实数理论精品PPT课件
合集下载
实数ppt课件
![实数ppt课件](https://img.taocdn.com/s3/m/a79a215211a6f524ccbff121dd36a32d7375c7ea.png)
原点
数轴上的零点,表示0。
正半轴
数轴上右边的点表示正实数。
负半轴
数轴上左边的点表示负实数。
实数在数轴上的表示
实数
在数轴上有唯一确定的点与之对 应。
相反数
在数轴上与原点对称的点表示相反 数。
绝对值
在数轴上到原点的距离表示绝对值 。
数轴上的点与实数的关系
点与实数一一对应
数轴上的每一个点都表示一个唯一的实数。
实数的四则运算
01
总结词:实数的四则运算是加 法、减法、乘法和除法的统称
。
02
详细描述
03
04
1. 加法和减法:实数的加法 和减法满足交换律、结合律和
相反律。
2. 乘法和除法:实数的乘法 和除法满足交换律、结合律和
分配律。
03
实数与数轴
数轴的定义
01
02
03
04
数轴
一条水平的直线,用来表示实 数的连续范围。
实数还可以根据其正 负性分为正实数、负 实数和零。
无理数:无限不循环 小数,如π、根号2 等。
02
实数的运算
加法与减法
详细描述
2. 结合律:加法或减法的结合律 是指括号如何结合不会影响结果 。例如,a+(b+c)=(a+b)+c和a(b+c)=a-(b+c)。
总结词:实数的加法与减法是基 础运算,它们具有交换律、结合 律和相反律。
2. 结合律:乘法或除法的结合律是指括 号如何结合不会影响结果。例如, a(bc)=(ab)c。
详细描述
1. 交换律:乘法或除法的交换律是指改 变运算顺序不会影响结果。例如, ab=ba和a/b=b/a。
八年级数学实数的概念PPT精品课件
![八年级数学实数的概念PPT精品课件](https://img.taocdn.com/s3/m/d0fd368a804d2b160a4ec0ae.png)
解:有理数有:3.14,25,0.4·1·2·,- 3 343 ; 无理数有: 3,0.101 001 000 1…,π,- 7,π2.
【易错警示】判断一个数是否为无理数,不能仅从形式上 看,带根号的数不都是无理数.
1.下列各数哪些是有理数?哪些是无理数?
0,13, 2,3.5.,-2.143,π. 有理数:___0_,_13_,__3_._5_,__-__2_.1_4_3__;
实数的分类(难点) 例 1:下列各数哪些是有理数?哪些是无理数?
3.14,25, 3,0.4·1·2·,0.101 001 000 1…, π,- 3 343 ,- 7,π2. 思路导引:判断一个数是不是无理数,关键看它是不是无 限不循环小数,是不是开方开不尽的数,是不是含有π的数.如 果一个数是整数或分数,则一定是有理数.
13.3 实 数
第 1 课时 实数的概念
1.无理数 (1)无限不循环小数叫做__无__理__数__. (2)无理数的常见形式: ①圆周率π及一些含有π的数; ②开不尽方的数,如 2; ③有一定的规律,但不循环的无限小数,如 0.101 001 000 1…. 2.实数的概念 _有__理__数___和__无__理__数__统称实数.
3.实数的分类 (1)按定义分类:
实数
有理数:有限小数或无限循环小数 无理数:无限不循环小数
(2)按性质分类:
正实数
正有理数 正无理数
实数
0
负实数
负有理数 负无理数
4.实数与数轴上的点的对应关系 (1)实数与数轴上的点是_一__一__对__应_的. 即每个实数都可以用数轴上的一个__点__来表示; 反过来,数轴上的每一个点都表示一个__实__数__. (2)在数轴上的两个点,右边的点表示的实数总比左边的点 表示的实数大.
