单模光纤中的色散及色散补偿技术

合集下载

单模光纤中的色散及色散补偿技术

单模光纤中的色散及色散补偿技术

单模光纤中的色散及其色散补偿姓名:__刘珺__ 学号:_2009700206 专业班级:_2009级物理学二班_摘要:本文叙述了光通信系统中一个重要的参数——色散,详细介绍了各种色散补偿技术的原理,以及色散补偿光纤和啁啾光纤光栅色散补偿等多种解决方案的特点。

关键词:色散效应,色散补偿1.引言色散是由于光纤中所传送信号的不同频率成分或不同模式成分的群速度不同,而引起传输信号畸变的一种物理现象。

在光纤中,脉冲色散越小,它所携带的信息容量就越大。

其链路的色散累积直接影响系统的传输性能,自从光纤通信商用开始,至今20余年,国内外已大量敷设了常规单模光纤(G652)的光缆,这类光缆工作在1550nm波段时,有18ps/nm·km的色散,成为影响中继距离的主要因素。

所以,对高速率长距离的系统必须要考虑色散补偿问题,研究宽带多波长色散补偿具有重要意义。

光纤色散产生的因素有:材料色散、波导色散、模式色散等等。

但主要是前面两项因素引起不同波长的光在光纤中传播造成群时延差。

解决光信号色散引起群时延差的方法就是色散补偿技术。

2.色散补偿原理2.1 光纤色散述语一、色散及其表示:由于光纤中所传信号的不同频率成分,或信号能量的各种模式成分,在传输过程中,因群速度不同互相散开,引起传输信号波形失真,脉冲展宽的物理现象称为色散。

光纤色散的存在使传输的信号脉冲畸变,从而限制了光纤的传输容量和传输带宽。

从机理上说,光纤色散分为材料色散,波导色散和模式色散。

前两种色散由于信号不是单一频率所引起,后一种色散由于信号不是单一模式所引起。

当一束电磁波与电介质的束缚电子相互作用的时候,介质的响应通常与光波的频率ω有关,这种特性称为色散,它表明折射率n(ω)对频率的依附关系。

光纤的色散效应可以用波矢k或传播常数β与频率的关系来表示,即β(ω)。

在中心频率ωo处将β(ω)展开得到:式中是介质在中心频率ωo处的传播常数;等于群速度的倒数;表示群速度色散,和脉冲的展宽有关;β3为三阶色散参量。

单模光纤传输色散的主要原因

单模光纤传输色散的主要原因

单模光纤传输色散的主要原因单模光纤是一种用于光通信的传输介质,它具有传输带宽大、传输损耗小的优势,因此被广泛应用于长距离的光通信系统中。

然而,在光纤传输过程中,会出现一种现象称为色散,它会影响信号的传输质量和距离。

本文将介绍色散的主要原因以及对光纤传输的影响。

色散是指光信号在传输过程中不同波长的光的传播速度不同,从而导致光信号发生扩散现象。

色散的主要原因可以归结为两点:色散介质的折射率对波长的依赖性以及光纤的结构特性。

色散介质的折射率对波长的依赖性是导致色散的主要原因之一。

在光纤中,光信号是通过光的全反射来进行传输的。

而光在光纤中的传播速度与介质的折射率有关。

不同波长的光在同一介质中的折射率是不同的,这就导致了不同波长的光在传输过程中会出现不同的传播速度。

当光信号中包含多个波长的光同时传输时,由于波长的差异,它们会以不同的速度传播,从而导致光信号的扩散现象,即色散。

光纤的结构特性也会影响光信号的传输质量和距离。

光纤是由芯和包层构成的,芯是光信号传输的核心部分,而包层则用于保护和引导光信号。

而光纤的结构特性主要体现在芯的直径和包层的折射率上。

当光纤的芯直径较大时,光信号在传输过程中会发生多次反射,从而导致不同路径的光信号传播时间不同,进而引起色散现象。

此外,包层的折射率也会影响光信号的传输速度,当包层的折射率不均匀或与芯的折射率存在差异时,也会导致光信号的色散。

色散对光纤传输的影响主要体现在两个方面:信号失真和传输距离的限制。

由于不同波长的光在传输过程中会以不同的速度传播,当光信号中包含多个波长的光同时传输时,它们会在一定距离后发生扩散,导致信号失真。

这会降低光信号的传输质量,使得接收端无法正确解读信号。

此外,色散还会限制光信号的传输距离。

由于光纤中不同波长的光在传输过程中会以不同的速度传播,当传输距离较长时,不同波长的光会逐渐分离,使得信号质量下降,传输距离受到限制。

为了克服色散对光纤传输的影响,人们采用了一系列的补偿措施。

光纤通信系统中的信号传输失真与补偿方法

光纤通信系统中的信号传输失真与补偿方法

光纤通信系统中的信号传输失真与补偿方法随着信息技术的飞速发展,光纤通信系统作为一种高速、大容量、低损耗的通信方式,得到了广泛的应用。

然而,在光纤通信系统中,信号传输过程中会受到多种因素的影响而产生失真,从而降低了通信系统的性能和可靠性。

因此,研究和采用有效的信号传输失真补偿方法,对于提高光纤通信系统的性能至关重要。

一、信号传输失真的原因1. 色散效应:色散是指光信号在光纤中传输过程中,由于不同波长的光的传播速度不同而引起的传输延迟差异。

这种传输延迟差异导致光信号脉冲宽度扩展,从而影响光信号的解调和识别。

2. 线性损耗:光信号在光纤中传输时会受到光纤弯曲、扭曲等因素的影响而产生线性损耗。

线性损耗会导致光信号的能量衰减,从而降低信号的强度和质量。

3. 非线性效应:非线性效应主要包括自相位调制(XPM)、互相位调制(FWM)和自发光(ASE)等。

这些效应会导致光信号的频谱扩展、相位畸变和增加噪声等,从而使信号失真。

二、信号传输失真补偿方法为了解决光纤通信系统中信号传输失真的问题,科学家们提出了多种信号传输失真补偿方法,可以有效地提高光纤通信系统的性能和可靠性。

1. 光纤衍射补偿方法光纤衍射是由于光信号的传输过程中受到了光的波动性的影响而产生的失真。

为了减少光纤衍射引起的传输失真,可以采用预加权、均衡和衍射抑制等技术。

其中,预加权技术可以在发送端对光信号进行预处理,减少光纤衍射的影响;均衡技术可以在接收端对光信号进行均衡处理,使信号的频率响应变得平坦;衍射抑制技术可以通过设计光纤的结构参数来抑制光纤衍射效应。

