高中化学选修物质结构与性质全册知识点总结
高中化学《选修三物质结构与性质》知识归纳
![高中化学《选修三物质结构与性质》知识归纳](https://img.taocdn.com/s3/m/64facf60182e453610661ed9ad51f01dc381574e.png)
高中化学《选修三物质结构与性质》知识归纳选修三《物质结构与性质》是高中化学课程中的一本重要教材。
本书主要介绍了物质的结构与性质的关系,以及有机化合物、配位化学、无机材料等内容。
下面是关于该教材的知识归纳。
第一章物质的结构和性质1.物质的微观结构:原子、离子和分子是物质的微观结构。
2.物质的宏观性质:密度、熔点、沸点、导电性、导热性、溶解性等是物质的宏观性质。
3.物质的宏观性质与微观结构的关系:物质的性质与其微观结构相关,如金属的导电性、晶体的硬度等。
第二章有机化合物的结构和性质1.有机化合物的元素组成:有机化合物主要由碳、氢和少量氧、氮、硫等元素组成。
2.有机化合物的结构:有机化合物由分子构成,分子由原子通过共价键连接。
3.有机化合物的性质:有机化合物具有燃烧性、酸碱性、氧化还原性、流动性、挥发性等特性。
4.有机物的分类:根据分子中所含的官能团,有机物可分为醇、酮、醛、酸、酯、醚、芳香化合物等不同类型。
第三章有机反应与有机合成1.有机反应的定义:有机反应是指有机化合物在适当条件下发生变化,形成具有新性质的有机化合物。
2.脱水反应:脱水反应是指有机化合物中的水分子与有机分子发生反应,生成新的有机化合物。
3.氢化反应:氢化反应是指有机化合物中的氢气与有机分子发生反应,生成新的有机化合物。
4.酸碱催化:酸碱催化是指在酸碱存在的条件下,有机化合物的反应速率增加。
第四章金属配合物1.配位化合物的概念:配位化合物是指由一个或多个给体与一个或多个受体之间通过配位键结合形成的化合物。
2.配位键:配位键是指由配体中的一个或多个电子对与金属离子形成的共价键。
3.配位数:配位数是指一个金属离子周围配位体的数目。
4.配位化合物的性质:配位化合物具有明显的颜色、溶解度、稳定性等特性。
第五章无机材料1.无机材料的分类:无机材料可分为金属材料、非金属材料和无机非金属材料。
2.无机材料的性质:金属材料具有导电性、延展性、塑性等特性;非金属材料主要用于绝缘材料、陶瓷材料等;无机非金属材料具有耐高温、耐腐蚀等特性。
化学选修三物质结构与性质知识重点总结
![化学选修三物质结构与性质知识重点总结](https://img.taocdn.com/s3/m/ed51b2c0900ef12d2af90242a8956bec0875a543.png)
化学选修三物质结构与性质知识重点总结化学选修三的内容主要涉及物质的结构与性质,包括原子结构、分子结构和晶体结构的相关知识。
下面将对这些重点知识进行总结,并探讨它们在化学领域中的应用。
一、原子结构原子是物质的基本单位,它包含有质子、中子和电子三种基本粒子。
质子带正电荷,是原子核的组成部分;中子没有电荷,与质子一起组成原子核;电子带负电荷,围绕原子核旋转。
原子的结构可以用质子数(即原子序数)和中子数来描述。
在原子结构方面,我们需要了解的重点知识包括:原子序数、质子数、中子数以及电子排布规则。
比如,氢的原子序数为1,它的原子核中只有一个质子,没有中子,电子的排布规则遵循来自于泡利不相容原理、安培右手定则和洪特规则。
原子结构的理解对于进一步研究分子结构和反应机理非常重要,它可以帮助我们预测化学性质和物理性质,从而指导实验操作和化学反应的发展。
二、分子结构分子是由两个或多个原子通过共享电子形成的稳定结构。
分子结构包括键长、键角和分子形状等方面的特征。
在研究分子结构时,我们需要了解以下几个重点知识。
1. 共价键共价键是由两个原子之间共享电子形成的。
共价键可以进一步划分为单键、双键和三键。
单键的键能较小,稳定性较弱,而双键和三键的键能更高,稳定性更强。
2. 极性键与非极性键极性键是由两个成键原子的电负性差引起的,它会导致电子在分子中不均匀分布,使分子具有极性。
非极性键是电负性相近的原子形成的,其电子分布均匀,使分子无极性。
3. 分子形状分子的形状决定了其性质和化学反应的方式。
常见的分子形状包括线性、三角形、四面体等。
分子形状的确定可以通过VSEPR理论来推导。
分子结构与化学性质密切相关,通过研究分子结构,我们可以预测分子的稳定性、反应性和物理性质。
三、晶体结构晶体是由具有规则排列的原子、分子或离子组成的固体。
晶体结构的确定对于研究物质的性质和特性非常重要。
以下是晶体结构的重点知识。
1. 晶体结构类型晶体结构可以分为离子晶体、共价晶体和金属晶体等类型。
高中化学选修3物质结构与性质全册知识点总结
![高中化学选修3物质结构与性质全册知识点总结](https://img.taocdn.com/s3/m/663770b47d1cfad6195f312b3169a4517623e573.png)
高中化学选修3物质结构与性质全册知识点总结一、物态变化1.固体、液体和气体的特点和微观结构。
2.相变的概念及其条件。
3.气体的压力、体积和温度的关系(气体状态方程)。
4.确定气体的压强、体积和温度的实验方法。
二、物质的分子结构1.分子的结构和性质的关系。
2.分子的极性与非极性。
3.分子的键型及其特点。
4.共价键的键能和键长的关系。
三、化学键的性质1.同种键和异种键的定义和举例。
2.键能的概念及其在化学反应中的表现。
3.键长的测定方法及其在化学反应中的影响。
4.共价键的极性和电性的概念及其与键型的关系。
四、物质的热稳定性1.温度和物质的热稳定性的关系。
2.物质的热分解与热合成的条件和特点。
3.确定物质的热分解和热合成的方法。
五、物质的电解性1.电解质和非电解质的区别和举例。
2.电解质的导电性及其与离子的浓度和动力学的关系。
3.强电解质和弱电解质的区别和举例。
六、分子与离子的形成1.分子化合物和离子化合物的区别和举例。
2.确定分子和离子的产生与存在的条件。
七、氢键和离子键1.氢键的特点和举例。
2.氢键的性质和应用。
3.离子键的特点和举例。
4.离子键的性质和应用。
八、离子晶体和共价晶体1.离子晶体的特点和举例。
2.确定离子晶体的特性和存在的条件。
3.共价晶体的特点和举例。
