2005年试题

合集下载

2005年高考数学试卷及答案

2005年高考数学试卷及答案

2005年高考理科数学全国卷Ⅲ试题及答案(四川陕西甘肃等地区用)源头学子小屋本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题:(本大题共12个小题,每小题5分,共60分1.已知α是第三象限的角,则2α是( ). A.第一或二象限的角 B.第二或三象限的角 C.第一或三象限的角 D.第二或四象限的角2. 已知过点A(-2,m)和B(m,4)的直线与直线2x+y-1=0平行,则m 的值为( ).A.0B.-8C.2D.10 3.在(x-1)(x+1)8的展开式中x 5的系数是( )A.-14B.14C.-28D.284.设三棱柱ABC-A 1B 1C 1的体积是V ,P.Q 分别是侧棱AA 1上的点,且PA=QC 1,则四棱锥B-APQC 的体积为( )A.V 61B.V 41C.V 31D.V 21 5.)3x 4x 22x 3x 1(lim 221x +--+-→=( )A.-21B.21C.-61D.61 6.若55ln ,33ln ,22ln ===c b a ,则( ) A.a<b<c B.c<b<a C.c<a<b D.b<a<c 7.设0≤x<2π,且x 2sin 1-=sinx-cosx, 则( )A.0≤x ≤πB.4π≤x ≤47π C.4π≤x ≤45π D.2π≤x ≤23π 8.=∙+xx x x 2cos cos 2cos 12sin 22( ) A.tanx B.tan2x C.1 D.219.已知双曲线1222=-y x 的焦点为F 1.F 2,点M 在双曲线上且021=∙MF ,则点M 到x 轴的距离为( )球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径A.34B.35C.332 D.3 10.设椭圆的两个焦点分别为F 1.F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若三角形F 1PF 2为等腰直角三角形,则椭圆的离心率为( )A.22 B.212- C.22- D.12- 11.不共面的四个定点到平面α的距离都相等,这样的平面α共有( )个 A.3 B.4 C.6 D.7 12.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F 共16个计数符号这些符号与十进制的数的对应关系如下表:例如用十六进制表示:E+D=1B ,则A ×B=()A.6EB.72C.5FD.B0二、填空题: 本大题共4小题,每小题4分,共16分,把答案填在题中横线上 13.已知复数z 0=3+2i, 复数z 满足z ∙z 0=3z+z 0,则z=14.已知向量),10,k (OC ),5,4(OB ),12,k (OA -==,且A.B.C 三点共线,则k= . 15.设l 为平面上过点(0,1)的直线,l 的斜率等可能地取-22,-3,-25,0,25,3, 22, 用ξ表示坐标原点到l 的距离,则随机变量ξ的数学期望E ξ=16.已知在△ABC 中,∠ACB=90°,BC=3,AC=4,P 是AB 上的点,则P 到AC.BC 距离的的乘积的最大值是 三、解答题(共76分) 17.(本小题满分12分)甲.乙.丙三台机器是否需要照顾相互之间没有影响已知在某一个小时内,甲.乙都需要照顾的概率是0.05,甲.丙都需要照顾的概率是0.05,乙.丙都需要照顾的概率是0.1251)求甲.乙.丙三台机器在这一个小时内各自需要照顾的概率? 2)计算在这一个小时内至少有一台需要照顾的概率?18.(本小题满分12分)四棱锥V-ABCD 中,底面ABCD 是正方形,侧面V AD 是正三角形, 平面V AD ⊥底面ABCD 1)求证AB ⊥面V AD ;2)求面VAD 与面VDB 所成的二面角的大小.19.(本小题满分12分)ABC ∆中,内角A .B .C 的对边分别为a .b .c ,已知a .b .c 成等比数列,且B cos 4=(1)求C A cot cot +的值; (2)若23=⋅,求c a +的值20.(本小题满分12分)在等差数列{a n }中,公差d ≠0,且a 2是a 1和a 4的等比中项,已知a 1,a 3,,a ,a ,a ,a n321k k k k 成等比数列,求数列k 1,k 2,k 3,…,k n的通项k n21.(本小题满分14分)设()11,y x A .()22,y x B 两点在抛物线22x y =上,l 是AB 的垂直平分线1)当且仅当21x x +取何值时,直线l 经过抛物线的焦点F ?证明你的结论; 2)当直线l 的斜率为2时,求l 在y 轴上截距的取值范围22.(本小题满分12分)已知函数f(x)=],1,0[x ,x27x 42∈--(1)求函数f(x)的单调区间和值域;(2)设a ≥1, 函数g(x)=x 3-3a 2x-2a, x ∈[0,1], 若对于任意x 1∈[0,1], 总存在x 0∈[0,1], 使得g((x 0) =f(x 1)成立,求a 的取值范围2005年高考理科数学全国卷Ⅲ试题及答案(必修+选修Ⅱ) (四川陕西甘肃等地区用)参考答案13.12-14.315.716.317.(本小题满分12分)甲.乙.丙三台机器是否需要照顾相互之间没有影响已知在某一个小时内,甲.乙都需要照顾的概率是0.05,甲.丙都需要照顾的概率是0.05,乙.丙都需要照顾的概率是0.1251)求甲.乙.丙三台机器在这一个小时内各自需要照顾的概率? 2)计算在这一个小时内至少有一台需要照顾的概率?解:记“甲机器需要照顾”为事件A ,“乙机器需要照顾”为事件B ,“丙机器需要照顾”为事件C ,由题意三个事件互不影响,因而A ,B ,C 互相独立(1)由已知有:P (A ∙B )= P(A)∙P(B)=0.05,P (A ∙C )= P(A)∙P(C)=0.1P (C ∙B )= P(B)∙P(C)=0.125 解得P (A )=0.2, P(B)=0.25, P(C)=0.5,所以甲.乙.丙三台机器在这一个小时内各自需要照顾的概率分别为0.2;0.25;0.5.(2)记事件A 的对立事件为A ,事件B 的对立事件为B ,事件C 的对立事件为C , 则P(A )=0.8, P(B )=0.75, P(C )=0.5,于是P(A+B+C)=1-P(A ∙B ∙C )=1-P(A )∙P(B )∙P(C )=0.7. 故在这一个小时内至少有一台需要照顾的概率为0.7.18.(本小题满分12分)四棱锥V-ABCD 中,底面ABCD 是正方形,侧面VAD 是正三角形, 平面VAD ⊥底面ABCD 1)求证AB ⊥面VAD ;2)求面VAD 与面VDB 所成的二面角的大小.证法一:(1)由于面VAD 是正三角形,设AD 的中点为E ,则VE⊥AD ,而面VAD ⊥底面ABCD ,则VE ⊥AB又面ABCD 是正方形,则AB ⊥CD ,故AB ⊥面VAD (2)由AB ⊥面VAD ,则点B 在平面VAD 内的射影是A ,设VD 的中点为F ,连AF ,BF 由△VAD 是正△,则AF ⊥VD ,由三垂线定理知BF ⊥VD ,故∠AFB 是面VAD 与面VDB 所成的二面角的平面角设正方形ABCD 的边长为a ,则在Rt △ABF 中,,AB=a, AF=23a ,tan ∠AFB =33223==a a AF AB 故面VAD 与面VDB 所成的二面角的大小为arctan证明二:(Ⅰ)作AD 的中点O ,则VO ⊥底面ABCD .…………1分建立如图空间直角坐标系,并设正方形边长为1,………2分则A (12,0,0),B (12,1,0),C (-12,1,0),D (-12,0,0),V (0,0,∴1(0,1,0),(1,0,0),(,0,)22AB AD AV ===-……3分 由(0,1,0)(1,0,0)0AB AD AB AD ⋅=⋅=⇒⊥…………4分13(0,1,0)(,0,)02AB AV AB AV ⋅=⋅-=⇒⊥……5分又AB ∩AV=A ∴AB ⊥平面VAD …………………………6分(Ⅱ)由(Ⅰ)得(0,1,0)AB =是面VAD 的法向量……………………7分设(1,,)n y z =是面VDB 的法向量,则110(1,,)(,1,0(1,1,220(1,,)(1,1,0)03x n VB y zn z n BD y z=-⎧⎧⎧⋅=⋅--=⎪⎪⎪⇒⇒⇒=-⎨⎨⎨=-⋅=⎪⎪⎪⎩⋅--=⎩⎩……9分 ∴(0,1,0)(1,1,cos ,3AB n ⋅-<>==11分又由题意知,面VAD 与面VDB 所成的二面角,所以其大小为arccos7……12分 (II )证法三:由(Ⅰ)得(0,1,0)AB =是面VAD 的法向量…………………7分设平面VDB 的方程为mx+ny+pZ+q=0,将V.B.D 三点的坐标代入可得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+-=++023021021q p q m q n m 解之可得⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-==qp qn q m3222令q=,21则平面VDB 的方程为x-y+33Z+21=0 故平面VDB 的法向量是)33,1,1(-=………………………………9分 ∴(0,1,0)(1,1,cos ,3AB n ⋅-<>==11分又由题意知,面VAD 与面VDB 所成的二面角,所以其大小为arccos 7……12分19.(本小题满分12分)ABC ∆中,内角A .B .C 的对边分别为a .b .c ,已知a .b .c 成等比数列,且B cos 4=(1)求C A cot cot +的值; (2)若23=⋅,求c a +的值 解:(1)由B cos 43=得:47sin =B由ac b =2及正弦定理得:C A B sin sin sin 2= 于是:()BC A C A A C A C C C A A C A 2sin sin sin sin sin cos cos sin sin cos sin cos cot cot +=+=+=+ 774sin 1sin sin 2===BB B (2)由23=⋅得:23cos =⋅B ac ,因B cos 43=,所以:2=ac ,即:2=b 由余弦定理B ac c a b cos 2222⋅-+=得:5cos 2222=⋅+=+B ac b c a于是:()9452222=+=++=+ac c a c a故:c a +=20.(本小题满分12分)在等差数列{a n }中,公差d ≠0,且a 2是a 1和a 4的等比中项,已知a 1,a 3,,a ,a ,a ,a n321k k k k 成等比数列,求数列k 1,k 2,k 3,…,k n的通项k n解:由题意得:4122a a a =……………1分 即)3()(1121d a a d a +=+…………3分又0,d ≠d a =∴1…………4分 又 ,,,,,,2131n k k k a a a a a 成等比数列, ∴该数列的公比为3313===dda a q ,………6分 所以113+⋅=n k a a n ………8分又11)1(a k d k a a n n k n =-+=……………………………………10分13+=∴n n k 所以数列}{n k 的通项为13+=n n k ……………………………12分21.(本小题满分14分)设()11,y x A 、()22,y x B 两点在抛物线22x y =上,l 是AB 的垂直平分线(1)当且仅当21x x +取何值时,直线l 经过抛物线的焦点F ?证明你的结论; (2)当直线l 的斜率为2时,求l 在y 轴上截距的取值范围注:本小题主要考察直线与抛物线等基础知识,考察逻辑推理能力和综合分析、解决问题的能力解法一:(1)⇔=⇔∈FB FA l F A 、B 两点到抛物线的准线的距离相等 因为:抛物线的准线是x 轴的平行线,0≥i y ()2,1=i ,依题意1y 、2y 不同时为0 所以,上述条件等价于()()02121222121=-+⇔=⇔=x x x x x x y y ;注意到:21x x ≠,所以上述条件等价于021=+x x即:当且仅当021=+x x 时,直线l 经过抛物线的焦点F(2)设l 在y 轴上的截距为b ,依题意得l 的方程为b x y +=2;过点A 、B 的直线方程可写为m x y +-=21,所以1x 、2x 满足方程02122=-+m x x ,即4121-=+x x A 、B 为抛物线上不同的两点等价于上述方程的判别式0841>+=∆m ,也就是:32>m 设AB 的中点H 的坐标为为()00,y x ,则有:812210-=+=x x x ,m m x y +=+-=161200 由l H ∈得:b m +-=+41161,于是:32321165165=->+=m b 即:l 在y 轴上截距的取值范围是⎝⎛+∞,329 .解法二:(Ⅰ)∵抛物线22x y =,即41,22=∴=p y x , ∴焦点为1(0,)8F …………………………………………1分 (1)直线l 的斜率不存在时,显然有021=+x x ………………3分 (2)直线l 的斜率存在时,设为k ,截距为b即直线l :y=kx+b 由已知得:12121212221k bk y y x x y y x x ⎧++⎪=⋅+⎪⎨-⎪=-⎪-⎩……5分 2212122212122212222k b k x x x x x x x x ⎧++=⋅+⎪⎪⇒⎨-⎪=-⎪-⎩ 22121212212k b k x x x x x x +⎧+=⋅+⎪⎪⇒⎨⎪+=-⎪⎩………7分 2212104b x x ⇒+=-+≥14b ⇒≥ 即l 的斜率存在时,不可能经过焦点1(0,)8F ……………………8分 所以当且仅当12x x +=0时,直线l 经过抛物线的焦点F ……………9分(II)解:设直线l 的方程为:y=2x+b,故有过AB 的直线的方程为m x 21y +-=,代入抛物线方程有2x 2+m x 21-=0, 得x 1+x 2=-41.由A.B 是抛物线上不同的两点,于是上述方程的判别式0m 841>+=∆,即321m -> 由直线AB 的中点为)2,2(2121y y x x ++=)m 161,81()m x 21,81(0+-=+--, 则,b 41m 161+-=+ 于是.329321165m 165b =->+= 即得l 在y 轴上的截距的取值范围是,329(+∞22.(本小题满分12分)已知函数f(x)=],1,0[x ,x27x 42∈--(1)求函数f(x)的单调区间和值域;(2)设a ≥1, 函数g(x)=x 3-3a 2x-2a, x ∈[0,1], 若对于任意x 1∈[0,1], 总存在x 0∈[0,1], 使得g((x 0) =f(x 1)成立,求a 的取值范围解: (1)对函数f(x)=],1,0[x ,x 27x 42∈--求导,得f ’(x)=,)x 2()7x 2)(1x 2()x 2(716x 4222----=--+-,令f ’(x)=0解得x=21或x=27. 当x 变化时,f ’(x), f(x)的变化情况如下表所示:所以,当)21,0(x ∈时,f(x)是减函数;当)1,21(x ∈时,f(x)是增函数当]1,0[x ∈时,f(x)的值域是[-4,-3](II )对函数g(x)求导,则g ’(x)=3(x 2-a 2).因为1a ≥,当)1,0(x ∈时,g ’(x)<5(1-a 2)≤0, 因此当)1,0(x ∈时,g(x)为减函数,从而当x ∈[0,1]时有g(x)∈[g(1),g(0)],又g(1)=1-2a-3a 2,g(0)=-2a,即当x ∈[0,1]时有g(x)∈[1-2a-3a 2,-2a],任给x 1∈[0,1],f(x 1)∈[-4,-3],存在x 0∈[0,1]使得g(x 0)=f(x 1),则[1-2a-3a 2,-2a]]3,4[--⊃,即⎩⎨⎧-≥--≤--3a 24a 3a 212 ②①,解①式得a ≥1或a 35-≤,解②式得23a ≤, 又1a ≥,故a 的取值范围内是23a 1≤≤.。

