最新高中-初等函数图像性质总结

合集下载

高考数学中基本初等函数的图像及性质总结

高考数学中基本初等函数的图像及性质总结

高考数学中基本初等函数的图像及性质总结数学作为一门基础学科,在高中阶段的学习中占据非常重要的地位,而在高考数学中,基本初等函数更是赫赫有名。

基本初等函数包括常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数等,除了常数函数外,每个函数都有其特点的图像及性质,下面将对其进行总结。

幂函数幂函数是指函数y=x^a,其中a为常数,当a>0时,函数的图像经过(1,1),在第一象限上单调递增;当a<0时,在第一象限上单调递减。

当a=1时,函数为y=x,图像为一条直线。

此外,当a为偶数时,函数在第一象限上为关于y轴对称的,当a为奇数时,函数在第一象限上为关于坐标原点对称的。

指数函数指数函数是指函数y=a^x,其中a为正实数且不等于1。

当a>1时,函数的图像在x轴右侧单调递增,当0<a<1时,在x轴右侧单调递减。

其图像在y轴上通过(0,1),在x轴上不存在渐近线。

对数函数对数函数是指函数y=loga x,其中a为正实数且不等于1,且x>0。

当a>1时,函数在x轴右侧单调递增,当0<a<1时,在x轴右侧单调递减。

其图像在y轴上通过(0,0),在x轴上不存在渐近线。

三角函数三角函数包括正弦函数、余弦函数和正切函数。

正弦函数和余弦函数的图像均为周期函数,其周期为2π,其函数值均在[-1,1]之间。

正弦函数的图像在点(π/2,1)和(3π/2,-1)处取得极值;余弦函数的图像在点(0,1)和(π,-1)处取得极值。

正切函数是一个奇函数,其在点π/2、3π/2、5π/2等处有无穷大趋势。

反三角函数反三角函数包括反正弦函数、反余弦函数和反正切函数。

反正弦函数的定义域为[-1,1],值域为[-π/2,π/2];反余弦函数的定义域为[-1,1],值域为[0,π];反正切函数的定义域为实数集,值域为[-π/2,π/2]。

以上是基本初等函数的图像及性质总结,希望能够对数学学习者有所帮助。

高中数学-基本初等函数图像及性质小结

高中数学-基本初等函数图像及性质小结
奇偶性:-「要知道这些函数那
些事奇函数,那些是偶函数
周期性:
0.指数函数八
定义域:.,■‘I
有界性:
单调性:
若a>1函数单调增加;若0<a<1函数单调减少
奇偶性:
周期性:
、、亠
注意:
图形过(0,1)点暨aA0=1
直线y=0为函数图形的水平渐近线今后」"用的多 这个函数的图形,性质要记清楚
O.对数函数"司唯口几3>0卫圧1)
1、定义域::• r值域:'」‘)
有界性:
单调性:a>1时,函数单调增加;0<a<1时,函数单调减少
奇偶性:
周期性:
主要性质:与指数函数互为反函数,图形过(1,0)点,
直线x=0为函数图形的铅直渐近线
“丄「—- -e=2.7182……,无理数 经常用到以e为底的对数
基本初等函数
1•函数的五个要素:自变量,因变量,定义域,值域,对应法则
2.函数的四种特性:有界限,单调性,奇偶性,周期性复习的时候一定要从这
四个方面去研究函数。
3.每个函数的图像很重要
定义域:随a的不同而不同,但无论a取什么值,xAa在「’内总有定义 值域:随a的不同而不同 有界性:
单调性:若a>0,函数在;…内单调增加; 若a<0,函数在人-内单调减少。

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);常数函数(C y =)0≠C0=C平行于x 轴的直线y 轴本身 定义域R定义域R二、幂函数 αx y = ,x 是自变量,α是常数;1.幂函数的图像:2.幂函数的性质;性质函数x y =2xy =3x y =21xy =1-=x y定义域 R RR [0,+∞) {x|x ≠0} 值域 R [0,+∞) R [0,+∞) {y|y ≠0} 奇偶性 奇 偶 奇 非奇非偶 奇 单调性 增[0,+∞) 增 增 增(0,+∞) 减 (-∞,0] 减(-∞,0) 减公共点(1,1)xyOxy =2x y =3x y =1-=x y 21xy =O=y xCy =Oxyy1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。

