有机化学 第五章

合集下载

大学有机化学第五章.脂环烃

大学有机化学第五章.脂环烃

甲基环己烷

﹡(2)多环烷烃的命名
• ①螺环烷烃的命名:二个环共用的碳原子称为螺原 子,编号时从邻近螺原子的一个碳原子开始,从小 环开始经螺原子到大环将环编号,若环上有取代基 时,尽量使取代基位次较小。命名时,根据环上碳 原子总数称为螺[?,?]某烷,?表示除螺原子外环上 碳原子数,较小的数字放在前面。例:
二、环己烷的构象 早在1890年,沙赫斯(H.Sachse)通过研究认为:环己
烷的六个碳原子不在同一平面上,应保持正常的四面体角度。
1920年,莫尔(E.Mohr)重新研究了环己烷的结构,提出 了非平面张力学说。他认为:环己烷的碳原子之间可以保持正
常的角度,环己烷的六个碳原子不在同一平面上,C—C键之间
从这两种构象的纽曼投影式可以看出,椅
式构象的C-C及C-H键处于交叉位置,而船式构象则 处于重叠位置,因此这两种构象最稳定的是椅式构
象,下面我们主要讨论椅式构象。
(2)椅式构象中两种类型的价键
在椅式椅象中,C1、C3、C5与C2、C4、C6各 构成一个平面,这两个平面是平行的。与平面垂直 的价键称为键a或直立键,与中心轴成109。28,夹 角的称为e键或平伏键。中心轴是经过C1、C3、C5所 形成的三角形中心并与其所形成的平面垂直的直线。
结合P110-4
4、下列化合物是否有顺反异构体?若有,写出它们的立体 结构式。
1.
CHCH 3
2.
CH=C(CH 3)2 CH 3
3.
CH3
CH 3
没有 4.有顺反异构,如下式:
4.
没有
没有
H
CH3 CH3
CH3
H
CH3
H
CH3
H
H

有机化学-第五章

有机化学-第五章
第五章 饱和烃
5.1 饱和烃的结构和分类 5.2 链烷烃的物理性质 5.3 烷烃的化学性质
卤代反应的机理 烷烃的其他取代反应 烷烃的氧化反应 裂解及异构反应
5.4 环烷烃的化学性质
烃:分子中只含碳、氢两种元素的化合物 统称为碳氢化合物,简称为烃。烃是有机化合 物最基本的化合物,也是有机化学工业的基础 原料。
硝化反应产物复杂,除取代反应外,还有烃分子断链的 反应。 硝化反应属自由基型反应机理:
开始的· NO2来自硝酸中,· NO2是个含奇数电子的中性物种, 是一个自由基。 硝化产物作为工业溶剂,如用硝基戊烷作为纤维素酯和 合成树脂的溶剂;硝基甲烷是有机合反应的重要原料。
二. 氯磺酰化反应
烃分子中的氢被氯磺酰基(-SO2Cl)取代的反应称为 氯磺酰化反应。 常用的氯磺酰化试剂有:硫酰氯(SO2Cl2)或氯和二 氧化硫。
5469.2
2,2-二甲基己 烷
5462.1
2,2,3,3-四 甲基丁烷
5455.4
烃氧化反应的产物都是 CO2 和 H2O ,燃烧焓 -Δ Hθ 值反映了反应物的焓 Hθ反应物,即反映了异构体的 稳定性: 正构CnH2n+2 比 异构CnH2n+2 能量高,不稳定 在CnH2n+2中:支键数增多,HØ值小,稳定 每一摩尔 -CH2- 的 -ΔHθ ≈ 660 kJ· mol-1 烷烃的最大用途就是作为燃料,是目前人类的主要能 源。 合理利用现有能源,开发新的能量是人类生存面临的 主要问题之一。
可用反应--能量图表示这一反应过程:
在这一反应过程中,C 原子的杂化状态是由 Csp3 向 Csp2 的转变过程,中间体· CH3的 C 的构型是 sp2 杂化, 即平面构型。 生成的· CH3中间体的能量很高,极活泼, 很快与Cl2反应:

9.21有机化学第五章烯烃.

9.21有机化学第五章烯烃.