实数ppt课件
![实数ppt课件](https://img.taocdn.com/s3/m/a598c57a0812a21614791711cc7931b764ce7b11.png)
。
方程可以看作是实数之间的一种 约束关系,实数则是满足这种约
束条件的数值解。
通过解方程,我们可以找到实数 之间的特定关系和条件。
实数与不等式的关系
不等式是表达数学大小关系的一种形 式,而实数是这些不等式中的变量。
通过解不等式,我们可以找到实数之 间的特定范围和界限。
不等式可以看作是实数之间的一种限 制关系,实数则是满足这种限制条件 的数值。
02
实数的运算规则
实数的加法运算
定义
实数的加法运算是指将两个或多个实数合并成一 个实数的运算。
规则
实数的加法运算满足交换律和结合律,即 a+b=b+a和(a+b)+c=a+(b+c)。
例子
2+3=5,(-1)+(-2)=-3。
实数的减法运算
定义
实数的减法运算是指将一个实数减去另一个实数的运算。
规则
实数的减法运算可以通过加法运算进行转化,即a-b=a+(-b)。
例子
5-3=2,(-1)-(-2)=1。
实数的乘法运算
定义
实数的乘法运算是指将两个或多个实数相乘得到一个实数的运算 。
规则
实数的乘法运算满足交换律、结合律和分配律,即ab=ba和 (a+b)c=ac+bc。
例子
2×3=6,(-1)×(-2)=2。
03
1欧元=100欧分
时间单位的换算
小时与分钟换算:1 小时=60分钟
天与小时换算:1天 =24小时
小时与秒换算:1小 时=3600秒
其他应用举例
01
02
03
温度换算
摄氏度与华氏度换算,例 如:2摄氏度=3.6华氏度
方程可以看作是实数之间的一种 约束关系,实数则是满足这种约
束条件的数值解。
通过解方程,我们可以找到实数 之间的特定关系和条件。
实数与不等式的关系
不等式是表达数学大小关系的一种形 式,而实数是这些不等式中的变量。
通过解不等式,我们可以找到实数之 间的特定范围和界限。
不等式可以看作是实数之间的一种限 制关系,实数则是满足这种限制条件 的数值。
02
实数的运算规则
实数的加法运算
定义
实数的加法运算是指将两个或多个实数合并成一 个实数的运算。
规则
实数的加法运算满足交换律和结合律,即 a+b=b+a和(a+b)+c=a+(b+c)。
例子
2+3=5,(-1)+(-2)=-3。
实数的减法运算
定义
实数的减法运算是指将一个实数减去另一个实数的运算。
规则
实数的减法运算可以通过加法运算进行转化,即a-b=a+(-b)。
例子
5-3=2,(-1)-(-2)=1。
实数的乘法运算
定义
实数的乘法运算是指将两个或多个实数相乘得到一个实数的运算 。
规则
实数的乘法运算满足交换律、结合律和分配律,即ab=ba和 (a+b)c=ac+bc。
例子
2×3=6,(-1)×(-2)=2。
03
1欧元=100欧分
时间单位的换算
小时与分钟换算:1 小时=60分钟
天与小时换算:1天 =24小时
小时与秒换算:1小 时=3600秒
其他应用举例
01
02
03
温度换算
摄氏度与华氏度换算,例 如:2摄氏度=3.6华氏度
《实数》ppt课件
![《实数》ppt课件](https://img.taocdn.com/s3/m/b649a44b854769eae009581b6bd97f192279bfb3.png)
指数运算法则可以用于简化复杂的数 学表达式。
03
CATALOGUE
实数的分类
有理数和无理数
有理数
可以表示为两个整数之比的数, 包括整数、有限小数和无限循环 小数。
无理数
无法表示为两个整数之比的数, 常见于无限不循环小数,如π和 √2。
正数、负数和零
01
02
03
正数
大于零的实数,包括正整 数、正小数和正无理数。
其结果仍为实数。
详细描述
实数的加法运算与整数、有理 数类似,遵循交换律和结合律 ,即a+b=b+a, (a+b)+c=a+(b+c)。
总结词
正数与负数相加,结果的符号 取决于绝对值较大的数。
详细描述
如果a>0,b<0,则a+b=a-(b);如果a<0,b>0,则 a+b=b-(-a)。
减法运算
总结词
《实数》PPT课件
目 录
• 实数的基本概念 • 实数的运算 • 实数的分类 • 实数在生活实数的基本概念
实数的定义
实数的定义
实数是包括有理数和无理数在内的所有数的集合,即实数集。实数集可以用实数轴来表 示,实数轴上的每一个点都对应一个实数,每一个实数都可以在实数轴上找到一个点来
乘法运算
总结词
乘法运算在实数范围内具有封闭性, 即任何两个实数相乘,其结果仍为实 数。
详细描述
实数的乘法运算遵循交换律和结合律 ,即ab=ba,(ab)c=a(bc)。
总结词
正数与负数相乘得负数,负数与负数 相乘得正数。
详细描述
正数乘以正数得正数,如2*3=6;正 数乘以负数得负数,如2*(-3)=-6; 负数乘以负数得正数,如(-2)*(3)=6。
《实数》_PPT-精美
![《实数》_PPT-精美](https://img.taocdn.com/s3/m/0c6e4225770bf78a6429542d.png)
【获奖课件ppt】《实数》_ppt-精美1 -课件 分析下 载 【获奖课件ppt】《实数》_ppt-精美1 -课件 分析下 载
【获奖课件ppt】《实数》_ppt-精美1 -课件 分析下 载 【获奖课件ppt】《实数》_ppt-精美1 -课件 分析下 载