2. 色散补偿方法色散是光纤通信系统中主要的信号传输失真因素之一。

为了解决色散引起的信号传输失真问题,可以采用主动或被动补偿方法。

主动补偿方法主要包括光纤光栅衍射、电调制与光调制的联合补偿等技术;被动补偿方法主要包括单模与多模光纤的混合传输、多中心光纤的设计等。

3. 光纤放大器补偿方法光纤放大器是光纤通信系统中放大光信号的重要设备,但它也会引起信号传输失真。

光纤通信系统中的色散补偿问题综述

光纤通信系统中的色散补偿问题综述

光纤通信系统中的色散赔偿问题综述1.Introduction光纤通信含有高速率、大容量、长距离以及抗干扰性强等特点。

但损耗和色散是长久妨碍光纤通信向前发展的重要因素。

随着着损耗问题的解决,色散成为决定光纤通信系统性能优劣的重要因素。

如何控制色散方便提高光纤通信系统的性能,成为光纤通信研究的热门课题之一。

现在对于光纤的色散已经提出了诸多赔偿办法,重要有色散赔偿光纤(DCF),啁啾光纤光栅,均匀光纤光栅,相位共轭(中点谱反转),全通滤波器、预啁啾等。

随着以上各办法缺点的暴露,学者们提出了光孤子色散赔偿技术,又相继提出了色散管理孤子,密集色散管理孤子等技术。

色散管理成为近年来光纤通信前沿研究的重要热点。

2.Concept of Dispersion由于信号在光纤中是由不同的波长成分和不同的模式成分来携带的,这些不同的波长成分和模式成分有不同的传输速率,从而引发色散。

也能够从波形在时间上展宽的角度去理解,也就是说光脉冲在通过光纤传输期间,其波形随时间发生展宽,这种现象称为光纤的色散。

3.Dispersion Causes普通把光纤中的色散分为三种类型:模式色散、模内色散和偏振色散。

a)模式色散模式色散是多模光纤才有的。

多模光纤中,即使是同一波长,模式不同传输速度也不同,它所引发的色散称为模式色散。

不同模式的光在光纤中传输时的传输常数不同,从而使传输同样长的距离后,不同模式的光波之间产生了群时延差,假设光纤能够传输多个模式,其中高次模达成输出端所需的时间较长,成果使入射到光纤的脉冲,由于不同模式达成的时间不同,或者说群时延不同,在输出端发生了脉冲展宽。

b)模内色散模内色散亦称颜色色散或多色色散。

重要是由于光源有一定带宽,信号在光纤中会有不同的波长成分,信号的不同波长分量含有不同的群速度,成果造成光脉冲的展宽。

模内色散涉及材料色散和波导色散。

c)偏振色散普通的轴对称单模光纤是违反“单模”名称的。

事实上有可能传输着两个模,即在光纤横截面上的两个正交方向(设为x 方向与y 方向)上偏振的(即在这些方向上含有场分量的)偏振模,同时由于实际的光纤中必然存在着某些轴不对称,那么,光纤会存在双折射,模传输常数β对于x,y 方向偏振模稍有不同,就会使这两个模式的传输速度不同,由此引发的色散叫偏振色散。

光纤的色散特性

光纤的色散特性
色散受限距离短
2.5Gb/s系统色度色散受限距离约600km
10Gb/s系统色度色散受限距离约34km
G.652+DCF方案升级扩容成本高
结论:
不适用于10Gb/s以上速率传输,但可应用于 2.5Gb/s以下速率的DWDM。
光纤的色散特性
色散位移光纤
单模光纤的工作波长在1.3μm时,模场直径约 9μm,其传输损耗约0.3dB/km。此时,零色散波 长恰好在1.3μm处。
色散位移光纤
G.655单模光纤(NZ-DSF) 常规G.655
非零色散位移光纤
大有效面积G.655
光纤的色散特性
G.652单模光纤(NDSF)
大多数已安装的光纤
(1)在1310nm 波长处的色散为零。 (2)在波长为1550nm附近衰减系数最小,约为0.22dB/km,但在1550nm 附近其具有较大色散系数,为17ps/(nm·km)。 (3) 工作波长即可选在1310nm波长区域,又可选在1550nm波长区域,它 的最佳工作波长在1310nm区域。G.652 光纤是当前使用最为广泛的光纤。
8
9
10
光纤的色散特性
二、色散的种类
模式色散 材料色散 波导色散
光纤的色散特性
模式色散
模式色散是由于光纤不同模式在同 一波长下传播速度不同,使传播时 延不同而产生的色散。只有多模光 纤才存在模式色散,它主要取决于 光纤的折射率分布。
光纤的色散特性
多模光纤中的每一个模式的能量都 以略有差别的速度传播(模间色 散),因此导致光脉冲在长距离光 纤中传播时被展宽(脉冲 展宽)
波导色散和材料色散都是模式的本身色散,也 称模内色散。对于多模光纤,既有模式色散,又 有模内色散,但主要以模式色散为主。而单模光 纤不存在模式色散,只有材料色散和波导色散, 由于波导色散比材料色散小很多,通常可以忽略。

1-5_光纤色散

1-5_光纤色散
色散受限距离短
2.5Gb/s系统色度色散受限距离约600km
10Gb/s系统色度色散受限距离约34km
G.652+DCF方案升级扩容成本高
结论:
不适用于10Gb/s以上速率传输,但可应用于 2.5Gb/s以下速率的DWDM。
色散位移光纤
单模光纤的工作波长在1.3μm时,模场直径约 9μm,其传输损耗约0.3dB/km。此时,零色散波 长恰好在1.3μm处。
Polarisation Mode Dispersion (PMD)
There is usually a very slight difference in RI for each polarization. It can be a source of dispersion, usually less than 0.5 ps/nm/km.
对色散有4种表示方法:
1.单位长度上的群延时差,即在单位长度上 模式最先到达终点和最后到达终点的时间差。
2. 用输出与输入脉冲宽度均方根之比表示。
3.用光纤的冲激响应经傅氏变换得到的频率 响应的3dB带宽表示。
4.用单位长度的单位波长间隔内的平均群延 时差来表示。
光纤的色散
随着脉冲在光纤中传输,脉冲的宽度被展宽
Group Velocity Dispersion (GVD)
Normal Dispersion Regime :the long wavelengths travel faster than the short ones! Thus after travelling on a fibre wavelengths at the red end of the pulse spectrum will arrive first. This is called a positive chirp!

