为 A ,
故也有 R( B ) R( A). 因此 R( A) R( B ).
经一次初等行变换矩阵的秩不变,即可知经 有限次初等行变换矩阵的秩仍不变.
对于 A , 显有 R ( A ) R ( A ).
T T
对 A m n,有 0 R ( A ) min m , n
0,则 R ( A ) s ;
线性代数 矩阵的秩
1 2 2 1 0 2 4 8 B 2 4 2 3 3 6 0 6 1 2 0 0 0 0 0 0
求矩阵 A的列向量组的一个最大 无关组。
解 对A施行初等行变换变为 行阶梯形矩阵
1 0 0 0 1 2 1 4 1 1 1 0 , 0 0 1 3 0 0 0 0
A
初等行变换
知R( A) 3,
故列向量组的最大无关 组含3个向量.
而三个非零行的非零首元在1、、三列, 24 故 a1 , a2 , a4 , 为列向量组的一个最大无关组.
1 2 3 4
初等行变换
2 1 1 2 1 0 0 0 1 0 0 0
R( A) 2, R( B ) 3.
例5 已知两个2×4矩阵
2 0 1 3 1 A T 3 2 1 1 2
由阶梯形矩阵有三个非零行可知 R( A) 3.
1 2 2 1 1 0 2 4 8 2 例4 设A 2 4 2 3 , b 3 3 6 0 6 4
求矩阵A及矩阵B ( A b )的秩.
说明
(1)ቤተ መጻሕፍቲ ባይዱ等变换不改变矩阵的秩
(2)用初等行(列)变换把矩阵化成行(列) 阶梯时,非零行(列)的个数就是矩阵的秩 (3)把矩阵A化成行(列)阶梯矩阵B,则B的 列(行)向量组中任意最大无关组所对应的A的 列(行)向量组构成A的一个最大无关组。
线性代数第二章
例3
1 11 2 0 4 1 设 A 11 4 56 2 1 5
例4
1 1 2 参 数 ____ 时, 矩 阵 2 1 5 的 秩 最 小 1 10 6 1
例3
1 11 2 2 0 4 1 1 设 A , 求 rA 11 4 56 5 2 1 5 6
1 1 1 例4 令A 1 1 0 1 1 1 1 1 0 1 1 1 2 0 2 1 1 解:A 0 0 0 3 0 2 1 4 1 1 1 2 0 2 1 1 0 0 0 3 0 0 0 0
说 明
(5)n阶矩阵A为满秩矩阵 A可逆 |A 0 | (6)n阶矩阵A为降秩矩阵 rA n |A 0 |
2.矩阵秩的求法 定理 矩阵经初等变换后秩不变 推论1 注: 推论2 若A ≌ B , 则 rA= rB 若rA= rB , A 与B不一定等价
若A 、B是同阶矩阵, 则A ≌ B当且仅当rA= rB
1 A 4 2 2 5 0 3 6 1 4 0 8 1 三阶子式: 4 2 2 5 0 4 0 8
说 明
例
定义
若在m×n矩阵A中 有一个r阶子式不为0, 而所有r +1阶子式全为0, 则称数r为A的秩. 记为rank(A)=r 或 rA = r
rA=m, 则称A为行满秩矩阵;
五. 矩 阵 的 秩
1. 概念
2.矩阵秩的求法
1. 概念
定义 设A=(aij)m×n , 任取k行k列,1≤k ≤min{m, n}, 位于 这些行列交点处的k2 个元素, 按其在A中原相对 位置构成的k阶行列式称为A的k阶行列式 (1) aij即为A的1阶子式 (2)n阶矩阵A, 其行列式|A|是A的唯一的n阶子式
线性代数重要知识点总结
线性代数N阶行列式定理1:任意一个排列经过对换后,其奇偶性改变。
推论:奇排列变成自然数顺序排列的对换次数为奇数,偶排列变成自然数顺序排列的对换次数为偶数。
定理2:n个自然数(n-1)共有n!个n级排列,其中奇偶排列各占一半。