4.确定共价晶体的特性和存在的条件。
九、化学键的杂化1.杂化的概念和种类。
2.方向性杂化的概念和应用。
3.确定方向性杂化的条件和特点。
十、分子结构的测定1.确定分子结构的方法。
2.确定分子结构的仪器。
3.确定分子结构的实验步骤和原理。
综上所述,以上是高中化学选修3《物质结构与性质》全册的知识点总结。
通过对这些知识点的学习,我们可以了解物质的分子结构和性质的关系,从而深入理解化学反应的本质和原理。
希望对你的学习有所帮助!。
高中化学选修3-物质结构和性质-全册知识点总结
![高中化学选修3-物质结构和性质-全册知识点总结](https://img.taocdn.com/s3/m/75345b4958fb770bf78a55ed.png)
高中化学选修3物质结构与性质知识点总结主要知识要点:1、原子结构2、元素周期表和元素周期律3、共价键4、分子的空间构型5、分子的性质6、晶体的结构和性质(一)原子结构1、能层和能级(1)能层和能级的划分①在同一个原子中,离核越近能层能量越低。
②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。
③任一能层,能级数等于能层序数。
④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。
⑤能层不同能级相同,所容纳的最多电子数相同。
(2)能层、能级、原子轨道之间的关系每能层所容纳的最多电子数是:2n2(n:能层的序数)。
2、构造原理(1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。
(2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。
(3)不同能层的能级有交错现象,如E(3d)>E(4s)、E(4d)>E(5s)、E (5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)、E(4f)>E(6s)等。
原子轨道的能量关系是:ns<(n-2)f <(n-1)d <np(4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。
根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2 ;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。
(5)基态和激发态①基态:最低能量状态。
处于最低能量状态的原子称为基态原子。
②激发态:较高能量状态(相对基态而言)。
基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。
处于激发态的原子称为激发态原子。
③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。
利用光谱分析可以发现新元素或利用特征谱线鉴定元素。
物质结构与性质总结
![物质结构与性质总结](https://img.taocdn.com/s3/m/5808affbfab069dc5022016d.png)
立体结 杂化轨道理论简介 构 配合物理论简介 键的极性和分子的极性 分子的 范德华力及其对物质性质的影响 性质 氢键及其对物质性质的影响 溶解性
手性 含氧酸分子的酸性
晶 体 结 构 与 性 质
晶体和非晶体 晶体常识 晶体中重复出现的最 晶胞 基本的结构单元 分子晶 体与原 子晶体 分子晶体 原子晶体 简单立方 钾型
化学竞赛辅导课件
高中化学选修3《物质结构与性质》 高中化学选修 《物质结构与性质》 知识点归纳
原子结构 物 质 结 构 与 性 质 原子结构与性质 原子结构与元素性质 共价键 分子结构与性质 分子的立体结构 分子的性质 晶体常识 晶体结构与性质 分子晶体与原子晶体 金属晶体 离子晶体
掉一个电子成为+ 价气 掉一个电子成为+1价气 能量最低原理、基态与激发态、 能量最低原理、基态与激发态、光谱 子 态阳离子所需要消耗的 电子云与原子轨道 结 能量, 能量,称为第一电离能 构 );依次类推 依次类推。 (I1);依次类推。 用来描述不同元素的 与 原子对键合电子吸引力 性 的大小, 的大小,电负性越大的 质 原子结 原子结构与元素周期表 原子对键合电子的吸引 原子半径 构与元 力越大。 力越大。
原
能层与能级 原子 构造原理 从元素的气态原子去 结
共价键 共价键 分 子 结 构 与 性 质 键参数
键和π σ键和π键 一类是中心原子上
的价电子都用于形成共 键能、 键能、键长与键角
价键, 价键, 形形色色的分子 第二类是中心原子 上有孤电子对 上有孤电子对 分子的 价层电子对互斥模型
金属键 金属晶体 金属晶体的原 子堆积模型 铜型和镁型 离子晶体 离子晶体 气态离子形成1mol离 气态离子形成 离 晶格能
子晶体释放的能量
高中化学选修三物质结构与性质知识点大全
![高中化学选修三物质结构与性质知识点大全](https://img.taocdn.com/s3/m/e071d32dc5da50e2524d7f5e.png)
物质结构与性质知识点大全原子核外电子排布原理1.能层、能级与原子轨道(1)能层(n):在多电子原子中,核外电子的能量是不同的,按照电子的能量差异将其分成不同能层。
通常用K、L、M、N……表示,能量依次升高。
(2)能级:同一能层里电子的能量也可能不同,又将其分成不同的能级,通常用s、p、d、f等表示,同一能层里,各能级的能量按s、p、d、f的顺序依次升高,即:E(s)<E(p)<E(d)<E(f)。
(3)原子轨道:电子云轮廓图给出了电子在核外经常出现的区域。
这种电子云轮廓图称为原子轨道。
【特别提示】(1)任一能层的能级总是从s能级开始,而且能级数等于该能层序数。
(2)以s、p、d、f……排序的各能级可容纳的最多电子数依次为1、3、5、7……的二倍。
(3)构造原理中存在着能级交错现象。
由于能级交错,3d轨道的能量比4s轨道的能量高,排电子时先排4s轨道再排3d轨道,而失电子时,却先失4s轨道上的电子。
(4)前四周期的能级排布(1s、2s、2p、3s、3p、4s、3d、4p)。