2005年全国统一高考数学试卷及解析(理)

2005年全国统一高考数学试卷及解析(理)

2005年全国统一高考数学试卷ⅰ(理)一、选择题(共12小题,每小题5分,满分60分)1.(5分)复数=()A.﹣i B.i C.2﹣i D.﹣2+i2.(5分)设I为全集,S1、S2、S3是I的三个非空子集,且S1∪S2∪S3=I,则下面论断正确的是()A.∁I S1∩(S2∪S3)=∅B.S1⊆(∁I S2∩∁I S3)C.∁I S1∩∁I S2∩∁I S3=∅ D.S1⊆(∁I S2∪∁I S3)3.(5分)用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为()A.B. C.D.4.(5分)已知直线l过点(﹣2,0),当直线l与圆x2+y2=2x有两个交点时,其斜率k的取值范围是()A.B.C.D.5.(5分)如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE、△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为()A. B. C.D.6.(5分)已知双曲线﹣y2=1(a>0)的一条准线与抛物线y2=﹣6x的准线重合,则该双曲线的离心率为()A. B.C. D.7.(5分)当0<x<时,函数的最小值为()A.2 B.C.4 D.8.(5分)设b>0,二次函数y=ax2+bx+a2﹣1的图象为下列之一,则a的值为()A.1 B.﹣1 C.D.9.(5分)设0<a<1,函数f(x)=log a(a2x﹣2a x﹣2),则使f(x)<0的x的取值范围是()A.(﹣∞,0)B.(0,+∞)C.(﹣∞,log a3)D.(log a3,+∞)10.(5分)在直角坐标平面上,不等式组所表示的平面区域面积为()A. B.C.D.311.(5分)在△ABC中,已知tan=sinC,给出以下四个论断:①tanA•cotB=1,②1<sinA+sinB≤,③sin2A+cos2B=1,④cos2A+cos2B=sin2C,其中正确的是()A.①③B.②④C.①④D.②③12.(5分)过三棱柱任意两个顶点的直线共15条,其中异面直线有()A.18对B.24对C.30对D.36对二、填空题(共4小题,每小题4分,满分16分)13.(4分)若正整数m满足10m﹣1<2512<10m,则m=.(lg2≈0.3010)14.(4分)的展开式中,常数项为.(用数字作答)15.(4分)如图,已知⊙O是△ABC的内切圆,且∠ABC=50°,∠ACB=80°,则∠BOC=度.16.(4分)在正方体ABCD﹣A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则:①四边形BFD′E一定是平行四边形;②四边形BFD′E有可能是正方形;③四边形BFD′E在底面ABCD内的投影一定是正方形;④平面BFD′E有可能垂直于平面BB′D.以上结论正确的为.(写出所有正确结论的编号)三、解答题(共6小题,17~20、22题每题12分,21题14分,满分74分)17.(12分)设函数f(x)=sin(2x+φ)(﹣π<φ<0),y=f(x)图象的一条对称轴是直线.(Ⅰ)求φ,并指出y=f(x)由y=sin2x作怎样变换所得.(Ⅱ)求函数y=f(x)的单调增区间;(Ⅲ)画出函数y=f(x)在区间[0,π]上的图象.18.(12分)已知四棱锥P﹣ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=1,AB=2,M是PB的中点.(Ⅰ)证明:面PAD⊥面PCD;(Ⅱ)求AC与PB所成的角;(Ⅲ)求面AMC与面BMC所成二面角的大小.19.(12分)设等比数列{a n}的公比为q,前n项和S n>0(n=1,2,…).(Ⅰ)求q的取值范围;(Ⅱ)设,记{b n}的前n项和为T n,试比较S n与T n 的大小.20.(12分)9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种.假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求ξ的数学期望.(精确到0.01)21.(14分)已知椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,与=(3,﹣1)共线.(Ⅰ)求椭圆的离心率;(Ⅱ)设M为椭圆上任意一点,且=λ+μ(λ,μ∈R),证明λ2+μ2为定值.22.(12分)为了了解某校2000名学生参加环保知识竞赛的成绩,从中抽取了部分学生的竞赛成绩(均为整数),整理后绘制成如下的频数分布直方图(如图),请结合图形解答下列问题.(1)指出这个问题中的总体;(2)求竞赛成绩在79.5~89.5这一小组的频率;(3)如果竞赛成绩在90分以上(含90分)的同学可获得奖励,请估计全校约有多少人获得奖励.2005年河北省高考数学试卷Ⅰ(理)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2005•安徽)复数=()A.﹣i B.i C.2﹣i D.﹣2+i【分析】两个复数相除,分子、分母同时乘以分母的共轭复数,复数的乘法按多项式乘以多项式的方法进行.【解答】解:复数====i,故选B.2.(5分)(2005•安徽)设I为全集,S1、S2、S3是I的三个非空子集,且S1∪S2∪S3=I,则下面论断正确的是()A.∁I S1∩(S2∪S3)=∅B.S1⊆(∁I S2∩∁I S3)C.∁I S1∩∁I S2∩∁I S3=∅ D.S1⊆(∁I S2∪∁I S3)【分析】根据公式C U(A∩B)=(C U A)∪(C U B),C U(A∪B)=(C U A)∩(C U B),容易判断.【解答】解:∵S1∪S2∪S3=I,∴C I S1∩C I S2∩C I S3)=C I(S1∪S2∪S3)=C I I=∅.故答案选C.3.(5分)(2008•湖北)用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为()A.B. C.D.【分析】做该题需要将球转换成圆,再利用圆的性质,获得球的半径,解出该题即可.【解答】解:截面面积为π⇒截面圆半径为1,又与球心距离为1⇒球的半径是,所以根据球的体积公式知,故选B.4.(5分)(2005•安徽)已知直线l过点(﹣2,0),当直线l与圆x2+y2=2x 有两个交点时,其斜率k的取值范围是()A.B.C.D.【分析】圆心到直线的距离小于半径即可求出k的范围.【解答】解:直线l为kx﹣y+2k=0,又直线l与圆x2+y2=2x有两个交点故∴故选C.5.(5分)(2005•安徽)如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE、△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为()A. B. C.D.【分析】该几何体是一个三棱柱截取两个四棱锥,体积相减即为该多面体的体积.【解答】解:一个完整的三棱柱的图象为:棱柱的高为2;底面三角形的底为1,高为:,其体积为:;割去的四棱锥体积为:,所以,几何体的体积为:,故选A.6.(5分)(2005•安徽)已知双曲线﹣y2=1(a>0)的一条准线与抛物线y2=﹣6x的准线重合,则该双曲线的离心率为()A. B.C. D.【分析】先根据抛物线和双曲线方程求出各自的准线方程,然后让二者相等即可求得a,进而根据c=求得c,双曲线的离心率可得.【解答】解:双曲线的准线为抛物线y2=﹣6x的准线为因为两准线重合,故=,a2=3,∴c==2∴该双曲线的离心率为=故选D7.(5分)(2005•安徽)当0<x<时,函数的最小值为()A.2 B.C.4 D.【分析】利用二倍角公式化简整理后,分子分母同时除以cosx,转化成关于tanx的函数解析式,进而利用x的范围确定tanx>0,最后利用均值不等式求得函数的最小值.【解答】解:=.∵0<x<,∴tanx>0.∴.当时,f(x)min=4.故选C.8.(5分)(2005•安徽)设b>0,二次函数y=ax2+bx+a2﹣1的图象为下列之一,则a的值为()A.1 B.﹣1 C.D.【分析】根据题中条件可先排除前两个图形,然后根据后两个图象都经过原点可求出a的两个值,再根据抛物线的开口方向就可确定a的值【解答】解:∵b>0∴抛物线对称轴不能为y轴,∴可排除掉前两个图象.∵剩下两个图象都经过原点,∴a2﹣1=0,∴a=±1.∵当a=1时,抛物线开口向上,对称轴在y轴左方,∴第四个图象也不对,∴a=﹣1,故选B.9.(5分)(2005•安徽)设0<a<1,函数f(x)=log a(a2x﹣2a x﹣2),则使f(x)<0的x的取值范围是()A.(﹣∞,0)B.(0,+∞)C.(﹣∞,log a3)D.(log a3,+∞)【分析】结合对数函数、指数函数的性质和复合函数的单调性可知:当0<a<1,log a(a2x﹣2a x﹣2)<0时,有a2x﹣2a x﹣2>1,解可得答案.【解答】解:设0<a<1,函数f(x)=log a(a2x﹣2a x﹣2),若f(x)<0则log a(a2x﹣2a x﹣2)<0,∴a2x﹣2a x﹣2>1∴(a x﹣3)(a x+1)>0∴a x﹣3>0,∴x<log a3,故选C.10.(5分)(2005•安徽)在直角坐标平面上,不等式组所表示的平面区域面积为()A. B.C.D.3【分析】先依据不等式组,结合二元一次不等式(组)与平面区域的关系画出其表示的平面区域,再利用三角形的面积公式计算即可.【解答】解:原不等式组可化为:或画出它们表示的可行域,如图所示.可解得A(,﹣),C(﹣1,﹣2),B(0,1)原不等式组表示的平面区域是一个三角形,其面积S△ABC=×(2×1+2×)=,故选C.11.(5分)(2005•安徽)在△ABC中,已知tan=sinC,给出以下四个论断:①tanA•cotB=1,②1<sinA+sinB≤,③sin2A+cos2B=1,④cos2A+cos2B=sin2C,其中正确的是()A.①③B.②④C.①④D.②③【分析】先利用同角三角函数的基本关系和二倍角公式化简整理题设等式求得cos=进而求得A+B=90°进而求得①tanA•cotB=tanA•tanA等式不一定成立,排除;②利用两角和公式化简,利用正弦函数的性质求得其范围符合,②正确;③sin2A+cos2B=2sin2A不一定等于1,排除③;④利用同角三角函数的基本关系可知cos2A+cos2B=cos2A+sin2A=1,进而根据C=90°可知sinC=1,进而可知二者相等.④正确.【解答】解:∵tan=sinC∴=2sin cos整理求得cos(A+B)=0∴A+B=90°.∴tanA•cotB=tanA•tanA不一定等于1,①不正确.∴sinA+sinB=sinA+cosA=sin(A+45°)45°<A+45°<135°,<sin(A+45°)≤1,∴1<sinA+sinB≤,所以②正确cos2A+cos2B=cos2A+sin2A=1,sin2C=sin290°=1,所以cos2A+cos2B=sin2C.所以④正确.sin2A+cos2B=sin2A+sin2A=2sin2A=1不一定成立,故③不正确.综上知②④正确故选B.12.(5分)(2005•安徽)过三棱柱任意两个顶点的直线共15条,其中异面直线有()A.18对B.24对C.30对D.36对【分析】直接解答,看下底面上的一条边的异面直线的条数,类推到上底面的边;再求侧面上的异面直线的对数;即可.【解答】解:三棱柱的底面三角形的一条边与侧面之间的线段有3条异面直线,这样3条底边一共有9对,上下底面共有18对.上下两个底边三角形就有6对;侧面之间的一条侧棱有6对,侧面面对角线之间有6对.加在一起就是36对.(其中棱对应的两条是体对角线和对面的面与其不平行的另一条对角线).故选D.二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2005•安徽)若正整数m满足10m﹣1<2512<10m,则m= 155.(lg2≈0.3010)【分析】利用题中提示lg2≈0.3010,把不等式同时取以10为底的对数,再利用对数的运算性质,转化为关于m的不等式求解即可.【解答】解:∵10m﹣1<2512<10m,取以10为底的对数得lg10m﹣1<lg2512<lg10m,即m﹣1<512×lg2<m又∵lg2≈0.3010∴m﹣1<154.112<m,因为m是正整数,所以m=155故答案为155.14.(4分)(2005•安徽)的展开式中,常数项为672.(用数字作答)=C n r a n﹣r b r求出通项,进行指【分析】利用二项式定理的通项公式T r+1数幂运算后令x的指数幂为0解出r=6,由组合数运算即可求出答案.=C9r(2x)9﹣r=(﹣1)r29﹣r C9r x9【解答】解:由通项公式得T r+1﹣r=(﹣1)r29﹣r C9r,令9﹣=0得r=6,所以常数项为(﹣1)623C96=8C93=8×=672故答案为67215.(4分)(2005•山西)如图,已知⊙O是△ABC的内切圆,且∠ABC=50°,∠ACB=80°,则∠BOC=115度.【分析】由三角形内切定义可知:OB、OC是∠ABC、∠ACB的角平分线;再利用角平分线的定义可知∠OBC+∠OCB=(∠ABC+∠ACB),代入数值即可求答案.【解答】解:∵OB、OC是∠ABC、∠ACB的角平分线,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(50°+80°)=65°,∴∠BOC=180°﹣65°=115°.故答案为:115°.16.(4分)(2005•安徽)在正方体ABCD﹣A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则:①四边形BFD′E一定是平行四边形;②四边形BFD′E有可能是正方形;③四边形B FD′E在底面ABCD内的投影一定是正方形;④平面BFD′E有可能垂直于平面BB′D.以上结论正确的为①③④.(写出所有正确结论的编号)【分析】由平行平面的性质可得①是正确的,当E、F为棱中点时,四边形为菱形,但不可能为正方形,故③④正确,②错误.【解答】解:①:∵平面AB′∥平面DC′,平面BFD′E∩平面AB′=EB,平面BFD′E∩平面DC′=D′F,∴EB∥D′F,同理可证:D′E∥FB,故四边形BFD′E一定是平行四边形,即①正确;②:当E、F为棱中点时,四边形为菱形,但不可能为正方形,故②错误;③:四边形BFD′E在底面ABCD内的投影为四边形ABCD,所以一定是正方形,即③正确;④:当E、F为棱中点时,EF⊥平面BB′D,又∵EF⊂平面BFD′E,∴此时:平面BFD′E⊥平面BB′D,即④正确.故答案为:①③④三、解答题(共6小题,17~20、22题每题12分,21题14分,满分74分)17.(12分)(2005•山西)设函数f(x)=sin(2x+φ)(﹣π<φ<0),y=f(x)图象的一条对称轴是直线.(Ⅰ)求φ,并指出y=f(x)由y=sin2x作怎样变换所得.(Ⅱ)求函数y=f(x)的单调增区间;(Ⅲ)画出函数y=f(x)在区间[0,π]上的图象.【分析】(I)由图象的一条对称轴是直线,从而可得,解的∅,根据平移法则判断平移量及平移方向(II)令,解x的范围即为所要找的单调增区间(III)利用“五点作图法”做出函数的图象【解答】解:(Ⅰ)∵x=是函数y=f(x)的图象的对称轴,∴,∴,k∈Z.∵.由y=sin2x向右平移得到.(4分)(Ⅱ)由(Ⅰ)知ϕ=﹣,因此y=.由题意得,k∈Z.所以函数的单调增区间为,k∈Z.(3分)(Ⅲ)由知x 0 πy ﹣﹣1 0 1 0 ﹣故函数y=f(x)在区间[0,π]上图象是(4分)18.(12分)(2005•安徽)已知四棱锥P﹣ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=1,AB=2,M 是PB的中点.(Ⅰ)证明:面PAD⊥面PCD;(Ⅱ)求AC与PB所成的角;(Ⅲ)求面AMC与面BMC所成二面角的大小.【分析】法一:(Ⅰ)证明面PAD⊥面PCD,只需证明面PCD内的直线CD,垂直平面PAD内的两条相交直线AD、PD即可;(Ⅱ)过点B作BE∥CA,且BE=CA,∠PBE是AC与PB所成的角,解直角三角形PEB求AC与PB所成的角;(Ⅲ)作AN⊥CM,垂足为N,连接BN,说明∠ANB为所求二面角的平面角,在三角形AMC中,用余弦定理求面AMC与面BMC所成二面角的大小.法二:以A为坐标原点AD长为单位长度,建立空间直角坐标系,(Ⅰ)求出,计算,推出AP⊥DC.,然后证明CD垂直平面PAD,即可证明面PAD⊥面PCD;(Ⅱ),计算.即可求得结果.(Ⅲ)在MC上取一点N(x,y,z),则存在使,说明∠ANB 为所求二面角的平面角.求出,计算即可取得结果.【解答】法一:(Ⅰ)证明:∵PA⊥面ABCD,CD⊥AD,∴由三垂线定理得:CD⊥PD.因而,CD与面PAD内两条相交直线AD,PD都垂直,∴CD⊥面PAD.又CD⊂面PCD,∴面PAD⊥面PCD.(Ⅱ)解:过点B作BE∥CA,且BE=CA,则∠PBE是AC与PB所成的角.连接AE,可知AC=CB=BE=AE=,又AB=2,所以四边形ACBE为正方形.由PA⊥面ABCD得∠PEB=90°在Rt△PEB中BE=a2=3b2,PB=,∴.∴AC与PB所成的角为.(Ⅲ)解:作AN⊥CM,垂足为N,连接BN.在Rt△PAB中,AM=MB,又AC=CB,∴△AMC≌△BMC,∴BN⊥CM,故∠ANB为所求二面角的平面角∵CB⊥AC,由三垂线定理,得CB⊥PC,在Rt△PCB中,CM=MB,所以CM=AM.在等腰三角形AMC中,AN•MC=,∴.∴AB=2,∴故所求的二面角为.法二:因为PA⊥PD,PA⊥AB,AD⊥AB,以A为坐标原点AD长为单位长度,如图建立空间直角坐标系,则各点坐标为A(0,0,0)B(0,2,0),C(1,1,0),D(1,0,0),P(0,0,1),M(Ⅰ)证明:因为,故,所以AP⊥DC.又由题设知AD⊥DC,且AP与AD是平面PAD内的两条相交直线,由此得DC⊥面PAD.又DC在面PCD上,故面PAD⊥面PCD(Ⅱ)解:因,故=,所以由此得AC与PB所成的角为.(Ⅲ)解:在MC上取一点N(x,y,z),则存在使,,∴x=1﹣λ,y=1,z=λ.要使AN⊥MC,只需即,解得.可知当时,N点坐标为,能使.,有由得AN⊥MC,BN⊥MC.所以∠ANB为所求二面角的平面角.∵,∴.故所求的二面角为arccos.19.(12分)(2005•安徽)设等比数列{a n}的公比为q,前n项和S n >0(n=1,2,…).(Ⅰ)求q的取值范围;(Ⅱ)设,记{b n}的前n项和为T n,试比较S n与T n 的大小.【分析】(Ⅰ)设等比数列通式a n=a1q(n﹣1),根据S1>0可知a1大于零,当q不等于1时,根据等比数列前n项和公式,进而可推知1﹣q n>0且1﹣q>0,或1﹣q n<0且1﹣q<0,进而求得q的范围,当q=1时仍满足条件,进而得到答案.(Ⅱ)把a n的通项公式代入,可得a n和b n的关系,进而可知T n和S n的关系,再根据(1)中q的范围来判断S n与T n的大小.【解答】解:(Ⅰ)设等比数列通式a n=a1q(n﹣1)根据S n>0,显然a1>0,当q不等于1时,前n项和s n=所以>0 所以﹣1<q<0或0<q<1或q>1当q=1时仍满足条件综上q>0或﹣1<q<0(Ⅱ)∵∴b n==a n q2﹣a n q=a n(2q2﹣3q)∴T n=(2q2﹣3q)S n∴T n﹣S n=S n(2q2﹣3q﹣2)=S n(q﹣2)(2q+1)又因为S n>0,且﹣1<q<0或q>0,所以,当﹣1<q<﹣或q>2时,T n﹣S n>0,即T n>S n;当﹣<q<2且q≠0时,T n﹣S n<0,即T n<S n;当q=﹣,或q=2时,T n﹣S n=0,即T n=S n.20.(12分)(2005•安徽)9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种.假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求ξ的数学期望.(精确到0.01)【分析】首先根据独立重复试验的概率公式计算出一个坑不需要补种的概率,由题意知一共种了3个坑,每个坑至多补种一次,每补种1个坑需10元,得到变量ξ的可能取值是0,10,20,30,根据独立重复试验得到概率的分布列.【解答】解:首先根据独立重复试验的概率公式计算出一个坑不需要补种的概率p=1﹣C330.53=0.875由题意知一共种了3个坑,每个坑至多补种一次,每补种1个坑需10元得到变量ξ的可能取值是0,10,20,30,ξ=0,表示没有坑需要补种,根据独立重复试验得到概率P(ξ=0)=C330.8753=0.670P(ξ=10)=C320.8752×0.125=0.287P(ξ=20)=C31×0.875×0.1252=0.041P(ξ=30)=0.1253=0.002∴变量的分布列是ξ0 10 20 30P0.670 0.287 0.041 0.002∴ξ的数学期望为:Eξ=0×0.670+10×0.287+20×0.041+30×0.002=3.7521.(14分)(2005•安徽)已知椭圆的中心为坐标原点O,焦点在x 轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,与=(3,﹣1)共线.(Ⅰ)求椭圆的离心率;(Ⅱ)设M为椭圆上任意一点,且=λ+μ(λ,μ∈R),证明λ2+μ2为定值.【分析】(Ⅰ)直线与椭圆方程联立用未达定理的A、B两点坐标的关系,据向量共线的条件得椭圆中a,b,c的关系,从而求得椭圆的离心率(Ⅱ)用向量运算将λμ用坐标表示,再用坐标的关系求出λ2+μ2的值.【解答】解:(1)设椭圆方程为则直线AB的方程为y=x﹣c,代入,化简得(a2+b2)x2﹣2a2cx+a2c2﹣a2b2=0.令A(x1,y1),B(x2,y2),则.∵与共线,∴3(y1+y2)+(x1+x2)=0,又y1=x1﹣c,y2=x2﹣c,∴3(x1+x2﹣2c)+(x1+x2)=0,∴.即,所以a2=3b2.∴,故离心率.(II)证明:由(1)知a2=3b2,所以椭圆可化为x2+3y2=3b2.设M(x,y),由已知得(x,y)=λ(x1,y1)+μ(x2,y2),∴∵M(x,y)在椭圆上,∴(λx1+μx2)2+3(λy1+μy2)2=3b2.即λ2(x12+3y12)+μ2(x22+3y22)+2λμ(x1x2+3y1y2)=3b2.①由(1)知.∴,∴x1x2+3y1y2=x1x2+3(x1﹣c)(x2﹣c)=4x1x2﹣3(x1+x2)c+3c2==0.又x12+3y12=3b2,x22+3y22=3b2,代入①得λ2+μ2=1.故λ2+μ2为定值,定值为1.22.(12分)(2005•安徽)为了了解某校2000名学生参加环保知识竞赛的成绩,从中抽取了部分学生的竞赛成绩(均为整数),整理后绘制成如下的频数分布直方图(如图),请结合图形解答下列问题.(1)指出这个问题中的总体;(2)求竞赛成绩在79.5~89.5这一小组的频率;(3)如果竞赛成绩在90分以上(含90分)的同学可获得奖励,请估计全校约有多少人获得奖励.【分析】(1)根据总体的概念:所要考查的对象的全体即总体进行回答;(2)根据频率=频数÷总数进行计算;(3)首先计算样本中的频率,再进一步估计总体.【解答】解:(1)总体是某校2000名学生参加环保知识竞赛的成绩.(2),答:竞赛成绩在79.5~89.5这一小组的频率为0.25.(3),答:估计全校约有300人获得奖励.。