且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。

函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。

三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.指数函数的性质;性质函数x a y =)1(>ax a y =)10(<<a定义域 R 值域(0,+∞) 奇偶性 非奇非偶公共点过点(0,1),即0=x 时,1=y单调性 在),(∞+∞-是增函数在),(∞+∞-是减函数1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。

六大基本初等函数图像及其性质(总12页)

六大基本初等函数图像及其性质(总12页)

六大基本初等函数图像及其性质(总12页)抛物线函数 y = x^2- 图像为开口朝上的抛物线,顶点在原点(0,0)- 奇函数,即f(-x) = -f(x)- 定义域为全体实数,值域为[0, +∞)- 极值点为顶点(0,0),不存在最大值和最小值- 函数单调递增且无拐点反比例函数 y = 1/x-tu.grid正比例函数 y = x- 图像为平面直线,通过原点(0,0)- 定义域为全体实数,值域为全体实数- 函数单调递增,无拐点- 斜率代表变化率,斜率越大表示变化速度越快,斜率为正则表示函数单调增加,斜率为负则表示函数单调减少指数函数 y = a^x (a>0且a≠1)- 图像为上凸曲线,通过点(0,1)- 定义域为全体实数,值域为(0,+∞)- 当a>1时,函数单调递增;当0<a<1时,函数单调递减- 随着自变量x的增大,函数值加速增大或减小对数函数y = logₐ(x) (a>0且a≠1)- 反指数函数,图像和指数函数的图像呈镜像关系- 定义域为(0,+∞),值域为全体实数- 当a>1时,函数单调递增;当0<a<1时,函数单调递减- 随着自变量x的增大,函数值增长速度逐渐变慢三角函数 y = sin(x), y = cos(x), y = tan(x)- 正弦函数图像为周期性上下波动的连续曲线,取值范围[-1, 1] - 余弦函数图像为周期性波动的连续曲线,取值范围[-1, 1]- 正弦函数、余弦函数的定义域为全体实数,值域为[-1, 1]- 正弦函数、余弦函数是周期性函数,周期为2π- 正切函数图像为周期性波动的连续曲线,定义域为实数集合-{(2n + 1)π/2 | n∈Z},值域为全体实数这些基本初等函数的图像和性质对数学的学习和应用有着重要的作用,掌握这些函数的图像及其性质,有助于理解数学问题的规律,并能够在实际问题中进行分析和求解。

高数总结:基本初等函数图像及其性质

高数总结:基本初等函数图像及其性质

⾼数总结:基本初等函数图像及其性质基本初等函数图像及其性质⼀、常值函数(也称常数函数)y =C(其中C 为常数);α1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。

且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。

函数的定义域为除去x=0的所有实数; 3)当α为正有理数n4)如果m>n 图形于x 轴相切,如果m5)当α为负有理数时,n 为偶数时,函数的定义域为⼤于零的⼀切实数;n 为奇数时,定义域为去除x=0以外的⼀切实数。

三、指数函数xa y =(x 是⾃变量,a 是常数且0>a ,1≠a ),定义域是R ;[⽆界函数]1.指数函数的图象:2.1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上⽅; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。

1(3.(选,补充)指数函数值的⼤⼩⽐较*N ∈a ;a.底数互为倒数的两个指数函数x a x f =)(,xa x f ?=1)(的函数图像关于y 轴对称。

b.1.当1>a 时,a 值越⼤,xa y =的图像越靠近y 轴;b.2.当10<的图像越远离y 轴。

4.指数的运算法则(公式);a.整数指数幂的运算性质),,0(Q n m a ∈≥;(1) n m n m a a a +=?m n m aa a -=÷(3)()()mn nm n m aa a ==(4) ()nnnba ab =b.根式的性质; (1)()a a nn= ; (2)当n 为奇数时,a a nn =当n 为偶数时,<-≥==)0(0)(a a a a a a nnc.分数指数幂;(1))1,,,0(*>∈>=n Z n m a a a n m n m(2))1,,,0(11*>∈>==-n Z n m a a amnm nm yxf x xxx g ?=1)(四、对数函数x y a log =(a 是常数且1,0≠>a a ),定义域),0(+∞∈x [⽆界]1.对数的概念:如果a(a >0,a ≠1)的b 次幂等于N ,就是 N a b=,那么数b 叫做以a 为底N 的对数,记作b N a =log ,其中a 叫做对数的底数,N 叫做真数,式⼦N a log 叫做对数式。