Br Br
C=C
+ Br2 CCl4
CC
红棕色
无色
烯烃加溴历程:
C=C
+

Br

Br

烯烃
B+r
CC
Br

Br-
CC
Br
环状溴正离子
烯与卤素的加成反应是由Br+首先进攻的,
是亲电加成反应。
下列实验可以用来说明:
烯烃与卤素的加成反应,是由
亲电试剂首先进攻的分步反应。
实验一:
CH2=CH2 + Br2
结论:
C的稳定性决定了烯烃加成主要产物的 结构。
注意下列C的稳定性:
CH3
CH3 C+
CH3
3 £¡C+
CH3 CH3 C+H
2 £¡C+
CH3 C+H2
C+H3
1 £¡C+
C+H3
第一步加成的途径取决于生成碳正离子稳定 性。碳正离子的稳定性越大,也就越容易生成。
不同碳正离子的稳定性以如下次序减小:
CCl4 干燥
x (Br2不裉色)
CH2=CH2 + Br2
CCl4 微量水
CH2 CH2 (Br2裉色) Br Br
说明该反应是离子型反应。微量水可促使环状溴正
离子的形成。
实验二:
不同的取代乙烯与溴加成的相对反应速率:
CH2=CHBr 0.04
CH2=CH2 1.0
CH2=CHCH3 2.03
CH2=C(CH3)2 5.53

Br

溴 离子
Br CH2 CH2 Br

有机化学:第五章 环烷烃

有机化学:第五章 环烷烃
CH3 CHC3 H3
? CH3 C CH3 CHC3H3
CH3 H3C CHC3H3
e, a构象
e, a构象
33
1,3-二取代环己烷的构象
CH3
CH3
CH3 CH3
CH3 CH3
e, a构象
CH3 CH3
H3C
CH3
a, a构象
e, e构象,优势
34
小结:
1°环己烷有两种极限构象(椅式和船式),椅式为优势构象。 2°一元取代基主要以e键和环相连。 3°多元取代环己烷最稳定的构象是e键上取代基最多的构象。 4°环上有不同取代基时,大的取代基在e键上构象最稳定。
1885年,Baeyer提出了张力学说(strain theory):
a. 形成环的C原子都在同一平面上,并排成正多 边形; b. 在不同环中C-C键之间的夹角小于或大于正四 面体所要求的角度:109°28′; c. 环中C-C键键角的变形会产生张力,键角变形 的程度越大,张力越大,环的稳定性低,反应活 性越大。
+
Cl2
+
Cl2
+
Cl2
+
Br2
+
Cl2
hv hv 300 oC hv hv
Cl Cl
Cl Br
Cl
10
氧化反应
KMnO4
O + CO2H
O3
( Z)
Zn/H2O
OHC
CHO
11
中小环的加成反应
加氢反应
+
H2
+
H2
+
H2
Ni 80 oC
Ni 100 oC
Pt 300 oC

有机化学 第5章 芳烃

有机化学 第5章 芳烃

Cl
催化剂: 催化剂:FeCl3 、FeBr3 、AlCl3等 卤素活性: 卤素活性:F > Cl > Br > I 芳烃活性: 芳烃活性:烷基苯 > 苯 > 卤代苯
Cl
Cl Cl2 FeCl3
39% %
Cl Cl
Cl Cl
Cl 55 %
6%
CH3
CH3 Cl
Cl2
CH3 Cl
CH3
FeCl3 ,25℃
H H 120° H o.140nm 120° H H H
0.140nm
价键理论: ② 价键理论:
苯分子的轨道结构
氢化热低(208.5< 119.3),苯具有特殊稳定性。 ),苯具有特殊稳定性 氢化热低(208.5<3×119.3),苯具有特殊稳定性。
苯的结构式: 苯的结构式:


苯同系物(单环芳烃) 5.2 苯同系物(单环芳烃)异构和命名
Cl Cl Cl Cl Cl Cl
(B)加氯
3 Cl2
紫外光
只有γ异构体有杀虫效果: 六六六有八种异构体,只有γ异构体有杀虫效果:
Cl Cl Cl Cl Cl
Cl
(3)氧化反应
(苯环本身的氧化) 苯环本身的氧化
O
2
空 9 O2(空气)
V2O5 400-500 ℃
2
O 70% O
4 CO2 4 H2O
O , N(CH3)2 ,
R,
NH2 ,
Cl ,
OH ,
Br ,
OCH3 ,
I, C6H5
NHCOCH3
OCOCH3 ,
间位定位基( (2)第二类定位基 间位定位基(间位异构体 )第二类定位基—间位定位基 > 40%) ) 使苯环钝化, 使苯环钝化,并使新引进的取代基主要进入 其间位。例如 例如: 其间位 例如:

