同济大学《高等数学》5.1节 定积分的概念与性质
同济大学高等数学第六版上册第五章第一节定积分的概念与性质
三、存在定理
定理1
当函数 f ( x ) 在区间 a , b] 上连续时, [
[ 称 f ( x ) 在区间 a , b] 上可积.
定理2
[ 设函数 f ( x ) 在区间 a , b] 上有界,
且只有有限个间断点, 则 f ( x ) 在
区间[a , b ]上可积.
证
b
b
b
a [ f ( x ) g( x )]dx
n
b
lim [ f ( i ) g ( i )]xi
0 i 1
n
n
lim f ( i )xi lim g( i )xi
a f ( x )dx g( x )dx. a
b
0 i 1 b
注意:
被 积 表 达 式
积 分 变 量
[a , b] 积分区间
(1) 积分值仅与被积函数及积分区间有关, 而与积分变量的字母无关.
a f ( x )dx a f (t )dt a f (u)du
(2)定义中区间的分法和 i 的取法是任意的.
b
b
b
[ (3)当函数 f ( x ) 在区间 a , b] 上的定积分存在时,
难点
定义及换元法和分部法的运用
基本要求
①正确理解定积分的概念及其实际背景 ②记住定积分的性质并能正确地运用 ③掌握变上限定积分概念,微积分基本定理, 并会用N-L公式计算定积分, ④能正确熟练地运用换元法和分部积分法 计 算定积分 ⑤正确理解两类广义积分概念, 并会用定义 计算一些较简单的广义积分。
定积分的概念
前一章我们从导数的逆运算引出了不定积 分,系统地介绍了积分法,这是积分学的第一类 基本问题。本章先从实例出发,引出积分学的第 二类基本问题——定积分,它是微分(求局部量 )的逆运算(微分的无限求和——求总量),然 后着重介绍定积分的计算方法,它在科学技术领 域中有着极其广泛的应用。 重点 定积分的概念和性质,微积分基本公 式,定积分的换元法和分部积分法
高等数学-定积分的概念与性质
= σ=1 ( ) .
→0
其中()称为被积函数,()称为被积表达式,称为积分变量,
[, ]称为积分区间,称为积分下限,称为积分上限.
15
02 定积分的定义
注(1)定积分)( 是一个数值,它只与被积函数()
和积分区间[, ]有关,而与积分变量的符号无关,即
(2)近似(“以直代曲”)
在区间 [−1 , ] 上任取一点 ,以 ( ) 为高,
y
y=()
以 为底,作小矩形.小矩形的面积为
( ) ,用该结果近似代替[−1 , ]上的小
O
a
x i -1 ξ i x i
b
x
曲边梯形的面积 ,即
≈ ( ) ( = 1, 2, ⋯ , ).
)(
=
)(
=
)( .
(2)定积分存在,与区间的分法和每个小区间内 的取法无关.
Hale Waihona Puke (3)按照定积分的定义,记号)( 中的, 应满足关系
< ,为了研究的方便,我们补充规定:
① 当 =
② 当 >
时, = )( = )( 0;
在区间 [1,2] 内, 0 ≤ < 2 < 1 ,
则( )3 < .由性质5.5的推论1,得
2
1
>
2
1 ( )3 .
28
极限,得 σ=1 ( ) .
→0
如果对于[, ]的任意分法及小区间[−1 , ]上点 的任意
取法,上述极限都存在,则称函数()在区间[, ]上可积,
第5.1节 定积分的概念及性质
§5.1 定积分的概念及性质一、定积分的定义5.1.1 定积分: 设)(x f 是定义在],[b a 上的有界函数,在],[b a 上任取一组分点b x x x x x a n i i =<<<<<<=−L L 110,这些分点将],[b a 分为n 个小区间],[10x x ,],[21x x ,…,],[1n n x x −记每个小区间的长度为:),,2,1(1n i x x x i i i L =−=∆−,并记},,,max{21n x x x ∆∆∆=L λ再任取点),,2,1(],[1n i x x i i i L =∈−ξ,作和式:∑=∆ni i i x f 1)(ξ,若和式的极限∑=→∆ni i i x f 1)(lim ξλ存在,则称)(x f 在区间],[b a 上可积,并称该极限为)(x f 在区间],[b a 上的定积分,记为∫b adx x f )(,即∑∫=→∆=ni i i bax f dx x f 1)(lim )(ξλ其中)(x f 称为被积函数,x 称为积分变量,a 称为积分下限,b 称为积分上限,],[b a 称为积分区间。
注:(1)定积分∫b adx x f )(表示一个常数值,它与被积函数)(x f 和积分区间],[b a 有关;(2)定积分的本质是一个和式的极限,该极限与区间的划分以及点i ξ的取法无关;5.1.2 函数可积的条件:(1)若)(x f 在],[b a 上连续,则)(x f 在],[b a 上可积; (2)若)(x f 在],[b a 上有界,且只有有限个间断点,则)(x f 在],[b a 上可积; (3)若)(x f 在],[b a 上单调有界,则)(x f 在],[b a 上可积; (4)有界不一定可积,可积一定有界,无界函数一定不可积。
5.1.3 定积分的几何意义:∫b adx x f )(表示以)(x f y =为曲边,以b x a x ==,为侧边,x 轴上区间],[b a 为底边的曲边梯形面积的代数和。
同济大学(高等数学)_第五章_定积分及其应用
5
01(1 x)dx
1 11 2
1 2
图 5-4
例 3 利用定积分的几何意义,证明 1 1 x 2 dx .