基本初等函数图像及性质小结

基本初等函数图像及性质小结

为高等数学小结的——基本初等函数1.函数的五个要素:自变量,因变量,定义域,值域,对应法则2.函数的四种特性:有界限,单调性,奇偶性,周期性复习的时候一定要从这四个方面去研究函数。

3.每个函数的图像很重要. 幂函数(a为实数)定义域:随a的不同而不同,但无论a取什么值,x^a在内总有定义。

值域:随a的不同而不同有界性:单调性:若a>0,函数在内单调增加;若a<0,函数在内单调减少。

奇偶性:要知道这些函数那些事奇函数,那些是偶函数周期性:每种函数的图像.. 指数函数定义域:值域:有界性:单调性:若a>1 函数单调增加;若0<a<1 函数单调减少奇偶性:周期性:注意:图形过(0,1)点暨 a^0=1 直线y=0为函数图形的水平渐近线今后用的较多这个函数的图形,性质要记清楚1、. 对数函数1、定义域:值域:有界性:单调性:a>1时,函数单调增加;0<a<1时,函数单调减少奇偶性:周期性:主要性质:与指数函数互为反函数,图形过(1,0)点,直线x=0为函数图形的铅直渐近线e=2.7182……,无理数经常用到以e为底的对数. 三角函数强调:图像定义域:值域:[-1,1]有界性:[-1,1] 有界函数单调性:(-T/2,T/2)单调递增奇偶性:奇函数周期性:以为周期的周期函数;定义域:值域:[-1,1] 有界性:[-1,1] 有界函数单调性:奇偶性:偶函数周期性:定义域:值域:有界性:单调性:奇偶性:奇函数周期性:,定义域:值域:有界性:单调性:奇偶性:奇函数周期性:,. 反三角函数定义域: [-1,1] 值域:有界性:单调性:单调增加奇偶性:奇函数周期性:---定义域值域:定义域: [-1,1] 值域:有界性:单调性:单调减少奇偶性:周期性:---定义域定义域:值域:有界性:单调性:单调增加奇偶性:奇函数周期性:---定义域定义域:值域:有界性:单调性:单调减少;奇偶性:周期性:以上是五种基本初等函数,关于它们的常用运算公式都应掌握。

六大基本初等函数图像及性质

六大基本初等函数图像及性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);常数函数(C y =)0≠C0=C平行于x 轴的直线y 轴本身 定义域R定义域R二、幂函数 αx y = ,x 是自变量,α是常数;1.幂函数的图像:2.幂函数的性质;性质函数x y =2x y =3x y =21xy =1-=x y定义域 R R R [0,+∞) {x|x ≠0} 值域 R [0,+∞) R [0,+∞) {y|y ≠0} 奇偶性 奇 偶 奇 非奇非偶 奇 单调性 增[0,+∞) 增 增 增(0,+∞) 减 (-∞,0] 减(-∞,0) 减公共点(1,1)xyOxy =2x y =3x y =1-=xy 21xy =O=y xCy =Oxyy1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。

且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。

函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。

三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.指数函数的性质;性质函数x a y =)1(>ax a y =)10(<<a定义域 R 值域(0,+∞) 奇偶性 非奇非偶公共点过点(0,1),即0=x 时,1=y单调性在),(∞+∞-是增函数 在),(∞+∞-是减函数 1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。

六大基本初等函数图像与性质

六大基本初等函数图像与性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C(其中C 为常数);α1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。