2005年高考试题——语文(安徽卷)

2005年高考试题——语文(安徽卷)

2005年普通高等学校招生全国统一考试语文本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第I卷一、(12分,每小题3分)1.下列词语中没有错别字的一组是()A.忌讳砥砺蜚然成章流水不腐,户枢不蠹B.刍议安详自鸣得意愚者千虑,必有一得C.烦燥闲暇焚膏继晷金玉其外,败絮其中D.徇私编篡坚如磐石盛名之下,其实难负2.下列各句中,加点的词语使用不恰当的一句是()A.我国企业遭遇的知识严权国际纠纷越来越多,但国内能够应对这些诉讼的高级人才却是百里挑一....,极其缺乏。

B.2008年北京奥运会不仅要办成体育竞技盛会,而且要办成各国运动员欢聚一堂、多元文化精彩纷呈....的人类文化庆典。

C.该研究所在其旁征博引....的2005年度报告《重要现象》中写道,中国在世界经济强劲增长的过程中起了重要作用。

D.近日面世的《共和国万岁》邮票珍藏大系,版面设计新颖别致....,邮票藏品丰富多样,可谓“邮苑奇葩,传世珍藏”。

3.下列各句中,没有语病的一句是()A.自1993年北京大学生的电影节诞生以来,已经累计有超过100万人次参与了影片的观摩。

B.市教委要求,各学校学生公寓的生活用品和床上用品由学生自主选购,不得统一配备。

C.能否贯彻落实科学发展观,对构建和谐社会,促进经济可持续发展无疑具有重大的意义。

D.今年的电力供需紧张张善将有所缓解,拉闸限电现象会相应减少,但整体上看仍然偏紧。

4.下列各句中,语意不明确的一句是()A.隆重简短的欢送仪式之后,这架收音机开始了大陆民航56年来的首次台湾之旅。

B.为满足广大游客的需要,华夏旅行社会设计并开通了20余条红色旅游精品线路。

C.他在某寻志生活栏目上发表的那篇关于饮食习惯与健康的文章,批评的人很多。

D.在美国家庭中,汉语已成为继英语和西班牙语之后又一种得到广泛使用的语言。

二、(9分,每小题3分)阅读下面的文字,完成5—7题。

考古学家在山西省垣曲县发起了商代城邑遗址,引发出商代历史地理上的一些重要问题。

2005年高考语文试题及答案(全国卷1)

2005年高考语文试题及答案(全国卷1)