第5章 自由基反应(有机化学)

第5章 自由基反应(有机化学)
第5章 自由基反应
本章内容 5.1 自由基的产生 5.2 自由基的结构及稳定性 5.3 烷烃的自由基取代反应 5.4 不饱和烃的α-H卤代 5.5 自由基加成反应 5.6 烷烃的热裂
5.1 自由基的产生
自由基(free radicals),又称游离基,是化学键发 生均裂时产生的含未成对电子的中间体。
烷烃在光照下可与卤素发生反应生成卤代烃。烷烃的取 代反应又称卤代反应。
5.3.1 甲烷的氯化反应
CH4 +
光照 Cl2 或高温 CH3Cl +
CH3Cl + Cl2
HCl
H= 100 kJ.mol-1
混合物
CH2Cl2 + HCl
CH2Cl2 Cl2
CHCl3
HCl
CHCl3 Cl2
CCl4
HCl
5.3.2 氯代反应的机理
碳为sp2
H CH
H
p轨道 三个σ键
R.
烷基自由基(R·)的中心碳原子大多数也是 sp2杂化,单电子占据未杂化的p轨道上,其 结构与甲基自由基类似。
5.2.2 自由基的稳定性
碳自由基的稳定性为:3o2o1o ·CH3。
原因
(1)键能:键能越大,断裂此键需要提供的能量越高, 自由基的内能越高,稳定性越差。
作业
1 ; 3(1, 2, 3, 4, 6)
O
CH3CH
CH2 +
CH2 C N
Br
CH2 C
O
h , CCl4 (C6H5COO)2
CH2CH Br
CH2 +
O CH2 C
NH CH2 C
O
N-溴代丁二酰亚胺(简称NBS)

有机化学 第五章 脂环烃讲解

有机化学  第五章  脂环烃讲解

CH2CH3
CH3 CH2CH3

乙基环己烷
H3C
1,4-二甲基-2-乙基环己烷
2.单环烯烃的命名

单环烯烃的命名是根据组成环的碳原子数目称为环某烯。编号时,
把1、2号位次留给双键的碳原子。若有取代基时,取代基的位置数则
以双键为准依次排列。
CH3
3-甲基-1-环己烯
CH3
5-甲 基 -1,3-环 戊 二 烯5—甲基—3—异丙基环己烯
1-溴-5-甲基螺[3,4]辛烷 三环[3,3,1,13,7]癸烷(金刚烷)
第二节 环烷烃的性质
一、环烷烃的物理性质 1.物态 温常压下,环丙烷、环丁烷为气体,环戊烷
至环十一烷是液体,其它高级环烷烃为固体。 2.熔点、沸点 环烷烃的熔点、沸点比相应的烷烃高一些。 3.相对密 相对密度仍小于1。 4.溶解性 常不溶于水,易溶于有机溶剂。
0.745 0.779 0.779 0.769 0.810 0.836
二、环烷烃的化学性质
从化学键的角度来分析,环烷烃与烷烃相似; 但是,由于脂环烃具有环状构造,小环烃会出现 一些特殊的化学性质,主要表现在环的稳定性上, 小环较不稳定,大环则较稳定。
1.取代反应
环戊烷、环己烷和氯气在光照下反应,生 成一氯环烷烃。
与环丙烷相似,环丁烷分子中存在着张力,但比环丙烷的小, 因在环丁烷分子中四个碳原子不在同一平面上,见下图:
环丁烷
环戊烷
环丁烷比环丙烷要稳定些。环戊烷分子(见上图)中, C-C-C夹角为108°,接近sp3杂化轨道间夹角109.5°,环张 力甚微,是比较稳定的环。环戊烷分子中几乎没有什么角张 力,故五元环比较稳定,不易开环,环戊烷的性质与开链烷 烃相似。 在环己烷分子中,六个碳原子不在同一平面内,碳 碳键之间的夹角可以保持109.5°,因此环很稳定。

