酶学与酶工程复习资料
酶工程复习题
![酶工程复习题](https://img.taocdn.com/s3/m/b2a08e1d3a3567ec102de2bd960590c69fc3d87a.png)
酶工程复习题酶工程复习题酶工程是一门研究酶的应用和生产的学科,广泛应用于食品工业、制药工业、环境保护等领域。
下面我们来复习一些与酶工程相关的问题。
1. 什么是酶?酶是一种生物催化剂,能够加速生物体内化学反应的速率,但不参与反应本身。
酶能够降低反应的活化能,从而提高反应速率。
2. 酶的结构特点有哪些?酶通常由蛋白质组成,具有特定的三维结构。
酶的结构特点包括活性中心、底物结合位点、辅助结构等。
活性中心是酶催化反应的关键部位,底物结合位点是酶与底物结合的地方,辅助结构则有助于酶的稳定性和催化效率。
3. 酶的催化机理有哪些?酶的催化机理主要包括酶底物复合物形成、过渡态的形成和解离、产物释放等步骤。
酶底物复合物形成是酶与底物结合的过程,过渡态的形成和解离是酶催化反应的关键步骤,产物释放是酶催化反应结束后产物从酶中释放的过程。
4. 酶的活性受哪些因素影响?酶的活性受到温度、pH值、底物浓度、酶浓度等因素的影响。
温度过高或过低会使酶变性,pH值过高或过低会影响酶的结构和电荷,底物浓度和酶浓度的变化会影响酶底物复合物的形成和反应速率。
5. 酶的应用领域有哪些?酶广泛应用于食品工业、制药工业、环境保护等领域。
在食品工业中,酶可以用于面包、啤酒、乳制品等食品的生产;在制药工业中,酶可以用于药物合成、酶替代治疗等;在环境保护中,酶可以用于废水处理、生物降解等。
6. 酶工程的主要方法有哪些?酶工程的主要方法包括基因工程、蛋白工程和发酵工程。
基因工程可以通过改变酶基因的序列来改变酶的性质;蛋白工程可以通过改变酶的结构来改变酶的活性和稳定性;发酵工程可以通过优化培养条件来提高酶的产量和纯度。
7. 酶工程在制药工业中的应用有哪些?酶工程在制药工业中有多种应用,例如酶替代治疗、药物合成和药物检测等。
酶替代治疗是利用酶来替代人体缺乏的酶,例如胰岛素治疗糖尿病;药物合成是利用酶来合成药物,例如利用酶合成抗生素;药物检测是利用酶来检测药物的含量和纯度。
酶与酶工程考试复习资料
![酶与酶工程考试复习资料](https://img.taocdn.com/s3/m/1f165432a32d7375a4178039.png)
试述酶生物合成的基本过程。
RNA的生物合成——转录:(1)转录的起始(2)RNA链的延伸(3)RNA链合成的终止(4)RNA前体的加工蛋白质生物合成——翻译:(1)氨基酸活化生成氨酰—tRNA(2)肽链合成的起始(3)肽链的延伸(4)肽链合成的终止(5)蛋白质前体的加工酶的生物合成有那几种模式:同步合成型:同步合成型是酶的生物合成与细胞生长同步进行的一种酶生物合成模式。
该类型酶的生物合成速度与细胞生长速度紧密联系,又称为生长偶联型延续合成型:延续合成型是酶的生物合成在细胞的生长阶段开始,在细胞生长进入平衡期后酶还可以延续合成一段较长时间的酶生物合成模式。
属于该类型的酶可以是组成酶也可以是诱导酶。
中期合成型:中期合成型酶在细胞生长一段时间以后才开始,而在细胞生长进入平衡期以后,酶的生物合成也随之停止。
滞后合成型:滞后合成型酶是在细胞生长一段时间或者进入平衡期以后才开始其生物合成并大量积累,又称为非生长偶联型。
如何控制微生物发酵产酶的工艺条件:1、细胞活化与扩大培养;选育得到的优良的产酶微生物必须采取妥善的方法进行保藏。
常用的保藏方法有斜面保藏法、沙土管保藏法、真空冷冻干燥保藏法、低温保藏发法、石蜡油保藏法等,可以根据需要和可能进行选择,以尽可能保持细胞的生长、繁殖和产酶特性2、培养基的配置;在设计和配制培养基时,首先要根据不同细胞和不同用途的不同要求,确定各种组分的种类和含量,并要调节至所需的PH,以满足细胞生长、繁殖和新陈代谢的需要。