第一能层(K),只有s能级;第二能层(L),有s、p两种能级,p能级上有三个原子轨道p x、p y、p z,它们具有相同的能量;第三能层(M),有s、p、d三种能级。
(5)当出现d轨道时,虽然电子按ns,(n-1)d,np顺序填充,但在书写电子排布式时,仍把(n-1)d放在ns前。
(6)在书写简化的电子排布式时,并不是所有的都是[X]+价电子排布式(注:X 代表上一周期稀有气体元素符号)。
2.基态原子的核外电子排布(1)能量最低原理电子尽可能地先占有能量低的轨道,然后进入能量高的轨道,使整个原子的能量处于最低状态。
如图为构造原理示意图,即基态原子核外电子在原子轨道上的排布顺序图。
注意:所有电子排布规则都需要满足能量最低原理。
(2)泡利原理每个原子轨道里最多只能容纳2个电子,且自旋状态相反。
(3)洪特规则。
物质的结构和性质知识点总结
![物质的结构和性质知识点总结](https://img.taocdn.com/s3/m/d1485d0ca55177232f60ddccda38376baf1fe098.png)
物质的结构和性质知识点总结物质的结构和性质是化学学科中的重要内容,对于理解化学反应、物质的特性以及各种现象都有着关键的作用。
以下将对这方面的知识点进行详细的总结。
一、原子结构1、原子的组成原子由原子核和核外电子组成。
原子核又由质子和中子构成。
质子带正电荷,中子不带电,电子带负电荷。
原子中质子数等于电子数,因此原子整体呈电中性。
2、质子数和原子序数质子数决定了元素的种类,也称为原子序数。
不同元素的原子具有不同的质子数。
3、质量数质量数等于质子数与中子数之和。
通过质量数和质子数可以计算出中子数。
4、核外电子的排布核外电子按照一定的规律分层排布。
遵循能量最低原理、泡利不相容原理和洪特规则。
第一层最多容纳 2 个电子,第二层最多容纳 8 个电子,依次类推。
二、元素周期表1、周期周期是指具有相同电子层数的元素按照原子序数递增的顺序排列的横行。
周期数等于电子层数。
2、族族是指具有相似化学性质的元素按照纵行排列。
主族元素的族序数等于最外层电子数。
3、元素周期表的分区根据元素的电子构型和性质,周期表可以分为 s 区、p 区、d 区和 f 区。
4、元素周期律随着原子序数的递增,元素的性质呈现周期性的变化,包括原子半径、化合价、金属性和非金属性等。
三、化学键1、离子键离子键是由阴阳离子之间通过静电作用形成的化学键。
通常在活泼金属与活泼非金属之间形成。
2、共价键共价键是原子之间通过共用电子对形成的化学键。
分为极性共价键和非极性共价键。
3、金属键金属键存在于金属晶体中,是由金属阳离子和自由电子之间的强烈相互作用形成。
四、分子结构1、共价键的参数包括键长、键能和键角。
键长越短,键能越大,化学键越稳定。
键角决定了分子的空间构型。
2、分子的极性分子的极性取决于分子的空间构型和键的极性。
如果分子的正电荷中心和负电荷中心重合,则为非极性分子,否则为极性分子。
3、杂化轨道理论用于解释分子的空间构型。
常见的杂化类型有 sp、sp²、sp³等。
2024年高中化学《物质的结构与性质》知识汇总
![2024年高中化学《物质的结构与性质》知识汇总](https://img.taocdn.com/s3/m/c7484253e97101f69e3143323968011ca300f733.png)
2024年高中化学《物质的结构与性质》知识汇总原子核外电子排布原理1.能层、能级与原子轨道(1)能层(n):在多电子原子中,核外电子的能量是不同的,按照电子的能量差异将其分成不同能层。
通常用K、L、M、N……表示,能量依次升高。
(2)能级:同一能层里电子的能量也可能不同,又将其分成不同的能级,通常用s、p、d、f等表示,同一能层里,各能级的能量按s、p、d、f的顺序依次升高,即:E(s)<E(p)<E(d)<E(f)。
(3)原子轨道:电子云轮廓图给出了电子在核外经常出现的区域。
这种电子云轮廓图称为原子轨道。
【特别提示】(1)任一能层的能级总是从s能级开始,而且能级数等于该能层序数。
(2)以s、p、d、f……排序的各能级可容纳的最多电子数依次为1、3、5、7……的二倍。
(3)构造原理中存在着能级交错现象。
由于能级交错,3d轨道的能量比4s轨道的能量高,排电子时先排4s轨道再排3d轨道,而失电子时,却先失4s轨道上的电子。
(4)前四周期的能级排布(1s、2s、2p、3s、3p、4s、3d、4p)。
第一能层(K),只有s能级;第二能层(L),有s、p两种能级,p能级上有三个原子轨道p x、p y、p z,它们具有相同的能量;第三能层(M),有s、p、d三种能级。
(5)当出现d轨道时,虽然电子按ns,(n-1)d,np顺序填充,但在书写电子排布式时,仍把(n-1)d放在ns前。
(6)在书写简化的电子排布式时,并不是所有的都是[X]+价电子排布式(注:X代表上一周期稀有气体元素符号)。
2.基态原子的核外电子排布(1)能量最低原理电子尽可能地先占有能量低的轨道,然后进入能量高的轨道,使整个原子的能量处于最低状态。
如图为构造原理示意图,即基态原子核外电子在原子轨道上的排布顺序图。
注意:所有电子排布规则都需要满足能量最低原理。
(2)泡利原理每个原子轨道里最多只能容纳2个电子,且自旋状态相反。
(3)洪特规则当电子排布在同一能级的不同轨道时,基态原子中的电子总是优先单独占据一个轨道,且自旋状态相同。
化学选修物质结构与性质知识点
![化学选修物质结构与性质知识点](https://img.taocdn.com/s3/m/820b3d176bec0975f465e2c9.png)