有机化学 第5章 旋光异构

有机化学 第5章 旋光异构
称,例如,由肌肉中取得的乳酸的比旋光度为:[α ]2D0 = +3.8°
(ρ=0.1gmL-1,H2O),表示测定该乳酸的旋光度时,是在20。C, 钠光灯源,所用溶液的浓度为10%,是右旋物质,通过公式计
算出比旋光度是3.8°。
上面公式即可用来计算物质的比旋光度,也可用以测定物质 的浓度或鉴定物质的纯度。
H
OH 最小基团(H)
H
Cl 最小基团(H)
位于横线 CH2OH R- 构型
位于横线 CH3 S- 构型
H
最小基团( H)
CH3
最小基团 CH3
H2N COOH 位于竖线
ClCH2
Cl 位于竖线
CH3
R- 构型
CH(CH3)2 S- 构型
七、含两个不相同手性碳原子的化合物
以2,3,4-三羟基丁酸为例:
存在对称面的分子不能与其镜像重叠, 为非手性分子,无旋光性,无对映体。
σ
H Cl
C
H C Cl
因此,上述分子都是对称分子,它们没有手性, 也没旋光性。
有机物分子具有手性的最普遍的因素是手性碳原 子,连有四个各不相同基团的碳原子——手性碳 原子,用C* 表示。
凡是含有一个手性碳原子的有机化合物分子都具 有手性,是手性分子。
COOH
H
OH
CH3
在纸平面
CH3
180°
HO
H
COOH
(2)对调任意两个基团的位置,对调偶数次构型 不变,对调奇数次则为原构型的对映体。例如:
CHO
HO
H
CH2OH
CH2OH
OH与H对调一次
H
OH
CHO
CHO与CH2OH 对调一次

有机化学 第五章 芳烃

有机化学 第五章 芳烃
共振论: 共振论:
Ⅰ 贡献大


Ⅳ 贡献小 键长、键角不等 的不等价结构

键长,键角完全 相等的等价结构
H
H
H
H
H
H
苯的结构小结
(1)苯是一个正六边形的平面分子,键长、键角平均化; )苯是一个正六边形的平面分子,键长、键角平均化; (2)电子云分布在苯环的上方和下方; )电子云分布在苯环的上方和下方; 电子高度离域, 个 电子在基态下都在成键轨道 (3)π电子高度离域,6个π电子在基态下都在成键轨道 ) 电子高度离域 内,故体系的能量降低,而使苯环稳定。 故体系的能量降低,而使苯环稳定。
(3)具有平面和接近平面的环状结构。 (3)具有平面和接近平面的环状结构。 具有平面和接近平面的环状结构 (4) 易发生亲电取代反应 不易发生加成反应。 易发生亲电取代反应,不易发生加成反应 不易发生加成反应。
单环芳烃 联苯和联多苯 苯系芳烃 如:
联苯
芳烃
多环芳烃
本文由duan490513584贡献
ppt文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。
第五章
芳烃—— 芳香族碳氢化合物 芳烃
(1)碳氢比高 如: C:H=1:1 C : H = 10 : 8
特点
碳碳键长介于C—C与C=C之间 (2) 碳碳键长介于C—C与C=C之间 如: 0.139nm C— C 0.154nm C=C 0.133nm
三苯甲烷 2,3-二甲基 苯基己烷 二甲基-1-苯基己烷 二甲基
苯基: 苯基: -Ph 、 芳基: -Ar 芳基: R CH2H3C-CH3
m-二甲苯 二甲苯 1,3-二甲苯 二甲苯

有机化学第05章旋光异构

有机化学第05章旋光异构

甲烷、乙烯、乙炔它们分子的二维图象和三维图象可以看出这些分子是对称的。 如果把分子中的氢互换位置,分子没有变化 生活中有许多对称的现象,也有不对称的现象。 2、 手性碳原子 与四个不同原子或基团相连的碳原子称为手性碳原子,并用“*”标出。
3. 手性分子:若分子与其镜像不能重叠,则此分子为手性分子。 判断一个分子是否为手性分子,主要看它是否具有对称因素,即对称面、 对称面 对称面 对称轴和对称中心。
二、分子的对称性,手性(chirality)及旋光活性
1、分子的立体形象 分子的形象是分子结构体现的一种表现现象。少数简单的分子具有二维形象, 大多数有机分子都具有三维形象,也就是呈现立体的形象。碳原子是一个三维的 正四面体结构,当它和四个相同的原子结合时,四个键的键长以及它们之间的夹 角都是均等的,为109.5°单当它结合的原子不同时,键角就偏离了这一正常角 度。键长、键角的变化可以影响分子的其他性质。
S
反时针
(R)-乳酸
(S)-乳酸
特点:R、S构型法,能表示分子的绝对的空间关系,即:看见一个光活异构体 的名字,就可写出它的空间构型表达式。
COOH
HOOC
HOOC C H
HCOOH
H
C
OH
HO
C
H
H
HO
CH3
C CH3 H
HO H H H
H R S R R 注意:R、S构型与旋光性无内在联系,即R不代表旋光性中的右旋,S构型不代 表旋光性中的左旋。
[O ] CH3 CH CH C H 3 + K M nO 4 + H 2O CH3 CH OH CH OH CH3
两个邻二醇都是无旋光的。将熔点为19 0C的进行拆分,可以达到两个旋光度绝