1
2
证明
令 y 1 x2 , x [1,1]
,显然 y 0 ,则由 y 1 x 2 和直线
x 1, x 1, y 0 所围成的曲边梯形是单位圆位于 x 轴上方的半圆.如图 5-5 所示.
b
a
f
( x)dx
c
a
f
(x)dx
b
c
f
(x)dx
这个性质表明定积分对于积分区间具有可加性
值得注意的是不论 a, b, c 的相对位置如何总有等式
b
a
f
(x)dx
c
a
f
(x)dx
b
c
f
(x)dx
成立 例如 当 a b c 时 由于
c
a
f
(x)dx
b
a
f
(x)dx
求曲边梯形的面积的精确值
显然 分点越多、每个小曲边梯形越窄 所求得的曲边梯形面积 A 的近似值就越接近 曲边梯形面积 A 的精确值 因此 要求曲边梯形面积 A 的精确值 只需无限地增加分点 使
每个小曲边梯形的宽度趋于零 记 maxx1, x2 ,L , xn , 于是 上述增加分点 使每
si v( i )ti (i 1,2,L , n).
于是这 n 段部分路程的近似值之和就是所求变速直线运动路程 S 的近似值 即
n
S v(i)ti i 1
求精确值
高教社2024高等数学第五版教学课件-5.1 定积分的概念与性质
第一节 定积分的概念与性质
一、问题的提出
实例1 (求曲边梯形的面积)
由连续曲线 = ()(() ≥ 0)、
轴、直线 = 、 = 所围成的图形
称为曲边梯形。
用矩形面积近似取代曲边梯形面积
y
o
y
a
b
(四个小矩形)
x
o
a
b
x
(九个小矩形)
显然,小矩形越多,矩形总面积越接近曲边梯形面积.
→0
= max ∆
1≤≤
= σ=1 ± σ=1
=
→0
±
→0
性质1可以推广到有限个可积函数作和或者作差的情况.
性质2 被积函数的常数因子可提到积分号的外面,即
)(
总有下式成立:
)( = )( + )( .
例如,若 < < ,则
=
+
,
故 )( = )( − )(
= )( + )( .
证
因为 ≤ () ≤ ,由性质4得
≤ ≤ )( ,
又 = − ,
故( − ) ≤ ( ≤ )( − ).
性质6(积分中值定理)
∈
[, ],使)(
设函数()在[, ]上连续,则至少存在一点
5.1 定积分的概念与性质
lim ( )Δ =
→0
=1
则称这个极限为函数()在区间[, ]上的定积分,记为
න ()d
第一节 定积分的概念与性质
定积分
第五章
即
积分上限
定积分
积分和
න ()d = = lim ( )Δ
积分下限
→0
=1
被积被
积分积
[, ]积分区间 函 变 表
[, ]
[, ]
( − )≤ න ()d ≤( − ) ( < )
证
∵ ≤()≤,
∴ න d≤ න ()d≤ න d ,
( − )≤ න () d≤( − ).
第一节 定积分的概念与性质
此性质可用于
估计积分值的
第五章
8. 定积分中值定理
如果 () 在区间[, ]上连续, 则至少存在一点 ∈ [, ], 使
න ()d = ( )( − )
证
设()在[, ]上的最小值与最大值分别为 , ,
1
න ()d≤
则由性质7可得 ≤
−
根据闭区间上连续函数介值定理, ∃ ∈ [, ], 使
= lim ( )
=
lim ( ) ⋅
→∞
− →∞
故它是有限个数的平均值概念的推广.