第八讲光纤的色散特性ppt课件

第八讲光纤的色散特性ppt课件
6
带宽(B)
色散描述方式
光纤的带宽(f为调制信号频率)
7
通常把调制信号经过光纤传播后,光功率下降一 半 ( 即 3dB) 时 的 频 率 (fc) 的 大 小 , 定 义 为 光 纤 的 带 宽 (B)。由于它是光功率下降3dB对应的频率,故也称为 3dB光带宽。可用下式表示。
8
二、色散的起因
材料色散
材料色散是材料的折射率n是波长λ的函数,从 而使光的传播速度随波长而变。由此引起的色散 叫材料色散。
引起材料色散的原因,是因为光源器件不是 工作于单一频率,即光源器件所发出的光都有一 定的谱线宽度△λ;而光纤材料的折射率并非固 定不变的,它会随传输的光波波长(或光波频率) 发生变化。
二、色散的种类
紫顺序排列的彩色光谱。 这是由于棱镜材料对不同波长(不同颜色)的光
呈现的折射率不同,使光的传播速度不同和折射角度 不同,最终使不同颜色的光在空间上散开。
一、色散的定义
光纤色散的概念 光脉冲中的不同频率或模式在光纤中的速
度不同,到达光纤终端有先有后,使光脉冲发生 展宽,这就是光纤的色散。
色散引起的脉冲展宽示意图
为了了解光纤色散,需知道送进光纤中 的信号结构。
首先,送进光纤的并不是单色光。这由 两方面的原因引起: 一是光源发出的并不是单色光; 二是光信号有一定的带宽。
9
二、色散的起因
1

实际光源发
对 输
出的光不是单色 出
的(或单频的),
功 率
而是在一定的波 0.5
长范围。这个范
围常是光源的线
宽或谱宽。
光源的谱宽 f f
材料色散
掺GeO2石英玻璃的折射率-波长特性曲线的关系
二、色散的种类

单模光纤的色散

单模光纤的色散

光纤色散在光纤中传输的光信号(脉冲)的不同频率成份或不同的模式分量以不同的速度传播,到达一定距离后必然产生信号失真(脉冲展宽),这种现象称为光纤的色散或弥散。

光纤中传输的光信号具有一定的频谱宽度,也就是说光信号具有许多不同的频率成分。

同时,在多模光纤中,光信号还可能由若干个模式叠加而成,也就是说上述每一个频率成份还可能由若干个模式分量来构成。

光纤的色散主要有材料色散、波导色散、偏振模色散和模间色散四种。

其中,模间色散是多模光纤所特有的。

这四种色散作用还相互影响,由于材料折射率n是波长λ(或频率w)的非线性函数,d2n/d2λ≠0,于是不同频率的光波传输的群速度不同,所导致的色散成为材料色散。

由于导引模的传播常数β是波长λ(或频率w)的非线性函数,使得该导引模的群速度随着光波长的变化而变化,所产生的色散成为波导色散(或结构色散)。

偏振模色散指光纤中偏振色散,简称PMD(polarization modedispersion),它是由于实际的光纤中基模含有两个相互垂直的偏振模,沿光纤传播过程中,由于光纤难免受到外部的作用,如温度和压力等因素变化或扰动,使得两模式发生耦合,并且它们的传播速度也不尽相同,从而导致光脉冲展宽,引起信号失真。

不同的导引模的群速度不同引起的色散成为模间色散,模间色散只存在与多模光纤中。

色散限制了光纤的带宽—距离乘积值。

色散越大,光纤中的带宽—距离乘积越小,在传输距离一定(距离由光纤衰减确定)时,带宽就越小,带宽的大小决定传输信息容量的大小。

光纤色散可以使脉冲展宽,而导致误码。

这是在通信网中必须避免的一个问题,也是长距离传输系统中需要解决的一个课题。

一般来说,光纤色散包括材料色散和波导结构色散两部分,材料色散取决于制造光纤的二氧化硅母料和掺杂剂的分散性,而波导色散通常是一种模式的有效折射率随波长而改变的倾向。

材料色散与波导色散都与波长有关,所以又统称为波长色散。

材料色散:是由光纤材料自身特性造成的。

17-光纤色散及补偿方法简述

17-光纤色散及补偿方法简述

目录色散及其补偿介绍 (2)一、色散的基本概念 (2)1.1 基本概念 (2)1.2 光纤中色散的种类 (2)1.3 光纤色散表示法 (2)1.4 单模光纤的色散系数 (3)1.5 光纤色散造成的系统性能损伤 (3)1.6 减小色散的技术 (4)1.7 偏振模色散(PMD) (6)二、非线性问题 (7)色散及其补偿介绍当前,光纤通信正向超高速率、超长距离的方向发展。

EDFA的出现为1.55um波长窗口实现大容量、长距离光通信创造了条件,并使光纤通信中衰耗的问题得到了一定的解决。

然而光纤的色散影响仍然是制约因素之一,加之引入光放大器使光信号功率提高之后,光纤的非线性影响又突显出来。

一、色散的基本概念1.1 基本概念光纤色散是由于光纤所传送信号的不同频率成分或不同模式成分的群速度不同,而引起传输信号畸变的一种物理现象。

所谓群速度就是光能在光纤中的传输速度。

所谓光信号畸变,一般指脉冲展宽。

1.2 光纤中色散的种类光纤中的色散可分为材料色散、波导色散、模式色散。

材料色散和波导色散也称为模内色散,模式色散也称为模间色散。

材料色散是由于光纤材料的折射率随光源频率的变化引起的,不同光源频率所所应的群速度不同,引起脉冲展宽。

波导色散是由于模传播常数随波长的变化引起的,与光纤波导结构参数有关,它的大小可以和材料色散相比拟。

材料色散和波导色散在单模光纤和多模光纤中均存在。

模式色散是由于不同传导模在某一相同光源频率下具有不同的群速度,所引起的脉冲展宽。

模式色散主要存在于多模光纤中。

简而言之,材料色散和波导色散是由于光纤传输的信号不是单一频率所引起的,模式色散是由于光纤传输的信号不是单一模式所引起的。

1.3 光纤色散表示法在光纤中,不同速度的信号传过同样的距离会有不同的时延,从而产生时延差,时延差越大,表示色散越严重。

因而,常用时延差来表示色散程度。

时延并不表示色散值,时延差用于表示色散值。

若各信号成分的时延相同,则不存在色散,信号在传输过程中不产生畸变。

单模光纤的色度色散

单模光纤的色度色散

西安科技大学自动化091李斯远题目:单模光纤的色度色散一、前言一、课题的目的及意义在我国,随着经济的迅速发展,电信市场也得到了飞速的发展,住宅用户和商业用户数量都大幅增长,网络业务量也呈指数般上升。