有机化学第五章芳烃芳香性

有机化学第五章芳烃芳香性

芳烃与混酸作用,芳环上H原子被硝基取代生成硝基取代芳烃。
硝化反应
硝化剂:浓HNO3 + 浓H2SO4(简称混酸) 底物活性:烷基苯>苯>硝基苯
硝化反应机理
硝化反应
(c) 磺化反应
Sulfonation
芳烃与浓H2SO4作用,芳环上H原子被磺(酸)基-SO3H取代生成芳磺酸。
a. 磺化剂: 浓H2SO4 或 发烟H2SO4 b. 底物活性:烷基苯>苯>苯磺酸
氯苯的亲电取代定位分析
稳定 稳定
硝基苯的亲电取代定位分析
极不稳定 极不稳定
小结
决定性的极限结构
决定性的极限结构
Z供电,亲电试剂进攻邻对位有利 Z吸电,进攻邻对位不利
(2) 空间效应
空间效应越大,邻位异构体越少
R

p-
m-
CH3
58.4
37.2
4.4
CH2CH3
45
48.5
6.5
CH(CH3)2
磺化反应机理
机理:
取代反应的位置
磺化反应可逆
磺化反应是可逆的:强酸利于磺化,热的稀酸水溶液利于脱磺酸基。
(d). Friedel-Crafts 反应 在催化剂作用下,芳烃中芳环上氢原子被烷基或酰基取代的反应。 a. 常用催化剂:AlCl3、FeCl3、ZnCl2、(HF、BF3、H2SO4) b. 常用烷基化剂:卤代烃、烯烃(醇) c. 常用酰基化剂:酰卤、酸酐(酸)
烷基化反应可以通过醇或烯烃生成碳正离子,发生烷基化反应。
Friedel-Crafts酰基化反应
酰基化不可逆,产物单一。
AlCl3用量: 用酰氯时,用量 > 1 eqv. 用酸酐时,用量 > 2 eqv.

有机化学05章脂环烃

有机化学05章脂环烃
1
1 3 2 5 6 4
4 2 3
6
5
椅型构象
船型构象
1. 椅型构象
直立键——与对称轴平行 的键,或叫做a键。
6个(3上、3下)
平 伏 键 —— 与 对 称 轴 成 109.5o 倾 斜 角 的 键 , 或 叫 做e键。
6个(3上、3下)
1. 椅型构象
H H H 2 3 H H 4 H H 6 5 H 1 H H
力大,非键合原子张力也较大, 故船型构象不稳定。
6
5
椅型和船型环己烷构象中氢原子间的斥力比较
椅型环己烷 C1 上的 H 原子与最 近的 H 原子距离为 0.25 nm , 斥力较小 。
船型环己烷 C1 上的 H 原子与最 近的 H 原子距离为 0.23 nm , 斥力较大。
3. 构象的互变
由于 C—C 键的旋转, 环己烷构象之间可以相 互转化的,这种构象的
3.2. 环丁烷和环戊烷的结构
3.2.1. 环丁烷的结构
环丁烷的四个碳原子实际上不在一个平面上。分子通过C-C键 的扭转而以折叠的碳环形式存在。三个碳处于同一平面,另一 个处于该平面外。这样可减少C-H键的重叠,从而使环张力 相应降低。
环丁烷的构象——蝴蝶型 尽管环丁烷的折叠式构象较平面构象能量有所降低,但环张力 还很大,故也不稳定。
7 1 6 5 4 3 2
9 8 6 7 1 2 5 4 3
1,6-二甲基二环[2.2.1]-2-庚烯
1,9,9-三甲基二环[3.2.2]-6-壬烯
5-甲基二环[2.2.1]-2-庚烯 三环[2.2.1.02,6]庚烷 三环[7.4.1.05,14]-3-十四碳烯
X
三环[8.3.1.05,14]-2-十四碳烯