第一节 定积分的概念与性质
把区间[, ]分成个小区间,
[0 , 1 ], [1 , 2 ], ⋯ , [−1 , ], ⋯ , [−1 , ]
各个小区间的长度依次为
高等数学课件--D5_1定积分概念与性质
积分学
不定积分
定积分
第一节 定积分的概念及性质
一、定积分问题举例
第五章
二、 定积分的定义
三、 定积分的近似计算 四、 定积分的性质
2012-10-12 同济高等数学课件
目录 上页 下页 返回 结束
一、定积分问题举例
矩形面积
梯形面积
1. 曲边梯形的面积 设曲边梯形是由连续曲线 以及两直线 所围成 , 求其面积 A .
b
c
b
当 a , b , c 的相对位置任意时, 例如 a b c ,
则有
a
b
c
c
a f ( x ) dx a f ( x ) dx
c
b
f ( x ) dx
b
a f ( x ) dx a f ( x ) dx
b
c
f ( x ) dx
b
c
a f ( x ) dx
7. 设 M max f ( x) , m min f ( x) , 则
[ a , b]
( a b)
2012-10-12 同济高等数学课件
目录 上页 下页 返回 结束
例4. 试证: 证: 设 f (x)
f (x)
sin x ,
x x cos x sin x
则在 (0 , 2 ) 上, 有
2
n
0
y
i 1
lim
2012-10-12
yx
2
n
1 3
同济高等数学课件
注 目录 上页 下页 返回 结束
O
i n
1 x
例2. 用定积分表示下列极限:
第五章 积分 5-1 定积分的概念与基本性质
b
b
|
a
f (x)d
x|
|
a
f (x)|d
x.
证明 由于 | f (x) | f (x) | f (x) |, 应用性质 3
b
b
b
a | f (x)|d x | a f (x) d x a | f (x)|d x,
43
4
1
1
1
2
7 1 sin 2
1 sin 2 x 1 sin 2
, 3
3
4
所以
21
3
4
4 7
d
x
3
4
dx 1 sin 2
x
3
4
2 3
d
x
.
18
《高等数学》课件 (第五章第一节)
推论 2 设 f R [a, b], 且在 [a, b] 上 f (x) 0, 则
b
a f ( x) d x 0.
性质 2 (积分对区间的可加性) 设 a c b, f R [a, b], 则 f R [a, c], f R [c, b],
且
b
c
b
f (x) d x f (x) d x f (x) d x.
a
a
c
一般, 当上式中三个积分都存在时, 无论 a, b, c 之间具有怎样 的大小关系, 等式都成立.
当 f (x) R [a, b] 时, 可在积分的定义中, 对 [a, b] 作特殊的分
划, 并取特殊的 i [x i 1, x i] , 计算和式. 如等分区间 [a, b], 并取 点 i 为 [x i 1, x i] 的右端点 x i 或左端点 x i 1 或中点.
高等数学第五章第一节定积分的概念及性质课件.ppt
二、定积分定义
a x0 x1 x2 xn b ,
任一种分法 任取
总趋于确定的极限 I ,则称此极限 I 为函数
上的定积分,
记作
b
a
f
( x) dx
即
b a
f
(
x)
dx
lim
0
n
i1
f
(
i
)
xi
o
a x1
此时称 f ( x ) 在 [ a , b ] 上可积 .
在区间
i
x xi1xi b
证: f (i ) xi 0
i1
b
n
a
f
( x) d
x
lim
0 i1
f
(i ) xi
0
推论1. 若在 [a , b] 上
则
推论2.
(a b)
证: f (x) f (x) f (x)
b
b
b
a f (x) dx a f (x) dx a f (x) dx
即
b
b
a f (x) dx a f (x) dx
使
因此定理成立.
说明:
• 积分中值定理对
• 可把
b
a f (x) dx f ( )
ba
因
y f (x) y
oa bx
故它是有限个数的平均值概念的推广.
例4. 计算从 0 秒到 T 秒这段时间内自由落体的平均 速度.