巨大的用户群带来海量的通信流量,而如此大的流量需求,对现有光网络系统能力提出了严峻挑战,也推动了光网络建设,光纤通信系统向大容量、高速率、长距离方向发展,使得原本对低速系统而言可以忽略不计的非线性效应和偏振模色散(PMD)等光纤性能缺陷成为限制系统容量升级和传输距离的主要因素。

从技术角度上看,限制高速率长距离信号传输的因素主要是光纤衰减、非线性和色散。

光放大器的研究成功,使光纤衰减对系统的传输距离不再起主要限制作用。

而非线性效应和色散对系统传输的影响随着非色散零位位移光的引入也逐渐减少和消除。

随着单信道传输速率的提高和模拟信号传输带宽的增加,PMD效应对于系统性能的影响已经不可忽略且日益严重,它和色度色散对系统性能的影响相同:即引起脉冲展宽,从而限制传输速率,影响传输距离。

正是由于PMD对高速率大容量光纤通信系统有着不可忽略的影响,所以自20世纪90年代以来,已引起业界的关注,偏振模色散及其补偿技术已成为目前国际光纤通信领域中研究的热点。

二、国际国内的研究状况偏振模色散是由光纤不圆度、光纤内部残留应力、环境温度变化等因素引起相互正交的两个偏振基模因传输速度不同而导致的脉冲展宽。

在2,5Gb/S以下的光纤通信系统中几乎感觉不到偏振膜色散的存在。

到了20世纪90年代早期10Gbps系统出现,PMD的作用开始显现,而对于紧随其后的40Gbps系统,PMD就成为导致信号分裂畸变的重要因素,从而制约了光网络的进一步发展。

从那时起,人们真正开始了对PMD进行系统深入的研究。

从80年代中期到90年代初期建立期初步的PMD统计模型开始,到2002年期间,逐渐发展和完善了一阶和高阶PMD的统计理论,也有了多种适应不同环境和测量要求的测量方法,测量仪器精度已达飞秒量级。

光纤色散补偿技术.doc

光纤色散补偿技术.doc

光纤色散补偿技术光纤的色散分类不同的光分量不同的模式或不同的频率等通常以不同的速度在光纤中传输,这种现象称为色散。

色散是光纤的一种重要的光学特性,色散引起光脉冲的展宽、严重限制了光纤的传输容量及带宽。

对于多模光纤,起主要作用的色散机理是模式色散或称模间色散即不同的模以不同的速度传输引起的色散。

对于单模光纤,起主要作用的色散机理是色度色散或称模内色散即不同的光频率在不同的速度下传输引起的色散〕。

由于多模光纤受模间色散的限制,传输速率不能超过100Mb/s,单模光纤则比多模光纤更优越,在长途干线实际应用中用的也都是单模光纤,此处也仅考虑单模光纤的色散。

单模光纤的模内色散主要是材料色散和波导色散。

材料色散是指由于频率的变化导致介质折射率变化而造成的传输常数或群速变化的现象;波导色散是指由于频率的变化导致波导参数变化而造成的传输常徽或群速变化的现象。

模内色散主要是实际光源都是复色光源的结果。

另外在单模光纤中,实际上传输着两个相互正交的线性偏振模式,但由于光纤的非圆对称、边应力、光纤扭曲、弯曲等造成轻微的传输速度差,从而形成偏振模色散。

高速光纤通信系统需要色散补偿目前,全世界范围内,已经教设的1.3 µ m零色散光纤总长度超过5000万公里,而我们知道现在光纤通信系统的工作波长为1.5µm,这样光纤就存在D≈16ps/kmnm的色散、该色散限制光通信系统的传输速度在2Gb/s以下。

即使是新教设的光纤、为了限制四波混频现象也仍需使用非零色散位移光纤。

故为了克服色散对通信距离及通信速率的限制,必须对光纤进行色散补偿。

另外,随着光纤通信和色散补偿方案的迅速发展,一些高速传输系统的传输速率已达到几十甚至几百Gb/s以上。

这时,偏振模色散的影响亦不可忽视光纤色散补偿方案目前,已有多种群速度色散补偿方案被提出,如后置色散补偿技术、前置色散补偿技术、色散补偿滤波器、高色散补偿光纤DCF技术和凋啾光纤光栅色散补偿技术,以及光孤子通信技术等。

色散补偿光纤的通信原理

色散补偿光纤的通信原理

色散补偿光纤的通信原理色散是指光信号中不同波长的光在光纤中传播过程中的传输特性差异。

在光纤通信中,色散会使得光信号的频谱变宽,导致不同波长的光在光纤中到达接收端的时间不同,从而降低了信号的传输质量和距离。

为了解决这个问题,引入了色散补偿光纤。

色散补偿光纤的通信原理是通过设计光纤的材料和结构,使得光信号在传输过程中发生色散,但是能够在接收端得到有效的补偿,恢复原始的光信号。

色散补偿光纤的原理可以从以下三个方面进行解释:首先,色散补偿光纤的原理与光纤中的色散现象密切相关。

光纤中的色散分为色散与位移(chromatic dispersion)和色散与波导导引折射率的变化有关的色散(waveguide dispersion)。

形成色散的原因与波长相关。

不同波长的光由于在光纤中传播速度不同,导致到达接收端的时间不同,从而产生色散。

色散补偿光纤利用设计好的材料和结构,使得不同波长的光的传播速度具有相反的色散特性,从而在传输过程中产生的色散能够得到补偿。

其次,色散补偿光纤的原理与光的色散特性有关。

光的色散特性可以通过光纤的色散参数来描述,其中最常用的参量是色散的色散因子(dispersion coefficient)和色散的高阶系数(dispersion slope)。

色散补偿光纤通过调节材料和结构的特性,使得色散参数能够满足特定的要求。

例如,对于单模光纤,我们通常希望在C波段和L波段的光信号能够以正色散的方式传输,而在其他波段以负色散的方式传输。

最后,色散补偿光纤的原理与光纤光学器件的设计和使用有关。

为了实现色散补偿,需要在光纤通信系统中引入色散补偿器件,例如色散补偿模块(dispersion compensator)或者色散补偿纤芯(dispersion compensating fiber core)。

色散补偿器件通常采用光纤光栅(fiber grating)或者特殊的光纤材料来实现。

通过将色散补偿器件与光纤连接,可以在传输过程中实时补偿光信号的色散,从而恢复原始的光信号。

单模光纤中的色散及色散补偿技术

单模光纤中的色散及色散补偿技术

光通信光纤中的色散补偿技术(原理、优点、缺点) 姓名:__彭坚大_ 学号:_11216020418 专业班级:_电04摘要:本文叙述了光通信系统中一个重要的参数——色散,详细介绍了各种色散补偿技术的原理,以及色散补偿光纤和啁啾光纤光栅色散补偿等多种解决方案的特点。