有机化学第五章 脂环烃

有机化学第五章 脂环烃

三、脂环烃的结构与稳定性
为什么三、四元的小环化合物不稳定,易发生开环 的反应,而五元环、六元环相对稳定?
拜尔张力学说
键角: 60° 90°
当碳原子的键角偏离109°28′时,便会产生一种恢复
正常键角的力量。这种力就称为张力。键角偏离正常键角
越多,张力就越大。
C C
109.5 。
C
105.5 。
C
如果取代基更大,则空间效果更突出,叔丁基以e键与环
相连的构象近100%。
C
(2)二取代环己烷的构象
1,2-二甲基环己烷
CH3 CH3 CH3
CH3
CH3
CH3 CH3
CH3
反式
顺式
1,2-二甲基环己烷的平面表示法
顺式
CH3 H3 C CH3 CH3
稳定性相同 反式
CH3 CH3 CH3
CH3
更稳定
H 1 H H 5 2 H 4 2.50A H H 2.51A H H 3 H 2.49A H
H 6
H
a键
e键
a b b b a a a
a b b b a a a
b b a
b a a b
b
a
b
构象翻转,a键转变成e键,e键转变成a键;环 上原子或基团的空间关系保持。
2、环己烷椅式构象的书写
3、环己烷的船式构象
椅式
扭船式
船式
半椅式
1、环己烷的椅式构象
H 1 H H H
H 2 3 H H 4 H H
H 6 H H
5
锯架式
纽曼式
环己烷椅式构象的特点
环中相邻两个碳原子均为邻交叉。
C-H键分为两类,有6个直立键叫a (axial) 键,有6个 平伏键称e (equatorial)键。

有机化学第章烯烃

有机化学第章烯烃
6C:1s2 2s2 2p2 激 发 1s2 2s1 2px 1 2py 1 2pz 1 杂 化 1s2 sp2 1 sp2 1 sp2 1 pz1
σ键 和 π键 的比较
σ键
π键
沿键轴重叠 柱状 σ 键可以单独存在 σ 键能较大 σ 键可以旋转 不易反应
平行键轴重叠 块状 有流动性 不可以单独存在 π 键能小 π 键不能旋转 易反应
CH3
CH3 C C H2C l OH
5) 烯烃的自由基加成
(1) 定义
烯烃受自由基进攻而发生的加成反应称为自由 基加成反应。
(2 )反应式 CH3CH=CH2 + HBr
ROOR
CH3CH2CH2Br
反马氏规则的加成产物: 原因是此反应遵循着自由基历程 进行的加成反应
1933年由 M S Karasch首先发现的,又称卡拉施效应 。
X2 (对称试剂) → R-CHX-CH2X R-CH=CH2 + < 不对称烯烃 HX (不对称试剂) → R-CHX-CH3 (主要产物)
R-CH2-CH2X (次要产物)
不对称烯烃与不对称试剂加成,遵守马氏规则
以烯烃为例介绍加成反应机理:
a Br-Br → Brδ + - Brδ 溴分子受外界环境的影响可以变为偶极分子
2 烯烃的命名
A. 选主链---含有双键最长的碳链 B. 主链编号---从靠近双键的一端开始编号 C.写名字--- (取代基)-n- 某烯( n指双键
中编号较小的)
CH3-CH=CH-CH2-CH3 2-戊烯 ( 2-pentene )
CH3-CH2-(CH3)C(CH3)-CH=CH-CH3 4,4-二甲基-2-己烯 (4,4-dimethylhexene)

有机化学 第五章 脂环烃

有机化学 第五章 脂环烃

(3) 其它方法
+
CHO

30 C
100%
OH
+ ZnBr2 CHO
环戊二烯的工业来源和制法
石油热裂解的C5馏分加热至100℃,其中的 环戊二烯聚合为二聚体,蒸出易挥发的 其他C5馏分,再加热至约200℃,使二聚 体解聚为环戊二烯:

+
100 C

200 C
(八) 萜类和甾族化合物
萜类化合物广泛存在于自然界,是植物香精 油的主要成分,广泛用于医药、香料工业。
CH +
CH
双烯体 亲双烯体
双环[2,2,1]-2,5-庚二烯
(四) 环烷烃的结构与稳定性
• 环的大小与环张力、环的稳定性 • 环丙烷的结构 • 环丁烷的结构 • 环戊烷的结构
(四) 环烷烃的结构与稳定性
实验事实: 环的稳定性:三元环<四元环<五元、六元环 why? 结构所致!环张力所致!
• 环烷烃的环张力越大,表明分子的能量越高, 稳定性越差,越容易开环加成。
(甲) 桥环烃 (乙) 螺环烃
(二) 脂环烃的命名
(1) 单环脂环烃
CH2 CH2 CH2