解: 已知自由落体速度为
v gt
故所求平均速度
1 1 g T 2 gT
第一节
第五章
定积分的概念及性质
一、定积分问题举例 二、 定积分的定义 三、 定积分的性质
同济大学数学系《高等数学》(第7版)(上册)-复习笔记-第五章 定积分【圣才出品】
上任取一点 的乘积
,作函数值 ,并作出和
,记
,如果当 λ→0 时,这和
的极限总存在,且与闭区间[a,b]的分法及点 的取法无关,则称这个极限为函数 f(x)在
区间[a,b]上的定积分,记作
,即
其中,f(x)称为被积函数,f(x)dx 称为被积表达式,x 称为积分变量,a 称为积分下限,b
1 / 21
十万种考研考证电子书、题库视频学习平 台
曲边梯形位于 x 轴的下方,定积分
表示上述曲边梯形面积的负值;
(3)在[a,b]上 f(x)既取得正值又取得负值时,函数 f(x)的图形某些部分在 x 轴的上
方,而其他部分在 x 轴下方(见图 5-1-1),此时定积分 面积减去 x 轴下方图形面积所得之差.
表示 x 轴上方图形
圣才电子书
十万种考研考证电子书、题库视频学习平
台
称为积分上限,[a,b]称为积分区间.
(2)“ε-δ”表达式
设有常数 I,对于任意正数 ε,总存在一个正数 δ,使得对于区间[a,b]的任何分法,
不论 在
中怎样选取,只要
δ,总有
成立,则称 I 是 f(x)在区间[a,b]上的定积分,记作
[a,b]上的一个原函数.
2.牛顿-莱布尼茨公式
就是
在
其中 F(x)是连续函数 f(x)在区间[a,b]上的一个原函数.
三、定积分的换元法和分部积分法 1.定积分的换元法 (1)定理
设函数 f(x)在区间[a,b]上连续,函数
① =a, =b ;
② 域
,则有
满足条件: 上具有连续导数,且其值
该公式称为换元公式.
和
合起来,用过
三
5.1定积分概念
a x0 x1 x2 xn1 xn b
y
作以 [ xi 1 , xi ] 为底 ,
f ( i ) 为高的小矩形,
窄曲边梯形面积
o a x Ai f ( i )x i ( x i xi xi 1 )
1
x i 1 i xi
xn1 b
x
3) 近似和.
A A i f ( i )xi
i 1
n
n
i 1
4) 取极限. 令
y
A lim
Ai 0
i 1 n
n
lim
f ( i )xi o 0 i 1
a
x1
x i 1 i xi
xn1 b
x
实例2. 变速直线运动的路 程 速度 求该时间段内路程
演示矩形面积和与曲边梯形面积的关系.
演示矩形面积和与曲边梯形面积的关系.
演示矩形面积和与曲边梯形面积的关系.
演示矩形面积和与曲边梯形面积的关系.
演示矩形面积和与曲边梯形面积的关系.
演示矩形面积和与曲边梯形面积的关系.
解决步骤 : 1) 分割. 在区间 [a , b] 中任意插入 n –1 个分点 2) 取点. 在第i 个窄曲边梯形上任取 i [ x i 1 , x i ]
演示矩形面积和与曲边梯形面积的关系.
演示矩形面积和与曲边梯形面积的关系.
演示矩形面积和与曲边梯形面积的关系.
演示矩形面积和与曲边梯形面积的关系.
演示矩形面积和与曲边梯形面积的关系.
演示矩形面积和与曲边梯形面积的关系.
演示矩形面积和与曲边梯形面积的关系.
演示矩形面积和与曲边梯形面积的关系.