Abstract: This paper describes an important parameter dispersion in optical communication systems. The principles of various dispersion compensation techniques and the characteristics of dispersion compensation fiber and chirped fiber grating dispersion compensation are introduced in detail.关键词:色散效应,色散补偿1.引言色散是由于光纤中所传送信号的不同频率成分或不同模式成分的群速度不同,而引起传输信号畸变的一种物理现象。

在光纤中,脉冲色散越小,它所携带的信息容量就越大。

其链路的色散累积直接影响系统的传输性能,自从光纤通信商用开始,至今20余年,国内外已大量敷设了常规单模光纤(G652)的光缆,这类光缆工作在1550nm波段时,有18ps/nm·km的色散,成为影响中继距离的主要因素。

所以,对高速率长距离的系统必须要考虑色散补偿问题,研究宽带多波长色散补偿具有重要意义。

光纤色散产生的因素有:材料色散、波导色散、模式色散等等。

但主要是前面两项因素引起不同波长的光在光纤中传播造成群时延差。

解决光信号色散引起群时延差的方法就是色散补偿技术。

2.色散补偿原理2.1 光纤色散述语一、色散及其表示:由于光纤中所传信号的不同频率成分,或信号能量的各种模式成分,在传输过程中,因群速度不同互相散开,引起传输信号波形失真,脉冲展宽的物理现象称为色散。

光纤的损耗和色散

光纤的损耗和色散

解决方法: (1) 光纤材料化学提纯,比
如达到 99.9999999% 的 (2) 制纯造度工艺上改进,如避
免使用氢氧焰加热 ( 汽 相轴向沉积法)
原子缺陷吸收
光纤制造 -> 材料受到热激励 -> 结构不完 善 强粒子辐射 -> 材料共价键断裂 -> 原子缺 光陷纤晶格很容易在光场的作用下产生振动
群时延色散
通常在 波 长2域c习 惯 用Dl 来2表2c示谱宽。
根据w和l之间的关系:
代 其 入 中T DD T(L l中) 称2 , 为 那色 么散L 可 系2 以2 数 得2 :c 到 : L D
ps/(km·nm)
标 为
准 ~ 1单7 模p s光D/ k(纤m)在·n1m52502cnm2
带宽和距离乘积:
BL < 1 (Gb/s)·km
模内色散对传输带宽的影响
01 不同线宽下的系统 色散所允
单击此处添加正文,文字是您思想的 提炼,请尽量言简意赅地阐述观点。
03
结论:
一. 光源线宽越宽色散越严重 二. 零色散光纤对提高系统性
02 许的带宽与传输距 离的关系 nm:光源线宽非常小
对于高速光链路 (> 40 Gb/s),色散成为首要考 虑的因素之一
1320
1550 nm
普通商用光纤
色散位移光纤
G.656 色散平坦光纤
在较大的范围内保持相近的色散值,适用于波分复用系统
总色散
30 20
10 0
-10 -20 -30
1.1 1.2
普通光纤
l1
l2
色散平坦光纤
1.3 1.4 l ( mm)
1.5 1.6 1.7

光纤色散及补偿方法简述

光纤色散及补偿方法简述

光纤色散及补偿方法简述光纤色散是指信号在光纤中传播过程中由于不同波长的光在光纤中的传播速度不同而导致的信号畸变现象。

不同波长的光在介质中的传播速度取决于介质的折射率,而光纤的折射率又与光的频率有关。

因此,光在光纤中的传播速度会因波长的不同而产生差异,这即是光纤色散的原因。

光纤色散主要分为两种类型:色散波长的差异导致的色散称为色散波长分散(波长色散),而在光纤的结构中由于光模的传播引起的信号畸变称为模色散(模波长分散)。

波长色散是指不同波长的光信号在光纤中的传播速度不同,导致信号传播时发生时间延迟,从而使信号的脉冲宽度增大并且使信号传输距离受限制。

波长色散分为正常色散和反常色散两种情况。

正常色散是指在光纤中,长波长的光信号传播速度比短波长的快;而反常色散则是相反的情况,长波长的光信号传播速度比短波长的慢。

正常色散主要由于材料的折射率随波长的减小而增加引起,而反常色散则是由于材料的折射率随波长的增大而减小引起。

模色散是指光波在光纤中的不同模式下传播速度不同而引起的信号畸变。

光纤中光波可传播的模式主要包括基模和高次模式。

基模是指光波在光纤中存在的最低阶模式,具有较大的传播速度;而高次模式则是指超过基模阶数的模式,具有较小的传播速度。

当光波在光纤中存在多个模式时,各种模式的光信号会引起相位的变化,从而导致信号的畸变。

为了克服光纤色散带来的问题,可以采用以下几种色散补偿方法:1.波长分组复用(WDM):通过将信号分成不同频率的子信号,并使用光栅或薄膜滤波器进行接收和分离,以减少波长色散对信号的影响。