【获奖课件ppt】《实数》_ppt-精美1 -课件1 -课件 分析下 载
【获奖课件ppt】《实数》_ppt-精美1 -课件 分析下 载 【获奖课件ppt】《实数》_ppt-精美1 -课件 分析下 载
【获奖课件ppt】《实数》_ppt-精美1 -课件 分析下 载 【获奖课件ppt】《实数》_ppt-精美1 -课件 分析下 载
【获奖课件ppt】《实数》_ppt-精美1 -课件 分析下 载 【获奖课件ppt】《实数》_ppt-精美1 -课件 分析下 载
【获奖课件ppt】《实数》_ppt-精美1 -课件 分析下 载 【获奖课件ppt】《实数》_ppt-精美1 -课件 分析下 载
【获奖课件ppt】《实数》_ppt-精美1 -课件 分析下 载 【获奖课件ppt】《实数》_ppt-精美1 -课件 分析下 载
【获奖课件ppt】《实数》_ppt-精美1 -课件 分析下 载 【获奖课件ppt】《实数》_ppt-精美1 -课件 分析下 载
【获奖课件ppt】《实数》_ppt-精美1 -课件 分析下 载 【获奖课件ppt】《实数》_ppt-精美1 -课件 分析下 载
【获奖课件ppt】《实数》_ppt-精美1 -课件 分析下 载 【获奖课件ppt】《实数》_ppt-精美1 -课件 分析下 载
【获奖课件ppt】《实数》_ppt-精美1 -课件 分析下 载 【获奖课件ppt】《实数》_ppt-精美1 -课件 分析下 载
【获奖课件ppt】《实数》_ppt-精美1 -课件 分析下 载 【获奖课件ppt】《实数》_ppt-精美1 -课件 分析下 载
【获奖课件ppt】《实数》_ppt-精美1 -课件 分析下 载 【获奖课件ppt】《实数》_ppt-精美1 -课件 分析下 载
【获奖课件ppt】《实数》_ppt-精美1 -课件1 -课件 分析下 载
【获奖课件ppt】《实数》_ppt-精美1 -课件 分析下 载 【获奖课件ppt】《实数》_ppt-精美1 -课件 分析下 载
【获奖课件ppt】《实数》_ppt-精美1 -课件 分析下 载 【获奖课件ppt】《实数》_ppt-精美1 -课件 分析下 载
【获奖课件ppt】《实数》_ppt-精美1 -课件 分析下 载 【获奖课件ppt】《实数》_ppt-精美1 -课件 分析下 载
【获奖课件ppt】《实数》_ppt-精美1 -课件 分析下 载 【获奖课件ppt】《实数》_ppt-精美1 -课件 分析下 载
【获奖课件ppt】《实数》_ppt-精美1 -课件 分析下 载 【获奖课件ppt】《实数》_ppt-精美1 -课件 分析下 载
【获奖课件ppt】《实数》_ppt-精美1 -课件 分析下 载 【获奖课件ppt】《实数》_ppt-精美1 -课件 分析下 载
【获奖课件ppt】《实数》_ppt-精美1 -课件 分析下 载 【获奖课件ppt】《实数》_ppt-精美1 -课件 分析下 载
【获奖课件ppt】《实数》_ppt-精美1 -课件 分析下 载 【获奖课件ppt】《实数》_ppt-精美1 -课件 分析下 载
【获奖课件ppt】《实数》_ppt-精美1 -课件 分析下 载 【获奖课件ppt】《实数》_ppt-精美1 -课件 分析下 载
【获奖课件ppt】《实数》_ppt-精美1 -课件 分析下 载 【获奖课件ppt】《实数》_ppt-精美1 -课件 分析下 载
实数的有关概念PPT课件
![实数的有关概念PPT课件](https://img.taocdn.com/s3/m/9cc7dd17ff4733687e21af45b307e87100f6f861.png)
8.一个近似数的有效数字,是指从这个数的左边第一个非零数字起,到 右边最后一位数字止的所有数字.
9.科学记数法是把一个大于10或小于l的正数记成 a 10n 的形式,其
中1≤a<10 ( n是正整数),这种记数的方法叫科学记数法.
10.实数的分类
整数
有理数
实数
分数
(有限小数或无限循环小数 )
无理数 (无限不循环小数)
各实数的绝对值之间的大小关系,进而判定带绝对值符号的代数式的值是
正、是负还是零,然后再根据绝对值的意义,去掉绝对值符号.
例3 2005年l0月12日,我国“神舟六号”载人航天一举成功升天,历时5 天共飞行3250000km,这个飞行距离用科学计数法表示正确的是( ).
(A)3.25104 km;(B)3.25105 km;(C)3.25106 km;(D)3.25107 km.
(3)下列说法中j正确的是( ). (A)一个数的相反数—定是负数 (B)—个数的绝对值一定是正数 (C)一个数的绝对值一定不是负数 (D)一个数的绝对值的相反数一定是负数
(4)下列命题中错误的是( ). (A)每一个整数都对应着数轴上的一个点 (B)每一个无理数都对应着数轴上的一个点 (C)数轴上每个点都对应着一个实数 (D)有理数和数轴上的点一.一对应 (5)一个实数的偶数幂是正数,这个实数是( ). (A)正实数 (B)任何实数 (C)负实数 (D)正实数或负实数
是
,属于负实数集合的是
,属于整实数集
合的是
,属于分数集合的是
,属于有理数集
合的是
,属于无理数集合的是
·
(2)若m、n互为相反数.则 m+n= ;若m、n互为倒数,则 mn= 。
《实数》优秀ppt课件
![《实数》优秀ppt课件](https://img.taocdn.com/s3/m/ae8c72af168884868662d669.png)
反之也成立.