行列式的性质性质1:行列式与它的转置行列式相等。
性质2:交换行列式的两行(列),行列式变号。
*注2:交换i,j两列,记为ri↔ri(ci↔cj)。
推论1:如果行列式中有两行(列)的对应元素相同,那么该行列式必为零。
性质3:用数k乘行列式的某一行(列),等于用k乘此行列式。
注3:第i行(列)乘以k,记为ri×k(ci×k)。
推论2:行列式的某一行(列)中所有元素的公因子可以提到行列式符号的外面。
推论3:在一个行列式中,如果有两行(列)元素成比例,则这个行列式必等于零。
性质4:如果将行列式的某一行(列)的每个元素都改写成两个数的和,则此行列式可写为两个行列式的和,且这两个行列式分别为所在行(列)对应位置的元素,其它元素不变。
#注4:上述结果可推广到有限个数和的情形。
性质5:将行列式的某一行(列)的所有元素都乘以数k后加到另一个行(列)对应位置的元素上,行列式的值不变。
注5:以数k乘第j行加到第i行上,记作ri+krj;以数k乘第j列加到第i列上,记作ci+kcj。
行列式按行(列)展开余子式:Mij 代数余子式:Aij=(-1)i+j Mij引理:一个n阶行列式D,若其中第i行所有元素除aij外都为0,则该行列式等于aij 与它代数余子式的乘积,即D=aijAij[定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和。
推论:行列式某一行(列)的每元素与另一行(列)对应元素的代数余子式乘积之和等于零。
k阶行列式:在n阶行列式D中,任意选定k行k列,位于这些行和列交叉处的k²个元素,按原来顺序构成一个k阶行列式M,称为D的一个k阶子式,划去这k行k列,余下的元素按原来的顺序构成一个n-k阶行列式,在其前面冠以符号(-1)的(i1+i2+…+i k+j1+j2+…+j k)次方,称为M的代数余子式,其中i1,i2,…,i k为k阶子式M在D中的各行标,j1,j2,…,j k为M在D 中的各列标。
Ch3-2线性代数矩阵的秩
rt,
故有
R ( A, B) R ( A) R ( B).
6 0 R( A+B ) R( A) +R( B) . c i c n i ( , ) 证 ( A B , B) A B , , n i 1, R ( A B ) R ( A B , B ) R ( A, B) R ( A) R (B) .
0 3 2 4 A 0 3 1 1 6 2
1 2 1 3
3 1 4 2
1 3 1 4
2 0 2 1
2 0 1 3 4 3 1 2 4
2 1 3 4
一般地: m×n 矩阵A 的 k
2 阶子式 3 阶子式 k C k 个. 阶子式共有 Cm n
k 阶子式、矩阵的子块、余子式、代数余子式的区别!
定义3(P66) 设 A 为 n 阶方阵,若 R(A)= n, 则称 A 为 满秩矩阵;若 R(A)< n,则称 A 为降秩矩阵.
单位阵 E 是满秩矩阵, 1 2 2
A 0 3 1 是降秩矩阵. 0 0 0
① n 阶满秩阵化为行阶梯形时有多少非零行? — n 行. ② 满秩阵的行列式 ≠ 0
左乘列满秩阵秩不变 Bnl , 证明: 若 A mn, 且 R ( A) n , R ( AB ) R ( B ) . A的秩等于其列数 A列满秩
,
行满秩阵——矩阵的秩等于其行数. 上面的结论可以相应地推广到右乘行满秩阵. 请自证. 满秩矩阵——方阵,且既列满秩又行满秩. AB = O时,本题结论为:设 AB = O,若 A为列满秩矩阵,则B = O. 原本仅对可逆阵成立的零因子性质,可以推广到列(行)满秩矩阵. 由此可以体会到列(行)满秩矩阵概念的重要性.