2.色散补偿光纤(DCF):在光纤系统中引入一段具有与主光纤相反的色散特性的光纤,以抵消主光纤中的色散效应。

3.电气预调制(AM):在发送端使用电调制器对光信号进行调制,通过改变光信号的频率来抵消波长色散。

4.光纤光栅:将光纤中的光信号经过光栅介质,根据不同波长的光在光栅中的光程差,实现对光纤色散的补偿。

5.光纤束缚(FBG):通过在光纤中引入光纤光栅,改变光的折射率,从而抵消光纤色散。

色散补偿技术

色散补偿技术

4、光相位共轭色散补偿
光相位共轭(OPC)色散补偿法又称中间频 谱反转法。光相位共轭器是利用光介质中的非线 性效应——“四波混频”获得输入光脉冲的频谱反转 脉冲,即相位共轭脉冲。光相位共轭色散补偿是 在两根长度和色散特性相同的传输光纤之间插入 光相位共轭器,经第一根光纤传输后发生畸变的 信号脉冲经相位共轭器转换为相位共轭脉冲,再 经第二根光纤的传输而被整形恢复。
基于LP01模的单模DCF在设计时采用较小的 光纤内径,得到较高的相对折射率差Δ,从而实 现在1550nm处较大的负色散。
(2)DCF的品质因数
DCF的品质因数FOM(Figure ofห้องสมุดไป่ตู้Merit)定义为
FOM D
D——色散系数,单位(ps/nm·km)
α——衰减系数,单位(dB/km)
色散补偿光纤DCF与常规单模光纤色散特性
色散补偿光纤DCF 预啁啾技术 色散均衡器 光相位共轭色散补偿 色散支持传输 偏振模色散(PMD)补偿技术
1、色散补偿光纤DCF
光脉冲信号经过长距离光纤传输后,由于色散效应而产生 了光脉冲的展宽或畸变,这时可用一种在该波长区具有负色散 系数的光纤来进行补偿。DCF就是一种具有很大负色散系数的 光纤,用来补偿常规光纤工作于1310nm或1550nm处所产生 的较大的正色散。
3、色散均衡器
典型的色散均衡器是利用与光纤相反色散特性 (相反群时延斜率)的器件补偿光纤色散。 色散均衡的种类有许多。这里介绍啁啾光纤光栅和F-P 腔色散均衡器两种。
(1)啁啾光纤光栅
啁啾光纤光栅(Chirped Fiber Grating)是 在光学波导上刻出一系列不等间距的光栅,光栅 上的每一点都可以看成是一个本地布拉格波长的 通带和阻带滤波器,不同波长分量光在其中传输 的时延不同,且与光纤的色散引起的群时延正好 相反,从而可补偿由于光纤色散引起的脉冲展宽 效应。

光纤的分类和比较包括各种单模光纤的色散和衰减特性

光纤的分类和比较包括各种单模光纤的色散和衰减特性

模间色散图
单模光纤中旳色散
在单模光纤中不存在多种模式,也就没有模间色 散,但脉冲展宽现象依然存在,这是因为光脉冲 信号有一定旳频谱宽度(光脉冲有不同旳频率成 份),不同工作波长旳光信号在光纤中将有不同 旳传播群速度,造成光脉冲旳展宽。这种现象叫 群速度色散,它一般不大于模间色散。其主要由 材料色散和波导色散所决定。
色散补偿技术
目前,发展比较成熟旳、主流旳色散补偿技术主要 是采用色散补偿光纤(DCF)来进行色散补偿。其主要 技术是在每个(或几种)光纤段旳输入或输出端经过放 置DCF色散补偿模块(DCM),周期性地使光纤链路 上累积旳色散接近零,从而能够使单信道1550nm外调 制光纤干线旳色散得到很好旳补偿。
形成光纤损耗旳原因有诸多,有来自光纤本身旳 损耗(吸收损耗、散射损耗),也有光纤与光源 旳耦合损耗以及光纤之间旳连接损耗,还有光纤 弯曲损耗以及纤芯与包层中旳损耗。
光纤本身损耗旳分类
本征吸收损耗:光波经过光纤材料时旳损耗
吸收损耗 散射损耗
杂质吸收损耗:材料旳不纯净以及工艺旳不 完善造成旳附加吸收损耗(过渡金属离子吸 收以及水旳氢氧根离子旳吸收)
所以,对于超长距离旳光纤传播,既有旳色散补偿 技术能够相对很好旳处理色散问题,对于超远距离旳传 播,其首要考虑旳原因是光纤旳衰减特征。
4 对多种单模光纤特征旳比较
四种单模光纤
G652 G653 G654 G655
G652
1 )G652光纤又被称为原则单模光纤,这种光纤是目前应用在 1310nm窗口旳最广泛旳零色散波长旳单模光纤。
色散系数D
G652
G652色散曲线图:
18 0
1310nm 1550nm 波长λ
色散系数D旳单位: ps/nm.km

光纤的损耗3-3单模光纤的色散及单模光纤的分类 [兼容模式]

光纤的损耗3-3单模光纤的色散及单模光纤的分类 [兼容模式]
B 1 p C LB f
忽略第二项,则偏振模色散导致的脉冲展宽为:
2. 偏振模色散的统计特性 由于光纤在制造过程中的不确定性因素,光纤 的不圆程度、内应力的不均匀程度都是随机变化的。 这导致光纤的双折射参量或拍长LB并不是一个 常量,而是一个随光纤位置而变化的随机量。
-10 -20
G.656 色散平坦光纤 使波导色散曲线具有更大的斜率,或其负色 散值随波长变化更陡,使得在1.3~1.6um波长 范围内波导色散与材料 总色散 色散都可较好的相抵消。 因此在较大的范围内保 普通光纤 持相近的色散值,适用 于波分复用系统 色散平坦光纤
30 20 10 1.1 1.2 1.3 1.4 ( m m) 1.5 1.6 1.7
§3.3 单模光纤的色散及单模光纤的分类
一、色散系数 单模光纤中只有主模式LP01模传输,总色散 由材料色散、波导色散、折射率剖面色散和偏振 模色散构成。前三项属于波长色散,后一项为模 式色散。在光纤的双折射参量很小时,波长色散 是主要的。 定义单模光纤的波长色散D():
D Dm DW
定义色散斜率:
D ( ) D (0 ) d D ( ) S 0 lim 0 0 d
即零色散波长附近总色散系数随变化曲线的斜 率,则零色散区内的色散系数为:
D( ) ( 0 ) S 0 S 0
将设可以将光信号看成是对角频率为0,相位 常数为0的单色光调制的结果,则有:
G.655非零色散光纤: 是一种改进的色散移位光纤。在密 集波分复用(WDM)系统中,当使用波长1.55 μm色散为零 的色散移位光纤时,由于复用信道多,信道间隔小,出现 了一种称为四波混频的非线性效应。这种效应是由两个或 三个波长的传输光混合而产生的有害的频率分量,它使信 道间相互干扰。如果色散为零,四波混频的干扰十分严重, 如果有微量色散,四波混频反而减小。为消除这种效应, 科学家开始研究了非零色散光纤。这种光纤的特点是有效 面积较大,零色散波长不在1.55 μm,而在1.525 μm或 1.585 μm。 这种光纤在密集波分复用和孤子传输系统中使用,实 现了超大容量超长距离的通信。