用你发现的规律填空:
已知, 3 216=6,则3 216000=_6_0__, 3 0.216=_0_._6_ 已知, 31331=11,则31.331=_1_._1_, 3 1331000=_1_1_0_
《实数》优秀实用课件(PPT优秀课件 )
《实数》优秀实用课件(PPT优秀课件 )
根据立方根的意义填空
1.因为23=8,所以8的立方根是___2____.
2.因为0.53=0.125,所以0.125的立方根____0._5___.
3.因为(
2 3
)3=
8 27
,所以
8 27
2
的立方根是___3 ____.
4.因为(-2)3=-8,所以-8的立方根是____-_2__.
5.因为(-0.5)3=-0.125,所以-0.125的立方根是_-_0_.5__.
即:若x3=a,则x是a的一个立方根(三次方根).
《实数》优秀实用课件(PPT优秀课件 )
《实数》优秀实用课件(PPT优秀课件 )
立方根的数学符号表示
类似于平方根,一个数a的立方根,用符号“3 a ”
表示,读作:“三次根号a ”,其中a叫做被开方数,3
叫做 根指数.
不能省略
请
观 根指数 赏 动 三次根号
《实数》优秀实用课件(PPT优秀课件 )
立方根的概念
通过上节课的学习,我们知道:
平方根 一般地,如果有一个数的平方等于a,那么 的概念 这个数叫作a的平方根,也叫作二次方根.
即:若x2=a,则x是a的一个平方根(二次方根)
你能类比以上思路给立方根下个定义么?
立方根 的概念
一般地,如果有一个数的立方等于a,那么 这个数叫作a的立方根,也叫作三次方根.
用你发现的规律填空:
已知, 3 216=6,则3 216000=_6_0__, 3 0.216=_0_._6_ 已知, 31331=11,则31.331=_1_._1_, 3 1331000=_1_1_0_
《实数》优秀实用课件(PPT优秀课件 )
《实数》优秀实用课件(PPT优秀课件 )
根据立方根的意义填空
1.因为23=8,所以8的立方根是___2____.
2.因为0.53=0.125,所以0.125的立方根____0._5___.
3.因为(
2 3
)3=
8 27
,所以
8 27
2
的立方根是___3 ____.
4.因为(-2)3=-8,所以-8的立方根是____-_2__.
5.因为(-0.5)3=-0.125,所以-0.125的立方根是_-_0_.5__.
即:若x3=a,则x是a的一个立方根(三次方根).
《实数》优秀实用课件(PPT优秀课件 )
《实数》优秀实用课件(PPT优秀课件 )
立方根的数学符号表示
类似于平方根,一个数a的立方根,用符号“3 a ”
表示,读作:“三次根号a ”,其中a叫做被开方数,3
叫做 根指数.
不能省略
请
观 根指数 赏 动 三次根号
《实数》优秀实用课件(PPT优秀课件 )
立方根的概念
通过上节课的学习,我们知道:
平方根 一般地,如果有一个数的平方等于a,那么 的概念 这个数叫作a的平方根,也叫作二次方根.
即:若x2=a,则x是a的一个平方根(二次方根)
你能类比以上思路给立方根下个定义么?
立方根 的概念
一般地,如果有一个数的立方等于a,那么 这个数叫作a的立方根,也叫作三次方根.
实数ppt课件人教版
![实数ppt课件人教版](https://img.taocdn.com/s3/m/f0ad7c2d9a6648d7c1c708a1284ac850ad020497.png)
实数与复数的关系和转换
实数与复数的关系
实数是特殊的复数,即虚部为0的复数。实 数在复数域中占据了原点附近的区域。
实数与复数的转换
在数学表达上,任何实数都可以视为复数, 只需将其虚部设为0即可。同样地,任何复 数也可以视为实数的扩展,只需将其虚部消 去即可。
THANKS FOR WATCHING
感谢您的观看
绝对值和符号
根据实数的绝对值大小和正负符号,可以将实数分为正数、负数、零和绝对值相 等但符号不同的数等。
03 实数的运算
加法运算
总结词
加法运算的基本性质
详细描述
实数的加法运算满足交换律和结合律,即a+b=b+a和(a+b)+c=a+(b+c)。加法运算还有负数和零的加法性质, 即a+(-a)=0和a+0=a。
过极限来描述。
实数的收敛性和极限理论是数学 分析的基础,它们在解决各种数
学问题中发挥着重要的作用。
实数的其他性质和定理
实数具有完备性,这意味着实数集合 具有一些特殊的性质,使得实数集合 在加法、减法、乘法和除法等运算下 是封闭的。
实数还具有一些其他的性质和定理, 例如实数的有序性、阿基米德性质等 等,这些性质和定理在数学分析和实 数理论中有着广泛的应用。
实数的表示方法
十进制表示法
实数可以用小数或分数形式表示,如 2.5、1/3等。
分数形式表示法
实数可以用分数形式表示,如2/3、 3/4等。
实数的性质和运算,可以确定任意两个实数之间
的大小关系。
实数的四则运算
实数可以进行加、减、乘、除四 则运算,运算规则与有理数相同
实数ppt课件人教版
《初中数学实数》课件