10.下列对原文有关内容的分析和概括,不正确的一项是
A .裴侠七岁后即很聪明,有异于一般孩童。为官后忠于皇上,荥阳郑伟认为天下动乱, 劝他另谋前程,裴侠拒绝了这一忠告,毅然跟随皇上西迁入关。
B .裴侠生活俭朴,为官清廉。他每日只是粗茶淡饭,而不食肥鲜美味;从不私用郡中 仆役,又不私取任何公物。因此受到人们尊重,称赞他为人间楷模。
D .商人要想在法统观念上灭夏,占有汾运盆地,垣曲无疑是一个必经之地。
7.根据原文提供的信息,下列推断正确的一项是
A .作为自然屏障的中条山成功地阻隔了商人的入侵,护卫着夏人的安全。
B .相对而言,历史地理学界对“人河关系”的研究较为深入,取得了一定成果。
C .晋人向南翻越中条,不仅具有改朝换代的政治意义,也是了不起的社会巨变。
十人,供郡守役,侠亦不以入私,并收庸为市官马。岁月既积,马遂成群。去职之日,一无
所取。 人歌曰:“肥鲜不食, 丁庸不取。 裴公贞惠, 为世规矩。”朝野服焉, 号为“独立使君” 。
迁户部中大夫。时有奸吏主守仓储,积年隐没至千万者。及侠在官,励精发擿①,数旬之内,
2/6
奸盗略尽。转工部中大夫。有大司空掌钱物典李贵乃于府中悲泣,或问其故,对曰:
山间奇材,往往是山脉的重要价值所在。不过,从地理空间关系的角度说,山脉的意义
则多在于阻隔或护卫。从宏观人文地理格局上观察,从中条北面翻越到南面与从南面翻越到
北面,意义是不一样的。中条山北面的汾运盆地是一个群山环绕比较封闭的地区,这里的人
们可以过安定的日子,但若求大的发展,就必须冲破自然屏障,向南跨越中条,进入黄河谷
第Ⅰ卷(选择题 共 30 分) 一、( 12 分,每小题 3 分) 1.下列词语中没有错别字的一组是

2005年全国各地高考试题

2005年全国各地高考试题

2005年全国各地高考试题1、北京卷以“说‘安’”为题作文。

(60分)“安”字含有安定、安全、安宁、安逸以及“安于……”等意思。

要求自行选定角度,写一篇议论文,字数不少于800字。

2、广东卷阅读下面的文字,根据要求作文。

(60分)纪念是用一定的方式对人对事表示怀念。

它既可以是国家、民族对已有荣誉的回忆,对过去痛苦的祭奠,也可以是家庭和个人对往事对亲朋表示的怀念。

纪念又不同于怀念,它不仅仅是内心情感的涌动,它还是思想与行动的结合。

生活中有各式各样的纪念,节日庆典是纪念,树碑立传是纪念,种一棵树或写一篇文章也是纪念……形式或许不同,但意义同样真切。

真正的纪念是心灵的回响,是历史的回音;它坚守信念,传递勇气;它珍藏感动,分享幸福;它审视过去,启迪未来……请以“纪念”为话题,写一篇文章。

[注意]①所写内容必须在话题范围之内;②立意自定;③文体自选;④题目自拟;⑤环少于800字;⑥不得抄袭。

3、全国卷Ⅰ以“出人意料和情理之中”为话题写一篇作文。

文体不限,题目自拟,不少于800字。

4、全国卷Ⅱ阅读下面的文字,根据要求作文。

工厂的角落里,几块形状异的锈铁锭不甘寂寞地聊了起来。

甲:我想成为机器人,现代化建设最需要我。

乙:我愿意做成螺丝钉,很多地方都离不开我。

丙:我看机器人和螺丝钉的价值可不同啊!丁:他们都在寻找适合自己的位置。

生活中,每个人的位置可能不同,但各有其价值,请以“位置和价值”为话题,写一篇不少于800字的文章。

自定立意,自选文体,自拟标题。

所写内容必须在话题范围之内。

5、湖北卷阅读下面的文字,根据要求作文。

诗人对宇宙人生,须入乎其内,又须出乎其外。

入乎其内,故能写之。

出乎其外,故能观之。

入乎其内,故有生气。

出乎其外,故有高致。

以上是王国维《人间词话》中的一则文字,论述了诗人观察和表现宇宙人生的态度和方法。

其实,这则文字所含的思想,对我们为文、处事、做人以及观赏自然、认识社会,都有启发。

请根据你对这则文字的感悟,自定立意、自选文体、自拟标题,写一篇不少于800字的文章。

2005年高考试题(北京,数学)

2005年高考试题(北京,数学)

2005年高考试题(北京,数学)2005年普通高等学校招生全国统一考试(北京卷)数学(理工农医类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷 1至2页,第II卷3至9页,共150分。

考试时间120分钟。

考试结束,将本试卷和答题卡一并交回。

第I 卷(选择题共40分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

不能答在试卷上。

一、本大题共8小题.每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项.(1)设全集U =R ,集合M ={x | x >1,P ={x | x 2>1},则下列关系中正确的是 (A )M =P (B )P ÜM (C )M ÜP ( D )U M P =∅ ð (2)“m =21”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直”的(A )充分必要条件 (B )充分而不必要条件 (C )必要而不充分条件 (D )既不充分也不必要条件 (3)若||1,||2,a b c a b ===+,且c a ⊥ ,则向量a 与b 的夹角为(A )30° (B )60° (C )120° (D )150°(4)从原点向圆 x 2+y 2-12y +27=0作两条切线,则该圆夹在两条切线间的劣弧长为 (A )π (B )2π (C )4π (D )6π (5)对任意的锐角α,β,下列不等关系中正确的是 (A )sin(α+β)>sin α+sin β (B )sin(α+β)>cos α+cos β (C )cos(α+β)<sinα+sinβ (D )cos(α+β)<cosα+cosβ(6)在正四面体P -ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,下面四个结论中不成..立.的是 (A )BC //平面PDF (B )DF ⊥平面P A E (C )平面PDF ⊥平面ABC (D )平面PAE ⊥平面 ABC(7)北京《财富》全球论坛期间,某高校有14名志愿者参加接待工作.若每天排早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为 (A )124414128C C C (B )124414128C A A (C )12441412833C C C A (D )12443141283C C C A(8)函数f (xcos x(A )在[0,),(,]22πππ上递增,在33[,),(,2]22ππππ上递减 (B )在3[0,),[,)22πππ上递增,在3(,],(,2]22ππππ上递减 (C )在3(,],(,2]22ππππ上递增,在3[0,),[,)22πππ上递减(D )在33[,),(,2]22ππππ上递增,在[0,),(,]22πππ上递减二、填空题:本大题共6小题;每小题5分,共30分。

2005年高考试题(山东,数学)

2005年高考试题(山东,数学)

2005年高考试题(山东,数学)2005年普通高等学校招生全国统一考试(山东卷)理科数学(必修+选修II )第I 卷(共60分)参考公式:如果事件A 、B 互斥,那么()()()P A B P A P B +=+如果事件A 、B 相互独立,那么()()()P A B P A P B ⋅=一.选择题:本大题共12小题,每题5分,共60分,在每小题给出的四个选项中,选择一个符合题目要求的选项. (1)()()1111iii i -++=+- ( )(A )i (B )i - (C )1 (D )1-(2)函数()10xy x x-=≠的反函数图像大致是 ( )((3)已知函数sin cos 1212y x x ππ⎛⎫⎛⎫=-- ⎪ ⎪⎝⎭⎝⎭,则下列判断正确的是( ) (A )此函数的最小周期为2π,其图像的一个对称中心是,012π⎛⎫⎪⎝⎭(B )此函数的最小周期为π,其图像的一个对称中心是,012π⎛⎫⎪⎝⎭ (C )此函数的最小周期为2π,其图像的一个对称中心是,06π⎛⎫⎪⎝⎭(D )此函数的最小周期为π,其图像的一个对称中心是,06π⎛⎫⎪⎝⎭(4)下列函数既是奇函数,又在区间[]1,1-上单调递减的是( ) (A )()sin f x x =(B )()1f x x =-+(C )()1()2x x f x a a -=+(D )2()ln 2x f x x-=+(5)如果3nx ⎛⎫ ⎝的展开式中各项系数之和为128,则展开式中31x 的系数是( ) (A )7 (B )7- (C )21 (D )21-(6)函数21sin(),10,(),0.x x x f x e x π-⎧-<<⎪=⎨≥⎪⎩,若(10()2,f f a +=则a 的所有可能值为( )(A )1 (B)2- (C)1,2- (D)1,2(7)已知向量,a b ,且2,56AB a b BC a b =+=-+ ,72CD a b =-,则一定共线的三点是( )(A )A 、B 、D (B )A 、B 、C (C )B 、C 、D (D )A 、C 、D(8)设地球的半径为R ,若甲地位于北纬45︒东经120︒,乙地位于南纬75︒东经120︒,则甲、乙两地的球面距离为( )(A(B )6R π(C )56R π (D )23R π(9)10张奖券中只有3张有奖,5个人购买,至少有1人中奖的概率是( )(A )310 (B )112 (C )12 (D )1112(10)设集合A 、B 是全集U 的两个子集,则A B ⊂是()U C A B U ⋃=的( ) (A )充分不必要条件(B )必要不充分条件(C )冲要条件(D )既不充分也不必要条件(11)01a <<,下列不等式一定成立的是( ) (A )(1)(1)log (1)log (1)2a a a a +--++> (B )(1)(1)log (1)log (1)a a a a +--<+(C )(1)(1)log (1)log (1)a a a a +--++<(1)(1)log (1)log (1)a a a a +--++ (D )(1)(1)log (1)log (1)a a a a +---+<(1)(1)log (1)log (1)a a a a +---+(12)设直线:220l x y ++=关于原点对称的直线为l ',若l '与椭圆2214y x +=的交点为A 、B 、,点P 为椭圆上的动点,则使PAB ∆的面积为12的点P 的个数为( ) (A )1 (B )2 (C )3 (D )4第II 卷(共90分)二.填空题:本大题共4小题,每小题4分,共16分.答案须填在题中横线上.(13)2222lim __________(1)n n nn C C n -→∞+=+.(14)设双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,右准线l 与两条渐近线交于P 、Q 两点,如果PQF ∆是直角三角形,则双曲线的离心率___________e =.(15)设x 、y 满足约束条件5,3212,03,0 4.x y x y x y +≤⎧⎪+≤⎪⎨≤≤⎪⎪≤≤⎩则使得目标函数65z x y =+的最大的点(,)x y 是________.(16)已知m n 、是不同的直线,αβ、是不重合的平面,给出下列命题: ①若//,,,m n αβαβ⊂⊂则//m n②若,,//,m n m αβ⊂则//αβ③若,,//m n m n αβ⊥⊥,则//αβ④,m n 是两条异面直线,若//,//,//,//m m n n αβαβ,则//αβ上面的命题中,真命题的序号是______(写出所有真命题的序号)三.解答题:本大题共6小题,共74分.解答写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知向量(cos ,sin )m θθ=和)()sin ,cos ,,2n θθθππ=∈,且m n += 求cos 28θπ⎛⎫+ ⎪⎝⎭的值.(18)(本小题满分12分)袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为1,7现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有一人取到白球时既终止,每个球在每一次被取出的机会是等可能的,用ξ表示取球终止所需要的取球次数. (I )求袋中所有的白球的个数; (II )求随机变量ξ的概率分布; (III )求甲取到白球的概率.(19)(本小题满分12分)已知1x =是函数32()3(1)1f x mx m x nx =-+++的一个极值点,其中,,0m n R m ∈<, (I )求m 与n 的关系式; (II )求()f x 的单调区间;(III )当[]1,1x ∈-时,函数()y f x =的图象上任意一点的切线斜率恒大于3m ,求m 的取值范围.(20)(本小题满分12分)如图,已知长方体1111,ABCD A BC D -12,1,AB AA == 直线BD 与平面11AAB B 所成的角为30︒,AE 垂直BD 于 E ,F 为11A B 的中点.(I )求异面直线AE 与BF 所成的角;(II )求平面BDF 与平面1AA B 所成的二面角; (III )求点A 到平面BDF 的距离.A1A BCD1B F1C 1D E(21)(本小题满分12分)已知数列{}n a 的首项15,a =前n 项和为n S ,且*15()n n S S n n N +=++∈ (I )证明数列{}1n a +是等比数列;(II )令212()n n f x a x a x a x =+++ ,求函数()f x 在点1x =处的导数(1)f '并比较2(1)f '与22313n n -的大小.(22)(本小题满分14分) 已知动圆过定点,02p ⎛⎫⎪⎝⎭,且与直线2p x =-相切,其中0p >.(I )求动圆圆心C 的轨迹的方程;(II )设A 、B 是轨迹C 上异于原点O 的两个不同点,直线OA 和OB 的倾斜角分别为α和β,当,αβ变化且αβ+为定值(0)θθπ<<时,证明直线AB 恒过定点,并求出该定点的坐标.x =2005年普通高等学校招生全国统一考试(山东卷)(试题参考答案)理科数学(必修+选修II )一.选择题题号1 2 3 4 5 6 7 8 9 10 11 12 答案D BBDCCADDAAB二.填空题 13.3214.e = 15. ()2,3 16. ③④ 三.解答题17.考查知识点:(三角和向量相结合)解:()cos sin sin m n θθθθ+=-+m n +=由已知5m n += ,得7cos 425πθ⎛⎫+= ⎪⎝⎭又2cos 2cos ()1428πθπθ⎛⎫+=+- ⎪⎝⎭216cos ()2825θπ+=∴(),2θππ∈ ∴ 598288πθππ<+< ∴ cos 028θπ⎛⎫+< ⎪⎝⎭∴ 4cos 285θπ⎛⎫+=- ⎪⎝⎭18.(考查知识点:概率及分布列)解:(I)设袋中原有n 个白球,由题意知227(1)1(1)27762n n n C n n C --===⨯ 可得3n =或2n =-(舍去)即袋中原有3个白球.(II)由题意,ξ的可能取值为1,2,3,4,53(1);7P ξ==()4322;767P ξ⨯===⨯4326(3);76535P ξ⨯⨯===⨯⨯43233(4);765435P ξ⨯⨯⨯===⨯⨯⨯432131(5);7654335P ξ⨯⨯⨯⨯===⨯⨯⨯⨯所以ξ的分布列为:ξ1 2 3 4 5P37 27635 335 135(III)因为甲先取,所以甲只有可能在第一次,第三次和第5次取球,记”甲取到白球”为事件A ,则()()()22()13535P A P P P ξξξ==+=+== 19.(考查知识点:函数结合导数)解(I)2()36(1)f x mx m x n '=-++因为1x =是函数()f x 的一个极值点,所以(1)0f '=,即36(1)0m m n -++=,所以36n m =+(II )由(I )知,2()36(1)36f x mx m x m '=-+++=23(1)1m x x m ⎡⎤⎛⎫--+⎪⎢⎥⎝⎭⎣⎦当0m <时,有211m>+,当x 变化时,()f x 与()f x '的变化如下表: x2,1m ⎛⎫-∞+ ⎪⎝⎭21m+ 21,1m ⎛⎫+⎪⎝⎭ 1()1,+∞()f x '0<0 0>0 0<()f x调调递减极小值单调递增极大值单调递减故有上表知,当0m <时,()f x 在2,1m ⎛⎫-∞+ ⎪⎝⎭单调递减,在2(1,1)m +单调递增,在(1,)+∞上单调递减.(III )由已知得()3f x m '>,即22(1)20mx m x -++>又0m <所以222(1)0x m x m m -++<即[]222(1)0,1,1x m x x m m -++<∈-① 设212()2(1)g x x x m m=-++,其函数开口向上,由题意知①式恒成立,所以22(1)0120(1)010g m mg ⎧-<+++<⎧⎪⇒⎨⎨<⎩⎪-<⎩解之得43m -<又0m <所以403m -<<即m 的取值范围为4,03⎛⎫- ⎪⎝⎭20.(考查知识点:立体几何)解:在长方体1111ABCD A BC D -中,以AB 所在的直线为x 轴,以AD 所在的直线为y 轴,1AA 所在的直线为z 轴建立如图示空间直角坐标系由已知12,1,AB AA ==可得(0,0,0),(2,0,0)A B ,(1,0,1)F 又AD ⊥平面11AAB B ,从而BD 与平面11AAB B 所成的角为30DBA ∠=︒,又2AB =,AE BD ⊥,1,AE AD ==从而易得1,2E D ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(I)因为()1,1,0,12AE BF ⎛⎫==- ⎪ ⎪⎝⎭所以()cos ,AE BF AE BF AE BF ⋅=1-= 易知异面直线AE BF 、所成的角为(II )易知平面1AA B 的一个法向量(0,1,0)m = 设(,,)n x y z =是平面BDF的一个法向量,(BD =- 由00n BF n BF n BD n BD ⎧⎧⊥⋅=⎪⎪⇒⎨⎨⊥⋅=⎪⎪⎩⎩0203x z x y -+=⎧⎪⇒⎨-=⎪⎩x z y =⎧⎪⇒=即()n =所以cos ,m n m n m n⋅==即平面BDF 与平面1AA B 所成的二面角的大小(锐角)为 (III )点A 到平面BDF 的距离,即AB在平面BDF 的法向量n 上的投影的绝对值,所以距离cos ,d AB AB n =⋅=AB n n⋅=A 到平面BDF21.(考查知识点:数列)解:由已知*15()n n S S n n N +=++∈可得12,24n n n S S n -≥=++两式相减得()1121n n n n S S S S +--=-+即121n n a a +=+从而()1121n n a a ++=+当1n =时21215S S =++所以21126a a a +=+又15a =所以211a =从而()21121a a +=+故总有112(1)n n a a ++=+,*n N ∈又115,10a a =+≠从而1121n n a a ++=+即数列{}1n a +是等比数列;(II )由(I )知321n n a =⨯-因为212()n n f x a x a x a x =+++ 所以112()2n n f x a a x na x -'=+++从而12(1)2n f a a na '=+++ =()()23212321(321)nn ⨯-+⨯-++⨯-=()232222nn +⨯++⨯ -()12n +++ =()1(1)31262n n n n ++-⋅-+ 由上()()22(1)23131212n f n n n '--=-⋅-()21221n n --= ()()1212121(21)n n n n -⋅--+=12(1)2(21)n n n ⎡⎤--+⎣⎦①当1n =时,①式=0所以22(1)2313f n n '=-; 当2n =时,①式=-120<所以22(1)2313f n n '<-当3n ≥时,10n ->又()011211nn n nn n n n C C C C -=+=++++ ≥2221n n +>+ 所以()()12210n n n ⎡⎤--+>⎣⎦即①0>从而2(1)f '>22313n n -22.(考查知识点:圆锥曲线) 解:(I )如图,设M 为动圆圆心,,02p ⎛⎫⎪⎝⎭为记为F ,过点M 作直线2p x =-的垂线,垂足为N ,由题意知:MF MN =即动点M 到定点F 与定直线2px =-的距离相等,由抛物线的定义知,点M 的轨迹为抛物线,其中,02p F ⎛⎫⎪⎝⎭为焦点,2p x =-为准线,所以轨迹方程为22(0)y px P =>;(II )如图,设()()1122,,,A x y B x y ,由题意得12x x ≠(否则αβπ+=)且12,0x x ≠所以直线AB 的斜率存在,设其方程为y kx b =+,显然221212,22y y x x p p==,将y kx b =+与22(0)y px P =>联立消去x ,得2220k y p y p b -+=由韦达定理知121222,p pby y y y k k+=⋅=① (1)当2πθ=时,即2παβ+=时,tan tan 1αβ⋅=所以121212121,0y y x x y y x x ⋅=-=,221212204y y y y p-=所以2124y y p =由①知:224pb p k =所以2.b pk =因此直线AB 的方程可表示为2y kx Pk =+,即(2)0k x P y +-=所以直线AB 恒过定点()2,0p - (2)当2πθ≠时,由αβθ+=,得tan tan()θαβ=+=tan tan 1tan tan αβαβ+-=122122()4p y y y y p+-将①式代入上式整理化简可得:2tan 2p b pk θ=-,所以22tan p b pk θ=+, 此时,直线AB 的方程可表示为y kx =+22tan p pk θ+即2(2)0tan p k x p y θ⎛⎫+--= ⎪⎝⎭所以直线AB 恒过定点22,tan p p θ⎛⎫- ⎪⎝⎭所以由(1)(2)知,当2πθ=时,直线AB 恒过定点()2,0p -,当2πθ≠时直线AB 恒过定点22,tan p p θ⎛⎫- ⎪⎝⎭.。

