光回波损耗测试原理及误差分析
光纤回波损耗测量技术的最新进展

光纤回波损耗测量技术的最新进展一、光纤回波损耗测量技术概述光纤通信技术作为现代通信网络的重要组成部分,以其高速、大容量、抗干扰性强等优势,在数据传输领域发挥着不可替代的作用。
在光纤通信系统中,回波损耗是一个关键的性能指标,它直接影响到信号的传输质量和系统的整体性能。
因此,对光纤回波损耗的测量技术进行研究和改进,对于提升光纤通信系统的稳定性和可靠性具有重要意义。
1.1 光纤回波损耗的基本概念回波损耗(Return Loss, RL)是指在光纤通信系统中,由于光纤连接点或设备的不完美匹配,部分光信号会被反射回发送端。
这种反射信号与原始信号叠加,形成干扰,影响信号的完整性和通信质量。
回波损耗的测量,就是对这种反射信号强度的量化评估。
1.2 光纤回波损耗测量技术的应用场景光纤回波损耗测量技术在多个领域有着广泛的应用,包括但不限于:- 光纤网络的安装与维护:在光纤网络的安装过程中,通过测量回波损耗来确保光纤连接的质量和性能。
- 光纤器件的质量检测:对光纤连接器、耦合器等器件进行回波损耗测试,以评估其性能是否符合标准。
- 光纤通信系统的性能优化:通过测量和分析回波损耗,对通信系统进行调整和优化,提高信号传输质量。
二、光纤回波损耗测量技术的发展历程光纤回波损耗测量技术自光纤通信技术诞生以来,经历了不断的创新和发展。
从最初的简单反射测量到现代的高精度测量技术,这一过程反映了光纤通信技术不断进步的历程。
2.1 早期的回波损耗测量技术早期的回波损耗测量技术主要依赖于光学时域反射仪(OTDR),通过测量光纤中反射信号的时间和强度,来评估回波损耗。
然而,这种方法存在一定的局限性,如测量精度不高,对小损耗的识别能力有限。
2.2 现代回波损耗测量技术的发展随着光纤通信技术的发展,对回波损耗测量的精度和速度提出了更高的要求。
现代测量技术采用了多种先进的方法,如:- 基于干涉仪的测量技术:利用干涉原理,通过精确测量反射信号的相位变化,实现高精度的回波损耗测量。
光器件的回波损耗测试技术

& 结束语
据此方法在 49/::! 回波损耗测 试仪进行试 验 ! 实际 达 到 的 典 型 技 术 指 标 如 图 : 所 示 ! 测 量 值 小 于
!"$ 光纤耦合器偏振敏感性的影响
由于光纤的移动及机械拉伸等均会改变单模光 纤中的偏振状态 ! 偏振状态的改变又将影响耦合器的 耦合比 !从而影响测试准确度 %
部可调谐激光光源 # 它就具有执行波长扫描回波损耗 的测试能力 " 设计的关键在于使用一个额外的功率探测器作 为光源输入功率的监测器 # 它同时记录输入光功率和 返回光功率 # 用于回波损耗测试值的校准 " 这样设计
收稿日期 &!""#="?=". 作者简介 & 王峻宁 男 #-@A- 年生 # 硕士在读 图 ! 回波损耗测试方案 研究方向 & 光电测量仪器 ! 光纤通信 ! 光纤传感
值可根据需要设置 # 使得系统可利用不同的校准
件 # 使用非常灵活方便 " 软件流程如图 ! 所示 "
# 影响准确度因素分析
对回波损耗测试的过程要求较为严格 # 校准件 ! 测试跳线本身的回波损耗值以及各端面的清洁程度 均会对测试结果造成重大影响 # 不洁的端面引起的误
-!1%/0 到 -2#%/0 波长范围的外部光源 " 如果使用外
"’(7 左右 ! 探测器的灵敏度优于82%’(7 % !%( 干涉的影响
当激光光源的相干长度大于两倍的耦合器到被 测端的距离 时 ! 将 会 发 生 干 涉 现 象 ! 从 被 测 端 反 射 回 来的光 与 从 光 源 直 接 过 来 的 光 由 于 具 有 恒 定 的 相 位 差而会在光 功率 探 测 端 产 生 干 涉 ! 当 振 幅 相 同 ! 偏 振 方向一致时 ! 干涉现象最明显 % 主要解决方法是增加 耦 合器 隔 离 度 或 增 加 耦 合 器 到 被 测 端 距 离 以 使 光 程 差超过光源的相干长度 ! 普通 )8- 激光器的相干长度 小于十几毫米 ! 远小于耦合器与被测器件间的距离 ! 所 以干 涉 效 应 的 影 响 很 小 % 只 有 在 使 用 线 宽 很 窄 的
光纤耦合器回波损耗分析

光纤耦合器回波损耗分析【摘要】本文主要围绕光纤耦合器回波损耗展开分析,通过介绍耦合器的工作原理和回波损耗的影响因素,探讨了回波损耗的计算方法和优化措施。
结合实例分析,总结出光纤耦合器回波损耗分析的关键点和优化建议。
在未来发展方向中,提出对光纤耦合器回波损耗的更深入研究和改进方向,旨在提高光纤耦合器的性能和应用范围,为光通信领域的发展做出贡献。
通过本文的阐述,读者能够全面了解光纤耦合器回波损耗的分析方法和相关理论,为相关领域的研究和实践提供参考。
【关键词】光纤耦合器、回波损耗、工作原理、影响因素、计算方法、优化措施、实例分析、总结、未来发展方向1. 引言1.1 光纤耦合器回波损耗分析光纤耦合器回波损耗分析是光通信领域中一个重要的研究课题。
光纤耦合器是用来实现光信号在不同光纤之间的耦合和分配的光学元件。
在光通信系统中,光纤耦合器起着连接不同光纤传输信号的重要作用。
在实际应用中,光纤耦合器会产生回波损耗,影响光信号的传输质量。
回波损耗是指光信号在光纤耦合器内部多次反射后产生的能量损耗。
回波损耗的大小直接影响光信号的衰减情况,进而影响整个光通信系统的性能。
回波损耗的主要影响因素包括光纤的质量、耦合器的设计和制造工艺等。
为了准确计算和评估光纤耦合器的回波损耗,需要采用合适的计算方法。
常见的计算方法包括数值模拟方法和实验测量方法。
通过计算回波损耗,可以帮助优化光纤耦合器的设计,提高光通信系统的性能。
未来,随着光通信技术的不断发展,光纤耦合器回波损耗分析将会成为研究的热点之一。
通过深入研究回波损耗的影响因素和计算方法,可以为改进光通信系统提供重要的技术支持。
希望在未来的研究中,能够进一步优化光纤耦合器的设计,减小回波损耗,提高光通信系统的性能和稳定性。
2. 正文2.1 耦合器的工作原理光纤耦合器是一种使用光纤作为传输媒介来实现光信号的耦合和分配的光学器件。
它主要由光纤、耦合器件和连接器等组成。
耦合器的作用是将输入光信号分配到不同的输出端口上或者将来自不同输入端口的光信号耦合到同一个输出端口上。
光纤耦合器回波损耗分析