CH2 CH2
环戊烷
CH3

CH
H3C
CH3
CH3
CH3 CH3
甲基环丁烷
1,2-二甲基环戊烷
H CH3
H CH3
CH3 H

CH3 H
1-甲基-4-异丙基环己烷
CH3
反-1,4-二甲基环己烷
CH3
1-甲基-1-环己烯
环己烷的船式构象
船式与椅式翻转,环己烷二种椅式构象互换
取代环己烷的构象1

《有机化学》第五章芳香烃

《有机化学》第五章芳香烃

CH(CH3)2
CH 2CH=CH 2
异丙苯
3-苯基丙烯
CH3 CH3
1,2-二甲苯 (邻二甲苯)
CH 3
CH3
CH3 1,3-二甲苯 (间二甲苯)
1,4-二甲苯 (对二甲苯)
CH 3
CH 3CHCH 2CHCH 3 CH3
CH3 C=C
C2H5
H
2-甲基-4-苯基戊烷
2-苯基-2-戊烯
芳基:Ar- 苯基: C6H5- , Ph
CH2CH3
+ CH3CH=CH2 无水AlCl3
CH(CH3)2
当苯环上有强的吸电子基时,烷基化反应不容易进行。
比较:烷基ห้องสมุดไป่ตู้与酰基化的异同
相同:① 催化剂相同 ② 反应历程相似 ③ 苯环上有吸电子基时不能发生付-克反应
不同:① 烷基化能发生异构化,而酰基化不能; ② 烷基化不停留在一取代物上,而酰基化停留 在一取代物上; ③ 二者催化剂用量不同,烷基化用量少,酰基 化用量多。
第五章 芳香烃
学习要求:
1.了解芳香烃的分类;掌握苯系单环芳烃的异构和命名 2. 掌握苯的结构及其化学性质 3. 掌握芳烃亲电取代的定位规律及其理论解释 4. 了解稠环芳香烃、非苯芳香烃;掌握休克尔规则
重点:
苯的结构及其化学性质;芳烃取代的定位规律及 休克尔规则
本章主要内容
第一部分 单环芳烃的概述及性质 第二部分 芳香烃的亲电取代反应历程 第三部分 芳烃亲电取代的定位规律 第四部分 稠环芳香烃概述 第五部分 休克尔规则和非苯芳香体系
二、亲电试剂与芳烃反应,得到中间体σ—配合物
H
+ Cl+
+ Cl
三、σ-配合物脱去一个质子,形成芳烃的取代产物

有机化学 第5章醇和醚

有机化学 第5章醇和醚

(二)物理性质
1.性状:
2.沸点:
1)比烷烃的沸点高(形成分子间氢键的原因), 如 乙烷的沸点为-88.6℃,而乙醇的沸点为78.3℃。
2)含支链的醇比直链醇的沸点低,如正丁醇 (117.3 ℃ )、异丁醇(108.4 ℃ )、叔丁醇 (88.2 ℃ )。
3.溶解度:
✓ 甲、乙、丙醇与水以任意比混溶(与水形 成氢键的原因);
CH3CH2O- (乙醇钠)的碱性HO-(氢氧化钠)强, 所以醇钠极易水解。
CH3CH2ONa + H2O
较较强强键碱 较强较酸强酸
CH3CH2OH + NaOH
较弱酸 较较弱弱酸碱
较弱减
即:强酸置换弱酸盐!
工业上制备醇钠常用上述逆反应,但需将生 成的水及时移走。
醇与钠的反应活性:
CH3OH > 伯醇(乙醇) > 仲醇 > 叔醇
伯醇 仲醇 叔醇
Lucas试剂
(-) 5分钟内浑浊 立即浑浊
4)与卤化磷和亚硫酰氯反应p154
3ROH + PX3
3RX + P(OH)3
X=Br、I,制备溴代或碘代烃
( Cl的反应产率低于50%)
ROH + PCl5 ROH + SOCl2
RCl + POCl3 + HCl RCl + SO2 + HCl
OO O K+ O
OO
MnO4-
COOH COOH
六、环氧乙烷的部分化学性质
H
R Cδ