且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。

函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。

三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。

1(3.(选,补充)指数函数值的大小比较*N ∈a ;a.底数互为倒数的两个指数函数x a x f =)(,xa x f ⎪⎭⎫ ⎝⎛=1)(的函数图像关于y 轴对称。

b.1.当1>a 时,a 值越大,xa y =的图像越靠近y 轴;b.2.当10<<a 时,a 值越大,x a y =的图像越远离y 轴。

4.指数的运算法则(公式);a.整数指数幂的运算性质),,0(Q n m a ∈≥;(1) n m n m a a a +=⋅(2)nm n m aa a -=÷(3)()()mn nm n m aa a ==(4) ()nnnba ab =b.根式的性质; (1)()a a nn= ; (2)当n 为奇数时,a a nn =当n 为偶数时,⎩⎨⎧<-≥==)0(0)(a a a a a a nnc.分数指数幂;(1))1,,,0(*>∈>=n Z n m a a a n m nm(2))1,,,0(11*>∈>==-n Z n m a a aanmnm nm yxf x xxx g ⎪⎫⎛=1)(四、对数函数x y a log =(a 是常数且1,0≠>a a ),定义域),0(+∞∈x [无界]1.对数的概念:如果a(a >0,a ≠1)的b 次幂等于N ,就是 N a b=,那么数b 叫做以a 为底N 的对数,记作b N a =log ,其中a 叫做对数的底数,N 叫做真数,式子N a log 叫做对数式。

初等函数图像知识点总结

初等函数图像知识点总结

初等函数图像知识点总结在学习初等函数的过程中,图像是一个非常重要的概念。

初等函数的图像可以帮助我们更直观地理解函数的性质和特点。

在本文中,我们将总结初等函数图像的相关知识点,包括函数图像的基本形状、对称性质、特殊点以及常见的初等函数图像等内容。

一、函数图像的基本形状1. 直线函数的图像直线函数的图像是一条直线,其一般方程为y = kx + b,其中k和b分别代表斜率和截距。

斜率k决定了直线的倾斜方向和程度,当k>0时,直线向右上方倾斜;当k<0时,直线向右下方倾斜。

截距b决定了直线与y轴的交点,当b>0时,直线与y轴的交点在y轴上方;当b<0时,直线与y轴的交点在y轴下方。

2. 平方函数的图像平方函数的图像是一个开口向上或向下的抛物线,其一般方程为y = ax^2 + bx + c,其中a决定了抛物线的开口方向和程度。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

二次函数的顶点坐标为(-b/2a, c),可以通过顶点坐标确定抛物线的位置。

3. 绝对值函数的图像绝对值函数的图像是一条V形的折线,其一般方程为y = |x|,表示x的绝对值。

函数图像在原点处有一个拐点,称为折点,折点是函数图像的特殊点之一。

4. 根号函数的图像根号函数的图像是一条从原点开始的曲线,其一般方程为y = √x,函数图像在x轴的正半轴上。

根号函数的图像是一个开口向右的半圆形曲线。

5. 指数函数的图像指数函数的图像是一条增长或衰减的曲线,其一般方程为y = a^x,其中a>0且a≠1。

指数函数的图像在坐标轴之间没有交点,增长函数的图像是向上的曲线,衰减函数的图像是向下的曲线。

6. 对数函数的图像对数函数的图像是一条先增后减的曲线,其一般方程为y = log_ax,其中a>0且a≠1。

对数函数的图像在x轴的正半轴上,对数函数的图像与指数函数的图像是关于y=x对称的。

二、函数图像的对称性质1. 奇偶性奇函数的图像关于原点对称,即f(-x)=-f(x),即图像关于原点对称。

基本初等函数图像及性质

基本初等函数图像及性质

基本初等函数图像及性质六大基本初等函数图像及其性质一、常数函数(也称常值函数)y=C(其中C为常数);常数函数(y=C)是平行于x轴的直线,定义域为R,值域为{C},非奇非偶,单调性为不变,公共点为(0,C)。