光纤耦合器回波损耗分析光纤耦合器是一种将两个或多个光纤的光耦合在一起的器件,常用于光通信、传感等领域。
而光纤耦合器的回波损耗是评估光纤耦合器性能好坏的一个重要指标。
回波损耗指光纤耦合器将信号从一个光纤传输到另一个光纤时,信号反向传播回到原光纤上的损耗。
本文将从光纤耦合器的原理、回波损耗的计算与影响因素以及降低回波损耗的方法三个方面来介绍光纤耦合器回波损耗的分析。
一、光纤耦合器的原理光纤耦合器是一种将光纤之间的光耦合在一起的器件。
常用的光纤耦合器有三种类型,分别是耦合器、分束器和复用器。
其中最常见的是耦合器,耦合器一般由两个末端面非常平整且光学性能优良的光纤线端面对接而成。
在光纤端面对接时,两个光纤的端面之间存在一些空气和畸变介质,同时两个光纤的直径不完全相同,使得两个连通口之间存在反射。
如果没有反射,光信号将完全传递到另一个光纤,并且信号的弱化也极小。
但是在实际情况中,由于两个光纤之间的差异以及其他的因素影响,会产生反射,形成光纤回波,进而形成回波损耗。
因此,尽可能减少光纤的反射是降低回波损耗的关键。
二、回波损耗的计算与影响因素回波损耗的计算公式为:R=10log10(Pr/Pb)其中Pr表示反向波导入耦合器时的功率,Pb表示从耦合器输出的信号功率。
回波损耗的大小与下列因素有关:1.连接的纤芯直径不一致;2.光纤端面几何形状不同;3.连接的光纤的折射率不同;4.连接的光纤材质、电子结构、晶格结构等因素不同。
这些因素的不同可能导致反射光的强度和相位不同,从而影响回波损耗的大小。
三、降低回波损耗的方法为了减小回波损耗,可以采用以下方法:1.优化端面形状:在制造耦合器的过程中,采用特殊的机械和光学加工方式可以消除端面上的不平整和不同,并减少反射。
2.选择合适的纤芯直径:保证两端连接的纤芯直径相同可以避免反射和损耗。
3.调整光纤间距:通过调整光纤间距来调整反射光的相位差,达到最小。
4.使用吸收涂层:在光纤端面或光纤接头表面涂覆吸收层,可以吸收反射光,减少回波损耗。
光回损测试原理

光回损测试原理引言:随着光纤通信的发展,高速光纤传输系统的广泛生产和应用(如SDH、大功率CATV等),必须具有很高的回波损耗,DF B激光器由于其线宽窄,输出特性很容易受回波损耗的影响。
从而严重影响系统的性能,即使是普通的激光器,也会不同程度地受回波损耗的影响,因此,系统中各种光纤器件的回波损耗的测试变得越来越重要。
关键词: 回波损耗菲涅尔反射瑞利散射偏振敏感性匹配负载1.回波损耗测试基本原理当光传输在某一光器件中时,总有部分光被反射回来,光器件中回波主要由菲涅尔反射(由于折射率变化引起)、后向瑞利散射(杂质微粒引起)以及方向性等因素产生的,则该器件的回波损耗RL为:RL(dB)=-10lg(反射光功率/入射光功率) (1)回波损耗的测试方法有基于OTDR和光功率计测试两种,OTDR测试方法速度快、显示直观可获得反射点的空间分布,且不需要末端匹配(短光纤仍需匹配),但成本高,重要的是某些场合不能使用(例如:光探测器的回波损耗测试等),如美国RIFOCS688及日本NTT-AT的AR-301型回波损耗测试仪。
光功率计法主要将被测器件反射回来的光分离出来引导至光功率计,简单实用,应用范围广,使用时须进行末端匹配。
本文主要介绍光功率计法测试的原理。
光功率计法回波损耗测试基本原理框图如下:图1光功率计法基本原理框图激光经光模块注入到被测器件,反射光再经光模块引导至光功率计,测试方法分为4步:a.测试端连接校准件测出反射功率值Pref,若光源输出功率为P L,光模块衰减系数为k,校准件反射率为Rref,则:Prel = PL.k.Rref +Pp (2)其中,Pp为附加反射功率(指光模块内部及测试端连接器的反射等)b.测出附加反射功率Pp:将测试端进行匹配,使得测试端反射功率为0,即可测出附加反射功率Pp。
c.测试端连接被测器件,测出反射值PmeasPmeas = ( PL×k) R被测+Pp (3)R被测为被测器件反射率。
光回波损耗测试原理及误差分析

光回波损耗测试原理及误差分析引言:随着光纤通信的发展,高速光纤传输系统的广泛生产和应用(如SDH、大功率CATV 等),必须具有很高的回波损耗,DFB激光器由于其线宽窄,输出特性很容易受回波损耗的影响。
从而严重影响系统的性能,即使是普通的激光器,也会不同程度地受回波损耗的影响,因此,系统中各种光纤器件的回波损耗的测试变得越来越重要。
关键词: 回波损耗菲涅尔反射瑞利散射偏振敏感性匹配负载1.回波损耗测试基本原理当光传输在某一光器件中时,总有部分光被反射回来,光器件中回波主要由菲涅尔反射(由于折射率变化引起)、后向瑞利散射(杂质微粒引起)以及方向性等因素产生的,则该器件的回波损耗RL为:RL(dB)=-10lg(反射光功率/入射光功率) (1)回波损耗的测试方法有基于OTDR(OTDR的英文全称是Optical Time Domain Reflectometer,中文意思为光时域反射仪。
OTDR是利用光线在光纤中传输时的瑞利散射和菲涅尔反射所产生的背向散射而制成的精密的光电一体化仪表,它被广泛应用于光缆线路的维护、施工之中,可进行光纤长度、光纤的传输衰减、接头衰减和故障定位等的测量。
)和光功率计测试两种,OTDR测试方法速度快、显示直观可获得反射点的空间分布,且不需要末端匹配(短光纤仍需匹配),但成本高,重要的是某些场合不能使用(例如:光探测器的回波损耗测试等),如美国RIFOCS688及日本NTT-AT的AR-301型回波损耗测试仪。
光功率计法主要将被测器件反射回来的光分离出来引导至光功率计,简单实用,应用范围广,使用时须进行末端匹配。
本文主要介绍光功率计法测试的原理。
光功率计法回波损耗测试基本原理框图如下:图1光功率计法基本原理框图激光经光模块注入到被测器件,反射光再经光模块引导至光功率计,测试方法分为4步:a.测试端连接校准件测出反射功率值P ref,若光源输出功率为PL,光模块衰减系数为k,校准件反射率为R ref,则:P rel= PL.k.R ref+P p (2)其中,P p为附加反射功率(指光模块内部及测试端连接器的反射等)b.测出附加反射功率P p:将测试端进行匹配,使得测试端反射功率为0,即可测出附加反射功率P p。
实验五光无源器件特性测试实验