一.原子结构与性质.一.认识原子核外电子运动状态,了解电子云、电子层(能层)、原子轨道(能级)的含义.1.电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图.离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小.电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子层.原子由里向外对应的电子层符号分别为K、L、M、N、O、P、Q.原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7.2.(构造原理)了解多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示1~36号元素原子核外电子的排布.(1).原子核外电子的运动特征可以用电子层、原子轨道(亚层)和自旋方向来进行描述.在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子.(2).原子核外电子排布原理.①.能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道.②.泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子.③.洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同. 洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性.如24Cr [Ar]3d54s1、29Cu [Ar]3d104s1.(3).掌握能级交错图和1-36号元素的核外电子排布式.①根据构造原理,基态原子核外电子的排布遵循图⑴箭头所示的顺序。
②根据构造原理,可以将各能级按能量的差异分成能级组如图⑵所示,由下而上表示七个能级组,其能量依次升高;在同一能级组内,从左到右能量依次升高。
基态原子核外电子的排布按能量由低到高的顺序依次排布。
高中化学第十一章 物质结构与性质知识点总结
![高中化学第十一章 物质结构与性质知识点总结](https://img.taocdn.com/s3/m/382446b3551810a6f5248686.png)
第十一章物质结构与性质(选修)第一讲原子结构与性质考点1原子核外电子排布原理1.能层、能级与原子轨道之间的关系2.原子轨道的能量关系(1)轨道形状①s电子的原子轨道呈球形。
②p电子的原子轨道呈哑铃形。
(2)能量关系①相同能层上原子轨道能量的高低:n s<n p<n d<n f。
②形状相同的原子轨道能量的高低:1s<2s<3s<4s……③同一能层内形状相同而伸展方向不同的原子轨道的能量相等,如n p x、n p y、n p z轨道的能量相等。
3.基态原子核外电子排布的三个原理(1)能量最低原理:电子优先占有能量低的轨道,然后依次进入能量较高的轨道,使整个原子的能量处于最低状态。
即原子的核外电子排布遵循构造原理能使整个原子的能量处于最低状态。
如图为构造原理示意图:(2)泡利原理:在一个原子轨道中,最多只能容纳2个电子,并且它们的自旋状态相反。
(3)洪特规则:当电子排布在同一能级的不同轨道时,基态原子中的电子总是优先单独占据一个轨道,而且自旋状态相同。
洪特规则特例:当能量相同的原子轨道在全满(p6、d10、f14)、半满(p3、d5、f7)和全空(p0、d0、f0)状态时,体系的能量最低,如:24Cr的电子排布式为1s22s22p63s23p63d54s1。
4.原子(离子)核外电子排布式(图)的书写(1)核外电子排布式:按电子排入各能层中各能级的先后顺序,用数字在能级符号右上角标明该能级上排布的电子数的式子。
如Cu:1s22s22p63s23p63d104s1,其简化电子排布式为[Ar]3d104s1。
(2)价电子排布式:如Fe原子的电子排布式为1s22s22p63s23p63d64s2,价电子排布式为3d64s2。
价电子排布式能反映基态原子的能层数和参与成键的电子数以及最外层电子数。
(3)电子排布图:方框表示原子轨道,用“↑”或“↓”表示自旋方向不同的电子,按排入各能层中的各能级的先后顺序和在轨道中的排布情况书写。
化学选修物质结构与性质知识点
![化学选修物质结构与性质知识点](https://img.taocdn.com/s3/m/fb0dfc7342323968011ca300a6c30c225801f06f.png)
化学选修物质结构与性质知识点化学选修课程中的物质结构与性质是化学学科中的重要内容之一、它主要研究物质的组成、结构和性质之间的关系,并通过对物质结构的评估和解释,为化学实验和应用提供理论基础。
下面将介绍一些物质结构与性质的重要知识点。
1.化学键:化学键是化学反应的基础,它是由相互作用的原子之间共用、转移或调配电子而形成的。
常见的化学键包括共价键、离子键和金属键。
2.共价键:共价键是指两个原子通过共享电子对而连接在一起的键。
共价键通常可以分为极性共价键和非极性共价键。
在极性共价键中,电子对在原子间不对称分布,而在非极性共价键中,电子对的分布相对均匀。
3.晶体结构:晶体结构是固体中原子或离子的有序排列方式。
常见的晶体结构包括离子晶体、共价晶体和金属晶体。
晶体结构的研究可以揭示物质的性能、稳定性和反应特点。
4.电子云模型:电子云模型是描述电子在原子中空间分布的模型。
根据这个模型,电子以云的形式存在于原子核周围,而无法准确表示为明确定义的轨道。
5.分子结构:分子结构是一个分子中原子的有序排列方式。
分子结构的研究可以揭示分子的性质和化学反应规律。
常见的分子结构包括线性、平面、三角锥和四面体等。
6.极性:极性是描述分子中正电荷和负电荷在空间分布上的不均匀性。
极性分子通常具有极性键,如极性共价键或离子键。
7.氢键:氢键是一种化学键,由氢原子与较电负的原子(如氮、氧和氟)之间的相互作用形成。
氢键可以影响分子的物理和化学性质。
8.动力学:化学反应的动力学研究了反应速率、反应机理等与时间相关的因素。
了解和掌握反应的动力学特点有助于设计和优化化学反应过程。
9.热力学:化学反应的热力学研究了反应的热效应、平衡常数等与能量相关的因素。
热力学原理可以用来预测和解释化学反应是否会发生及其方向。
10.光谱学:光谱学是研究物质与辐射间相互作用的学科。
常见的光谱学方法包括红外光谱、紫外光谱、核磁共振光谱等,可以用于表征物质的结构和性质。
(完整版)高中化学选修3物质结构与性质全册知识点总结
![(完整版)高中化学选修3物质结构与性质全册知识点总结](https://img.taocdn.com/s3/m/72049acd8e9951e79a892737.png)