二、幂函数y=x^α,x是自变量,α是常数;1.幂函数的图像:当α为正整数时,函数的图像都经过原点,并且在原点处与x轴相切。

当α为奇数时,图像关于原点对称;当α为偶数时,图像关于y轴对称。

2.幂函数的性质:函数。

定义域。

值域。

奇偶性。

单调性。

公共点y=x^2.R。

[0,+∞)。

偶。

增。

(0,0)y=x。

R。

R。

非奇非偶。

增。

(0,0)y=x^3.R。

R。

奇。

增。

(0,0)y=x^-1.{x|x≠0}。

{y|y≠0}。

奇。

(-∞,0)减。

(-1,0)∪(0,1)三、指数函数y=a^x(a>1且a≠1),定义域为R,为无界函数。

1.指数函数的图像:当a>1时,图像是单调增的曲线,经过点(0,1);当0<a<1时,图像是单调减的曲线,也经过点(0,1)。

2.指数函数的性质:函数。

定义域。

值域。

奇偶性。

单调性。

公共点y=a^x(a>1)。

R。

(0,+∞)。

非奇非偶。

增。

(0,1)y=a^x(0<a<1)。

R。

(0,1)。

非奇非偶。

减。

(0,1)本文介绍了指数函数和对数函数的基本概念和性质。

首先,介绍了指数函数的图像和比较大小的方法。

当底数互为倒数时,两个指数函数的图像关于y轴对称。

当底数大于1时,指数函数的值随着底数的增大而增大;当底数小于1时,指数函数的值随着底数的增大而减小。

其次,介绍了指数的运算法则,包括整数指数幂的运算性质和分数指数幂的运算性质。

其中,整数指数幂的运算性质包括指数相加、相减和相乘的规律;分数指数幂的运算性质包括分数指数幂的乘方和除法的规律。

接着,介绍了对数函数的概念和性质。

对数函数是指底数为常数且大于1的指数函数的反函数。

常用对数是以10为底的对数,自然对数是以无理数e为底的对数。

高中数学-函数图像详解

高中数学-函数图像详解

高中数学-函数图像详解基本初等函数的图像1. 一次函数性质:一次函数图像是直线,当k>0时,函数单调递增;当k<0时,函数单调递减2. 二次函数性质:二次函数图像是抛物线,a决定函数图像的开口方向,判别式b^2-4ac 决定了函数图像与x轴的交点,对称轴两边函数的单调性不同。

3. 反比例函数性质:反比例函数图像是双曲线,当k>0时,图像经过一、三象限;当k<0时,图像经过二、四象限。

要注意表述函数单调性时,不能说在定义域上单调,而应该说在(-∞,0),(0,∞)上单调。

4.指数函数当0<a<b<1<c<d时,指数函数的图像如下图< span>不同底的指数函数图像在同一个坐标系中时,一般可以做直线x=1,与各函数的交点,根据交点纵坐标的大小,即可比较底数的大小。

5.对数函数当底数不同时,对数函数的图像是这样变换的6. 幂函数y=x^a性质:先看第一象限,即x>0时,当a>1时,函数越增越快;当0<a<1时,函数越增越慢;当a<0时,函数单调递减;然后当x<0时,根据函数的定义域与奇偶性判断函数图像即可。

< span>7. 对勾函数对于函数y=x+k/x,当k>0时,才是对勾函数,可以利用均值定理找到函数的最值。

函数图形的变换注意:对于函数图像的变换,有的时候,看到解析式,可能会有两种以上的变换,尤其是针对x轴上的,那么此时,一定要根据上面的规则,判断好顺序,否则顺序错了,可能就没办法经过变换得到了!例如:画出函数y=ln|2-x|的图像通过研究这个函数解析式,我们知道此函数是由基本初等函数y=lnx通过变换而来,那么这个函数经过了几步变换呢?变换的顺序又是如何?下面我们一起来看一看。

通过解析式x上附加的东西,我们会发现,会有对称变换,x前面加了负号,还有翻折变换,x上面还有绝对值,还有平移变换,前面加了一个2,既然有3种变换,那么顺序如何呢?牢记住一点:针对x轴上的变换,那就一定要看x这个符号有啥变化。