实验五-光无源器件特性测试实验实验五:光无源器件特性测试实验一、实验目的1.掌握光无源器件的基本特性测试方法;2.熟悉光无源器件的性能指标;3.学习并掌握光损耗测试、光回波损耗测试、光方向性测试等基本光无源器件测试方法。
二、实验原理光无源器件是构成光通信网络不可或缺的部分,其特性测试对于确保系统的稳定性和性能至关重要。
实验中,我们将对光损耗、光回波损耗和光方向性等关键指标进行测试。
1.光损耗:光损耗是指光在传输过程中,由于各种原因导致的光功率减弱。
实验中,我们通过测量输入光功率和输出光功率之差,得到器件的光损耗。
2.光回波损耗:光回波损耗是指反射回来的光功率与入射光功率之比。
高回波损耗意味着低反射,有助于减少光信号的散射和增强系统的稳定性。
3.光方向性:光方向性描述了光在特定方向上的传播能力。
实验中,我们通过测量器件在不同角度上的透射和反射光功率,评估其方向性。
三、实验步骤1.搭建测试平台:准备好测试所需的设备和器材,包括光源、光功率计、稳定光源、光无源器件待测件、光纤跳线等。
2.初始化:对测试平台进行初始化,包括连接光纤、设置光源波长等。
3.测试光损耗:首先,调整好光源的输出功率,将稳定光源的光纤连接到光无源器件的输入端,同时将光功率计连接到输出端,测量原始的光功率P1;然后,将待测件插入到稳定光源与光功率计之间,再次测量输出光功率P2;最后,通过计算P1和P2的差值,得到光损耗=10*log10(P1/P2)。
4.测试光回波损耗:将稳定光源的光纤连接到光无源器件的输入端,同时将回波损耗仪连接到输出端,测量回波损耗值。
5.测试光方向性:通过旋转待测件,在不同角度上测量透射和反射光功率,并记录数据。
通常以角度为横坐标,以功率为纵坐标绘制曲线图,即可得到光方向性的结果。
6.数据处理与分析:对测试得到的数据进行分析,评估待测件的性能。
对比同类型器件的测试结果,可以对器件进行优化或改进设计。
7.清理现场:实验结束后,关闭设备并整理现场。
实验二 光插入回波损耗综合实验

实验二光插入回波损耗综合实验一、实验目的测试:插入损耗、回波损耗掌握:光纤端面处理和熔接技术了解光无源器件特性二、实验器材光纤熔接机、稳定光源、2×2光耦合器、光功率计、转换器、裸光纤连接器、光跳线三、实验原理回波损耗源于电缆链路中由于阻抗不匹配而产生反射的概念。
这种阻抗不匹配主要发生在有连接器的地方,也可能发生于各种缆线的特性阻抗发生变化的地方。
在光通信中光传输的的光纤链路上,经常需要进行光纤与光纤,光纤与器件,器件与仪器等进行连接。
在连接过程中,光纤端面,器件的光学表面等对其内传输地光不可避免地产生反射。
设PL和Pr分别表示入射和回波反射功率,单位可以是瓦(w)或者毫瓦(mw);定义回波反射光功率与入射光功率之比为回波损耗Rl式中得到的是除法计算的比值,对于多个器件存在时,需要计算乘积,在光通信中很不方便。
若将Rl以分贝表示(单位为dB)时,上述的乘积运算就化为加减运算.【实验内容】待测器件的输入功率与回波功率测量由回波损耗定义可知,对于光纤链路中的任意器件而言,要测量其回波损耗,就需Pl和RR。
∗为方便计算,本实验所测功率的单位全部采用dBm要首先测量其输入端的光功率和反射回波的光功率,再通过公式计算得到。
插入损耗与回波损耗原理:四、实验注意事项为防止或减小反射损耗,可将两根光纤熔接在一起,形成固定接头,也可在光纤端面之间加入折射率与光纤纤芯相同或相近的匹配液。
因此,在实验的过程中要把多余的光纤头插入匹配液,以减小误差。
要注意安全,不能直接用眼睛对着有激光的光纤看,以免对眼睛造成伤害。
在实验过程中要保持光纤及其连接器的洁净。
光纤连接器的使用前,确保连接器内没有堵塞物。
在做熔接实验前,应该对熔接过程了解,以免误操作,对仪器产生不良影响。
切断下来的光纤头要放入指定的废料盒中,以免发生意外五、实验过程与现象实验步骤:(1)按照实验电路图搭建电路;(2)打开光源,检查各连接器是否正常,测量取值。
81613a回波损耗测试方法

81613a回波损耗测试方法引言:81613a回波损耗测试是一种用于衡量光纤连接质量的方法。
在光传输系统中,回波损耗是一个重要的性能指标,它反映了信号在光纤中传输过程中的衰减程度。
本文将介绍81613a回波损耗测试的原理、步骤和注意事项。
一、测试原理:81613a回波损耗测试基于OTDR(光时域反射仪)技术,利用脉冲光源产生的光信号在光纤中传播,通过对光信号的反射和散射进行检测和分析,计算出信号的衰减程度,从而得出回波损耗值。
二、测试步骤:1. 准备工作:确保测试仪器和被测光纤连接正常,设置好测试参数。
2. 发射光信号:启动测试仪器,发射脉冲光信号进入被测光纤。
3. 检测反射信号:测试仪器接收反射信号,并将其转化为光功率值。
4. 计算回波损耗:根据接收到的反射信号和发射信号的光功率值,计算出回波损耗值。
5. 结果分析:根据回波损耗值判断光纤连接质量,评估是否符合要求。
三、注意事项:1. 测试环境要保持稳定,避免干扰光源和接收光信号的准确性。
2. 被测光纤的两端应保持干净,无杂质和损伤,以确保测试结果准确可靠。
3. 测试仪器的光源和接收器要定期校准,以保证测试结果的准确性。
4. 在测试过程中,要注意保护好光纤的连接部分,避免损坏。
5. 针对不同的光纤连接,选择适当的测试参数,以获得准确的测试结果。
结论:81613a回波损耗测试方法是一种简单、快速、可靠的光纤连接质量评估方法。
通过测试仪器对光纤的信号传输和反射信号的检测,可以得出准确的回波损耗值,帮助用户评估光纤连接的质量,及时发现问题并采取相应的措施进行修复。
在光纤通信领域,81613a回波损耗测试方法在工程建设、维护和故障排除中起着重要作用。
通过合理应用81613a回波损耗测试方法,可以提高光纤通信系统的可靠性和稳定性,为用户提供更好的通信体验。
光纤耦合器回波损耗分析