矩阵知识点完整归纳
矩阵知识点完整归纳矩阵是现代数学中的一种重要数学工具,广泛应用于各个学科领域。
在线性代数中,矩阵是最基本的对象之一,研究的对象是矩阵的性质和运算规律。
本文将对矩阵的知识点进行完整归纳。
一、矩阵的定义与表示方法矩阵是m行n列的数表,由m×n个数组成。
它可以用方括号“[ ]”表示,其中的元素可以是实数、复数或其他数域中的元素。
矩阵的第i行第j列的元素记作a_ij。
二、矩阵的运算1.矩阵的加法:对应元素相加。
2.矩阵的减法:对应元素相减。
3.矩阵与标量的乘法:矩阵的每个元素都乘以该标量。
4.矩阵的乘法:第一个矩阵的行乘以第二个矩阵的列,求和得到结果矩阵的对应元素。
5.矩阵的转置:将矩阵的行与列互换得到的新矩阵。
6.矩阵的逆:如果一个n阶方阵A存在逆矩阵A^-1,则称A为可逆矩阵。
三、特殊矩阵1.零矩阵:所有元素均为0的矩阵。
2.单位矩阵:对角线上的元素均为1,其余元素均为0的矩阵。
3.对称矩阵:转置后与原矩阵相等的矩阵。
4.上三角矩阵:主对角线以下的元素均为0的矩阵。
5.下三角矩阵:主对角线以上的元素均为0的矩阵。
6.对角矩阵:只有主对角线上有非零元素,其余元素均为0的矩阵。
7.可逆矩阵:存在逆矩阵的方阵。
8.奇异矩阵:不可逆的方阵。
四、矩阵的性质和定理1.矩阵的迹:矩阵主对角线上元素之和。
2.矩阵的转置积:(AB)^T=B^TA^T。
3.矩阵的乘法满足结合律但不满足交换律:AB≠BA。
4.矩阵的乘法满足分配律:A(B+C)=AB+AC。
5.矩阵的行列式:用于判断矩阵是否可逆,计算方式为按行展开法或按列展开法。
6.矩阵的秩:矩阵的列向量或行向量的极大无关组中的向量个数。
7.矩阵的特征值与特征向量:Ax=λx,其中λ为特征值,x为特征向量。
8.矩阵的迹与特征值之间的关系:矩阵的迹等于特征值之和。
五、应用领域1.线性方程组的求解:通过矩阵运算可以求解线性方程组。
2.三角形面积计算:通过矩阵的行列式可以求解三角形的面积。
线性代数矩阵的秩
a11 a12 a21 a22 ai 1 ai 2 a m 1 am 2
解
把矩阵 A 用初等行变换变成为阶梯形矩阵:
(-1)[1]+[2] [1,4] (-2)[1]+[3] (-3)[1]+[4] (-3)[2]+[3] (-4)[2]+[4] (-1)[3]+[4]
A
1 6 4 1 4 1 1 0 4 3 0 0 0 4 8 0 0 0 0 0
1 A 0 2 2 1 4 3 2 6 0 1 0
1 2 3 6
1 3 2 6 0 1 0 0
பைடு நூலகம்3 阶子式: 0
2
2 阶子式:
0
1 0
0 1
1
模式二 一、基本概念 1、 k 阶子式 定义 在 m n 矩阵 A中, 任取 k 行 k 列, 位于这些 行与列交叉处的元素, 保持原来的位置不变而构成的 k 阶行列式,称为 A 的一个 k 阶子式.