(完整版)基本初等函数图像及性质大全(初中高中),推荐文档

(完整版)基本初等函数图像及性质大全(初中高中),推荐文档

1、一次函数与二次函数(一)一次函数(二)二次函数①一般式:2()(0)f x ax bx c a =++≠ ②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.①.二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,24b ac b a a--②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2ba-+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2b a -+∞上递减,当2b x a =-时,2max 4()4ac b f x a-=.二、幂函数过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).三、指数函数(1)根式的概念:如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:1(0,,,m m nn a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义.(3)运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)rrrab a b a b r R =>>∈(4)指数函数函数名称指数函数四、对数函数(1)对数的定义: ①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数. ②负数和零没有对数.③对数式与指数式的互化: log (0,1,0)x a x N a N a a N =⇔=>≠>.常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).①加法:log log log ()a a a M N MN += ②减法:log log log a a aMM N N-=③数乘:log log ()naan M M n R =∈ ④log a Na N=⑤log log (0,)b n a a nM M b n R b =≠∈⑥换底公式:log log (0,1)log b a b N N b b a =>≠且(5)对数函数五、反函数设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x fy -=改写成1()y f x -=,并注明反函数的定义域.①原函数()y f x =与反函数1()y fx -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y fx -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.六、三角函数的图像和性质(一)正弦与余函数的图像与性质函数xy sin =xy cos =图像定域义R R值域[]1,1-[]1,1-最值2,1 22,1 2x k y k Zx k y k Zππππ=+=∈=-+=-∈最大最小时,时,2, 1 2,1x k y k Zx k y k Z πππ==∈=+=-∈最大最小时,时,单调性[2,2]223[2,2]22Zk k k k k ππππππππ-++++∈在每个上递增在每个上递减[2,2][2,2]Zk k k k k ππππππ-++∈在每个上递增在每个上递减奇偶性奇函数偶函数周期性是周期函数,2为最小正周期π是周期函数,2为最小正周期π对称性对称中心(,0)k π,:,()2x k k Z ππ=+∈对称轴对称中心(,0)2k ππ+,:,()x k k Z π=∈对称轴2. 正切与余切函数的图像与性质函数x y tan =xy cot =图像定域义{|,}2x x R x k k Z ππ∈≠+∈且{|,}x x R x k k Z ππ∈≠+∈且值域RR单调性(,)22Zk k k ππππ-++∈在每个上递增(,)Zk k k πππ+∈在每个上递减奇偶性奇函数奇函数周期性是周期函数,为最小正周期π是周期函数,为最小正周期π对称性对称中心(,0)2k π对称中心(,0)2k π七、反三角函数的图像与性质1. 反正弦与反余函数的图像与性质函数反正弦函数arcsin y x =是sin ,22y x x ππ⎡⎤=∈-⎢⎥⎣⎦,的反函数反余弦函数arccos y x=是[]cos 0,y x x π=∈,的反函数图像定域义[]1,1-[]1,1-值域,22ππ⎡⎤-⎢⎥⎣⎦[]0,π单调性[1,1]-+在上递增[1,1]-+在上递减奇偶性奇函数非奇非偶周期性无无对称性对称中心(0,0)对称中心(0,)2π2. 反正切与反余切函数的图像与性质函数反正切函数arctan y x =是tan (,)22y x x ππ=∈-,的反函数反余切函数arccot y x =是()cot 0,y x x π=∈,的反函数图像定域义(,,)-∞+∞(,,)-∞+∞值域,22ππ⎛⎫- ⎪⎝⎭()0,π单调性(,,)-∞+∞在上递增(,,)-∞+∞在上递减奇偶性奇函数非奇非偶周期性无无对称性对称中心(0,0)对称中心(0,π/2)11。

(word完整版)六大基本初等函数图像与性质

(word完整版)六大基本初等函数图像与性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C(其中C 为常数);α1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。

且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。

函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。

三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。

1(3.(选,补充)指数函数值的大小比较*N ∈a ;a.底数互为倒数的两个指数函数x a x f =)(,xa x f ⎪⎭⎫ ⎝⎛=1)(的函数图像关于y 轴对称。