![《初中数学实数》课件](https://img.taocdn.com/s3/m/882b772959fafab069dc5022aaea998fcc22402d.png)
总结词
理解实数减法在数学中的重要性和应用,能够运用实数减 法解决实际问题。
详细描述
实数减法在数学中有广泛的应用,如计算差值、速度、加 速度等。通过掌握实数减法的运算法则和性质,可以更好 地解决实际问题。
实数的乘法运算
总结词
理解实数乘法的意义和性质,掌握实数乘法的运算法则 。
详细描述
实数的乘法运算与普通乘法运算类似,但需要考虑正负 数相乘的情况。实数乘法的意义是表示两个数在数轴上 的倍数关系,具有结合律和交换律。
实数的开方运算
04
平方根的定义和性质
平方根的定义
如果一个数的平方等于a,那么这个数就是a的平方根。例如,4的平方根是±2 。
平方根的性质
一个正数的平方根有两个值,一个正数和一个负数;0的平方根是0;负数没有 实数平方根。
立方根的定义和性质
立方根的定义
如果一个数的立方等于a,那么这个 数就是a的立方根。例如,8的立方 根是2。
无限性也是数学和物理学中许 多重要概念的基础,如无穷大 、无穷小等。
实数的运算
03
实数的加法运算
总结词
理解实数加法的意义和性质,掌握实数加法的运算法则 。
详细描述
实数的加法运算与普通加法运算类似,但需要考虑正负 数相加的情况。实数加法的意义是表示两个数在数轴上 的位移,具有结合律和交换律。
总结词
01
02
03
长度测量
实数可以用来表示物体的 长度,例如身高、体重等 。
时间计算
用实数表示时间,例如秒 、分、小时等。
货ห้องสมุดไป่ตู้计算
用实数表示货币,例如元 、角、分等。
实数在数学中的运用
代数运算
实数可以用于代数运算, 例如加、减、乘、除等。
理解实数减法在数学中的重要性和应用,能够运用实数减 法解决实际问题。
详细描述
实数减法在数学中有广泛的应用,如计算差值、速度、加 速度等。通过掌握实数减法的运算法则和性质,可以更好 地解决实际问题。
实数的乘法运算
总结词
理解实数乘法的意义和性质,掌握实数乘法的运算法则 。
详细描述
实数的乘法运算与普通乘法运算类似,但需要考虑正负 数相乘的情况。实数乘法的意义是表示两个数在数轴上 的倍数关系,具有结合律和交换律。
实数的开方运算
04
平方根的定义和性质
平方根的定义
如果一个数的平方等于a,那么这个数就是a的平方根。例如,4的平方根是±2 。
平方根的性质
一个正数的平方根有两个值,一个正数和一个负数;0的平方根是0;负数没有 实数平方根。
立方根的定义和性质
立方根的定义
如果一个数的立方等于a,那么这个 数就是a的立方根。例如,8的立方 根是2。
无限性也是数学和物理学中许 多重要概念的基础,如无穷大 、无穷小等。
实数的运算
03
实数的加法运算
总结词
理解实数加法的意义和性质,掌握实数加法的运算法则 。
详细描述
实数的加法运算与普通加法运算类似,但需要考虑正负 数相加的情况。实数加法的意义是表示两个数在数轴上 的位移,具有结合律和交换律。
总结词
01
02
03
长度测量
实数可以用来表示物体的 长度,例如身高、体重等 。
时间计算
用实数表示时间,例如秒 、分、小时等。
货ห้องสมุดไป่ตู้计算
用实数表示货币,例如元 、角、分等。
实数在数学中的运用
代数运算
实数可以用于代数运算, 例如加、减、乘、除等。
《实数的有关概念》课件
![《实数的有关概念》课件](https://img.taocdn.com/s3/m/825f205ac381e53a580216fc700abb68a982ad07.png)
除法
总结词
实数除法的定义与性质
详细描述
实数除法是通过乘法和减法来实现的,即a/b=a*(1/b)或a/b=a+(-b)。实数除法同样遵循结合律、交 换律和分配律。在几何上,实数除法可以理解为面积的变换。
乘方与开方
总结词
实数乘方与开方的定义与性质
详细描述
实数乘方是指数的连乘,记作a^n(n为正整数),其性质包括乘方的交换律、结合律和 指数法则。开方则是乘方的逆运算,表示求一个数的平方根。实数的开方具有非负性,
实数与数轴上的点
实数是数轴上点的集合,数轴是实数的几何表示。
实数的有序性表现在数轴上就是点的有序性,即任意两个不同的实数在数轴上都有 明确的左右关系。
实数的连续性表现在数轴上就是点的连续性,即任意两个不同的实数在数轴上都只 被一个点所分隔。
实数的大小比较
在数轴上,右边的点表示的实数比左 边的点表示的实数大。
即对于任意实数a,有√a^2=a。
03
实数与数轴
数轴的表示
实数在数轴上表示为一个个的点 ,每个实数对应数轴上的一个点 ,数轴上的每个点也对应一个实
数。
正数、负数和零在数轴上都有各 自的位置,正数在零的右边,负 数在零的左边,零既不是正数也
不是负数。
数轴上还包括无穷大和无穷小的 概念,表示实数的极限情况。
物理定律的数学表达
许多物理定律可以用实数表示,如牛顿第二定律 F=ma,爱因斯坦 的相对论等。
数据分析和预测