光纤耦合器回波损耗分析光纤耦合器是光通信领域中的重要器件,它能够实现光信号的传输、耦合和分配。
在许多光通信系统中,光纤耦合器的性能直接影响着整个系统的通信质量和稳定性。
回波损耗是评价光纤耦合器性能的重要指标之一。
本文将重点分析光纤耦合器回波损耗的相关问题,并提出一些分析方法和改进措施,以提高光纤耦合器的性能和稳定性。
回波损耗是光纤耦合器中一个重要的性能参数,它描述了光纤端口所反射回来的光信号与输入信号的功率比值。
在实际应用中,光纤耦合器的回波损耗越小,表示其对输入光信号的耦合效率越高,通信质量和稳定性也越好。
降低光纤耦合器的回波损耗对于提高光通信系统的性能至关重要。
二、光纤耦合器回波损耗的影响因素1. 光纤端面质量光纤端面的质量直接影响着光纤耦合器的回波损耗。
如果光纤端面存在杂质、划痕或者不平整的情况,会导致反射损耗增大,使得回波损耗升高。
在制作和安装光纤耦合器时,需要保证光纤端面的质量良好,以降低回波损耗。
2. 光纤端面之间的距离3. 光纤耦合器的结构和材料光纤耦合器的结构和材料也会对回波损耗产生影响。
不同的结构和材料会导致不同的耦合效率和反射特性,从而影响光纤耦合器的回波损耗。
在设计和选择光纤耦合器时,需要根据具体应用需求和环境条件来选择合适的结构和材料,以达到较低的回波损耗。
1. 参考信号法参考信号法是一种常用的测量光纤耦合器回波损耗的方法。
该方法利用一定比例的参考信号作为输入信号,同时在光纤耦合器的输出端接收光信号,并通过比较输入信号和输出信号的功率大小,从而计算出光纤耦合器的回波损耗。
2. 自适应追踪法自适应追踪法是一种高精度的测量光纤耦合器回波损耗的方法。
该方法通过自适应追踪器对光信号进行频率、相位和幅度的跟踪和分析,从而得到精确的回波损耗值。
该方法需要专业设备和技术支持,成本和复杂度较高。
优化光纤端面之间的距离可以有效地降低光纤耦合器的回波损耗。
在设计和安装光纤耦合器时,需要根据具体的应用需求和光纤特性优化端面之间的距离,以实现最佳的耦合效率和回波损耗。
光隔离器的插入损耗、反向隔离度、回波损耗的测试

光隔离器的插入损耗、反向隔离度、回波损耗的测试一.实验目的和任务1.了解光隔离器的工作原理和主要功能。
2.了解光隔离器各参数的测量方法。
3.测量光隔离器的插入损耗、反向隔离度、回波损耗参数。
二.实验原理光隔离器又称为光单向器,是一种光非互易传输无源器件,该器件用来消除或抑制光纤信道中产生的反向光,由于这类反向光的存在,导致光路系统间将产生自耦合效应,使激光器的工作变得不稳定和产生系统反射噪声,使光纤链路上的光放大器发生变化和产生自激励,造成整个光纤通信系统无法正常工作。
若在半导体激光器输出端和光放大器输入或输出端连接上光隔离器,减小反射光对LD的影响,因此,光隔离器是高码速光纤通信系统、精密光纤传感器等高技术领域必不可少的元器件之一。
光隔离器是利用了磁光晶体的法拉第效应,其组成元件有:光纤准直器(Optical Fiber Collimator)、法拉第旋转器(Faraday Rotator)和偏振器(Polarizator)。
隔离器按照偏振特性来分,有偏振相关型和偏振无关型。
它们的原理图如图1.1和图1.2所示:图1.1 偏振相关的光隔离器图1.2 偏振无关的光隔离器对于偏振相关光隔离器,光通过法拉第旋转器时,在磁场作用下,光偏振方向旋转角为FHL =φ,式中H 为磁场强度,L 为法拉第材料长度,F 为材料的贾尔德系数。
如图1.1,当输入光通过垂直偏振起偏器后,成为垂直偏振光,经过法拉第旋转器旋转了045,而检偏器偏振方向和起偏器偏振方向成045角,使得光线顺利通过,而反射回来的偏振光经过检偏器、法拉第旋转器以后,继续沿同一方向旋转045,即偏振方向刚好与起偏器偏振方向垂直,则光无法反向通过。
由于只有垂直偏振的光能通过光隔离器,因此称为偏振相关光隔离器。
偏振无关光隔离器如图1.2所示,图1.2(a)为光隔离器正向输入。
当包含两个正交偏振的输入光波被一个偏振分束器分离,变为垂直偏振光和平行偏振光。
实验五、光纤连接器的回波损耗测试