b.1.当1>a 时,a 值越大,xa y =的图像越靠近y 轴;b.2.当10<<a 时,a 值越大,x a y =的图像越远离y 轴。

4.指数的运算法则(公式);a.整数指数幂的运算性质),,0(Q n m a ∈≥;(1) n m n m a a a +=⋅(2)nm n m aa a -=÷(3)()()mn nm n m aa a ==(4) ()nnnba ab =b.根式的性质; (1)()a a nn= ; (2)当n 为奇数时,a a nn =当n 为偶数时,⎩⎨⎧<-≥==)0(0)(a a a a a a nnc.分数指数幂;(1))1,,,0(*>∈>=n Z n m a a a n m nm(2))1,,,0(11*>∈>==-n Z n m a a aanmnm nm yxf x xxx g ⎪⎫⎛=1)(四、对数函数x y a log =(a 是常数且1,0≠>a a ),定义域),0(+∞∈x [无界]1.对数的概念:如果a(a >0,a ≠1)的b 次幂等于N ,就是 N a b=,那么数b 叫做以a 为底N 的对数,记作b N a =log ,其中a 叫做对数的底数,N 叫做真数,式子N a log 叫做对数式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新高中-初等函数图像性质总结
一、指数函数)10(≠>=a a a y x

1、指数函数的图象和性质
0 < a < 1
a > 1
图 象
性 质
定义域 R
值域
(0 , +∞)
定点
过定点(0,1),即x = 0时,y = 1
(1)a > 1,当x > 0时,y > 1;当x < 0时,0 < y < 1。

(2)0 < a < 1,当x > 0时,0 < y < 1;当x < 0时,y > 1。

单调性 在R 上是减函数 在R 上是增函数 对称性
x y a =和x y a -=关于y 轴对称
2、第一象限:底数越大,图像越高
二、x
y a log =
1、对数函数的图象和性质 0 < a < 1 a > 1


定义域 (0 , +∞)
值域
R 性 质
(1)过定点(1,0),即x = 1时,y = 0 (2)在R 上是减函数 (2)在R 上是增函数
(3)同正异负,
即0 < a < 1 , 0 < x < 1或a > 1 , x > 1时,log a x > 0; 0 < a < 1 , x > 1或a > 1 , 0 < x < 1时,log a x < 0。

2、当a>1时,a 越大,图像越靠近x 轴; 当0<a<1时,a 越大,图像越远离x 轴。

三、幂函数性质
1、所有的幂函数图象都过点(1,1)。

除原点外,任何幂函数图像与坐标轴都不相交,任何幂函数图像都不过第四象限.;
注:当α>0时过定点(0,0)和(1,1);
当α<0时过定点(1,1)
2、α>0时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数
3、α<0时,幂函数的图象在区间(0,+∞)上是减函数.
4、任何两个幂函数最多有三个公共点
5、图像性
质:
在第一象限幂函数图像表现为:
α>0时,α越大,图像越陡;
α<0时,α越大,图像越靠近y 轴远离x 轴。

四、一元二次函数:
1、图像和性质
单调性
在x ∈(-∞,-b
2a
]上
单调递减
在x ∈[-b 2a ,+∞)上
单调递增
在x ∈(-∞,-b
2a ]上
单调递增
在x ∈[-b
2a ,+∞)上
单调递减
奇偶性 当b =0时为偶函数,b ≠0时为非奇非偶函数
顶点 (-b 2a ,4ac -b 2
4a
) 对称性
图象关于直线 x =-b
2a
成轴对称图形
2顶点式:f(x)=a(x -h)2+k ,定点坐标(h,k )
分解式:f(x)=a(x -x1)(x -x2), 一元二次方程的两根为x1,x2 一般式:f(x)=ax2+bx +c ,(a ≠0).
1.一次函数(包括正比例函数)
最简单最常见的函数,在平面直角坐标系上的图象为直线。

定义域(下面没有说明的话,都是在无特殊要求情况下的定义域):R 值域:R 奇偶性:无 周期性:无
解析式 f (x )=ax 2+bx +
c (a >0)
f (x )=ax 2+bx +
c (a <0)
图象
定义域 (-∞,+∞) (-∞,+∞) 值域
[4ac -b 2
4a
,+∞)
(-∞,4ac -b
2
4a
]
平面直角坐标系解析式(下简称解析式):
①ax+by+c=0[一般式]
②y=kx+b[斜截式]
(k为直线斜率,b为直线纵截距,正比例函数b=0)
③y-y1=k(x-x1)[点斜式]
(k为直线斜率,(x1,y1)为该直线所过的一个点)
④(y-y1)/(y2-y1)=(x-x1)/(x2-x1)[两点式]
((x1,y1)与(x2,y2)为直线上的两点)
⑤x/a-y/b=0[截距式]
(a、b分别为直线在x、y轴上的截距)
解析式表达局限性:
①所需条件较多(3个);
②、③不能表达没有斜率的直线(平行于x轴的直线);
④参数较多,计算过于烦琐;
⑤不能表达平行于坐标轴的直线和过圆点的直线。