3、PH的调节控制;培养基的PH与细胞的生长繁殖以及发酵产酶关系密切,在发酵过程中必须进行必要的调节控制。
4、温度的调节控制;细胞的生长、繁殖和发酵产酶需要一定的温度条件。
在一定的温度范围内,细胞才能正常生长、繁殖和维持正常的新陈代谢。
5、溶解氧的调节控制;细胞的生长、繁殖和酶的生物合成过程需要大量的能量。
为了获得足够多的能量,细胞必须获得充足的氧气,使从培养基中获得的能源物质(一般是指各种碳源)经过有氧降解而生成大量的A TP。
酶学与酶工程重点总结
![酶学与酶工程重点总结](https://img.taocdn.com/s3/m/fb6b3b25ef06eff9aef8941ea76e58fafab045ee.png)
酶学与酶⼯程重点总结第⼆章酶学基础⼀、酶的活性中⼼(active center,active site)(⼀)活性中⼼和必需基团1、与酶活性显⽰有关的,具有结合和催化底物形成产物的空间区域,叫酶的活性中⼼,⼜叫活性部位。
2、活性中⼼可分为结合部位和催化部位。
3、结合部位决定酶的专⼀性,催化部位决定酶所催化反应的性质。
4、酶结构概述(1)活性中⼼是⼀个三维实体。
(2)是有⼀些⼀级结构上可能相距较远的氨基酸侧链基团组成,有的还包含辅酶或辅基的某⼀部分基团。
(3)在酶分⼦表⾯呈裂缝状。
(4)酶活性中⼼的催化位点和结合位点可以不⽌⼀个。
(5)酶活性中⼼的基团都是必需基团,但必需基团还包括活性中⼼以外的基团。
5、酶分⼦中的氨基酸残基或其侧链基团可以分为四类1.接触残基2.辅助残基3.结构残基4.⾮贡献残基(⼆)酶活性中⼼中的化学基团的鉴别1.⾮特异性共价修饰:某些化学试剂能使蛋⽩质中氨基酸残基的侧链基团反应引起共价结合、氧化或还原修饰反应,使基团结构和性质发⽣变化。
如果某基团修饰后不引起酶活⼒的变化,就可初步认为此基团可能是⾮必需基团;反之,如修饰后引起酶活⼒的降低或丧失,则此基团可能是酶的必需基团。
2.亲和标记共价修饰剂是底物的类似物,可专⼀性地引⼊酶的活性中⼼,并具有活泼的化学基团(如卤素),可与活性中⼼的基团形成稳定的共价键。
因其作⽤机制是利⽤酶对底物类似物的亲和性⽽将酶共价标记的,故称为亲和标记。
3.差别标记在过量底物或可逆抑制剂遮蔽活性中⼼的情况下,加⼊共价修饰剂,使后者只修饰活性中⼼以外的有关基团;然后去除底物或可逆抑制剂,暴露活性中⼼,再⽤同位素标记的向⼀修饰剂作⽤于活性中⼼的同类基团;将酶⽔解后分离带有同位素的氯基酸,即可确定该氨基酸参与活性中⼼。
4.蛋⽩质⼯程这是研究酶必需基闭和活性中⼼的最先进⽅法,即将酶蛋⽩相应的互补DNA(cDNA)定点突变,此突变的cDNA表达出只有⼀个或⼏个氨基酸被置换的酶蛋⽩,再测定其活性,可以知道被置换的氨基酸是否为活⼒所必需。
酶工程复习资料一
![酶工程复习资料一](https://img.taocdn.com/s3/m/2cd6af5c2379168884868762caaedd3383c4b504.png)
酶工程复习资料一酶工程(Enzyme Engineering)是研究和应用酶的性质、结构和功能,以及改造和设计酶的方法和技术的学科。
它是生物工程的重要分支之一,与生物技术、食品工程、医药工程等领域密切相关。
本篇文档将为读者提供关于酶工程的基本概念、酶的结构与功能、酶的改造和设计等内容的复习资料。
一、酶工程的基本概念酶是生物体内的催化剂,能够在相对较低的温度和压力下加速化学反应速率。
酶工程是指利用化学和生物学的原理和方法,对酶进行改造和优化,使其在特定条件下具有更高的催化活性和稳定性。