a hingsintheirbei 高中化学选修3知识点总结主要知识要点:1、原子结构2、元素周期表和元素周期律3、共价键4、分子的空间构型5、分子的性质6、晶体的结构和性质(一)原子结构1、能层和能级(1)能层和能级的划分①在同一个原子中,离核越近能层能量越低。
②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。
③任一能层,能级数等于能层序数。
④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。
⑤能层不同能级相同,所容纳的最多电子数相同。
(2)能层、能级、原子轨道之间的关系每能层所容纳的最多电子数是:2n2(n:能层的序数)。
t h i ng si nt he i rb ei n ga re go od fo rs 2、构造原理(1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。
(2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。
(3)不同能层的能级有交错现象,如E (3d )>E (4s )、E (4d )>E (5s )、E (5d )>E (6s )、E (6d )>E (7s )、E (4f )>E (5p )、E (4f )>E (6s )等。
原子轨道的能量关系是:ns <(n-2)f < (n-1)d <np(4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。
根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n 2;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。
(5)基态和激发态①基态:最低能量状态。
处于 最低能量状态 的原子称为 基态原子 。
②激发态:较高能量状态(相对基态而言)。
基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。
处于激发态的原子称为激发态原子 。
高中化学《选修三 物质结构与性质》知识归纳
![高中化学《选修三 物质结构与性质》知识归纳](https://img.taocdn.com/s3/m/2e30b6d3c9d376eeaeaad1f34693daef5ef71362.png)
《选修三物质结构与性质》知识归纳一、能层与能级1、能层(电子层:n):在多电子原子中,核外电子的能量是不同的,按照电子的能量差异将其分成不同能层。
由里向外,分别用字母:K、L、M、N、O、P、Q表示相应的第一、二、三、四、五、六、七能层。
各能层最多容纳的电子数为2n2;在同一个原子中,离核越近,电子能量越低2、能级:同一能层里的电子的能量也可能不同,又将其分成不同的能级,通常用s、p、d、f等表示,同一能层里,各能级的能量按s、p、d、f的顺序升高,即:E(s)<E(p)<E(d)<E(f)①K层指包含一个能级,即s能级;L层包含两个能级,s和p能级;M层包含三个能级,s、p和d能级;N层包含四个能级,s、p、d、f能级②每个能层中,能级符号的顺序是ns、np、nd、nf……③s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍④同一能级容纳的电子数相同3、电子云:原子核外电子绕核高速运动是没有确定的轨道的,就好像一团“带负电荷的云雾”笼罩在原子核周围,这种“带负电荷的云雾”称之为电子云。
电子云密集(单位体积内小黑点多)的地方,电子出现的机会多;反之,电子云稀疏(单位体积内小黑点少)的地方,电子出现的机会少。
即电子云表示电子在核外单位体积内出现几率的大小,而非表示核外电子多少4、原子轨道:不同能级上的电子出现概率约为90%的电子云的空间轮廓图称为原子轨道(1)原子轨道的形状①s电子的原子轨道都是球形的,每个s能级各有1个原子轨道,能层序数越大,s原子轨道的半径越大;能量:E1s<E2s<E3s,随着能层序数的增大,电子在离核更远的区域出现的概率减小,电子云越来越向更大的空间扩展②p电子的原子轨道是纺锤形(哑铃形),每个p能级有3个轨道,它们互相垂直,分别以p x、p y、p z为符号。
p原子轨道的平均半径也随能层序数增大而增大③能级与原子轨道数和容纳的电子数的关系能级s(球形)p(纺锤形)d f原子轨道1357容纳的电子数261014二、基态原子的核外电子排布式1、构造原理:多电子的核外电子排布总是按照能量最低原理,由低能级逐步填充到高能级。
高中化学选修-物质结构与性质-全册知识点总结
![高中化学选修-物质结构与性质-全册知识点总结](https://img.taocdn.com/s3/m/69806e79ce84b9d528ea81c758f5f61fb736289a.png)
中学化学选修3学问点总结主要学问要点:1、原子结构2、元素周期表和元素周期律3、共价键4、分子的空间构型5、分子的性质6、晶体的结构和性质(一)原子结构1、能层和能级(1)能层和能级的划分①在同一个原子中,离核越近能层能量越低。
②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。
③任一能层,能级数等于能层序数。
④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。
⑤能层不同能级相同,所容纳的最多电子数相同。
(2)能层、能级、原子轨道之间的关系每能层所容纳的最多电子数是:2n2(n:能层的序数)。
2、构造原理(1)构造原理是电子排入轨道的依次,构造原理揭示了原子核外电子的能级分布。
(2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。
(3)不同能层的能级有交织现象,如E(3d)>E(4s)、E(4d)>E(5s)、E(5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)、E (4f)>E(6s)等。
原子轨道的能量关系是:ns<(n-2)f <(n-1)d <np(4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。