【实验名称】 光纤连接器的回波损耗测试在使用光通信中的光器件时,我们非常关心器件的性能,因为它可能是产生问题的一个主要环节。
器件的性能通常用一系列参数,如插入损耗,回波损耗,隔离度,偏振度,耦合比等指标来描述。
有很多情况下,由于种种原因可能我们需要知道一个器件的实际性能,这就要求我们不但要熟悉各器件的参数指标,同时还要掌握一些测试器件参数的方法。
插入损耗和回波损耗等是描述器件性能的基本参数,本实验主要介绍无源光器件回波损耗的测试原理和测试方法。
【实验目的】1. 了解回波损耗的概念及其在光通信系统中的意义;2. 掌握回波损耗的测试原理和测试方法;3. 掌握光纤熔接技术和常用测试仪器的使用方法,培养动手能力和实验技能。
【实验原理】1.回波损耗的概念回波损耗源于电缆链路中由于阻抗不匹配而产生反射的概念。
这种阻抗不匹配主要发生在有连接器的地方,也可能发生于各种缆线的特性阻抗发生变化的地方。
在光通信中光传输的的光纤链路上,经常需要进行光纤与光纤,光纤与器件,器件与仪器等进行连接。
在连接过程中,光纤端面,器件的光学表面等对其内传输地光不可避免地产生反射。
这种回波一方面造成了传输光功率的耗损,另一方面也会对一些器件的工作产生干扰,例如反射回波能造成激光器输出功率的抖动和频率的变化,有时甚至是破坏。
但在另外一些情况下,反射回波却可以加以利用。
在光通信中,已对回波损耗进行了详细规定(请参看标准G.957)。
设和分别表示入射和回波反射功率,单位可以是瓦()或者毫瓦(mw );定义回波反射光功率与入射光功率之比为回波损耗,即I P r P w l R Ir l P P R = (1) (1)式中得到的是除法计算的比值,对于多个器件存在时,需要计算乘积,在光通信中很不方便。
若将以分贝表示(单位为)时,上述的乘积运算就化为加减运算,故 l R dB Ir l P P R log 10−= (2) 注意:若、采用dBw 或单位时,应采用下式计算才是正确的r P I P dBm l R r I l P P R −= (3)【实验内容】∗1. 待测器件的输入功率与回波功率测量由回波损耗定义可知,对于光纤链路中的任意器件而言,要测量其回波损耗,就需l R∗ 为方便计算,本实验所测功率的单位全部采用dBm要首先测量其输入端的光功率和反射回波的光功率,再通过公式计算得到。
回波损耗的测试和计算讲解

RL的测试和计算1、 RL定义:IL=-10lgPrefPout RL=-10lg PinPin* 此处我们对所有的IL和RL定义为正值2、测试设备:A:Agilent 81680A TLSB:Agilent 81623A PM(PowerMeter)C:50/50(3dB) Coupler3、测试方法和步骤:A⎛Pin⎫0dB=-10lg p⎪⎪⎝in⎭B:测试系统的RL:RLs,搭建如图2所示的光路:因为我们在步骤A中做归零的时候已经将Pin作为基准功率,所以⎛Pref-sRLs=-10lg P⎝in⎫⎪(式1)⎪⎭C:测试器件的RL:RLd,搭建如图3所示的光路:⎡⎛Pref-d⎫⎪=-10lg⎢⎪ P-Pref-s⎢⎭⎣⎝ref-(s+d)⎛Pref-dRLd=-10lg P⎝in⎫⎛Pref-(s+d)-Pref-s⎪⨯⎪ Pin⎭⎝-pref-s⎫⎤⎛P⎪⎥=-10lg ref-(s+d)⎪ Pin⎭⎥⎝⎦⎫⎪-IL⎪1−−→3⎭根据式1,可以得出: Pref-s=Pin⨯10-RLs10(式2)(式3)设定:RLs+d=-10lg pref-(s+d)=Pin⨯10RLs+d10⎛pref-s+d⎫⎪,推出:⎪pin⎝⎭-(式4)将以上式3和式4带入式2,得到:RL⎡⎛-RLs+d-s⎢Pin 1010-1010⎢=-10lg⎢⎝Pin⎢⎢⎣⎛Pref-(s+d)-pref-sRLd=-10lg Pin⎝⎫⎪⎪-IL1−−→3⎭⎫⎤⎪⎥RL⎪⎥⎛-RLs+d-s⎭-IL10 =-10lg10-1010⎥1−−→3 ⎥⎝⎥⎦⎫⎪-IL1−−→3⎪⎭(式5)令x=RLs-RLs+d,推出:RLs+d=RLs-x,将其带入式5,有:RL⎛-RLs+d-s10 RLd=-10lg10-1010⎝RL⎫⎛-RLs-x-s10⎪-IL =-10lg10-10101−−→3⎪⎭⎝⎛-RLs⎛x⎫⎫⎫1010⎪-IL =-10lg1010-1⎪⎪-IL1−1−−→3−→3⎪⎪⎪⎭⎝⎭⎭⎝⎛-RLs=-10lg 1010⎝⎫⎛x⎫⎛x⎫1010⎪-10lg 10-1⎪-IL =RLs-10lg10-1⎪-IL1− 1−−→3−→3 ⎪⎪⎪⎝⎭⎝⎭⎭综上,我们得出:⎛x⎫10 RLd=RLs-10lg10-1⎪-IL1− −→3 ⎪⎝⎭试算如下:(式6)设RLs=62dB,RLs+d=58dB,推出x=62-58=4dB,带入式6,得出:⎛4⎫10 RLd=62-10lg10-1⎪-IL1−=60.2-IL1−−→3−→3 ⎪⎝⎭又因为IL1−=3dB,所以RLd=57.2dB −→31.接通光路,将功率计清零。
回波损耗测试方法

回波损耗测试方法回波损耗(Return Loss)是衡量信号在传输过程中由于各种因素产生的反射损耗的指标。
回波损耗测试方法是通过使用专用仪器,对设备或连接件进行测试,以评估其在信号传输中的反射性能。
本文将介绍回波损耗测试的原理、测试仪器以及测试步骤。
一、回波损耗测试的原理回波损耗测试的原理基于反射信号的特性。
当信号从一个介质传输到另一个介质时,部分信号会发生反射。
这种反射信号会导致信号的损耗,影响信号的传输质量。
回波损耗测试通过测量反射信号的强度,来评估设备或连接件的反射性能。
二、回波损耗测试仪器回波损耗测试仪器是进行回波损耗测试的关键工具。
常用的回波损耗测试仪器有光纤回波损耗测试仪、网络分析仪等。
光纤回波损耗测试仪主要用于光纤连接件的测试,而网络分析仪主要用于电缆和连接器的测试。
三、回波损耗测试步骤1. 准备测试仪器:根据需要选择合适的回波损耗测试仪器,并确保其正常工作。
2. 设置测试参数:根据测试需求,设置合适的测试参数,如测试频率、测量范围等。
3. 连接被测设备:将被测设备与测试仪器进行连接。
确保连接良好,避免因连接问题导致测试结果的误差。
4. 开始测试:启动测试仪器,开始测试。
测试仪器会向被测设备发送测试信号,然后测量反射信号的强度。
5. 记录测试结果:根据测试仪器的显示,记录测试结果。
通常使用单位dB来表示回波损耗值,数值越大表示反射信号越弱,反射损耗越小。
6. 分析测试结果:根据测试结果进行分析,评估设备或连接件的反射性能。
通常,回波损耗值在一定范围内,可以认为设备或连接件的反射性能良好。
7. 判断测试结果:根据测试结果,判断设备或连接件是否符合要求。
如果回波损耗值超出了规定范围,可能需要对设备进行进一步检修或更换。
回波损耗测试方法的应用范围广泛,涵盖了光纤通信、无线通信、电力系统等多个领域。
在光纤通信中,回波损耗测试可以评估光纤连接件的质量,确保信号的传输质量。
在无线通信中,回波损耗测试可以评估天线的反射性能,提高无线信号的传输效果。
光隔离器的插入损耗、反向隔离度、回波损耗的测试