倾斜角:x轴到直线的角(直线与x轴正方向所成的角)称为直线的倾斜角。

设一直线的倾斜角为a,则该直线的斜率k=tg(a)。

2.二次函数:
题目中常见的函数,在平面直角坐标系上的图象是一条对称轴与y轴平行的抛物线。

定义域:R
值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)
奇偶性:偶函数
周期性:无
解析式:
①y=ax^2+bx+c[一般式]
⑴a≠0
⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;
⑶极值点:(-b/2a,(4ac-b^2)/4a);
⑷Δ=b^2-4ac,
Δ>0,图象与x轴交于两点:
([-b+√Δ]/2a,0)和([-b+√Δ]/2a,0);
Δ=0,图象与x轴交于一点:
(-b/2a,0);
Δ<0,图象与x轴无交点;
②y=a(x-h)^2+t[配方式]
此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b^2)/4a);
3.反比例函数
在平面直角坐标系上的图象为双曲线。

定义域:(负无穷,0)∪(0,正无穷)
值域:(负无穷,0)∪(0,正无穷)
奇偶性:奇函数
周期性:无
解析式:y=1/x
4.幂函数
y=x^a
①y=x^3
定义域:R
值域:R
奇偶性:奇函数
周期性:无
图象类似于将一个过圆点的二次函数的第四区间部分关于x轴作轴对称
后得到的图象(类比,这个方法不能得到三次函数图象)
②y=x^(1/2)
定义域:[0,正无穷)
值域:[0,正无穷)
奇偶性:无(即非奇非偶)
周期性:无
图象类似于将一个过圆点的二次函数以原点为旋转中心,顺时针旋转
90°,再去掉y轴下方部分得到的图象(类比,这个方法不能得到三次
函数图象)
5.指数函数
在平面直角坐标系上的图象(太难描述了,说一下性质吧……)
恒过点(0,1)。

联系解析式,若a>1则函数在定义域上单调增;若0<a<1 则函数在定义域上单调减。

定义域:R
值域:(0,正无穷)
奇偶性:无
周期性:无
解析式:y=a^x
a>0
性质:与对数函数y=log(a)x互为反函数。

*对数表达:log(a)x表示以a为底的x的对数。

6.对数函数
在定义域上的图象与对应的指数函数(该对数函数的反函数)的图象关于直线y=x轴对称。

恒过定点(1,0)。

联系解析式,若a>1则函数在定义域上单调增;若0<a <1 则函数在定义域上单调减。

定义域:(0,正无穷)
值域:R
奇偶性:无
周期性:无
解析式:y=log(a)x
a>0
性质:与对数函数y=a^x互为反函数。

7.三角函数
⑴正弦函数:y=sinx
图象为正弦曲线(一种波浪线,是所有曲线的基础)
定义域:R
值域:[-1,1]
奇偶性:奇函数
周期性:最小正周期为2π
对称轴:直线x=kπ/2 (k∈Z)
中心对称点:与x轴的交点:(kπ,0)(k∈Z)
⑵余弦函数:y=cosx
图象为正弦曲线,由正弦函数的图象向左平移π/2个单位(最小平移量)所得。

定义域:R
值域:[-1,1]
奇偶性:偶函数
周期性:最小正周期为2π
对称轴:直线x=kπ (k∈Z)
中心对称点:与x轴的交点:(π/2+kπ,0)(k∈Z)
⑶正切函数:y=tg x
图象的每个周期单位很像是三次函数,很多个,均匀分布在x轴上。

定义域:{x│x≠π/2+kπ}
值域:R
奇偶性:奇函数
周期性:最小正周期为π
对称轴:无
中心对称点:与x轴的交点:(kπ,0)(k∈Z)。

相关文档
最新文档