单模光纤技术参数

单模光纤技术参数

单模光纤技术参数单模光纤(Single Mode Fiber)是一种用于传输光信号的光纤。

相比于多模光纤,单模光纤具有更低的传输损耗和更高的带宽。

它主要用于长距离传输和高速通信应用,如光纤通信、数据中心互联和光纤传感等。

本文将介绍单模光纤的主要技术参数,包括纤芯直径、光纤损耗、带宽和色散等。

1. 纤芯直径(Core Diameter)纤芯直径是指光纤中心的发光部分的直径。

单模光纤的纤芯直径通常为8~10微米(μm)。

相比之下,多模光纤的纤芯直径通常为50或62.5微米。

较小的纤芯直径使得单模光纤能够支持更高的带宽和更低的传输损耗。

2. 光纤损耗(Fiber Loss)光纤损耗是指光信号在光纤中传输过程中的能量损失。

对于单模光纤,光纤损耗一般为0.2~0.3 dB/km(分贝/千米)。

这意味着在每传输1千米的距离上,光信号的功率会减少0.2~0.3 dB。

相比之下,多模光纤的光纤损耗通常为2~3 dB/km。

3. 带宽(Bandwidth)带宽是指光纤传输信号的容量,通常以兆赫兹(MHz)或千兆赫兹(GHz)来表示。

单模光纤的带宽通常由光纤的色散特性和调制技术决定。

对于一般的单模光纤,其带宽可以达到10 Gbps(千兆位每秒)或更高。

在更高速的应用中,如100 Gbps和400 Gbps,需要采用更先进的单模光纤和调制技术。

4. 色散(Dispersion)色散是指光信号在传输过程中由于信号的不同频率成分到达终点的时间差引起的信号失真现象。

对于单模光纤,主要存在两种类型的色散:色散展宽(Chromatic Dispersion)和模态色散(Modal Dispersion)。

色散展宽是指不同频率光信号在光纤中行进速度不同而引起的色散现象。

模态色散是指由于光信号在纤芯中的不同传输路径而引起的色散现象。

为了减少色散现象,可以采用色散补偿技术或使用更先进的单模光纤。

总结:单模光纤是一种用于传输光信号的光纤,具有较小的纤芯直径、较低的传输损耗、较高的带宽和较小的色散等特性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单模光纤中的色散及色散补偿技术This manuscript was revised on November 28, 2020光通信光纤中的色散补偿技术(原理、优点、缺点)姓名:__彭坚大_ 学号:_ 专业班级:_电04摘要:本文叙述了光通信系统中一个重要的参数——色散,详细介绍了各种色散补偿技术的原理,以及色散补偿光纤和啁啾光纤光栅色散补偿等多种解决方案的特点。

Abstract: This paper describes an important parameter dispersion in optical communication systems. The principles of various dispersion compensation techniques and the characteristics of dispersion compensation fiber and chirped fiber grating dispersion compensation are introduced in detail.关键词:色散效应,色散补偿1.引言色散是由于光纤中所传送信号的不同频率成分或不同模式成分的群速度不同,而引起传输信号畸变的一种物理现象。

在光纤中,脉冲色散越小,它所携带的信息容量就越大。

其链路的色散累积直接影响系统的传输性能,自从光纤通信商用开始,至今20余年,国内外已大量敷设了常规单模光纤(G652)的光缆,这类光缆工作在1550nm波段时,有18ps/nm·km的色散,成为影响中继距离的主要因素。

所以,对高速率长距离的系统必须要考虑色散补偿问题,研究宽带多波长色散补偿具有重要意义。

光纤色散产生的因素有:材料色散、波导色散、模式色散等等。

但主要是前面两项因素引起不同波长的光在光纤中传播造成群时延差。

解决光信号色散引起群时延差的方法就是色散补偿技术。

2.色散补偿原理光纤色散述语一、色散及其表示:由于光纤中所传信号的不同频率成分,或信号能量的各种模式成分,在传输过程中,因群速度不同互相散开,引起传输信号波形失真,脉冲展宽的物理现象称为色散。

光纤色散的存在使传输的信号脉冲畸变,从而限制了光纤的传输容量和传输带宽。

从机理上说,光纤色散分为材料色散,波导色散和模式色散。

前两种色散由于信号不是单一频率所引起,后一种色散由于信号不是单一模式所引起。

当一束电磁波与电介质的束缚电子相互作用的时候,介质的响应通常与光波的频率ω有关,这种特性称为色散,它表明折射率 n(ω)对频率的依附关系。

光纤的色散效应可以用波矢k或传播常数β与频率的关系来表示,即β(ω)。

在中心频率ωo处将β(ω)展开得到:式中是介质在中心频率ωo 处的传播常数;等于群速度的倒数;表示群速度色散,和脉冲的展宽有关;β3为三阶色散参量。

二、色散补偿的基本原理1 在光纤中,不同频率的信号传输速率不同,传输同距离后会有不同的时延τ, 从而产生时延差(Δτ) 。

时延差越大,表示色散越严重,具体表现为光脉冲在沿光纤传输过程中被展宽的程度愈大。

因此色散的度量,通常都是采用每单位长度的群时延差来表示。

脉冲在单模光纤中的传输基本方程为式中, A为光信号的缓变振幅;z 为传输距离; T为时间;β2 为群速度色散(GVD) 或称二阶色散系数,它是脉冲展宽的主要因素;β3 为高阶色散(又称三阶色散)系数。

与二阶色散相比,三阶色散对脉冲的影响通常较小。

当|β2 | >1ps2/ km时,β3 可以忽略不计。

求解方程得:式中, A(0,ω) 为A(0, T) 的傅里叶变换。

可见,色散引起的光信号畸变是由相位系数决定的。

单模光纤单位长度的色散量可以由下式得出:式中, c为光速;V为光纤传输的归一化频率;b为归一化传输常数。

式(3)等号右边第1项决定于材料折射率,称之为材料色散;第2项由于与光纤波导性能有关, 称之为波导色散。

普通单模光纤在1550nm 窗口的色度色散系数约为16ps/ (nm·km) , 传输100 km后色散可达到1600ps/ nm。

而对于10Gbit/ s系统,它的最大色散容限是1000ps/ nm。

可见,要使系统正常运转,必须进行色散补偿。

2.色散补偿技术方案色散补偿的基本原理是使用一个或多个大负色散的器件对光纤的正色散实施抵消,对光纤中的色散累积进行补偿,从而使系统的总色散量减小。

目前,色散补偿的方法有:色散补偿光纤(DCF) 、啁啾光纤光栅和电子色散补偿技术等。

3. 常规DCF技术方案采用常规DCF进行通信系统链路色散补偿的技术是现在通用的技术,其发展较为成熟。

由于DCF是一种无源器件,安装灵活方便,能实现宽带色散补偿和一阶色散、二阶色散全补偿,还可与1310nm零色散标准单模光纤兼容,适当控制DCF的模场直径、改善熔接技术,能得到较小的插入损耗,因此受到普遍重视,成为当今研究的热点。