2005年高考试题全国卷

2005年高考试题全国卷

2005年高考试题全国卷语文Ⅰ卷共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项符合题目要求。

一、(12分,每小题3分)1. 下列词语中没有错别字的一组是A。

切磋洽谈会悬梁刺骨覆水难收B. 气概水笼头风雨如晦落荒而逃C. 招募度假村有恃无恐试目以待D. 怅惘挖墙脚功亏一篑矫枉过正2. 依次填入下列各句横线处的词语,最恰当的一组是①海外华侨华人纷纷发表声明或谈话,坚决拥护《反分裂国家法》。

②在灿烂的灯光中,由24名聋哑演员表演的“千手观音”精妙绝伦,人心.③控制人口和实行计划生育,使我国13亿人口日的到来了4年。

A. 制定振奋推迟B。

制定震撼推迟C。

制订振奋延迟D。

制订震撼延迟3. 下列各句中,加点的成语使用不恰当的一句是A. 近年来,在各地蓬勃兴起的旅游热中,以参观革命圣地、踏访英雄足迹为特色的“红色旅游”独树一帜,呈升温之势.B。

某建筑公司会计程某,为填补贪污挪用公款的亏空,不惜再次把巨额公款投入股市,她的这种做法无异于饮鸩止渴。

C。

美国黑人电影明星福克斯和弗里曼在第七十七届奥斯卡奖角逐中当仁不让,分别夺得最佳男主角奖和最佳男配角奖。

D。

中国改革开放以来取得的巨大成就,特别是连续十几年经济持续高速增长的表现,让各国经济界人士都叹为观止。

4. 下列各句中,没有语病的一句是A。

日前,国土资源部公布了第二批通过规划审核的43个国家级经济技术开发区名单。

B. 李明德同志在担任营长、团长期间,多次被评为训练先进单位和后勤保障模范单位。

C。

如果我所管的“闲”事能给群众带来哪怕一点点的幸福和快乐时,我也很幸福,很快乐。

D. 法律专家的看法是,消费者当众砸毁商品只是为了羞辱或者宣泄自己的不满。

二、(9分,每小题3分)阅读下面的文字,完成5~7题。

计算机能思维吗?1997年5月11日,美国纽约曼哈顿一幢高楼里正在进行一场被媒体称为“人机大战"的国际象棋比赛.对局的一方是1985年以来一直独霸棋坛的俄罗斯棋王卡斯帕罗夫,另一方是美国IBM公司推出的“天下第一”下棋机器———名为“深蓝”的超级计算机。

2005年高考数学试题及答案(辽宁)

2005年高考数学试题及答案(辽宁)

2005年普通高等学校招生全国统一考试(辽宁卷)数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择)题两部分,满分150分.考试用时120分钟.第Ⅰ卷(选择题,共60分)参考公式:如果事件A 、B 互斥,那么 球的表面积公式P(A+B)=P(A)+P(B) 24R S π= 如果事件A 、B 相互独立,那么P(A·B)=P(A)·P(B) 其中R 表示球的半径 如果事件A 在一次试验中发生的概率是 球的体积公式 P ,那么n 次独立重复试验中恰好发生k 334R V π=球次的概率kn k k n n P P C k P --=)1()(其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数.111-++-=iiz 在复平面内,z 所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 2.极限)(lim 0x f x x →存在是函数)(x f 在点0x x =处连续的( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分也不必要的条件3.设袋中有80个红球,20个白球,若从袋中任取10个球,则其中恰有6个红球的概率为( )A .10100610480C C C ⋅ B .10100410680C C C ⋅ C .10100620480C C C ⋅ D .10100420680C C C ⋅4.已知m 、n 是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命 题:①若βαβα//,,则⊥⊥m m ; ②若βααβγα//,,则⊥⊥;③若βαβα//,//,,则n m n m ⊂⊂;④若m 、n 是异面直线,βααββα//,//,,//,则n n m m ⊂⊂其中真命题是( )A .①和②B .①和③C .③和④D .①和④ 5.函数1ln(2++=x x y 的反函数是( )A .2x x e e y -+=B .2x x e e y -+-=C .2xx e e y --= D .2x x e e y ---=6.若011log 22<++aa a,则a 的取值范围是( )A .),21(+∞B .),1(+∞C .)1,21(D .)21,0(7.在R 上定义运算).1(:y x y x -=⊗⊗若不等式1)()(<+⊗-a x a x 对任意实数x 成立, 则( )A .11<<-aB .20<<aC .2321<<-a D .2123<<-a 8.若钝角三角形三内角的度数成等差数列,且最大边长与最小边长的比值为m ,则m 的范围是 ( )A .(1,2)B .(2,+∞)C .[3,+∞)D .(3,+∞)9.若直线02=+-c y x 按向量)1,1(-=a 平移后与圆522=+y x 相切,则c 的值为( )A .8或-2B .6或-4C .4或-6D .2或-810.已知)(x f y =是定义在R 上的单调函数,实数21x x ≠,,1,121λλλ++=-≠x x aλλβ++=112x x ,若|)()(||)()(|21βαf f x f x f -<-,则( )A .0<λB .0=λC .10<<λD .1≥λ11.已知双曲线的中心在原点,离心率为3.若它的一条准线与抛物线x y 42=的准线重合,则该双曲线与抛物线x y 42=的交点到原点的距离是 ( )A .23+6B .21C .21218+D .2112.一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式)(1n n a f a =+得到的数列}{n a 满足)(*1N n a a n n ∈>+,则该函数的图象是( )A B C D第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分. 13.n xx )2(2121--的展开式中常数项是 .14.如图,正方体的棱长为1,C 、D 分别是两条棱的中点, A 、B 、M 是顶点,那么点M 到截面ABCD 的距离是 .15.用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1和2相邻,3与4相邻, 5与6相邻,而7与8不.相邻,这样的八位数共有 个.(用数字作答) 16.ω是正实数,设)](cos[)(|{θωθω+==x x f S 是奇函数},若对每个实数a ,)1,(+⋂a a S ω的元素不超过2个,且有a 使)1,(+⋂a a S ω含2个元素,则ω的取值范围是 . 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知三棱锥P —ABC 中,E 、F 分别是AC 、AB 的中点, △ABC ,△PEF 都是正三角形,PF ⊥AB. (Ⅰ)证明PC ⊥平面PAB ;(Ⅱ)求二面角P —AB —C 的平面角的余弦值; (Ⅲ)若点P 、A 、B 、C 在一个表面积为12π的 球面上,求△ABC 的边长. 18.(本小题满分12分) 如图,在直径为1的圆O 中,作一关于圆心对称、 邻边互相垂直的十字形,其中.0>>x y(Ⅰ)将十字形的面积表示为θ的函数;(Ⅱ)θ为何值时,十字形的面积最大?最大面积是多少?19.(本小题满分12分)已知函数).1(13)(-≠++=x x x x f 设数列n a {}满足)(,111n n a f a a ==+,数列n b {}满足).(|,3|*21N n b b b S a b n n n n ∈+++=-=(Ⅰ)用数学归纳法证明12)13(--≤n nn b ; (Ⅱ)证明.332<n S20.(本小题满分12分)某工厂生产甲、乙两种产品,每种产品都是经过第一和第二工序加工而成,两道工序的加工结果相互独立,每道工序的加工结果均有A 、B 两个等级.对每种产品,两道工序的加工结果都为A 级时,产品为一等品,其余均为二等品.(Ⅰ)已知甲、乙两种产品每一道工序的加工结 果为A 级的概率如表一所示,分别求生产 出的甲、乙产品为一等品的概率P 甲、P 乙; (Ⅱ)已知一件产品的利润如表二所示,用ξ、 η分别表示一件甲、乙产品的利润,在 (I )的条件下,求ξ、η的分布列及 E ξ、E η; (Ⅲ)已知生产一件产品需用的工人数和资金额 如表三所示.该工厂有工人40名,可用资. 金60万元.设x 、y 分别表示生产甲、乙产 品的数量,在(II )的条件下,x 、y 为何 值时,ηξyE xE z +=(解答时须给出图示)21.(本小题满分14分)已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别是F 1(-c ,0)、F 2(c ,0),Q 是椭圆外的动点,满足.2||1a Q F =点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足.0||,022≠=⋅TF TF PT (Ⅰ)设x 为点P 的横坐标,证明x aca F +=||1; (Ⅱ)求点T 的轨迹C 的方程;(Ⅲ)试问:在点T 的轨迹C 上,是否存在点M , 使△F 1MF 2的面积S=.2b 若存在,求∠F 1MF 2的正切值;若不存在,请说明理由.22.(本小题满分12分)函数)(x f y =在区间(0,+∞)内可导,导函数)(x f '是减函数,且.0)(>'x f 设m kx y x +=+∞∈),,0(0是曲线)(x f y =在点()(,00x f x )得的切线方程,并设函数.)(m kx x g +=(Ⅰ)用0x 、)(0x f 、)(0x f '表示m ; (Ⅱ)证明:当)()(,),0(0x f x g x ≥+∞∈时;(Ⅲ)若关于x 的不等式),0[231322+∞≥+≥+在x b ax x 上恒成立,其中a 、b 为实数,求b 的取值范围及a 与b 所满足的关系.2005年普通高等学校招生全国统一考试(辽宁卷)数学参考答案与评分标准说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则。