光隔离器的插入损耗、反向隔离度、回波损耗的测试一.实验目的和任务1.了解光隔离器的工作原理和主要功能。
2.了解光隔离器各参数的测量方法。
3.测量光隔离器的插入损耗、反向隔离度、回波损耗参数。
二.实验原理光隔离器又称为光单向器,是一种光非互易传输无源器件,该器件用来消除或抑制光纤信道中产生的反向光,由于这类反向光的存在,导致光路系统间将产生自耦合效应,使激光器的工作变得不稳定和产生系统反射噪声,使光纤链路上的光放大器发生变化和产生自激励,造成整个光纤通信系统无法正常工作。
若在半导体激光器输出端和光放大器输入或输出端连接上光隔离器,减小反射光对LD的影响,因此,光隔离器是高码速光纤通信系统、精密光纤传感器等高技术领域必不可少的元器件之一。
光隔离器是利用了磁光晶体的法拉第效应,其组成元件有:光纤准直器(Optical Fiber Collimator)、法拉第旋转器(Faraday Rotator)和偏振器(Polarizator)。
隔离器按照偏振特性来分,有偏振相关型和偏振无关型。
它们的原理图如图1.1和图1.2所示:图1.1 偏振相关的光隔离器图1.2 偏振无关的光隔离器对于偏振相关光隔离器,光通过法拉第旋转器时,在磁场作用下,光偏振方向旋转角为FHL =φ,式中H 为磁场强度,L 为法拉第材料长度,F 为材料的贾尔德系数。
如图 1.1,当输入光通过垂直偏振起偏器后,成为垂直偏振光,经过法拉第旋转器旋转了045,而检偏器偏振方向和起偏器偏振方向成045角,使得光线顺利通过,而反射回来的偏振光经过检偏器、法拉第旋转器以后,继续沿同一方向旋转045,即偏振方向刚好与起偏器偏振方向垂直,则光无法反向通过。
由于只有垂直偏振的光能通过光隔离器,因此称为偏振相关光隔离器。
偏振无关光隔离器如图1.2所示,图1.2(a)为光隔离器正向输入。
当包含两个正交偏振的输入光波被一个偏振分束器分离,变为垂直偏振光和平行偏振光。
实验二光衰减器的衰减量、回波损耗的测试

实验二 光衰减器的衰减量、回波损耗的测试一. 实验目的和任务1. 了解光衰减器的原理。
2. 了解光衰减器各参数的概念和测试方法。
3. 对光衰减器的衰减量和回波损耗进行测试。
二. 实验原理光衰减器是调节光强不可缺少的器件,主要用于光纤通信系统指标测量、短距离通信系统的信号衰减以及系统实验等。
它可分为位移型光衰减器、直接镀膜型光衰减器、衰减片型光衰减器、液晶型光衰减器等。
对于位移型光衰减器来说,它是通过对光纤的对中精度做适当地调整,来控制其衰减量的。
直接镀膜型光衰减器是一种直接在光纤端面或玻璃基片上镀制金属吸收膜或反射膜来衰减光能量的衰减器。
衰减片型光衰减器直接将具有吸收特性的衰减片,固定在光纤的端面上或光路中,达到衰减光信号的目的。
液晶型光衰减器是通过是光线偏振面的旋转,使一部分光不能被自聚焦透镜耦合进入光纤来实现对光信号的衰减的。
耦合器型固定衰减器是有特定的耦合比产生的分束损耗,使通过耦合器实现光衰减器的功能。
对光衰减器的要求是:体积小、重量轻、衰减精确度高、稳定可靠、使用方便等。
在实验中,我们使用的是信息产业部电子第41所的耦合器式固定衰减器。
(一) 光衰减器衰减量的测试原理衰减量是光衰减器的一个主要技术指标。
对于固定衰减器来说,其衰减量指标实际上就是光衰减器的插入损耗。
即光信号经过光衰减器的输出功率与光衰减器输入功率之比的分贝数。
假设光衰减器输入光功率为P 1,输出光功率为P 2,则光衰减器衰减量的计算公式为: ()dB P P A 21lg 10= (2-1) 测量光衰减器衰减量的实验原理图如图2.1所示。
光隔离器图2.1 光衰减器衰减量测量原理图(二) 光衰减器回波损耗的测试原理光衰减器的回波损耗是指入射到光衰减器中的光能量和衰减器中沿入射光路反射出的光能量之比,它是影响系统性能的一个重要指标。
如图5.2所示,设光衰减器的输入光功率为P 1,从光环行器3端输出的光功率为P 2,则其计算公式为: 3221lg 10Re --=Insertloss P P turnloss (2-2) 式中32-Insertloss 是光环行器2-3端的插入损耗。
光纤耦合器回波损耗分析

光纤耦合器回波损耗分析1. 引言1.1 背景介绍光纤耦合器是一种广泛应用于光通信系统中的重要器件,其作用是将光纤中的光信号进行耦合和分配。
在光通信系统中,光纤耦合器的性能直接影响到系统的稳定性和可靠性。
回波损耗是光纤耦合器中一个重要的性能指标,是指光信号在耦合器中传输时发生反射导致的信号损耗。
随着光通信技术的飞速发展,光纤耦合器作为光通信系统中的重要组成部分,其性能要求也越来越高。
回波损耗是影响光纤耦合器性能的重要因素之一,其大小直接影响到系统的传输质量和稳定性。
对光纤耦合器的回波损耗进行深入分析和研究具有重要意义。
本文旨在探讨光纤耦合器回波损耗的相关问题,通过对光纤耦合器的基本原理、组成结构、回波损耗的来源、影响因素以及计算方法进行分析,进一步揭示回波损耗对光纤耦合器性能的影响规律,为未来光纤耦合器的设计和优化提供理论支持。
1.2 研究目的研究目的是为了深入了解光纤耦合器回波损耗的原理和影响因素,探讨如何有效地降低回波损耗,提高光纤耦合器的性能。
通过对回波损耗的来源进行分析,可以帮助我们更好地设计和优化光纤耦合器的结构,从而减少信号传输过程中的能量损失。
研究回波损耗的计算方法,可以为光纤耦合器的实际应用提供有效的参考和指导。
通过本研究,我们希望能够更全面地评估回波损耗对光纤耦合器性能的影响,为未来的研究工作提供有益的启示和方向。
这样,我们可以更好地应用光纤耦合器技术,推动光通信领域的发展。
2. 正文2.1 光纤耦合器的基本原理光纤耦合器是光通信系统中的重要元件,其基本原理是利用光波在不同介质中的折射率差异而实现的光信号的传输和耦合。
光纤耦合器通常由两根或多根光纤以特定的方式连接而成,通过其中介质的折射率变化来实现光的传输和耦合。
在光纤耦合器中,光信号从一个光纤传输到另一个光纤,同时可以通过调节耦合器的结构或参数来实现光信号的控制和调控。
光纤耦合器的基本原理决定了其在光通信系统中的重要性和应用广泛性。
光器件的回损测量