依据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2 ;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。
(5)基态和激发态①基态:最低能量状态。
处于最低能量状态的原子称为基态原子。
②激发态:较高能量状态(相对基态而言)。
基态原子的电子汲取能量后,电子跃迁至较高能级时的状态。
处于激发态的原子称为激发态原子。
③原子光谱:不同元素的原子发生电子跃迁时会汲取(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(汲取光谱和放射光谱)。
利用光谱分析可以发觉新元素或利用特征谱线鉴定元素。
高中化学物质结构与性质知识点总结
![高中化学物质结构与性质知识点总结](https://img.taocdn.com/s3/m/91718c8e250c844769eae009581b6bd97f19bc23.png)
高中化学物质结构与性质知识点总结一、原子结构与元素周期律1. 原子组成:原子由原子核和核外电子组成。
原子核包含质子和中子,质子带正电,中子不带电。
核外电子围绕原子核运动,形成电子云。
2. 电子排布规律:电子按照能量层次和亚层分布,遵循奥布定律(泡利不相容原理、洪特规则)进行排布。
最低能量原理指导电子优先填充能量最低的轨道。
3. 元素周期表:元素按照原子序数(质子数)递增排列的表格,分为7个周期和18个纵行(族)。
元素周期表反映了元素的周期律和族律。
4. 元素周期律:元素的性质随着原子序数的增加呈现周期性变化。
同一周期内,元素的原子半径逐渐减小,电负性逐渐增大;同一族内,元素的化学性质具有相似性。
二、化学键与分子结构1. 化学键的形成:化学键是由原子间相互作用形成,主要包括离子键、共价键和金属键。
2. 离子键:正负离子之间的静电吸引力。
通常由活泼金属和活泼非金属元素之间形成。
3. 共价键:两个或多个非金属原子之间通过共享电子对形成的键。
共价键可以是单键、双键或三键,键的强度和性质与电子对的共享方式有关。
4. 分子的几何结构:分子中原子的空间排布。
分子的几何结构影响其物理和化学性质。
例如,水分子呈弯曲结构,二氧化碳分子呈线性结构。
5. 分子间力:分子间的相互作用力,包括氢键、范德华力等。
这些力量影响物质的熔点、沸点和溶解性等物理性质。
三、晶体结构1. 晶体的类型:晶体分为分子晶体、原子晶体、离子晶体和金属晶体。
不同类型的晶体具有不同的物理和化学性质。
2. 晶体的构造:晶体由原子、离子或分子按照一定的规律排列而成。
晶体的构造决定了其对称性和物理性质。
3. 晶体缺陷:晶体中的不完美之处,如空位、位错等。
晶体缺陷会影响材料的强度、导电性和光学性质。
四、酸碱与氧化还原反应1. 酸碱理论:布朗斯特-劳里酸碱理论认为,凡是能够给出质子的物质为酸,能够接受质子的物质为碱。
2. 酸碱性质:酸性物质具有释放质子的能力,碱性物质具有接受质子的能力。
高中化学知识点全部归纳(物质的结构与性质)
![高中化学知识点全部归纳(物质的结构与性质)](https://img.taocdn.com/s3/m/505fc108ccbff121dc368320.png)
高中化学选修3知识点全部归纳(物质的结构与性质)第一章原子结构与性质.一、认识原子核外电子运动状态,了解电子云、电子层(能层)、原子轨道(能级)的含义.1.电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图.离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小.电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子层.原子由里向外对应的电子层符号分别为K、L、M、N、O、P、Q.原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7.2.(构造原理)了解多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示1~36号元素原子核外电子的排布.(1).原子核外电子的运动特征可以用电子层、原子轨道(亚层)和自旋方向来进行描述.在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子.(2).原子核外电子排布原理.①.能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道.②.泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子.③.洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同. 洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性.如24Cr [Ar]3d54s1、29Cu [Ar]3d104s1.(3).掌握能级交错图和1-36号元素的核外电子排布式.①根据构造原理,基态原子核外电子的排布遵循图⑴箭头所示的顺序。
②根据构造原理,可以将各能级按能量的差异分成能级组如图⑵所示,由下而上表示七个能级组,其能量依次升高;在同一能级组内,从左到右能量依次升高。
(完整版)物质结构与性质知识点总结
![(完整版)物质结构与性质知识点总结](https://img.taocdn.com/s3/m/baab22d3c9d376eeaeaad1f34693daef5ef7139c.png)