2005年高考理综全国1卷试题及答案

2005年高考理综全国1卷试题及答案

2005年普通高等学校招生全国统一考试理科综合能力测试(全国卷一)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,考试结束后,将本试卷和答题卡一并交回。

第I卷(选择题共24分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、考生号、考试科目涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号.不能在答在试题卷上。

3.本卷共21小题,每小题6分,共126分.以下数据可供解题时参考:相对原子质量(原子量):C 12 O 16 Na 23一、选择题(本题包括13小题。

每小题只有一个选项符合题意)1.人体神经细胞与肝细胞的形态结构和功能不同,其根本原因是这两种细胞的( )A.DNA碱基排列顺序不同B.核糖体不同C.转运RNA不同D.信使RNA不同2.在光照下,供给玉米离体叶片少量的14CO2,随着光合作用时间的延续,在光合作用固定CO2形成的C3化合物和C4化合物中,14C含量变化示意图正确的是()3.镰刀型细胞贫血症的病因是血红蛋白基因的碱基序列发生了改变。

检测这种碱基序列改变必须使用的酶是()A.解旋酶B.DNA连接酶C.限制性内切酶D.RNA聚合酶4.将小麦种子分别置于20℃和30℃培养箱中培养4天,依次取等量的萌发种子分别制成提取液Ⅰ和提取液Ⅱ.取3支试管甲、乙、丙,分别加入等量的淀粉液,然后按下图加入等量的提取液和蒸馏水,45℃水浴保温5分钟,立即在3支试管中加入等量裴林试剂并煮沸2分钟,摇匀观察试管中的颜色。

结果是()A.甲呈蓝色,乙呈砖红色,丙呈无色B.甲呈无色,乙呈砖红色,丙呈蓝色C.甲、乙皆呈蓝色,丙呈砖红色D.甲呈浅砖红色,乙呈砖红色,丙呈蓝色5.为了保护鱼类资源不受破坏,并能持续地获得量大捕鱼量,根据种群增长的S型曲线,应使被捕鱼群的种群数量保持在K/2水平.这是因为在这个水平上()A.种群数量相对稳定B.种群增长量最大C.种群数量最大D.环境条件所允许的种群数量最大6.下列分子中所有原子都满足最外层为8电子结构的是() A.BF3B.H2O C.SiCl4 D.PCl57.等物质的量的主族金属A、B、C分别与足量的稀盐酸反应,所得氢气的体积依次为V A、V B、V C,已知V B=2V C,且V A=V B+V C,则在C的生成物中,该金属元素的化合价为( )A.+1 B.+2 C.+3 D.+48.已知Q与R的摩尔质量之比为9:22,在反应X+2Y=2Q+R中,当1.6g X与Y完全反应后,生成4。

2005年高考理综试题及答案全国卷2

2005年高考理综试题及答案全国卷2

2005年普通高等学校招生全国统一考试理科综合能力测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至4页,第Ⅱ卷5至13页。

考试结束后,将本试题卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

不能答在试题卷上。

3.本卷共21小题,每小题6分,共126分。

以下数据可代解题时参考:相对原子质量(原子量):H 1 C 12 N 14 O 16 Mg 24 Cu 64一、选择题(本题包括13小题。

每小题只有一个....选项符合题意)1.糖尿病患者容易出现A.细胞内液增多B.组织液增多C.体液增多D.尿量增多2.当抗原刺激体产生细胞免疫反应时,效应T细胞发挥的作用是A.产生抗体使靶细胞裂解B.激活靶细胞内的溶酶体酶使靶细胞裂解C.产生组织胺增强B细胞的功能D.促进B细胞产生淋巴因子3.图中三条曲线分别代表了动物物种多样性程度、动物数量易变程度及冬眠动物比例在不同类型生态系统中的变化趋势。

代表动物物种多样性程度和数量易变程度的曲线依次是A.①②B.②③C.①③D.②①4.当人处于炎热环境时,会引起A.冷觉感受器兴奋B.温觉感受器抑制C.甲状腺激素分泌量增加D.下丘脑体温调节中枢兴奋5.下列实验中所用试剂错误..的是A.在观察植物细胞有丝分化瓦解实验中,使用醋酸洋红溶液使染色体着色B.在提取叶绿体色素实验中,使用丙酮提取色素C.在DNA的粗提取与鉴定实验中,使用氯化钠溶液析出DNAD.在蛋白质的鉴定实验中,使用苏丹Ⅲ染液鉴定蛋白质6.分析发现,某陨石中含有半衰期极短的镁的一种放射性同位素28Mg,该同位素的原子核内的中子数是A.12 B.14 C.16 D.187.下列说法正确的是A.常温常压下,只有一种元素的单质呈液态B.周期表中所有元素都是从自然界中发现的C.过渡元素不全是金属元素D.常温常压下,气态单质的分子都是由非金属元素的原子形成的8.下列单质中,最容易跟氢气发生反应的是A.O2B.N2C.F2D.Cl29.N A代表阿伏加德罗常数,下列说法正确的是A.在同温同压时,相同体积的任何气体单质所含的原子数目相同B.2g氢气所含原子数目为N AC.在常温常压下,氮气所含的原子数为N AD.17g氨气所含电子数目为10N A10.相同体积的pH=3的强酸溶液和弱酸溶液分别跟足量的镁完全反应,下列说法正确的是A.弱酸溶液产生较多的氢气B.强酸溶液产生较多的氢气C.两者产生等量的氢气D.无法比较两者产生氢气的量11.已知反应A2(g)+2B2(g)2AB2(g)的△H<0,下列说法正确的是A.升高温度,正向反应速率增加,逆向反映速率减小B.升高温度有利于反应速率增加,从而缩短达到平衡的时间C.达到平衡后,升高温度或增大压强都有利于该反应平衡正向移动D.达到平衡后,降低温度或减小压强都有利于该反应平衡正向移动12.某酒精厂由于管理不善,酒精滴滴到某种化学品上而酿成火灾。

2005年高考语文试题及答案解析(江西)

2005年高考语文试题及答案解析(江西)

2005年普通高等学校招生全国统一试卷(江西卷)语文一、(18分,每小题3分)1.下列词语中加点的字,读音全都正确的一组是()A.悖(bâi)谬翎(lín)毛赧(nǎn)然咬文嚼(jiáo)字B.脉(mî)脉提(dī)防吮(shǔn)吸模棱(lãng)两可C.福祉(zhǐ) 重(zhîng)听怔(zhâng)怔虚与委蛇(shã)D.游说(suì) 破绽(zhàn) 斡(wî)旋少不更(gēng)事2.下列词语中,没有错别字的一组()A.禅让震撼针砭惩前毖后 B.荟萃蕴籍屠戮天花乱坠C.糟塌疲惫寒暄标新立异 D.怄气伫立痉孪远见卓识3.依次填入下列各句横线处的词语,最恰当的一组是()①王晓华外语能力和攻关能力很强,被学校到国际交流处负责外籍教师的引进和管理工作。

②天气恶劣,这些初到庐山的外国朋友还是游兴盎然。

③有时她偷偷塞一点口香糖、瓜子什么的给小王,小王不想要,又不便当众。

A.委任不管推却 B.委派尽管推却 C.委任尽管推诿 D.委派不管推诿4.下列各句中加点的成语使用恰当的一句是A.张之才一见自己的父亲受了这样大的委屈,忍俊不禁,拿起菜刀追出门去,要和渔霸算帐。

B."权钱交易"、"权权交易"等时下的腐败病症,在文艺界虽不说样样俱全,但该领域遭受"感染"却是不容置喙的事实。

C.对于孩子的毛病,他总是不以为然,觉得这些毛病无关紧要,不必大惊小怪。

D.晴朗的夏夜,躺在广阔的草原上望着天上恒河沙数般的星星,惬意极了。

5.下列各句中,标点符号使用正确的一句是()A.旅游景点大都承担着对广大群众进行历史文化教育的责任,景区门票价格由谁定、如何定、定多少?都需要充分论证。

B.李老教导他的学生说:"一定要采取实事求是的态度,知之为知之,不知为不知,不要强不知以为知"。

05年高考数学试题及答案全国卷

05年高考数学试题及答案全国卷

2005年普通高等学校招生全国统一考试理科数学(全国卷Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3到10页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

3.本卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径一 选择题(1)函数f (x) = | sin x +cos x |的最小正周期是 (A).4π (B)2π(C )π (D )2π(2) 正方体ABCD —A 1 B 1 C 1 D 1中,P 、Q 、R 、分别是AB 、AD 、B 1 C 1的中点。

那么正方体的过P 、Q 、R 的截面图形是(A )三角形 (B )四边形 (C )五边形 (D )六边形 (3)函数Y=32x -1(X≤0)的反函数是(A )Y=3)1(+x (X≥-1) (B)Y= -3)1(+x (X≥-1)(C) Y=3)1(+x (X≥0) (D)Y= -3)1(+x (X≥0)(4)已知函数Y=tan x ω 在(-2π,2π)内是减函数,则 (A )0 < ω ≤ 1 (B )-1 ≤ ω < 0 (C )ω≥ 1 (D )ω≤ -1(5)设a 、b 、c 、d ∈R,若dic bia ++为实数,则 (A )bc+ad ≠ 0 (B)bc-ad ≠ 0 (C) bc-ad = 0 (D)bc+ad = 0(6)已知双曲线 62x - 32y = 1的焦点为F 1、、F 2,点M 在双曲线上且MF 1 ⊥ x 轴,则F 1到直线F 2 M 的距离为 (A )563 (B )665 (C )56 (D )65(7)锐角三角形的内角A 、B 满足tan A -A2sin 1= tan B,则有(A )sin 2A –cos B = 0 (B)sin 2A + cos B = 0 (C)sin 2A – sin B = 0 (D) sin 2A+ sin B = 0(8)已知点A (3,1),B(0,0),C (3,0).设∠BAC 的平分线AE 与BC 相交于E ,那么有λ= ,其中 λ 等于(A )2 (B )21 (C )-3 (D ) - 31(9)已知集合M={x∣2x -3x -28 ≤0},N = {x|2x -x-6>0},则M∩N 为(A ){x|- 4≤x< -2或3<x≤7} (B ){x|- 4<x≤ -2或 3≤x<7 }(C ){x|x≤ - 2或 x> 3 } (D ){x|x<- 2或x≥3} (10)点P 在平面上作匀数直线运动,速度向量v =(4,- 3)(即点P 的运动方向与v 相同,且每秒移动的距离为|v |个单位).设开始时点P 的坐标为(- 10,10),则5秒后点P 的坐标为 (A )(- 2,4) (B )(- 30,25) (C )(10,- 5) (D )(5,- 10) (11)如果21,a a … ,8a 为各项都大于零的等差数列,公差d≠0,则(A>81,a a >54,a a (B) 81,a a < 54,a a (C> 5481a a a a +>+ (D) 81,a a = 54,a a(12)将半径都为1的4个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为 (A )3623+ (B )2+362 (C )4+362 (D )36234+第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷上。

2005年全国各地高考数学试题及解答分类大全(计数原理、二项式定理)

2005年全国各地高考数学试题及解答分类大全(计数原理、二项式定理)

解法 2:共有 7 个,它们是由四个定点组成的四面体的三对异面直线间的公垂线的三个中垂面;
四面体的四条高的四个中垂面,选(D)
【解后反思】分步计数原理与分类计数原理是排列组合中解决问题的重要手段,也是基础方法,
在高中数学中,只有这两个原理,尤其是分类计数原理与分类讨论有很多相通之处,当遇到比较复杂的
5
放入④两种放法。综上所述:共有 A44 2 48 种放法.故选 B.
P
1
4
A 5
23 8
D 7
B6 C
9.(2005 江西文)将 9 个(含甲、乙)平均分成三组,甲、乙分在同一组,则不同分组方法的种数