通过测量和实验得到的物理数据通常为实数,对这些数据进行统计 分析可以帮助我们预测和解释物理现象。
在日常生活中的应用
金融和经济学
01
在金融和经济学中,实数被用来表示货币、资产价值、成本等
《实数的概念》课件
![《实数的概念》课件](https://img.taocdn.com/s3/m/9609c469b5daa58da0116c175f0e7cd184251821.png)
实数在生活中的应用
温度计上的实数
温度计上的数字表示实际温 度
温度计在生活中的应用:测 量体温、监测天气等
温度计的种类:水银温度计、 电子温度计等
温度计的准确性和使用注意 事项
身高体重指数(BMI)中的实数
身高体重指数(BMI)的定义 BMI中的实数计算 BMI指数在健康生活中的应用 如何根据BMI指数调整生活方式
课堂互动环节设计
案例分析:通过分析具体案例,让 学生更好地理解实数的概念和应用
添加标题
添加标题
添加标题
添加标题
分组讨论:将学生分成小组,让他 们讨论相关问题,提高合作能力
课堂测验:通过小测验或练习题, 检验学生对实数概念的理解和掌握 情况
练习题与答案解析
● 题目1:什么是实数? 答案1:实数包括有理数和无理数,有理数包括整数、分数、小数等,无理数包括无限不循 环小数等。
添加标题 添加标题 添加标题 添加标题
地图上的经纬度
经纬度定义:经度和纬度是地图上的两个基本坐标系统,用于确定地球上 任何位置的坐标。
实数与经纬度的关系:经度和纬度都是实数,可以用小数或度数表示。
经纬度在地图上的应用:通过经纬度可以确定地球上任何位置的精确位置, 从而进行导航、定位和地理信息系统的应用。
添加标题
添加标题
实数与其他数学概念的关系
总结与回顾
本节课的重点与难点总结
重点:实数的概 念、分类和性质
难点:实数的运 算规则和实际应 用
解决方法:通过 例题讲解和练习 巩固,加深对实 数概念的理解和 掌握
总结:回顾本节 课所学内容,强 调容
数
无理数与有理 数的区别:定 义、性质、运 算规则等方面
的差异
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 与中学实数定义衔接,用十进小数定义实数 系,然后建立相关的性质
• 建立实数的序 • 建立实数的完备性 • 利用有理数的运算和实数的完备性定义实数
的运算
10
§4 有理数系的性质
• 自然数系及其运算 • 有理数系的建立 • 有理数的运算性质 • 有理数的序性质和稠密性质 • 有理数的不完备性
11
自然数系及其运算
§5 实数定义
• 实数的十进小数定义 • 有理数的十进小数表示 • 实数的序
17
实数的十进小数定义
• 实数的十进小数定义: 实数集合R定义为: {x:NZ|n>0,x(n){0,…,9};k>0,n>k, x(n)<9} • 为了回归中学的习惯, 引入下列术语:
– x(0)叫作实数x的整数部分, 记作[x]; – k>0, x(k)叫作x的第k位小数, 记作xk ; – x也写成: x=[x]+0.x1x2… – 记{x}= 0.x1x2…叫作x的小数部分 – n>0, sn(x)=[x]+0.x1x2…xn叫作x的n位小数(舍值)近
• 上确界:设AQ, A, bQ叫做A的上确界, 如 果(1) b是A的上界, (2) c<b, aA, a>c
• 上确界的惟一性 • 序的完备性: 任何有上界的集合都有上确界 • 有理数的不完备性: 存在有理数有上界而没有
上确界的非空子集: • 例如{aQ | a>0, a^2<2} (习题)
16
第二章 实数理论
郇中丹 2006-2007年度第一学期
1
为什么要讲实数理论
• 以往教材上关于实数处理的方式:
– 以Dedekind分割或Cauchy基本列方式定义 – 以公理化方式定义实数来回避直接定义实数
• 上述处理方式的缺陷:
– 分割和基本列的方式定义需要引入一系列的 工具,并且与中小学教材脱节
8
§2 定义实数遇到的困难
• 如何从有限小数过渡到无限小数 • 基本想法都是利用有理数序列逼近(极限),
这就有两个问题
– 引入序列和极限等相关的概念 – 即便如此, 也要先定义清楚作为极限的实数
• 虽然知道实数的众多性质, 如何写出一个 逻辑上正确、清晰和不难接受的实数理 论仍然有待努力
9
§3 我们如何定义实数
• 序与加法和乘法的关系:
– a,b,cQ, a>b a+c>b+c – a,b,cQ且c>0, a>b ac>bc
• 记号: ab表示a<b或a=b; ab表示a>b或a=b • 有理数的稠密性: a,bQ, a<b, cQ: a<c<b
15
有理数的不完备性
• 上界: 设AQ, A, 若bQ使得aA, ab, 就称b为A的一个上界, 并且说A是有上界的
3
§1 数系理论发展简史
• 有趣的现象 • 实数理论简史 • 引入实数的方法 • 数系理论
4
有趣的现象
• 数的使用几乎与人类的历史一样长, 有人通过 观察推断: 动物有数感. 在人类文明史中, 数的 概念是逐步扩展开来的. 然而数的严格意义上 的理论直到在十九世纪后半叶才完成.