高中化学物质结构与性质知识点总结一.原子结构与性质.一.认识原子核外电子运动状态,了解电子云、电子层(能层)、原子轨道(能级)的含义.1.电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图.离核越近,电子出现的机会太,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小. 电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子层.原子由里向外对应的电子层符号分别为K、L、M、N、O、P、Q.原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7.2.(构造原理)了解多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示1〜36号元素原子核外电子的排布.(1).原子核外电子的运动特征可以用电子层、原子轨道(亚层)和自旋方向来进行描述.在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子.(2).原子核外电子排布原理.①.能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道.②.泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子.③.洪特规则:在能量相同的轨道上排布时,电子尽可能分占丕同的轨道,且自旋状态相同. 洪特规则的特例:在等价轨道的全充满(p6、d i0、f i4)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性.如24Cr [Ar]3d54s i、29Cu [Ar]3d io4s i.(3).掌握能级交错图和1-36号元素的核外电子排布式.ns (n-2)f (n-l)d. up①根据构造原理,基态原子核外电子的排布遵循图⑴箭头所示的顺序。
②根据构造原理,可以将各能级按能量的差异分成能级组如图⑵所示,由下而上表示七个能级组,其能量依次升高;在同一能级组内,从左到右能量依次升高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中化学选修3 知识点总结主要知识要点:1、原子结构2、元素周期表和元素周期律3、共价键4、分子的空间构型5、分子的性质6、晶体的结构和性质一)原子结构1、能层和能级1)能层和能级的划分①在同一个原子中,离核越近能层能量越低。
②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f ,能量由低到高依次为s、p、d、f ③任一能层,能级数等于能层序数。
④s、p、d、f ⋯⋯可容纳的电子数依次是1、3、5、7的两倍⑤能层不同能级相同,所容纳的最多电子数相同2)能层、能级、原子轨道之间的关系每能层所容纳的最多电子数是:2n2(n:能层的序数)2、构造原理(1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。
(2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。
(3)不同能层的能级有交错现象,如E(3d)>E(4s)、E(4d)>E(5s)、E(5d)>E(6s)、E(6d)>E(7s)、E (4f )>E(5p)、E(4f )>E(6s)等。
原子轨道的能量关系是:<(2)f <(1)d <(4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2;最外层不超过8 个电子;次外层不超过18 个电子;倒数第三层不超过32 个电子。
(5)基态和激发态①基态:最低能量状态。
处于最低能量状态的原子称为基态原子。
②激发态:较高能量状态(相对基态而言)。
基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。
处于激发态的原子称为激发态原子。
③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。
利用光谱分析可以发现新元素或利用特征谱线鉴定元素。
3、电子云与原子轨道(1)电子云:电子在核外空间做高速运动,没有确定的轨道。
因此,人们用“电子云”模型来描述核外电子的运动。
“电子云”描述了电子在原子核外出现的概率密度分布,是核外电子运动状态的形象化描述。
(2)原子轨道:不同能级上的电子出现概率约为90%的电子云空间轮廓图称为原子轨道。
s 电子的原子轨道呈球形对称,能级各有1 个原子轨道;p 电子的原子轨道呈纺锤形,能级各有3 个原子轨道,相互垂直(用、、表示);能级各有5个原子轨道;能级各有7 个原子轨道。
4、核外电子排布规律(1)能量最低原理:在基态原子里,电子优先排布在能量最低的能级里,然后排布在能量逐渐升高的能级里。
(2)泡利原理:1 个原子轨道里最多只能容纳2 个电子,且自旋方向相反。
(3)洪特规则:电子排布在同一能级的各个轨道时,优先占据不同的轨道,且自旋方向相同。
(4)洪特规则的特例:电子排布在p、d、f 等能级时,当其处于全空、半充满或全充满时,即p0、d0、f 0、p3、d5、f7、p6、d10、f 14,整个原子的能量最低,最稳定。
能量最低原理表述的是“整个原子处于能量最低状态”,而不是说电子填充到能量最低的轨道中去,泡利原理和洪特规则都使“整个原子处于能量最低状态”。
(5)(1)d 能级上电子数等于10 时,副族元素的族序数能级电子数(二)元素周期表和元素周期律1、元素周期表的结构元素在周期表中的位置由原子结构决定:原子核外的能层数决定元素所在的周期,原子的价电子总数决定元素所在的族。
1)原子的电子层构型和周期的划分周期是指能层(电子层)相同,按照最高能级组电子数依次增多的顺序排列的一行元素。
即元素周期表中的一个横行为一个周期,周期表共有七个周期。
同周期元素从左到右(除稀有气体外),元素的金属性逐渐减弱,非金属性逐渐增强。
(2)原子的电子构型和族的划分族是指价电子数相同(外围电子排布相同),按照电子层数依次增加的顺序排列的一列元素。
即元素周期表中的一个列为一个族(第Ⅷ族除外)。
共有十八个列,十六个族。
同主族周期元素从上到下,元素的金属性逐渐增强,非金属性逐渐减弱。
(3)原子的电子构型和元素的分区按电子排布可把周期表里的元素划分成5 个区,分别为s 区、p 区、d 区、f 区和区,除区外,区的名称来自按构造原理最后填入电子的能级的符号。