1 a 1
1 1 a
1 1 1 1 a 1
求 r( A)
解: A
a 1 1
1 a 1
[( n 1) a ]
1 1 a
[( n 1) a ]
1 a 1 0
1 0 a 1
[(n 1) a](a 1)n1
A [(n 1) a](a 1)n1
求
A O r1 r2 O B
线性代数 矩阵的秩
设R(A)r R(B)s 又设A的行阶梯形为A0 B的列阶梯形 为B0 则存在可逆矩阵P和Q使APA0 BB0Q
因为ABPA0B0Q 所以R(AB)R(A0B0) 因为A0有r个非零行 B0有s个非零列 所以A0B0至多有r个 非零行和s个非零列 因此
R(A0B0)min{r s}min{R(A) R(B)}
1 1 0 0
01 01
>>>
梯形矩阵为
所以R(A)2 R(B)3
B0(A0 b0) 则A0就是A的行阶梯形矩阵 故从B0(A0 b0)中可同时看出 R(A)及R(B)
注 以B为增广矩阵的线性方 程组Axb是无解的 这是因为 行阶梯形矩阵的第3行表示矛 盾方程01
❖k阶子式 在mn矩阵A中 任取k行与k列(km kn) 位于这些行列
交叉处的k2个元素 不改变它们在A中所处的位置次序而得的 k阶行列式 称为矩阵A的k阶子式
例如
A
1 2 2
1 1 3
2 1 1 1 1 1
4 2 2
3 6 9 7 9
D
❖几个简单结论
(1)若矩阵A中有某个s阶子式不为0 则R(A)s 若A中所 有t阶子式全为0 则R(A)t
(2)若A为mn矩阵 则0R(A)min{m n}
(3)R(AT)R(A)
(4)对于n阶矩阵A 当|A|0时 R(A)n 当|A|0时
R(A)n 可逆矩阵又称为满秩矩阵 不可逆矩阵(奇异矩阵)又称为
(1)若矩阵A中有某个s阶子式不为0 则R(A)s 若A中所 有t阶子式全为0 则R(A)t
(2)若A为mn矩阵 则0R(A)min{m n} (3)R(AT)R(A)
线性代数(同济六版)知识点总结
0 a11a22...ann
副三角跟副对角相识
an1 an2 ... ann
对角行列式:
副对角行列式:
λ1 λ2
λ 1λ 2...λn
λn
6. 行列式的性质:
λ2
λ1
n ( n1 )
(1) 2 λ 1λ 2 λ n
λn
①行列式与它的转置行列式相等. (转置:行变列,列变行)。D =
②互换行列式的两行(列),行列式变号。
余子式:在 n 阶行列式中,把元素 aij 所在的第 i 行和第 j 列划去, 剩下的( n −1 )2 个元素按原来的排法构 成的 n − 1 阶行列式 叫做 aij 的余子式,记为 Mij
代数余子式:记 Aij = ( −1 ) i+j Mij 为元素 aij 的代数余子式 。 ②重要性质,定理
a11 a12 (b1 j c1 j ) a1n
a21 a22 (b2 j c2 j ) a2n
an1 an2 (bnj cnj ) ann
a11 a12 b1 j a1n a11 a12 c1 j a1n
a21
a22
b2 j
a2n
a21
a22
c2 j
a2n
(3) ( A)T AT ; (4) ( AB)T BT AT .
设 A 为 n 阶方阵,如果满足
,即
,则 A 为对称阵
如果满足
,即
,则 A 为反对称阵
4. 方阵的行列式:由 n 阶方阵的元素所构成的行列式,叫做方阵 A 的行列式,记作|A|或 det A.
性质:①| AT || A | ,②| A | n | A | ,③| AB || A || B | 。
线性代数重要公式、定理大全
1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ijM A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-;(1)22(1)n n D D -=-将D 顺时针或逆时针旋转90,所得行列式为2D ,则; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C A BCB O B==、(1)m n CA OA A BB OB C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关;⇔齐次方程组0Ax =有非零解;⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =; ③、若AB ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫ ⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C ab Ca bC b C a b -----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C CCC CCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数) ③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTmβββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭; 含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 是否有AX B ⇔=解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义:①、α线性相关 ⇔0α=;②、,αβ线性相关⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论)8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解 ②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9. 对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10. 若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵; ②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11. 齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明;①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P )②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关;14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆;()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数;A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)。