• 虽然欧几里德几何原本中已经讨论了可公度比 和无公度比,但没有定义什么叫无公度比的相等
• Weierstrass (1857), Méray (1869) Dedekind (1872), Cantor (1873)
• (来源于Kline IV P46-47)
6
引入实数的方法
• Weierstrass: 有自然数出发定义正有理数, 然后用无穷多个有理数集合定义实数
• Dedekind: 有理数分割 • Canter: 有理数基本列等价类
7
数系理论
• 欧几里德的《几何原本》中的比例理论以及 讨论了现在有理数中的相关结果,但是在比 例线段的术语下讨论的.
• Muller 1855《一般算术》和Grassmann 1861 《算术》中有讨论, 但是讲得不清楚
• Peano 1889《算术原理新方法》引入Peano公 理系统解决了这个问题。他用了许多符号: , 和N0表示自然数集。
• 已经完成了逻辑地引入自然数系N={0,1, 2,…}的过程(上一章引入的)
• 加法运算就是数数,乘法运算就是一类特 殊数数的方法.
• 减法: 对小的数加多少的到大的数 • 除法: 分组 • 带余除法: 确定组数和余数 • 归纳法是论证工具
12
有理数系Q的建立
• 有理数可以看成是由为了在自然数系中 加、减、乘和除封闭而得到的最小集合
– 公理化的方式使得学生困惑: 实数变的难以 理解了
• 应当与中小学教材衔接并论发展简史 • §2 定义实数遇到的困难 • §3 我们如何定义实数 • §4 有理数系的性质 • §5 实数定义 • §6 实数的完备性 • §7 实数的运算性质 • §8 记号和实数的进一步性质
• 自然数到有理数的逻辑扩展:
– 由自然数及其笛卡尔积建立整数使得加、减、 乘封闭;
– 由整数及其笛卡尔积建立有理数使得加、减、 乘和除封闭
• 自然数到有理数的直观扩展: 引入负数和 所有正整数份数
13
有理数的运算性质
• 加法和乘法满足交换律: a+b=b+a, ab= ba与结合律:a+(b+c)=(a+b)+c, a(bc)= (ab)c
• 乘法与加法之间满足分配律: a(b+c)= ab+ac
• 0是加法零元: a: a+0=a • 1是乘法单位元: a: a1=a • 每个数a有负数-a: a+(-a)=0 • 每个非零数a有倒数1/a: a(1/a)=1
14
有理数序的三歧性和稠密性
• 有理数序的三歧性: a,bQ, 则a<b, a=b, a>b 中有且仅有一种情形成立
• 建立数系理论为了完善数学分析理论 • 建立数系理论是要保证数学的真实性,非欧几何
的出现,几何失去了其真实性;数学在哲学意义 上的真实性应当建立在算术基础上 (Gauss 1817)
5
实数理论
• 是指以有理数系为基础建立实数理论 • 以往的直观想法: 有理数的极限, 然而必
须先存在才能谈极限
• William R. Hamilton, 1833, 1835提出无理 数的第一个处理, 以时间作为实数的基础. 提出用将有理数分成两类的方法定义无 理数
• 建立实数的序 • 建立实数的完备性 • 利用有理数的运算和实数的完备性定义实数
的运算
10
§4 有理数系的性质
• 自然数系及其运算 • 有理数系的建立 • 有理数的运算性质 • 有理数的序性质和稠密性质 • 有理数的不完备性
11
自然数系及其运算
§5 实数定义
• 实数的十进小数定义 • 有理数的十进小数表示 • 实数的序
17
实数的十进小数定义
• 实数的十进小数定义: 实数集合R定义为: {x:NZ|n>0,x(n){0,…,9};k>0,n>k, x(n)<9} • 为了回归中学的习惯, 引入下列术语:
– x(0)叫作实数x的整数部分, 记作[x]; – k>0, x(k)叫作x的第k位小数, 记作xk ; – x也写成: x=[x]+0.x1x2… – 记{x}= 0.x1x2…叫作x的小数部分 – n>0, sn(x)=[x]+0.x1x2…xn叫作x的n位小数(舍值)近
• 上确界:设AQ, A, bQ叫做A的上确界, 如 果(1) b是A的上界, (2) c<b, aA, a>c
• 上确界的惟一性 • 序的完备性: 任何有上界的集合都有上确界 • 有理数的不完备性: 存在有理数有上界而没有
上确界的非空子集: • 例如{aQ | a>0, a^2<2} (习题)
16
第二章 实数理论
郇中丹 2006-2007年度第一学期
1
为什么要讲实数理论