2、元素周期律元素的性质随着核电荷数的递增发生周期性的递变,叫做元素周期律。
元素周期律主要体现在核外电子排布、原子半径、主要化合价、金属性、非金属性、第一电离能、电负性等的周期性变化。
元素性质的周期性来源于原子外电子层构型的周期性。
(1)同周期、同主族元素性质的递变规律(2)微粒半径的比较方法①同一元素:一般情况下元素阴离子的离子半径大于相应原子的原子半径,阳离子的离子半径小于相应原子的原子半径。
②同周期元素(只能比较原子半径):随原子序数的增大,原子的原子半径依次减小。
如:>>>>P>S>③同主族元素(比较原子和离子半径):随原子序数的增大,原子的原子半径依次增大。
如:<<K<<,<<<④同电子层结构(阳离子的电子层结构与上一周期0 族元素原子具有相同的电子层结构,阴离子与同周期0 族元素原子具有相同的电子层结构):随核电荷数增大,微粒半径依次减小。
如:> >2+>3+3)元素金属性强弱的判断方法4)非金属性强弱的判断方法三)共价键1、共价键的成键本质:成键原子相互接近时,原子轨道发生重叠,自旋方向相反的未成对电子形成共用电子对,两原子核间电子云密度增加,体系能量降低。
2、共价键类型:(1)σ键和π键2)极性键和非极性键(3)配位键:一类特殊的共价键,一个原子提供空轨道, 另一个原子提供一对电子所形成的共价键。
① 配位化合物: 金属离子与配位体之间通过配位键形成的化合物。
如: (H 2O )44、 ( 3) 4()2、(3)2 、() 3 等。
② 配位化合物的组成:3、共价键的三个键参数(1)键长、键能决定共价键的强弱和分子的稳定性,键角 决定分子空间构型和分子的极性。
(2)键能与反应热:反应热=生成物键能总和-反应物键 能总和四)分子的空间构型1、等电子原理原子总数相同、价电子总数相同的分子具有相似的化学键特征,许多性质是相似的,此原理称为等电子原理。
(1)等电子体的判断方法:在微粒的组成上,微粒所含原子数目相同;在微粒的构成上,微粒所含价电子数目相同;在微粒的结构上,微粒中原子的空间排列方式相同。
(等电子的推断常用转换法,如2222 —3—或223 2= 2 )(2)等电子原理的应用:利用等电子体的性质相似,空间构型相同,可运用来预测分子空间的构型和性质。
2、价电子互斥理论(1)价电子互斥理论的基本要点:型分子(离子)中中心原子A 周围的价电子对的几何构型,主要取决于价电子对数(n),价电子对尽量远离,使它们之间斥力最小。
2)型分子价层电子对的计算方法:①对于主族元素,中心原子价电子数=最外层电子数,配位原子按提供的价电子数计算,如: 5 中②O、S 作为配位原子时按不提供价电子计算,作中心原子时价电子数为6;③离子的价电子对数计算如:4+:2- 43、杂化轨道理论(1)杂化轨道理论的基本要点:①能量相近的原子轨道才能参与杂化。
②杂化后的轨道一头大,一头小,电子云密度大的一端与成键原子的原子轨道沿键轴方向重叠,形成σ键;由于杂化后原子轨道重叠更大,形成的共价键比原有原子轨道形成的共价键稳定。
③杂化轨道能量相同,成分相同,如:每个3杂化轨道占有1个s轨道、3个p轨道。
④杂化轨道总数等于参与杂化的原子轨道数目之和。
2)s、p 杂化轨道和简单分子几何构型的关系杂化类型233不等性杂化轨道夹角180 o120 o109o28′中心原子位置ⅡA,ⅡBⅢAⅣAⅤAⅥAⅦA 中心原子孤对电子数000123分子几何构型直线形三角形正四面体三角锥形V字形直线形实例2、2、43、3H2O、H2S34(3)杂化轨道的应用范围:杂化轨道只应用于形成σ键或者用来容纳未参加成键的孤对电子。
(4)中心原子杂化方式的判断方法:看中心原子有没有形成双键或叁键,如果有1 个叁键,则其中有2 个π键,用去了2个p 轨道,形成的是杂化;如果有1 个双键则其中有1 个π键,形成的是2杂化;如果全部是单键,则形成的是3杂化。
4、分子空间构型、中心原子杂化类型和分子极性的关系五)分子的性质1、分子间作用力(范德华力和氢键)(1)分子间作用力和化学键的比较2)范德华力与氢键的比较、极性分子和非极性分子(1)极性分子和非极性分子<1>非极性分子:从整个分子看,分子里电荷的分布是对称的。
如:①只由非极性键构成的同种元素的双原子分子:H2、2、N2 等;②只由极性键构成,空间构型对称的多原子分子:2、2、3、4、4 等;③极性键非极性键都有的:22、≡、。
<2>极性分子:整个分子电荷分布不对称。
如:①不同元素的双原子分子如:,等。
②折线型分子,如H2O、H2S 等。
③三角锥形分子如 3 等。
(2)共价键的极性和分子极性的关系:两者研究对象不同,键的极性研究的是原子,而分子的极性研究的是分子本身;两者研究的方向不同,键的极性研究的是共用电子对的偏离与偏向,而分子的极性研究的是分子中电荷分布是否均匀。
非极性分子中,可能含有极性键,也可能含有非极性键,如二氧化碳、甲烷、四氯化碳、三氟化硼等只含有极性键,非金属单质F2、N2、P4、S8 等只含有非极性键,C2H6、C2H4、C2H2 等既含有极性键又含有非极性键;极性分子中,一定含有极性键,可能含有非极性键,如、H2S、H2O2 等。
(3)分子极性的判断方法①单原子分子:分子中不存在化学键,故没有极性分子或非极性分子之说,如、等。
②双原子分子:若含极性键,就是极性分子,如、等;若含非极性键,就是非极性分子,如O2、I 2等。
③以极性键结合的多原子分子,主要由分子中各键在空间的排列位置决定分子的极性。
若分子中的电荷分布均匀,即排列位置对称,则为非极性分子,如3、 4 等。
若分子中的电荷分布不均匀,即排列位置不对称,则为极性分子,如3、2等。
④根据的中心原子A 的最外层价电子是否全部参与形成了同样的共价键。
(或A 是否达最高价)(4)相似相溶原理①相似相溶原理:极性分子易溶于极性溶剂,非极性分子易溶于非极性溶剂。
②相似相溶原理的适用范围:“相似相溶”中“相似”指的是分子的极性相似。
③如果存在氢键,则溶剂和溶质之间的氢键作用力越大,溶解性越好。
相反,无氢键相互作用的溶质在有氢键的水中的溶解度就比较小。
3、有机物分子的手性和无机含氧酸的酸性(1)手性分子①手性分子:具有完全相同的组成和原子排列的一对分子,如同左手与右手一样互为镜像,却在三维空间里不能重叠,互称手性异构体(又称对映异构体、光学异构体)。