δ H
H
酸性,生成酯
氧化反应 形成 C ,发生取代及消除反应
(一)O-H键断裂的反应 1.与活泼金属的反应

有机化学第五章脂环烃

有机化学第五章脂环烃
4 3 2 1

5
1-甲基-3-乙基环戊烷 甲基-
CH2 CH2 CH2 CH-CH3 CH2 CH CH(CH3)2 或
4 5
6 1 2 3
1-甲基-3-异丙基环己烷 甲基③ 若环烃中有双键时,编号应从双键开始,且使编号的数 若环烃中有双键时,编号应从双键开始, 值最小。 值最小。
1 6 5 4 2
结论: 结论: ● e键取代基最多的构象稳定 ● 大取代基(体积)在e键的构象稳定 大取代基(体积)
§5-5 脂环烃的制备
一、芳烃化合物还原法
Ni 180~ 180~250℃
+ 3 H2
+ H2
催化剂
H2 催化剂 四氢化萘 十氢化萘
二、分子内偶联法
1.武慈合成法——主要适合于制备三 主要适合于制备三、 1.武慈合成法——主要适合于制备三、四元环
1,31,3-环己二烯
3
若环中有双键也有支链时,编号从双键起, ④ 若环中有双键也有支链时,编号从双键起,且要使支链 编号尽可能最小。 编号尽可能最小。
1 5 2
3-甲基环戊烯 CH3
4 3
1 6 5 4 2
1,61,6-二甲基环己烯
3
2. 螺环烃的命名
螺环烃编号方法----- 从邻接于螺原子的一个碳原子开始, ① 螺环烃编号方法----- 从邻接于螺原子的一个碳原子开始, 由小环到大环。 由小环到大环。 螺环烃命名方法---------用 做词头, ② 螺环烃命名方法-----用螺做词头,然后在方括号中写出 每 个环的碳原子数(不包括螺碳) 个环的碳原子数(不包括螺碳)从 小 7 8 1 2 10 1 9 环到大环。 环到大环。 CH2 CH2 CH2 2 C CH2 8 4 5 CH2 CH CH2 5 6 3 3 7 6 4 CH3 5-甲基螺[3 .4] 辛烷 甲基螺 甲基 螺[4.5]癸-1,6-二烯 [4.5]癸 1,6-
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)
6.写出下列反应的主要产物:
7.某化合物(A),分子式为C5H12,(A)在同分异构体中熔点和沸点的差距最小,(A)的一溴代烷只有一种(B)。(B)起SN1,SN2反应都很慢。在Ag+的作用下,能生成Zaitsev烯烃(C),试推测(A),(ቤተ መጻሕፍቲ ባይዱ),(C)的构造式。
答案(1-7):
1.
2.
3.
4.
11. (2S, 3S, 4R)-2,3,4-三氯己烷12.反-1-氯二环[4.4.0]癸烷
13. (2R, 3R)-2,3-二溴丁烷14.顺-1-叔丁基-3-氯环己烷
15.7,7-二甲基-1-氯二环[2.2.1]庚烷
5.
6.
7. (A), (B), (C)结构式分别为:
1. 2-甲基-7-溴辛烷2. 1-甲基-3-溴甲基环己烷
3. 4-甲基-2-氯-6-溴庚烷4. 2-氯二环[2.2.1]庚烷
5. 5-溴螺[3.4]辛烷6.反-1,3-二溴环己烷
7. 1,3-二环丙基-2-氯丙烷8. (S)-2-氯-2-溴丁烷
9. (2S, 3R)-2,3-二溴戊烷10. (2R, 3R)-2,3-二氯丁烷
第五章卤代烷
1.写出叔丁基溴在甲醇(CH3OH)和醋酸(CH3COOH)中溶剂解反应的机理。
2.写出下列各反应的产物:
3.用丁醇为原料合成下列化合物:
(1)辛烷(2)丁烷(3)戊烷(4)己烷。
4.用CCS法命名下列化合物:
5.用化学方法区别下列各组化合物:
(1)正庚烷CH3(CH2)4CH2Cl
(2)
相关文档
最新文档