完整word版相交线与平行线精选综合提高试题1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、教学内容:
相交线与平行线综合提高
1.了解对顶角的概念,掌握其性质,并会用它们进行推理和计算.
2.了解垂线、垂线段等概念,了解垂线段最短的性质,体会点到直线距离的意义.
3.知道过一点有且仅有一条直线垂直于已知直线,会用三角尺或量角器过一点画一条直线的垂线.
4.知道两直线平行同位角相等,并进一步探索平行线的特征.
5.知道过直线外一点有且仅有一条直线平行于已知直线.会用三角尺和直尺过已知直线外一点画这条直线的平行线.
6.掌握平行线的三个判定方法,并会用它们进行直线平行的推理.
二、知识要点:
1.两条直线的位置关系
(1)在同一平面内,两条直线的位置关系有两种:相交与平行.
(2 )平行线:在同一平面内,不相交的两条直线叫平行线.
2.几种特殊关系的角
(1 )余角和补角:如果两个角的和是直角,称这两个角互为余角.如果两个角的和是平角,称这两个角互为补角.
(2 )对顶角:
①定义:一个角的两边分别是另一个角两边的反向延长线,这两个角叫对顶角.
②性质:对顶角相等.
(3)同位角、内错角、同旁内角
两条直线分别与第三条直线相交,构成八个角.
①在两条直线之间并且在第三条直线的两旁的两个角叫做内错角.
②在两条直线的同一侧并且在第三条直线同旁的两个角叫做同位角.
③在两条直线之间并且在第三条直线同旁的两个角叫做同旁内角.
3.主要的结论
(1)垂线
①过一点有且只有一条直线与已知直线垂直.
②直线外一点与直线上各点连结的所有线段中,垂线段最短.简称:垂线段最短.
(2)平行线的特征及判定
平行线的判定平行线的特征
同位角相等,两直线平行内错
角相等,两直线平行同旁内角互
补,两直线平行
两直线平行,同位角相等
两直线平行,内错角相等两直线平
行,同旁内角互补
经过直线外一点,有且只有一条直
与平行线综合提高
:②特殊型(垂直,如图②)
C
E
A B
C D
F
4.几个概念
(1 )垂线段:过直线外一点,作已知直线的垂线,这点和垂足之间的线段.
(2)点到直线的距离:从直线外一点到这条直线的垂线段的长度.
5.几个基本图形
(1 )相交线型.①一般型(如图①)
(2 )三线八角.①一般型(如图①):②特殊型(平行,如图②)
E r
F
①
三、重点难点:
重点有两个:一方面要掌握关于相交线和平行线的一些基本事实,另一方面学会借助三角尺上的直角或量角器画已知直线的垂线,用移动三角尺的方法画平行线•难点是是利用对顶角的性质、平行线的特征、两直线平行的条件等进行推理和计算.
四、考点分析:
考查(1)对顶角的性质;(2)平行线的识别方法;(3)平行线的特征,其中依据平行线的识别与特征解决一类与平行线有关的几何问题是历届中考命题的重要考点.常见题型有填空题、选择题和解答题,单纯考查一个知识点的题目并不难,属于中低档题,将平行线的特征与其他知识综合起来考查的题目难度较大,属高档题.
【典型例题】
例1.如图所示,已知FC // AB // DE,/a:/ D :/ B = 2 : 3 : 4,求/a、/ D、/ B 的度数.
C 分析:由条件/a:
/ D :/ B = 2 : 3:
4 .可以分别设出/a、/ D、/ B,再根据题目给出的条件建
B
①
立方程求解.
解:设/a= 2x,/ D = 3x,/ B= 4x.
•/ FC// AB // DE,
.•. / 2+/ B= 180°,/ 1 + / D = 180 ° ,
••• / 2= 180° —4x,/ 1= 180°—3x,
又••• / 1+/a+/ 2= 180°,
•••180°—3x+2x+ 180 ° —4x= 180°,
••• 5x= 180° , x= 36°,
.•./a= 2x= 72°,/ D = 3x= 108°,/ B = 4x = 144° .
评析:解答这类计算题不仅要熟悉图形的性质,还要善于进行等量转化,把待求的角逐步和已知条件建立起联系来,当待求结论要经过复杂过程才能求得时,一定要思路清晰、叙述表达严密.
例2.如图所示,直线a // b,则/ A =
分析:已知条件a// b能转化为三线八角,过
内错关系转化),可求/ A.由AD // a, a // b,可知AD
// b,由两直线平行内错角相等得:/ =28°,/ DAE =
50°, •/ EAB = 50°—28°= 22°.
解:22°
评析:用平行线三线八角把已知角转化成以A为顶点的角即可. 内角互补,两直线平行;④平行于同一条直线的两条直线互相平行;⑤垂直于同一条直线的两条直线互相平行.
例4.试说明:两条平行线被第三条直线所截,一对内错角的平分线互相平行. 分析:先根据题意画出图形,标注字母,找出已知条件和问题,再进行说明.
解:已知:如图所示,
明GM // HN .
••• GM、HN 分别平分/ BGF、/ EHC (已知),
•/ 1=/ BGF , / 2 = / EHC (角平分线定义).
•/ AB // CD ,
•••/ BGF = / EHC (两直线平行,内错角相等).
•••/ 1=/ 2.
•••GM // HN (内错角相等,两直线平行).
评析:(1)上题把内错角平分线改为同位角平分线,原结论也成立,请同学们自己试着解一解. 此题为文字题,首先应根据题意画出图形,再根据已知条件和结论结合图形写出解题过程.
例5.如图所示,已知CE // DF,说明/ ACE = / A +/ ABF .
例3.已知:如图所示,DF // AC , / 1 = / 2 .试说明
分析:要说明DE // AB,可以证明/ 1 = / A,而由DF // AC ,有/ 2 = / A,又因为/ 1 = / 2,故有/ 从而结论成立.
•/ DF // AC (已知),
2=/ A (两直线平行,同位角相等).
1 = /
2 (已知),
1 = / A (等式性质),
••• DE // AB (同位角相等,两直线平行).
评析:说明两直线平行的方法有:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁
分析:结论中/ ACE , / A与/ ABF在三个顶点处,条件CE // DF不能直接运用,结论形式启示我们用割补
法,即构造一个角等于/ A + / ABF,因此想到在点A处补上一个/ GAB =/ ABF,只要GA // DF
即可,同时可得GA // CE,/ GAC = / ACE,结论便成立.
解:过A作AG // DF ,
•••/ GAB = / ABF (两直线平行,内错角相等)
又••• AG // DF , CE/ DF (已知)
••• AG // CE (平行于同一直线的两条直线互相平行)
•/ GAC = / ACE (两直线平行,内错角相等)
作AD // a,那么已知的两个角可转换到顶点 A (都用
DAB =/ ABE
1 = / A,
解:
•••/
•••/
•••/a
b
A
a
b
HN分别平分/ BGF、/ EHC.说
DE //
E
F