可变配气机构
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
发动机气门技术解析
[汽车DIY] 传统的发动机都配备了气门式配气机构,按照发动机的动作顺序和工作循环,定时的开启关闭进排气门。进气量的多少直接关系到发动机的功率和扭矩。如何保证进气量足够多,又要保证排气够干净,因此在配气这个环节有很多的技术。
首先我们来认识一下配气定时,以曲轴转角表示的进、排气门开闭时刻及其开启的持续时间称作配气定时。一般情况下,进气门会早开,目的是为了在进气开始进气门能有较大的开度或者较大的
进气通过面,从而减小进气阻力,使进气顺畅,相应的,而进气门晚关是为了充分利用进气的惯性增大进气量。相应的排气门早开是为了在气压较大时排干净,而排气门晚关也是为了利用惯性排气。由于进气门早开和排气门晚关,致使活塞在上止点附近出现进、排气门同时开启的现象,称其为气门重叠。
气门重叠显示图
发动机不同转速需要的配气定时也不同。这是因为当发动机转速改变时,进气流和排气流也随着改变,所以一直采用不变的气门开关时间将会影响燃油的燃烧效率,一般情况下,随着转速的升高,气门重叠角和气门升程随着增加,这样讲有利于获得更好的发动机性能,以便更好的提高发动机的动力输出。
双顶置凸轮轴
VVTi,i-Vtec和VVEL等各种可变气门技术相信大家都有所了解,基本上,目前市面上新车所搭载的绝大部分发动机都或多或少的使用了可变气门技术。可能大家也都知道可变气门技术都可以有效提升发动机动力并节省油耗,但是它们都是通过什么原理实现的呢
我们都知道,发动机的配气机构负责向汽缸提供汽油燃烧做功做必须的新鲜空气,并将燃烧后的废气排除出去,这一套动作的工作原理可以看做是动物呼吸器官的吸气和呼气。从工作原理上讲,配气机构的主要功能是按照一定时限自动开启和关闭各气缸的进、排气门,从而使空气及时通过进气门向气缸内供给新鲜空气或者可燃混合气,并且及时将燃烧做功后形成的废气从排气门排出,实现发动机气缸换气补给的整个过程。
那么气门的原理和作用应该怎么理解呢我们将发动机的气门比作是一扇门,门的开启的大小和时间长短,决定了进出入的人流量。门开启的角度越大,开启时间越长,进出入的人流量越大,门开启的角度越小,开启时间越短,进出入的人流量就越少。在电影院入场看戏时,需要观众挨个验票进场,因此就要控制大门的开启角度,有些匣道还设置栏杆,象地铁出入口一样。在剧院散场时要尽快疏散观众,就要撤除匣道栏杆,将大门完全打开。
大门开启角度和时间决定人流量,这非常容易理解。同样的道理用于发动机上,就产生了气门升程和正时以及可变进
气歧管的概念。气门升程就好象门开启的角度,正时就好象
门开启的时间,而进气歧管就是匣道栏杆。以立体的思维观
点看问题,角度加时间就是一个容积空间的大小,它的大小
则决定了耗油量。
但是也不能一味的增大气门重叠角和升程,这能能够导致的是废气混入进气管以及未燃烧的混合气随排气管流失的情况。因此可变气门正时和可变气门升程就显得很重要了。
发动机正时系统
可变进气系统可以分为两类:多气门投入工作以及可变进气道系统。多气门可以通过凸轮或者摇臂控制气门在设定的工况下开关,或者在进气道上设置阀门在特定工况下开关;而可变进气道系统是根据发动机的不同转速使用不同长度和容积的进气管向气缸充气。
可变进气歧管简单介绍
目前应用可变气门系统的厂家很多,以时间比较久远的本田VTEC为例,本田就是通过凸轮轴布置高速、低速两种不同夹角和升程的凸轮,控制系统根据发动机的转速利用油压使气门切换到不同凸轮以改变气门相位和升程。
本田i-VTEC发动机
VTEC系统对于配气相位的改变是阶段性的,只能在高速低速的状态下跳跃,而不是连续线性改变,因此在这个基础上本田又推出了i-VTEC系统,这套系统较VTEC增加了VTC可变正时控制装置,也就是一组进气门凸轮轴正时可变的控制机构。
当发动机达到一定转速时,系统就会控制连杆将两个进气摇臂和那个特殊摇臂连接为一体,此时三个摇臂就会同时被高角度凸轮驱动,而气门升程也会随之加大,单位时间内的进气量更大,从而发动机动力更强。这种在一定转速后突然的动力爆发也能够增加驾驶乐趣,缺点则是动力输出不够线性。
而随后像奥迪,三菱和丰田等厂商也都研发出了自己的可变气门升程技术,它同样是通过增加凸轮轴上的凸轮来实现了气门升程的分段可调。
而在近几年,日产和宝马则以更为精巧的设计率先推出了自己的连续可变气门升程技术,实现了气门升程的无级可调。日产的VVEL 技术为例,工程师在驱动气门运动的摇臂增加了一组螺杆(螺栓)和螺套(螺母),螺套由一根连杆与控制杆相连,连杆又和一个摇臂和控制杆相连带动气门顶端的凸轮。
螺套的横向移动可以带动控制杆转动,控制杆转动时上面的摇臂随之转动,而摇臂又与link B(连杆B)相连,摇臂逆时针转动时就会带动link B去顶气门挺杆上端的输出凸轮,最后输出凸轮就会
顶起气门来改变气门升程。而日产就是通过这么一套简单的连杆和螺杆的组合实现了气门升程的连续可调。
相比分段可调的i-vtec技术,连续可变的气门升程不仅提供全转速区域内更强的动力,也使得动力的输出更加线性,这项技术最先就被装备在G37的VQ37VHR发动机上,而VQ37VHR也是2008年沃德十佳发动机的得主。
此外,宝马的Valvetronic技术同样是依靠改变摇臂结构来控制气门升程的,同样可以实现气门升程无级可调,只是连杆摇臂的设计思路截然不同。此外,目前的可变气门升程技术的运用基本还只停留在进气端,因此可变气门升程技术在未来还拥有很大的提升空间。
除了上面提到的靠改变气门正时和气门升程来实现发动机在不同情况下的进气需求外,可变进气歧管以及可变进气道也可达到相同的效果。发动机的进气道是连接进气门和进气总管的,进气歧管设计的形状也能直接影响发动机的性能。
可替换图注
粗、短、直的进气歧管对于进气流的阻力较小因此在高速过程中响应较快,气流速度也较快,长、细、弯的进气歧管则有利于进