酶工程的研究内容主要包括酶的筛选与鉴定、酶的改造与优化、酶的应用与产业化等方面。
二、酶的结构与功能酶是由蛋白质组成的,具有特定的空间结构和功能部位。
酶的空间结构由其氨基酸序列决定,而功能部位则与其所催化的反应类型相关。
酶通过与底物结合形成酶底物复合物,从而降低反应的活化能,加速反应的进行。
酶的催化活性受到pH、温度、离子浓度等环境因素的影响,最适条件下表现出最高的催化效率。
三、酶的改造与优化为了使酶具有更好的催化性能和稳定性,科学家们通过酶的改造与优化来实现这一目标。
常用的方法包括基因工程技术、蛋白工程技术、酶体外修饰等。
基因工程技术可以通过改变酶的基因序列来改变其氨基酸组成,进而改变酶的结构和功能。
蛋白工程技术则可以通过局部改变酶的氨基酸序列来提高酶的催化活性和稳定性。
酶体外修饰则是指在酶的外部添加辅助因子或改变环境条件来改善酶的催化效果。
四、酶的应用与产业化酶在生物技术、医药、食品、农业等领域具有广泛的应用前景。
在生物技术领域,酶被广泛应用于基因工程、蛋白质表达、酶联免疫法等技术中。
在医药领域,酶被应用于药物合成、药物代谢等方面。
在食品和农业领域,酶被应用于食品加工、酿酒、饲料添加等。
酶学与酶工程复习资料
![酶学与酶工程复习资料](https://img.taocdn.com/s3/m/8cc08620240c844768eaee9c.png)
酶学与酶工程复习资料上一届考试试题一、名字解释1、酶的活性中性:酶分子中直接与底物结合,并和酶催化作用直接有关的区域叫酶的活性中心,参与构成酶的活性中心和维持酶的特定构象所必需的基团为酶的必需基团。
2、米式方程及各字母的意义:米氏方程表示一个酶促反应的起始速度v与底物浓度S关系的速度方程,v=V max·S/(K m+S).其中 K m值称为米氏常数,V max是酶被底物饱和时的反应速度,[S]为底物浓度。
由此可见K m值的物理意义为反应速度(v)达到1/2V max时的底物浓度(即K m=[S]),单位一般为mol/L,只由酶的性质决定,而与酶的浓度无关.3、别构效应:一个蛋白质与其配体(或其他蛋白质)结合后,蛋白质的空间结构发生改变,使它适用于功能的需要,这一类变化称为别构效应或变构效应。
4、遗传密码:遗传密码决定蛋白质中氨基酸顺序的核苷酸顺序,由3个连续的核苷酸组成的密码子所构成.5、盐析:增加中性盐浓度使蛋白质、气体、未带电分子溶解度降低的现象。
是蛋白质分离纯化中经常使用的方法,最常用的中性盐有硫酸铵、硫酸钠和氯化钠等。
6、内囊性包埋法:系利用天然的或合成的高分子材料(统称为囊材)作为囊膜壁壳,将固态或液态药物包裹成为的药库型微型胶囊。
7、固定化酶:水溶性酶经物理或化学方法处理后,成为不溶于水的但仍具有酶活性的一种酶的衍生物。
在催化反应中以固相状态作用于底物。
8、必需水:维持酶分子完整的空间构象所必需的最低水量.二、问答题1、温度对酶促反应的影响及原因。
答:温度对酶促反应的影响包括两方面:一方面是当温度升高时,反应速度也加快,这与一般化学反应相同。
另一方面,随温度升高而使酶逐步变性,即通过减少有活性的酶而降低酶的反应速度。
在低于最适温度时,前一种效应为主,在高于最适温度时,则后一种效应为主,因而酶活性丧失,反应速度下降。
2、操纵子的定义及组成。
答:操纵子:指启动基因、操纵基因和一系列紧密连锁的结构基因的总称,基因表达的协同单位,转录的功能单位。
酶学与酶工程学习重点知识整理
![酶学与酶工程学习重点知识整理](https://img.taocdn.com/s3/m/4f2560926bec0975f465e26a.png)
2012年10月酶学与酶工程复习重点酶的定义与化学本质定义:酶---活细胞产生的,能在细胞内外起作用的(催化)生理活性物质。