()
A.70
B.140
C.280
D.840
【思路点拨】本题涉及组合的平均分组问题.
【正确解答】要使甲、乙分在同一组,即将剩下的 7 人分成三组,其中两组有三个人,一组只有一
B.96
C.72
D.144
解:本题主要关键是抓连续编号的 2 张电影票的情况,可分四种情况:
情况一:连续的编号的电影票为 1,2;3,4;5,6,这时分法种数为 C42P32P22
情况二:连续的编号的电影票为 1,2;4,5,这时分法种数为 C42P22P22
情况三:连续的编号的电影票为 2,3;4,5;这时分法种数为 C42P22P22
D.1 项
【思路点拨】本题主要考查二项式展开通项公式的有关知识.
【正确解答】 (
x 3 x )12 的展开式为 C1t2 (
x )t ( 3
x )12t
Байду номын сангаас
C1t2
x
t 2
12t 3
C1t2

2005年高考数学试题

2005年高考数学试题

1、设集合A = {x | x是小于8的正整数},B = {x | x是3的倍数},则A ∩B =A. {3, 6}B. {1, 2, 3}C. {3, 6, 9}D. {2, 4, 6}(答案)A2、已知等差数列{an}的首项为a1,公差为d,若a3 + a5 = 10,则a1 + a7 =A. 10B. 12C. 14D. 16(答案)A3、若复数z满足(1 + i)z = 1 - i(i为虚数单位),则z =A. iB. -iC. 1 + iD. 1 - i(答案)B4、设f(x)是定义在R上的奇函数,且当x ≥0时,f(x) = x2 - 2x,则f(-1) =A. -1B. 0C. 1D. 3(答案)C5、已知向量a = (1, 2),b = (2, m),若a ⊥b,则m =A. -1B. 0C. 1D. 2(答案)A6、设三角形ABC的内角A、B、C所对的边分别为a、b、c,且cos(A - C) + cos(B) = 1,则三角形ABC的形状是A. 等腰三角形B. 等边三角形C. 直角三角形D. 等腰直角三角形(答案)D7、已知圆C的方程为x2 + y2 = 4,直线l的方程为x - y - 2 = 0,则圆心C到直线l的距离为A. √2B. 2C. 2√2D. 4(答案)C8、设等比数列{an}的公比为q,前n项和为Sn,若S3,S9,S6成等差数列,则q3 =A. -1或1/2B. 1或-1/2C. -1D. 1/2(答案)B9、已知函数f(x) = x2 + ax + b在x = 1处有极小值,则A. a2 - 4b > 0且a = -2B. a2 - 4b > 0且a = 2C. a2 - 4b ≤0且a = -2D. a2 - 4b ≤0且a = 2(答案)A10、设椭圆C的方程为x2/a2 + y2/b2 = 1(a > b > 0),点A(2, 0)是椭圆C的一个顶点,点B(0, 1)在椭圆C上,则A. a = 2,b = 1B. a = 2,b = √2C. a = 4,b = 2D. a = 4,b = √2(答案)A。

2005年高考语文试题及答案(江苏)

2005年高考语文试题及答案(江苏)

2005年高考(江苏卷)语文试题本试卷分第一卷和第二卷两部分。

第一卷从第1页至第5页,第二卷从第5页至第8页。

考试结束后,将本试卷和答题卡一并交回。

考试时间150分钟。

第一卷(选择题共36分)注意:1.答第一卷前,请考生务必将自己的姓名、考试证号用书写黑色字迹的;0.5毫米签字笔填写在答题卡上,并认真核对监考员所粘贴的条形码上的姓名、考试证号。

2.第一卷答案必须用2B铅笔填涂在答题卡上,在其他位置作答一律无效。

每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案。

一、(12分,每小题3分)1.下列词语中加点字的读音完全相同的一组是A.眩晕舷梯炫耀武力改弦更张B.羡慕募捐幕天席地蓦然回首C.剽悍漂泊虚无缥缈飘忽不定D.舟楫逻辑开门揖盗缉拿归案2.下列各句中没有错别字的一句是A.联合国维和部队进驻后,这一地区箭拔弩张的局势才得以缓和,冲突双方终于坐到了谈判桌前。

B.没有经过周密的调查研究,就贸然作判断下结论,那么,这种判断和结论是很难站得住脚的。

C.在竞选过程中,采取种种不正当手段拢络人心从而赢得选票的做法,是非常可耻的。

D.事故发生后,他迅速赶赴现场坐阵指挥,直到被困井下的矿工全都脱离危险才离开。

3.下列各句中加点的成语使用恰当的一句是A.他最近的状态一直不佳,接连几次考试都不理想,屡试不爽,心情糟透了。

B.辩论会上,选手们唇枪舌剑,巧舌如簧,精彩激烈的场面赢得了现场观众阵阵掌声。

C.出于自身利益的考虑,一些地区画地为牢,实行地方保护主义,人为地分割和控制煤炭资源。

D.导演对筹拍的这部电视剧主要角色的人选讳莫如深,记者得不到任何信息,大失所望。

4.下列各句中没有语病的一句是A.人们的悲哀在于,应该珍惜的时候不懂得珍惜,而懂得珍惜的时候却失去了珍惜的机会。

B.这次外出比赛,我—定说服老师和你一起去,这样你就不会太紧张了,可以发挥得更好。

C.“新课标”要求,在教学中,教师的角色要由传统的“满堂灌”向学生学习的参与者和促进者转变。

2005年湖北文科高考数学试卷

2005年湖北文科高考数学试卷

中国教育在线高考频道 绝密★启用前2005年普通高等学校招生全国统一考试(湖北卷)数学试题卷(文史类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 满分150分. 考试时间120分钟.第I 部分(选择题 共60分)注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试题卷上无效.3.考试结束,监考人员将本试题卷和答题卡一并收回.一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个备选项中,只有一项是符合题目要求的.1.设P 、Q 为两个非空实数集合,定义集合P+Q=},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q ,则P+Q 中元素的个数是 ( )A .9B .8C .7D .62.对任意实数a ,b ,c ,给出下列命题:①“b a =”是“bc ac =”充要条件; ②“5+a 是无理数”是“a 是无理数”的充要条件③“a >b ”是“a 2>b 2”的充分条件;④“a <5”是“a <3”的必要条件. 其中真命题的个数是 ( ) A .1 B .2 C .3 D .4 3.已知向量a =(-2,2),b =(5,k ).若|a +b |不超过5,则k 的取值范围是 ( ) A .[-4,6] B .[-6,4] C .[-6,2] D .[-2,6] 4.函数|1|||ln --=x e y x 的图象大致是( )5.木星的体积约是地球体积的30240倍,则它的表面积约是地球表面积的 ( )A .60倍B .6030倍C .120倍D .12030倍中国教育在线高考频道 6.双曲线)0(122≠=-mn ny m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( )A .163 B .83 C .316 D .38 7.在x y x y x y y x 2c o s ,,l o g ,222====这四个函数中,当1021<<<x x 时,使2)()()2(2121x f x f x x f +>+恒成立的函数的个数是 ( )A .0B .1C .2D .3 8.已知a 、b 、c 是直线,β是平面,给出下列命题:①若c a c b b a //,,则⊥⊥; ②若c a c b b a ⊥⊥则,,//; ③若b a b a //,,//则ββ⊂;④若a 与b 异面,且ββ与则b a ,//相交;⑤若a 与b 异面,则至多有一条直线与a ,b 都垂直.其中真命题的个数是 ( ) A .1 B .2 C .3 D .49.把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是 ( ) A .168 B .96 C .72 D .144 10.若∈<<=+απαααα则),20(tan cos sin( )A .)6,0(πB .)4,6(ππ C .)3,4(ππ D .)2,3(ππ 11.在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是( ) A .3 B .2 C .1 D .012.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况: ①7,34,61,88,115,142,169,196,223,250; ②5,9,100,107,111,121,180,195,200,265; ③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270; 关于上述样本的下列结论中,正确的是 ( )A .②、③都不能为系统抽样B .②、④都不能为分层抽样C .①、④都可能为系统抽样D .①、③都可能为分层抽样第Ⅱ卷(非选择题 共90分)注意事项:第Ⅱ卷用0.5毫米黑色的签字或黑色墨水钢笔直接答在答题卡上.答在试题卷上无效. 二、填空题:本大题共4小题,每小题4分,共16分. 把答案填在答题卡相应位置上. 13.函数x x x x f ---=4lg 32)(的定义域是 . 14.843)1()2(xx xx ++-的展开式中整理后的常数项等于 . 15.函数1cos |sin |-=x x y 的最小正周期与最大值的和为 .16.某实验室需购某种化工原料106千克,现在市场上该原料有两种包装,一种是每袋35千克,价格为140元;另一种是每袋24千克,价格为120元. 在满足需要的条件下,最少要花费 元. 三、解答题:本大题共6小题,共74分,解答时应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知向量b a x f t x b x x a ⋅=-=+=)(),,1(),1,(2若函数在区间(-1,1)上是增函数,求t 的取值范围. 18.(本小题满分12分) 在△ABC 中,已知63,31cos ,3tan ===AC C B ,求△ABC 的面积.中国教育在线高考频道 19.(本小题满分12分)设数列}{n a 的前n 项和为S n =2n 2,}{n b 为等比数列,且.)(,112211b a a b b a =-=(Ⅰ)求数列}{n a 和}{n b 的通项公式; (Ⅱ)设nnn b a c =,求数列}{n c 的前n 项和T n .20.(本小题满分12分)如图所示的多面体是由底面为ABCD的长方体被截面AEC1F所截面而得到的,其中AB=4,BC=2,CC1=3,BE=1.(Ⅰ)求BF的长;(Ⅱ)求点C到平面AEC1F的距离.中国教育在线高考频道21.(本小题满分12分)某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p1,寿命为2年以上的概率为p2.从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换.(Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率;(Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率;(Ⅲ)当p1=0.8,p2=0.3时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字).22.(本小题满分14分)设A 、B 是椭圆λ=+223y x 上的两点,点N (1,3)是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点.(Ⅰ)确定λ的取值范围,并求直线AB 的方程;(Ⅱ)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由.2005年普通高等学校招生全国统一考试数学试题(文史类)参考答案一、选择题:本题考查基本知识和基本运算,每小题4分,满分16分.1.B 2.B 3.C 4.D 5.C 6.A 7.B 8.A 9.D 10.C 11.D 12.D 二、填空题:本题考查基本知识和基本运算,每小题4分,满分16分.13.)4,3()3,2[⋃ 14.38 15.212-π 16.500 三、解答题17.本小题主要考查平面向量数量积的计算方法、利用导数研究函数的单调性,以及运用基本函数的性质分析和解决问题的能力.解法1:依定义,)1()1()(232t tx x x x t x x x f +++-=++-=.23)(2t x x x f ++-='则.0)()1,1(,)1,1()(≥'--x f x f 上可设则在上是增函数在若中国教育在线高考频道 ,23)(,)1,1(,230)(22x x x g x x t x f -=--≥⇔≥'∴考虑函数上恒成立在区间,31)(=x x g 的图象是对称轴为由于开口向上的抛物线,故要使x x t 232-≥在区间(-1,1)上恒成立⇔.5),1(≥-≥t g t 即.)1,1()(,0)()1,1()(,5上是增函数在即上满足在时而当->'-'≥x f x f x f t5≥t t 的取值范围是故.解法2:依定义,)1()1()(232t tx x x x t x x x f +++-=++-=.0)()1,1(,)1,1()(.23)(2≥'--++-='x f x f t x x x f 上可设则在上是增函数在若)(x f ' 的图象是开口向下的抛物线,时且当且仅当05)1(,01)1(≥-=-'≥-='∴t f t f.5.)1,1()(,0)()1,1()(≥->'-'t t x f x f x f 的取值范围是故上是增函数在即上满足在18.本小题主要考查正弦定理、余弦定理和三角形面积公式等基础知识,同时考查利用三角公式进行恒等变形的技能和运算能力.解法1:设AB 、BC 、CA 的长分别为c 、a 、b ,.21cos ,23sin ,60,3tan ==∴==B B B B 得由 应用正弦定理得又,322cos 1sin 2=-=C C 8232263sin sin =⨯==B C b c ..3263332213123sin cos cos sin )sin(sin +=⨯+⨯=+=+=∴C B C B C B A 故所求面积.3826sin 21+==∆A bc S ABC 解法3:同解法1可得c=8. 又由余弦定理可得.64,,364,32321236330sin sin sin sin ,sin sin .12030,900,60.64,64.0108,21826454,cos 222122222+=<-=>=⋅=⋅>⋅==<<∴<<=-=+==+-∴⨯⨯-+=-+=a a B b A B b a B b A a A C B a a a a a a B ac c a b 故舍去而得由所得即 故所求面积.3826sin 21+==∆B ac S ABC 19.本小题主要考查等差数列、等比数列基本知识和数列求和的基本方法以及运算能力.解:(1):当;2,111===S a n 时 ,24)1(22,2221-=--=-=≥-n n n S S a n n n n 时当故{a n }的通项公式为4,2}{,241==-=d a a n a n n 公差是即的等差数列. 设{b n }的通项公式为.41,4,,11=∴==q d b qd b q 则 故.42}{,4121111---=⨯-=n n n n n n b b q b b 的通项公式为即(II ),4)12(422411---=-==n n nn n n n b a c ]4)12(4)32(454341[4],4)12(45431[13212121nn n n n n n n T n c c c T -+-++⨯+⨯+⨯=-++⨯+⨯+=+++=∴--两式相减得].54)56[(91]54)56[(314)12()4444(2131321+-=∴+-=-+++++--=-n n n n n n n T n n T20.本小题主要考查线面关系和空间距离的求法等基础知识,同时考查空间想象能力和推理运算能力.解法1:(Ⅰ)过E 作EH//BC 交CC 1于H ,则CH=BE=1,EH//AD ,且EH=AD. 又∵AF ∥EC 1,∴∠FAD=∠C 1EH.∴Rt △ADF ≌Rt △EHC 1. ∴DF=C 1H=2..6222=+=∴DF BD BF(Ⅱ)延长C 1E 与CB 交于G ,连AG , 则平面AEC 1F 与平面ABCD 相交于AG . 过C 作CM ⊥AG ,垂足为M ,连C 1M ,由三垂线定理可知AG ⊥C 1M.由于AG ⊥面C 1MC ,且中国教育在线高考频道 AG ⊂面AEC 1F ,所以平面AEC 1F ⊥面C 1MC.在Rt △C 1CM 中,作CQ ⊥MC 1,垂足为Q ,则CQ 的长即为C 到平面AEC 1F 的距离..113341712317123,17121743cos 3cos 3,.17,1,2211221=+⨯=⨯=∴=⨯===∠=∠=+===MC CC CM CQ GAB MCG CM MCG GAB BG AB AG BG CGBGCC EB 知由从而可得由解法2:(I )建立如图所示的空间直角坐标系,则D (0,0,0),B (2,4,0),A (2,0,0), C (0,4,0),E (2,4,1),C 1(0,4,3).设F (0,0,z ). ∵AEC 1F 为平行四边形,.62,62||).2,4,2().2,0,0(.2),2,0,2(),0,2(,,11的长为即于是得由为平行四边形由BF BF EF F z z EC F AEC =--=∴∴=∴-=-=∴∴(II )设1n 为平面AEC 1F 的法向量,)1,,(,11y x n ADF n =故可设不垂直于平面显然 ⎩⎨⎧=+⨯+⨯-=+⨯+⨯⎪⎩⎪⎨⎧=⋅=⋅02020140,0,011y x y x AF n n 得由⎪⎩⎪⎨⎧-==∴⎩⎨⎧=+-=+.41,1,022,014y x x y 即 111),3,0,0(n CC CC 与设又=的夹角为a ,则 .333341161133||||cos 1111=++⨯=⋅=n CC α ∴C 到平面AEC 1F 的距离为.11334333343cos ||1=⨯==αCC d21.本小题主要考查概率的基础知识和运算能力,以及运用概率的知识分析和解决实际问题能力.解:(I )在第一次更换灯泡工作中,不需要换灯泡的概率为,51p 需要更换2只灯泡的概率为;)1(213125p p C -(II )对该盏灯来说,在第1、2次都更换了灯泡的概率为(1-p 1)2;在第一次未更换灯泡而在第二次需要更换灯泡的概率为p 1(1-p 2),故所求的概率为);1()1(2121p p p p -+-=(III )至少换4只灯泡包括换5只和换4只两种情况,换5只的概率为p 5(其中p 为(II )中所求,下同)换4只的概率为415p C (1-p ),故至少换4只灯泡的概率为 .34.042.34.04.06.056.06.07.08.02.0,3.0,8.0).1(45322141553只灯泡的概率为年至少需要换即满时又当=⨯⨯+=∴=⨯+===-+=p p p p p p C p p22.本小题主要考查直线、圆和椭圆等平面解析几何的基础知识以及推理运算能力和综合解决问题的能力.(I )解法1:依题意,可设直线AB 的方程为λ=++-=223,3)1(y x x k y 代入,整理得 .0)3()3(2)3(222=--+--+λk x k k x k ①设是方程则212211,),,(),,(x x y x B y x A ①的两个不同的根,0])3(3)3([422>--+=∆∴k k λ ②)3,1(.3)3(2221N k k k x x 由且+-=+是线段AB 的中点,得 .3)3(,12221+=-∴=+k k k x x 解得k=-1,代入②得,λ>12,即λ的取值范围是(12,+∞).于是,直线AB 的方程为.04),1(3=-+--=-y x x y 即解法2:设则有),,(),,(2211y x B y x A.0))(())((33,32121212122222121=+-++-⇒⎪⎩⎪⎨⎧=+=+y y y y x x x x y x y x λλ 依题意,.)(3,212121y y x x k x x AB ++-=∴≠中国教育在线高考频道 .04),1(3).,12(.12313,)3,1(.1,6,2,)3,1(222121=-+--=-+∞∴=+⨯>-==+=+∴y x x y AB N k y y x x AB N AB 即的方程为直线的取值范围是在椭圆内又由从而的中点是λλ(II )解法1:.02,13,=---=-∴y x x y CD AB CD 即的方程为直线垂直平分 代入椭圆方程,整理得 .04442=-++λx x ③是方程则的中点为又设43004433,),,(),,(),,(x x y x M CD y x D y x C ③的两根,).23,21(,232,21)(21,10043043-=+=-=+=-=+∴M x y x x x x x 即且于是由弦长公式可得 ).3(2||)1(1||432-=-⋅-+=λx x kCD ④ 将直线AB 的方程代入椭圆方程得,04=-+y x.016842=-+-λx x ⑤同理可得.)12(2||1||212-=-⋅+=λx x k AB ⑥.||||.,)12(2)3(2,12CD AB <∴->->λλλ时当假设在在λ>12,使得A 、B 、C 、D 四点共圆,则CD 必为圆的直径,点M 为圆心.点M 到直线AB 的距离为.2232|42321|2|4|00=-+-=-+=y x d ⑦ 于是,由④、⑥、⑦式和勾股定理可得.|2|2321229|2|||||22222CD AB d MB MA =-=-+=+==λλ 故当12>λ时,A 、B 、C 、D 四点均在以M 为圆心,2||CD 为半径的圆上. (注:上述解法中最后一步可按如下解法获得:A 、B 、C 、D 共圆⇔△ACD 为直角三角形,A 为直角即|,|||||2DN CN AN ⋅=⇔ ).2||)(2||()2||(2d CD d CD AB -+= ⑧ 由⑥式知,⑧式左边=.212-λ 由④和⑦知,⑧式右边=)2232)3(2)(2232)3(2(--+-λλ ,2122923-=--=λλ ∴⑧式成立,即A 、B 、C 、D 四点共圆解法2:由(II )解法1及12>λ.,13,-=-∴x y CD AB CD 方程为直线垂直平分 代入椭圆方程,整理得 .04442=-++λx x ③将直线AB 的方程,04=-+y x 代入椭圆方程,整理得.016842=-+-λx x ⑤解③和⑤式可得 .231,2122,4,321-±-=-±-λλx x 不妨设)233,231(),233,231(),12213,12211(-+-+---------+λλλλλλD C A ∴)21233,23123(---+-+-+=λλλλ )21233,23123(-------+=λλλλ 计算可得0=⋅DA CA ,∴A 在以CD 为直径的圆上.又B 为A 关于CD 的对称点,∴A 、B 、C 、D 四点共圆.(注:也可用勾股定理证明AC ⊥AD )。