例 4 设 f ( x )可导,且 lim f ( x ) 1,求
定积分的定义和性质
定积分的定义和性质定积分是微积分中的重要概念,用以计算曲线下的面积或曲线所围成的图形的面积。
在本文中,我们将介绍定积分的定义和性质,并探讨其在数学和实际问题中的应用。
一、定积分的定义定积分是将曲线下的面积分成无穷多个无穷小的矩形,并对它们进行求和的过程。
它可用以下形式进行定义:设f(x)在区间[a, b]上连续,将[a, b]分成n个小区间,每个小区间的长度为Δx = (b - a)/n。
选择每个小区间上的任意一个点ξi,计算出相应的函数值f(ξi),然后将这些函数值与Δx相乘并求和,即可得到定积分的值:∫[a, b]f(x)dx = lim(n→∞)Σf(ξi)Δx二、定积分的性质1. 可加性:对于函数f(x)在区间[a, b]上可积分,并且c位于该区间内,则有∫[a, b]f(x)dx = ∫[a, c]f(x)dx + ∫[c, b]f(x)dx。
这意味着可以将区间进行分割,根据不同段的定积分值进行求和。
2. 线性性质:对于函数f(x)和g(x)在区间[a, b]上可积分,以及任意实数k,则有∫[a, b](kf(x) + g(x))dx = k∫[a, b]f(x)dx + ∫[a, b]g(x)dx。
这表明可以将函数进行线性组合后再进行积分。
3. 区间可变性:如果函数f(x)在区间[a, b]上可积分,并且在区间[a,b']上也连续(其中b' > b),则有∫[a, b']f(x)dx = ∫[a, b]f(x)dx + ∫[b,b']f(x)dx。
这意味着可以扩展区间并计算新增部分的定积分值。
三、定积分的应用定积分在数学和实际问题中具有广泛的应用。
下面列举一些典型的应用场景:1. 面积计算:通过计算定积分可以求得曲线和坐标轴所围成图形的面积。
例如,可以利用定积分计算圆的面积、椭圆的面积等。
2. 弧长计算:通过计算定积分可以求得曲线的弧长。
这在工程学、物理学和几何学等领域中都有应用。
高等数学课件--D51定积分概念与性质
x i a i x ( i 0 ,1 , ,n )
记 f( x i) y i( i 0 ,1 , ,n )
1. 左矩形公式
O a xi1x i
bx
ab f (x)dx y 0 x y 1 x y n 1 x
曲边梯形面积的负值
y
A1
A3
a
A2 O
A5
A4
bx
b
af(x )dxA 1 A 2A 3 A 4A 5
各部分面积的代数和
2020/6/3
同济高等数学课件
目录 上页 下页 返回 结束
可积的充分条件:
定理1. 函数 f(x)在[a,b]上连续f(x)在[a,b]可积 .
定理2. 函数 f(x)在 [a,b]上有 ,且界 只有有限个间断点
2020/6/3
同济高等数学课件
目录 上页 下页 返回 结束
3) 近似和.
n
n
A Ai f (i)xi
i1
i1
4) 取极限. 令 ma{xxi},则曲边梯形面积 1in
n
y
A l im0i1Ai
n
limf 0i1
(i)xi
O a x1 xi1 x i bx i
2020/6/3
同济高等数学课件
2) 常代变. 在第i 个窄曲边梯形上任取 i[xi1,xi]
作以[xi1, xi]为底 , f (i )
y
为高的小矩形, 并以此小
矩形面积近似代替相应
窄曲边梯形面积 Ai , 得
O a x1 xi1 x i bx i
A i f(i) x i ( x i x i x i 1 ,) i 1 ,2, ,n)
nl i m 1p2p n p 1 npnl imin1
定积分的概念与性质_OK
不定 积分
概念
性质
计算
应用
定 积分
1
第5章 定积分及其应用
5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法 5.4 广义积分 5.5 定积分的应用
2
5.1 定积分的概念与性质
5.1.1 两个实例
新课引入
我们以前学过图形的面积计算,请 大家回想一下,有哪些计算公式?
b
f (x)dx
b
g(x) dx
可以推广
a
a
a
性质3
b
b
k f (x)dx k f (x)dx ( k 为常数)
a
a
性质4 ( 积分区间可加性)
b
c
b
a f (x)dx a f (x)dx c f (x)dx (c R)
34
性质5 在区间 [a,b]上
f (x) g(x)
b
b
a f (x)dx a g(x)dx
令 max{x1,x1, ,xn} ,则
当 0时,每个小区间的长度均趋近于零 a x1 x2 xi1i xi b
n
A lim 0 i1
f (i )xi
21
设某物体作变速直线运动,已知速度
且
如何计算物体从时刻
到时刻
所经过的路程?
?
思路:在一个很短的时间间隔 ti1,ti 内,以ti1,ti
第i个小区间的长度记为 xi (i 1,2, ,n) ,即 xi xi xi1(i 1, 2, ,n)
19
(2)近似代替(以直代曲)
在第i个小区间上任取一点 i xi1 i xi 用以 xi 为宽,f (i ) 为高的小 矩形的面积 f (i )xi 近似代替相应小曲边梯形的面积 Ai ,即
5-1 定积分的概念与性质
1 0
y
y x2
o
i n
1x
一、定积分的概念 (一)引例
(二)定义
(三)可积条件 (四)几何意义
一、定积分的概念 (一)引例
(二)定义
(三)可积条件 (四)几何意义
y
f ( x) 0
y
f ( x) 0
o a o
b
b x
a
b
x
a f ( x )dx A
(二)定义
(三)可积条件 (四)几何意义
设函数 f ( x )在 [a , b] 上有界,在 [a , b] 中任意插入若干个分点 a x0 x1 x2 xn b , 把区间[a , b] 分成 n 个小区间
[ x0 , x1 ],[ x1 , x2 ], ,[ xn1 , xn ],
a x0 x1 x2 xn1 xn b.