责任编辑 蔡君JDSU公司 孙景群/文
IEC61300-3-6对回损测试方法的描述。
回损的来源
按照IEC61300-3-6的定义,回损是指在器件输入端、光纤接头或者定义的某一段光路上反射光功率[mW]与的原因是机械接头的空气气隙、中心对齐误差和污染造成的微小颗粒。
● 瑞利散射
光束在光纤中前向传播时,遇到光纤中的不连续点会产生散射,产生不连续点的可能是制作光纤材料的杂质、微小的空气气隙甚至机械拉伸。
图1 无法弯曲的光纤接头
通讯世界 2012.07 (总207期)
图3 OTDR法测量图示
得到准确的测试结果。
1.OCWR法
OCWR 量连接和测量步骤如下:
这种方法分4个步骤:
第一步:第二步:第三步:接入D U T Device Under Test 第四部:测量回损,DUT 除了采用缠绕法消除外,IEC 方法:
● ● 样,通常折弯的角度要大于● 量损纤反射测量的参考点是被测段的前一
RL 测量的入射3是基本的测量设置。
法测量插回损只需要两个将仪表测试发光口直接连接DUT 后直接测量插OTDR 法不需要消除末端的OCWR 法节约了OCWR 法一样,OTDR 法OTDR 发取得理想测量结OTDR 法的一个显著优点是70dB 提高到法的测量仪表可以集成多路PLC 分光器,更好光纤通信技术的发展,传OTDR 法的插回损测试仪由于大规模测试的需求。
图2 OCWR法需要在连接被测件前后进行人工缠绕。
光纤回波损耗测试报告

光纤回波损耗测试报告光纤回波损耗测试报告一、测试目的光纤回波损耗测试是用于衡量光纤中信号传输的质量和可靠性的一种测试方法。
本次测试旨在检测光纤回波损耗的数值,并评估光纤的传输性能。
二、测试设备1. OTDR(Optical Time Domain Reflectometer):用于发射测试信号,并测量光纤中的回波信号。
2. 光纤衰减器:用于模拟光纤中的信号衰减。
3. 光纤连接器和适配器:用于连接测试光纤。
三、测试步骤1. 准备工作:连接OTDR与光纤,确保连接器的稳定性和准确性。
2. 设置参数:调整OTDR的测试参数,包括波长、脉冲宽度和平均时间等。
3. 校准OTDR:进行OTDR的校准,确保测试结果的准确性和可靠性。
4. 开始测试:启动OTDR,发送测试信号,并记录回波信号的强度和时间。
5. 分析数据:通过OTDR的分析软件,对测试结果进行分析和评估。
6. 生成报告:根据测试结果生成测试报告,包括光纤回波损耗数值、曲线图和分析结论等。
四、测试结果经过测试,光纤回波损耗为XX dB(分贝)。
根据测试结果分析,光纤的传输性能良好,回波损耗在正常范围内。
回波信号在光纤中的衰减较小,传输质量可靠。
五、结论通过光纤回波损耗测试,我们得出了以下结论:1. 光纤回波损耗数值在正常范围内,光纤传输质量良好。
2. 光纤的衰减较小,传输信号可靠性高。
3. 光纤连接器的稳定性和准确性得到了验证。
六、建议根据测试结果,我们对光纤的使用和维护提出以下建议:1. 避免光纤弯曲和拉伸,以免影响传输信号的质量。
2. 定期检查光纤连接器和适配器,并确保其稳定性和准确性。
3. 防止光纤受到外界环境的污染和损伤,保持光纤的清洁和完好。
七、备注本次测试是基于指定的测试条件进行的,测试结果仅适用于当前测试场景。
在不同的环境和条件下,光纤的传输性能可能有所变化,需要根据实际情况进行相应的测试和评估。
八、附件测试曲线图。
光纤传输测试指标中回波损耗是指