• 以往教材上关于实数处理的方式:
– 以Dedekind分割或Cauchy基本列方式定义 – 以公理化方式定义实数来回避直接定义实数
• 上述处理方式的缺陷:
– 分割和基本列的方式定义需要引入一系列的 工具,并且与中小学教材脱节
8
§2 定义实数遇到的困难
• 如何从有限小数过渡到无限小数 • 基本想法都是利用有理数序列逼近(极限),
这就有两个问题
– 引入序列和极限等相关的概念 – 即便如此, 也要先定义清楚作为极限的实数
• 虽然知道实数的众多性质, 如何写出一个 逻辑上正确、清晰和不难接受的实数理 论仍然有待努力
9
§3 我们如何定义实数
• 序与加法和乘法的关系:
– a,b,cQ, a>b a+c>b+c – a,b,cQ且c>0, a>b ac>bc
• 记号: ab表示a<b或a=b; ab表示a>b或a=b • 有理数的稠密性: a,bQ, a<b, cQ: a<c<b
15
有理数的不完备性
• 上界: 设AQ, A, 若bQ使得aA, ab, 就称b为A的一个上界, 并且说A是有上界的
3
§1 数系理论发展简史
• 有趣的现象 • 实数理论简史 • 引入实数的方法 • 数系理论
4
有趣的现象
• 数的使用几乎与人类的历史一样长, 有人通过 观察推断: 动物有数感. 在人类文明史中, 数的 概念是逐步扩展开来的. 然而数的严格意义上 的理论直到在十九世纪后半叶才完成.
• 虽然欧几里德几何原本中已经讨论了可公度比 和无公度比,但没有定义什么叫无公度比的相等
• Weierstrass (1857), Méray (1869) Dedekind (1872), Cantor (1873)
• (来源于Kline IV P46-47)
6
引入实数的方法
• Weierstrass: 有自然数出发定义正有理数, 然后用无穷多个有理数集合定义实数
• Dedekind: 有理数分割 • Canter: 有理数基本列等价类
7
数系理论
• 欧几里德的《几何原本》中的比例理论以及 讨论了现在有理数中的相关结果,但是在比 例线段的术语下讨论的.
• Muller 1855《一般算术》和Grassmann 1861 《算术》中有讨论, 但是讲得不清楚
• Peano 1889《算术原理新方法》引入Peano公 理系统解决了这个问题。他用了许多符号: , 和N0表示自然数集。
• 已经完成了逻辑地引入自然数系N={0,1, 2,…}的过程(上一章引入的)
• 加法运算就是数数,乘法运算就是一类特 殊数数的方法.
• 减法: 对小的数加多少的到大的数 • 除法: 分组 • 带余除法: 确定组数和余数 • 归纳法是论证工具
12
有理数系Q的建立
• 有理数可以看成是由为了在自然数系中 加、减、乘和除封闭而得到的最小集合
– 公理化的方式使得学生困惑: 实数变的难以 理解了
• 应当与中小学教材衔接并论发展简史 • §2 定义实数遇到的困难 • §3 我们如何定义实数 • §4 有理数系的性质 • §5 实数定义 • §6 实数的完备性 • §7 实数的运算性质 • §8 记号和实数的进一步性质
• 自然数到有理数的逻辑扩展:
– 由自然数及其笛卡尔积建立整数使得加、减、 乘封闭;
– 由整数及其笛卡尔积建立有理数使得加、减、 乘和除封闭
• 自然数到有理数的直观扩展: 引入负数和 所有正整数份数
13
有理数的运算性质
• 加法和乘法满足交换律: a+b=b+a, ab= ba与结合律:a+(b+c)=(a+b)+c, a(bc)= (ab)c
• 乘法与加法之间满足分配律: a(b+c)= ab+ac
• 0是加法零元: a: a+0=a • 1是乘法单位元: a: a1=a • 每个数a有负数-a: a+(-a)=0 • 每个非零数a有倒数1/a: a(1/a)=1
14
有理数序的三歧性和稠密性
• 有理数序的三歧性: a,bQ, 则a<b, a=b, a>b 中有且仅有一种情形成立
• 建立数系理论为了完善数学分析理论 • 建立数系理论是要保证数学的真实性,非欧几何
的出现,几何失去了其真实性;数学在哲学意义 上的真实性应当建立在算术基础上 (Gauss 1817)
5
实数理论
• 是指以有理数系为基础建立实数理论 • 以往的直观想法: 有理数的极限, 然而必
须先存在才能谈极限
• William R. Hamilton, 1833, 1835提出无理 数的第一个处理, 以时间作为实数的基础. 提出用将有理数分成两类的方法定义无 理数