2005年高考语文试题及答案(全国卷2)

2005年高考语文试题及答案(全国卷2)

2005年高考语文试题及答案(全国卷2)2005年普通高等学校招生全国统一考试语文试题(全国卷2)第Ⅰ卷一、(12分,每小题3分)1.下列词语中加点的字,每对的读音完全相同的一组是A.强求/牵强纤夫/纤尘不染来日方长/拔苗助长B.宿仇/宿将落笔/失魂落魄差可告慰/差强人意C.解嘲/押解蹊跷/另辟蹊径一脉相传/名不虚传D.卡片/关卡度量/置之度外方兴未艾/自怨自艾2.依次填入下列各句横线处的词语,最恰当的一组是1.井冈山、遵义、延安和西柏坡,是中国革命的几处。

2.“开发西部战略”的目标之一就是我国东西部的差距。

3.几项调控房价措施相继出台,说明政府房价增长过快的态度相当坚定。

A.胜地缩小控制B.圣地减少控制C.圣地缩小抑制 .D.胜地减少抑制3.下列各句中,加点的成语使用不恰当的一句是A.我们真诚地希望常昊夺取世界冠军之后再接再厉,不断带给人们惊喜。

B.我国正在紧锣密鼓地进行“神舟”六号太空飞行的各项准备工作。

C.市中心许多商业广告牌被庆祝反法西斯战争胜利日的宣传画取而代之。

D.近十多年来,我国的城市“夜景观”建设琳琅满目,发展十分迅速。

4.下列各句中,语意明确的一句是A.印度洋海啸发生后,中国政府进行了迄今为止最大规模的对外救援行动。

B.今天老师又在班会上表扬了自己,但是我觉得还需要继续努力。

C.祁爱群看见组织部新来的援藏干部很高兴,于是两人亲切地交谈起来。

D.因患病住院,83岁高龄的黄昆和正在美国的姚明没能到场领奖。

二、(9分,每小题3分)阅读下面的文字,完成5~7题。

植物睡眠之迷自然界有许多植物的叶子会运动,比如含羞草、合欢等豆科植物白天张开叶子,晚上会合上叶子“睡眠”;捕绳草的叶子能闭合起来,捕食苍蝇等昆虫。

像含羞草、合欢等植物的这种“睡眠运动”自古以来就受到人们的关注,可是植物为什么会睡眠,却一直是个不解之迷。

18世纪,法国生物学家德梅兰把含羞草放到光线照不到的洞穴里,发现它的叶子依然以24小时为周期开合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江大学
2005年攻读硕士学位研究生入学考试试题
注意:答案必须写在答题纸上,写在试卷或草稿上均无效。

一.选择题(2×10=20分)
1.欲观察到定域条纹,则首选()
A.单色扩展光源
B.白光扩展光源
C.单色电光源
D.白光电光源
2.牛顿环装置中,若用平行光垂直照明,则当凸透镜与平板间距拉大时,条纹将()
A.外扩 B.向中心收缩 C.无影响
3.平行平板干涉中,当平板表面反射率很高时(不考虑吸收),若相邻光束光程差为波长整数倍时,则()
A.反射光强等于入射光强
B.投射光强等于入射光强
C.反射光强随表面反射率增大而增大
4.设线数为N1=600的光栅,其零级主极大光强为I1,在其他条件相同情况下,
N2=1800的光栅其零级主极大光强为I2,则I2/I1为()
A.1/9
B.1/3
C.3
D.9
5.一束自然光通过¼波片时,一般为()
A.线偏振光
B.圆偏振光
C.椭圆偏振光
D.自然光
6.以直径d的圆孔作衍射受限系统出瞳,在相干照明时,其截止频率为ρ1,而用非相干光照明时,其截止频率为ρ2,则ρ2/ρ1,为()
A.1/4
B.1/2
C.2
D.4
E.1
7.单轴双折射晶体中,一般情况下()
A. H,D,S相互垂直
B. H,E,k相互垂直
C. H,E,S相互垂直
D. E,k,S相互垂直
8,将一块光栅置于一相干成像系统中,若再其端面上只允许-1和+2级频谱通过,则其光栅的空间频率是()
A.与原来相同
B.是原来的两倍
C.是原来的三倍
9.为了观察原子光谱的超精细结构,应首选下列哪个分光系统()
A.棱镜
B.典型的F-B干涉仪
C.典型光栅
10.根据菲涅尔衍射波带片理论,当衍射屏只允许中心第一个波带通过时,轴上考察点亮度为I1,而当衍射屏通光孔为无穷大时,轴上考察点亮度为I2,则I2/ I1为( )
A.4
B.2
C.1/2
D.1/4
二.简答题(4×5=20分)
1.写出会聚球面波和发散球面波的波动公式。

2.用振幅为A的平面波垂直照射投射系数为t(x)=a sin(2えx/d)+t0的透明片,试写出紧靠透明片后的复振幅分布。

3.在等倾干涉系统中,使用扩展光源照明,条纹可见度是否会下降,并简述理由。

4.要区分一束光为椭圆偏振光还是部分圆偏振光,如何区分,其方法是什么?
5.从衍射理论出发,望远镜的口径大好还是小好?为什么?
三.解答题(110)
1.对于平面波E=(2x0-2√3y0)exp[i(√3x+y+6×108t)],试求:
(1).波的偏振方向(2).波的行进方向(3).位相速度
(4).振幅(5).频率和波长
2.在图示马赫-泽德干涉仪中(λ=589.3nm),D1D2为两个长为50cm德真空气室,端面于光线垂直,在观察到干涉仪产生德条纹后,缓缓向D2口充入某气体,最后发现条纹移动112个,试求此空气折射率n。

(12分)
3.在照相物镜上镀一层光学厚度为5/4λ0(λ0=550nm),的低折射率介质膜,求:(8分)
(1)介质膜的作用
(2)求此可见光区(380nm-780nm)反射比最大波长
4.一块闪耀波长为第一级500nm,每mm刻痕1200条的反射光栅,在李特洛自准装置中(平行光垂直刻痕面入射),最多能看到500nm 的哪几级光谱?(15分)5.一束平行自然光入射图示石英晶体(n e>n o)分界面上,试作图示晶体的
S o,S e,k o,k e(8分)
6.试求图示狭缝的夫琅和费衍射光强分布(12分)
7.两列波长相同的单色平面波照射在xy平面上,两列波振幅分别为A1、A2,传播方向余弦(cosα1,cosβ1,cosγ1)和(cosα2,cosβ2,cosγ2),试求xy平面上的光强分布和空间频率(10分)
8.为测定波片的位相延迟角δ,可用如图干涉仪装置,使一束自然光相继通过起偏器、待测波片、¼波片和检偏器。

当起偏器的透光轴和¼波片快轴沿x轴;待测波片快轴与x轴成45º时,从¼波片中透出线偏振光,用检偏器确定它的振动方向便可得到待测波片的位相延迟角,试利用琼斯计算法说明这一原理。

(15分)
9.在光学信息处理的4f系统中,在输入平面放置一振幅投射系数位t(x)= ½+½cos2えu0x的正弦光栅,求:
(1).变换平面上的傅立叶频谱,并说明衍射斑的方位及相对强度;
(2).像面上图象的光强分布;
(3).频谱面中央用小圆屏挡住其零级谱后,求像面的光强分布及空间频率;
(4).移动小圆屏,挡住光栅-1级谱,求像面的光强分布及空间频率;(15分)。

相关文档
最新文档