2) 取近似. Ai f ( i )x i
n
T1 t0 t1 t2 tn1 tn T2
2) 取近似. si v( i )t i
3) 求和. A A i f ( i )xi 3) 求和.
上连续,那么在[a,b]上至少存在一点 , 使下式成立:
b a
f ( x )dx f ( )(b a ) (a b)
注 (1)几何解释 (2)实际意义
y
y f ( x)
b
a
f ( x )dx ba
f(x)在[a,b]上的平均值
o a
b x
小结
1.定积分的思想和方法:
各个小区间的长度依次为
高等数学教案定积分及其应用
高等数学教学教案第5章 定积分及其应用,n ),每个小区间的长度记为,2,,n ),在()i f ξi x ∆,再求和1,2,,n ),,如果该极限存在,则称函数上可积,此极限值为)d x x ,即⎰称为被积函数,x()]d n f x ±±(bn af ⎰()d b ak f x x =⎰(区间可加性)设,,a b c )d c ax x f =⎰(保序性)若在区间[a )d x 0≥.授课序号02授课序号03授课序号04为A 的平板水平的放置在液体深为h 处,那么平板一侧所受的液体静压力方向垂直于物体表面,各点压强的大小与方向皆不变,则物体所受的总压力为PA F =.如果平板倾斜放置在液体中,那么,由于液体深度不同的点处压强P 不相等,平板一侧所受的液体压力就不能用上述方法计算.3. 引力由万有引力定律知,质量分别为21,m m ,相距为r 的两个质点间的引力大小为221r m m G F ⋅=,其中G 为万有引力系数,引力的方向沿着两质点的连线.举例说明怎样用定积分解决某些引力问题.4. 函数的平均值函数)(x f 在],[b a 上的平均值1()d b a y f x x b a=-⎰,恰好是定积分中值定理中的)(ξf . 四.例题讲解例1.求由两抛物线2y x =与2x y =所围成图形的面积A .例2.求由抛物线22y x =与直线4y x =-所围成图形的面积A . 例3.求椭圆⎩⎨⎧==,sin ,cos t b y t a x (0>a ,0>b )所围图形的面积.例4.计算心形线)cos 1(θρ+=a (0>a )所围图形的面积.例5.如图5.25,连接坐标原点O 及点(,)P h r 的直线, 直线x h =及x 轴围成一个直角三角形.将它绕x 轴旋转一周构成一个底半径为r ,高为h 的圆锥体.计算这个圆锥体的体积.图5.25例6.计算由椭圆22221x y a b+=所围成的图形分别绕x 轴、y 轴旋转一周而成的旋转体(叫做旋转椭球体)的体积.例7.计算由曲线3y x =,x 轴及直线2x =所围成的图形绕y 轴旋转而成的旋转体的体积.例8.一平面经过半径为R 的圆柱体的底圆中心并与底面交成α角,计算该平面截圆柱体所得立体的体积.(a) (b)图5.29例9.计算曲线3223y x =上相应于x 从a 到b 的一段弧的长度. 例10.计算摆线(sin ),(1cos ),x a t t y a t =-⎧⎨=-⎩(0>a )的一拱(02)t ≤≤π的长度(图5.32). 例11.求阿基米德螺线θρa =(0>a )相应于θ从0到π2一段(图5.33)的弧长.例12.设在x 轴上的原点处放置了一个电量为1q +的点电荷,将另一带电量为2q +的点电荷放入由1q +形成的电场中,求电场力将2q +从x a =排斥到x b =时所做的功.例13.一个底半径为R 米,高为H 米的圆柱体水桶,盛满了水,问水泵将水桶内的水全部抽出来要做多少功 (水密度为33100.1m kg ⨯=ρ).例14.设半径为R 的圆形水闸门,水面与闸顶齐,求闸门一侧所受的总压力.图5.35例15.一个水平放置的线密度为μ,长度为l 的均匀细直棒,在其延长线上放置一个质量为m 的质点,该质点距细直棒最近端点的距离为r .求细直棒对质点的引力大小.Ox x yydyy +R2水面复合化成形加工方法及技术基础5.1 材料成形加工技术的复合化20世纪70年代开始,人们把信息、能源和材料誉为人类文明的三大支柱,20世纪80年代以来又把新材料技术与信息技术、生物技术一起列为高新技术革命的重要标志。