DCF的概念最早在1980年提出, EDFA在通信系统的成功应用加速了DCF的发展,DCF已从最初的匹配包层型到多包层折射率剖面型。

多包层结构一方面可以得到很高的负色散和负色散斜率,另一方面又可以降低弯曲损耗.DCF的品质因素(品质因素=色散系数绝对值/ 衰减系数)越来越高。

为了得到具有较大负色散系数的DCF,必须控制波导色散。

现在已经有大量的商用DCF用于补偿G. 652光纤在C波段和L波段传输时的色散[。

采用常规DCF进行通信系统链路色散补偿的技术是现在通用的技术,其发展较为成熟。

由于DCF是一种无源器件,安装灵活方便,能实现宽带色散补偿和一阶色散、二阶色散全补偿,还可与1310nm零色散标准单模光纤兼容,适当控制DCF的模场直径、改善熔接技术,能得到较小的插入损耗,因此受到普遍重视,成为当今研究的热点。

DCF的概念最早在1980年提出, EDFA在通信系统的成功应用加速了DCF的发展,DCF已从最初的匹配包层型到多包层折射率剖面型。

多包层结构一方面可以得到很高的负色散和负色散斜率,另一方面又可以降低弯曲损耗。

DCF的品质因素(品质因素=色散系数绝对值/ 衰减系数)越来越高。

为了得到具有较大负色散系数的DCF,必须控制波导色散。

现在已经有大量的商用DCF用于补偿G. 652光纤在C波段和L波段传输时的色散。

缺点:非线性效应较明显,输入光功率不能过高,插入损耗较大,此外DCF制成的DCM色散量不可调,而且不同类型的光纤需要不同的DCM .优点:效果显着,系统工作稳定,实施简便色散补偿量可控外,还能实现宽带补偿从而实现高密度波分复用 .4. 光纤光栅色散补偿技术光纤光栅(均匀光纤光栅)的另一个特性,就是在禁带(Photonic band gap)附近的极强的传输色散特性(一般要比普通光纤介质大出几个数量级倍),可以利用光纤光栅的这一特性在传输中〔而非反射中)进行色散补偿。

尽管这一强色散区域存在的频带很窄,但其独特的性质还是引起了人们的关注。

由于F-P效应所造成的反射带隙外振荡的影响,这种方法一直未受到人们的重视。

最近,随着光纤光栅切趾技术的成熟,人们已经可以消除反射带隙几乎所有振荡,这使得利用均匀光纤光栅进行色散补偿再现生命力。

在国外,对光纤光栅的传输色散性质的理论探讨和实验研究已经取得了很大成果。

有人提出利用这种强色散特性进行色散补偿,较其它色散补偿方案更易实现,且具有更高的补偿效率。

实验上已成功实现了在72km的光纤中利用光纤光栅在10Gbit/s信号无误传输时的色散补偿。

最近,人们又提出级联光纤光栅的构思,利用它可以在密集波分复用系统中实现多信道色散的同时补偿。

如图4所示:通过改变外部条件来改变均匀光纤光栅的结构参数,可以实现色散的可调谐。

文献[3]利用压电陶瓷使得光纤光栅的中心波长移动了,这对于均匀光纤光栅的色散调谐已足够。

如果把两个或两个以上不同周期的光纤光栅“连接”起来组成“级联光纤光栅”,可以实现对不同波长的多路脉冲同时进行色散补偿,还可以对整个级联光纤光栅进行调谐,也可以对其中某些光纤光栅进行调谐,以达到我们所期望的色散补偿效果。

优点;不受电磁干扰,灵敏度高缺点:不能完全消除高阶色散,制造非线性啁啾的相位掩膜非常困难且价格昂贵5. 碉啾光栅技术在光纤上制成折射率非周期性变化的惆啾光栅,就形成一个宽带滤波器,它的不同位置对应于不同的Bragg反射波长。

当光脉冲信号通过这种啁啾光栅(周期从大到小,长度为Lg)时,其长、短波长分量分别在光栅的头、尾部反射,这样短波长分量比长波长分量多走2Lg距离,两波长分量之间产生时延差Δt=2Lg/Vg。

从而补偿了由于群速度不同导致的色散,起到压缩光脉冲的作用。

如图5所示。

利用严格的耦合波理论分析啁啾光栅色散补偿机制,求出其Bragg波长、带宽、时延率等,并利用Rungc-Kutta数值方法求解啁啾光栅的反射谱特性。

啁啾光栅的长度、啁啾量、Bragg带宽、反射谱特性等参量决定了它的色散补偿能力。

设计、研制高质量的啁啾光栅是实现这种色散补偿技术的关键。

英国、美国、加拿大等国家对啁啾光栅色散补偿开展了广泛的研究,利用单个或多个啁啾光栅进行色散补偿,已在10 Gb/s常规光纤通信网上传输数百公里。

国内也研制了10 cm 长的惆啾光纤光栅,并已完成了10 Gb/s光信号在G652光纤上传输104公里的色散补偿实验。

优点:采用无源光纤光栅进行色散补偿,具有体积小、插人损耗低、与光纤兼容性好、波长选择性好、易于集成等优点,利用多个光纤光栅级联可提高补偿能力,光纤光栅法还便于系统使用和维护,其成本低、可升级性好、可靠性高、受非线性效应影响小、极化不敏感,具有很好的实用性。

6.观点,色散补偿技术的发展方向随着高速率宽带光传输系统的发展,色散及其斜率的管理越来越重要。

成熟的色散补偿技术不断推出新的功能,新的色散补偿技术不断涌现。

纵观目前国际上的色散补偿技术,可以得出色散补偿技术的发展趋势:传统的DCF因其光纤技术成熟度好,生产方便,在近几年内仍然是主流产品;多通道光纤光栅色散补偿技术的研究逐渐成为热点,多通道色散补偿器已经具备了一定的市场竞争力,大量商用产品已经推向市场,有逐步取代传统DCF之势;EDC有其独特优点,前景可观,但是技术不成熟,有待完善,比如较长距离传输时,器件的补偿范围受到信号传输距离的限制,需要增加固定补偿量等;色散补偿PCF代表着未来高效补偿的发展方向,它具有广阔的发展空间和应用前景,虽然现已开始获得初步应用,但受到诸多因素的制约,因此要实现大量商用还有很长的路要走。

参考文献:[1] 戈稳编. 雷达接收机技术[M]. 北京:电子工业出版社,2005.[2] 李嗣范.微波元件原理与设计[M].北京:人民邮电出版社,1982.[3] ReinholdLudwig,PavelBretchko(着) . 射频电路设计- 理论与应用[M].北京:电子工业出版社, 2002.[4] Behzad R. RF microelectronics [ M]. Upper SaddleRiver , NJ:Prentice HallInc. , 1998.[5] Gonzalez Guillermo(着) ,白晓东(译) .微波晶体管放大器分析与设计[M].北京:清华大学出版社,2003.。

相关文档
最新文档