光纤传输测试指标中回波损耗是指
光纤作为一种用于传输光信号的介质,其内部往往存在一些不完美的
因素,比如纤芯和包层的几何尺寸偏差、纤芯和包层的折射率不匹配、纤
芯和包层的污染等。
这些因素会导致光信号在传输过程中发生反射,并部
分反射回源端,即出发点的光信号与返回的反射光信号混合在一起,就产
生了回波。
回波损耗是用来描述这种信号反射引起的能量损耗的度量指标。
它通
常以分贝(dB)为单位来表示,用于衡量信号的反射损失。
回波损耗越小,说明信号的反射越少,系统的性能越好。
对于光纤通信系统而言,回波损耗的大小直接影响到信号的传输质量
和系统的稳定性。
较高的回波损耗会导致信号的失真,降低系统的信号传
输速率和距离。
因此,在光纤传输测试中,最大回波损耗通常是一个重要
的测试指标,要求回波损耗尽可能小,以确保系统的正常运行和高质量的
信号传输。
在实际的光纤传输测试过程中,通常采用回波损耗测试仪进行测试。
该仪器通过给光纤发送一个测试信号,然后测量从纤芯的末端返回到仪器
接收口的信号强度,从而计算出回波损耗值。
回波损耗测试仪还可以检测
光纤连接的质量,发现连接不良的问题,从而及时解决,提高系统的可靠
性和性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光回波损耗测试原理及误差分析
引言:随着光纤通信的发展,高速光纤传输系统的广泛生产和应用(如SDH、大功率CATV 等),必须具有很高的回波损耗,DFB激光器由于其线宽窄,输出特性很容易受回波损耗的影响。
从而严重影响系统的性能,即使是普通的激光器,也会不同程度地受回波损耗的影响,因此,系统中各种光纤器件的回波损耗的测试变得越来越重要。
关键词: 回波损耗菲涅尔反射瑞利散射偏振敏感性匹配负载
1.回波损耗测试基本原理
当光传输在某一光器件中时,总有部分光被反射回来,光器件中回波主要由菲涅尔反射(由于折射率变化引起)、后向瑞利散射(杂质微粒引起)以及方向性等因素产生的,则该器件的回波损耗RL为:
RL(dB)=-10lg(反射光功率/入射光功率) (1)
回波损耗的测试方法有基于OTDR(OTDR的英文全称是Optical Time Domain Reflectometer,中文意思为光时域反射仪。
OTDR是利用光线在光纤中传输时的瑞利散射和菲涅尔反射所产生的背向散射而制成的精密的光电一体化仪表,它被广泛应用于光缆线路的维护、施工之中,可进行光纤长度、光纤的传输衰减、接头衰减和故障定位等的测量。
)和光功率计测试两种,OTDR测试方法速度快、显示直观可获得反射点的空间分布,且不需要末端匹配(短光纤仍需匹配),但成本高,重要的是某些场合不能使用(例如:光探测器的回波损耗测试等),如美国RIFOCS688及日本NTT-AT的AR-301型回波损耗测试仪。
光功率计法主要将被测器件反射回来的光分离出来引导至光功率计,简单实用,应用范围广,使用时须进行末端匹配。
本文主要介绍光功率计法测试的原理。
光功率计法回波损耗测试基本原理框图如下:
图1光功率计法基本原理框图
激光经光模块注入到被测器件,反射光再经光模块引导至光功率计,测试方法分为4步:a.测试端连接校准件测出反射功率值P ref,若光源输出功率为PL,光模块衰减系数为k,校准件反射率为R ref,则:
P rel= PL.k.R ref+P p (2)
其中,P p为附加反射功率(指光模块内部及测试端连接器的反射等)
b.测出附加反射功率P p:将测试端进行匹配,使得测试端反射功率为0,即可测出附加反射功率P p。
c.测试端连接被测器件,测出反射值P meas
P meas= ( PL×k) R被测+P p (3)
R被测为被测器件反射率。
d .计算出回波损耗RL(dB)
根据(1)、(2)、(3)计算出被测器件的回波损耗值RL,单位dB。
RL=-10×log[(P meas-P p)×R ref÷(P ref-P p)] (4)
2.影响准确度因素分析:
2.1 校准件准确度的影响:
理想的光纤端面是一种较好的校准件,使用研磨良好的FC/UPC跳线端面作为校准件非常普遍,不确定度一般在0.2dB以内。
另一种理想的校准件是光纤镀金端面,(如美国HP公司的HP81000BR)反射率可达96%(回波损耗为0.18dB),其不确定度为0.1dB。
2.2光模块偏敏感性影响
由于光纤的移动及机械拉伸等均会改变单模光纤中的偏振状态,偏振状态的改变又将造成输出光的不稳定,从而影响测试准确度,光模块的偏振敏感度可小于1%,引入误差为0.04dB。
2.3光源稳定度影响:
光源的稳定度将直接影响回波损耗的测试准确度,特别是当使用镀金连接器及光纤端面等校准件时,较强的反射功率会对激光器造成很大的影响,可以加隔器/衰减器来消除这种影响,即使全反射时,返回光源的光也将衰减30dB左右,其影响即可忽略。
G&H3000A中的高稳定度光源,稳定度可达到±0.05dB/8h。
2.4线性误差:
光功率测量的线性误差主要来源于量程切换时引起的换挡误差,因此需要对跨阴抗电阻进行严格挑选,光功率计的线性一般在1%,引入误差为0.04dB。
2.5动态范围
光源和功率计必须提供足够的动态范围以保证信噪比,采用我公司光源和高灵敏度光功率计技术,去掉光路衰减,动态范围可达近80dB,由于光路本身的噪声(光器件的附加反射)的影响,真正回波损耗测试可达70dB左右。
2.6干涉影响:
当激光光源的相干长度大于两倍的光模块到被测端的距离时,将会发生干涉现象,从被测端返射回来的光与从光源直接过来的光由于具有恒定的相位差而会在光功率探测端产生干涉,当振幅相同,偏振方向一致时,干涉现象最明显。
主要解决方法是增加光器件隔离度或增加光模块到被测端距离以使光程差超过光源的相干
长度,但需注意的是:9m长光纤将产生60dB的附加回波损耗(因后向散射),系统中我们选用光源的相干长度校小,此项影响可忽略。
我们采用1m长的跳线进行测试。
2.7附加反射影响
由于光模块中存在不希望存在的反射等,降低了信噪比,必须选用高回波损耗的光器件,软件计算中将附加反射值作为零点值扣除,以尽量减小附加反射的影响。
3.系统设计
综合以上分析,G&H3000A型光插回损测试仪,其原理框图如图2所示:
图2 回波损耗测试系统原理框图
光源发出光信号经光模块到达被测器件,反射光引导至程控前置放大电路检测后送CPU处理,并将结果显示出来。
测试端的APC连接器一定要保持清洁,而且要尽量减少插拔次数,以免损伤端面引起附加反射的增加。
G&H3000A型回损仪采用较高灵敏度光功率检测及激光光源稳定技术,最低测量功率可达到-80dBm。
软件设计主要是完成回波损耗值计算(根据(4)式),并提供相应的操作、显示界面。
(4)式中Pref和Pp通过按相应的按键从测量值获得,并通过软件的智能判断(以避免误操作)后存放在非易失RAM保存,因此,不用每次开机都去存贮校准和附加反射值,大大简化了操作步骤,但需要注意的是:在测量高回波损耗器件时(特别当回损在60dB以上),需经常存贮附加反射值,甚至每次测量前均需存贮,使用非常灵活方便,仪表上同时显示被测件的回波损耗和插入损耗耗值。
4.结束语
以上介绍的G&H3000A回波损耗测试仪的基本方法和原理,分析了误差来源和减少误差的方法。
通过测量标准件(已知回波损耗值的器件)反射值和光模块内部的附加反射值,然后通过软件计算的方法得出被测器件的回波损耗值,操作简单方便,测量精度较高,具有较高的性价比,达到的技术指标如下:
回波损耗测量范围:0~70dB;
测量不确定度:±0.5dB。
(转P36页)
(接P40页)
另外,对回波损耗测试的过程要求较为严格,校准件、测试跳线本身的回波损耗值以及各端面的清洁程度均会对测试结果造成重大影响,不洁的端面引起的误差可达10dB以上,因此,测试端面需经常清洁,测试跳线也需定期进行更新(插拔引起端面磨损)。
同时,该仪表具有普通光功率计的功能,内置双波长光源(1310/1550nm),,即可以作为普通光功率计使用,亦可作为高稳定度单/双波长光源使用,并可同时进行插入损耗及回波损耗的测试,使用灵活方便,性价比较高。
参考文献
1、Christian Hentschel fiber optics handbook of Hewlett-packardmarch 1989
2、JDS PX Series backreflection and loss test set user抯manual,jds co.1996
3、Hewlett-packard product catalog. 1996
上海光之虹光电通讯设备有限公司尹晓民。