酶的化学本质: 酶是生物体内一类具有催化活性和特殊空间构象的生物大分子物质,包括蛋白质和核酸等酶催化作用的特点1.催化效率极高反应速度比无催化剂时高108~1020倍,比其他催化剂高107~1013倍。
常用分子比来表示,即每摩尔的酶催化底物的摩尔数。
Kcat:每秒每个酶分子能催化多少个微摩尔的底物发生转化。
2.高度的专一性酶对反应物(底物)具有严格的选择性。
一种酶只能催化某一种或某一类特定的底物发生反应。
绝对专一性:有些酶只作用于一种底物,催化一个反应,而不作用于任何其它物质。
相对专一性:这类酶对结构相近的一类底物都有作用。
包括键专一性和簇(基团)专一性。
立体异构专一性:这类酶能辨别底物不同的立体异构体,只对其中的某一种构型起作用,而不催化其他异构体。
包括旋光异构专一性和几何异构专一性。
3.反应条件温和酶在强酸、强碱、高温、高压等条件下会变性失活,故催化反应一般在常温、常压、接近中性的溶液中进行。
4.酶的催化活性是受调节控制的易受各种因素的影响,在活细胞内受到精密严格的调节控制,这是酶与非生物催化剂的本质区别。
酶的国际系统分类法及编号1.氧化还原酶2.转移酶3.水解酶4.裂合酶5.异构酶6.合成酶酶活力、酶单位、比活力酶活力(也称酶活性):指酶专一催化一定化学反应的能力。
酶单位(u): 在酶作用最适底物、最适pH、最适缓冲液的离子强度及25 ℃下,每分钟内催化1.0微摩尔底物转化为产物底酶量为一个国际酶活力的单位(IU)。
比活力(specific activity):每mg蛋白质所具有的酶活力单位数,用(U/mg蛋白)来表示。
酶活力测定方法单体酶,寡聚酶(oligomeric enzyme ),多酶体系(multienzyme system) ,多酶复合体单体酶:它是一个具有完整生物功能、独立三级结构的单酶蛋白部分只有一条多肽链的酶称为单体酶。
酶工程复习资料
![酶工程复习资料](https://img.taocdn.com/s3/m/4a83532beef9aef8941ea76e58fafab069dc44b0.png)
由活细胞产生的生物催化剂,具有特殊作用的蛋白质,能在生命体内(包括动物、植物和微生物)催化一切化学反应,维持生命特征。
是酶学基本原理与化学工程相结合而形成的一门新兴的技术科学, 以应用目的为出发点来研究酶, 利用酶的催化特性并通过工程化将相应原料转化为目的物质的技术。
水溶性酶经物理或者化学方法处理后成为不溶于水的但仍 具有酶活性的一种酶的衍生物,在催化反应中以固相状态作用于底物。
表示酶活力大小的尺度;一个国际单位(IU)是指在特定条件下(25℃),每分钟内转化 1mol 底物或者催化形成 1mol 产物所需的酶量。
一个 Kat(卡塔尔,酶活性国 际单位)是指每秒钟内转化 1mol 底物所需的酶量, 1 Kat = 6107 IU 。
(酶活力:指酶催化一定化学反应的能力;用在一定条件下, 所催化的反应初速度来表示; 是研究酶的特性,酶制剂生产应用以及分离纯化时的一项必不可少的指标。
) 是酶纯度的量度,是指单位分量酶蛋白所具有的酶活力,单位为 IU/mg 。
比活力越大,酶纯度越高。
比活力=活力单位数/每毫克酶蛋白。
可产生一种组成型调节蛋白(regulatory protein) (一种变构蛋白),通过与效应物(effector) (包括诱导物和辅阻遏物)的特异结合而发生变构作用,从而改变它与控制基因的结合力。
调节基因常位于调控区的上游。
位于启动基因和结构基因之间的一段碱基顺序,能特异性地与调节基因产生的变构蛋白结合,控制酶合成的时机与速度。
决定某一多肽的 DNA 模板,与酶有各自的对应关系,其中的遗传信息可转录为mRNA ,再翻译为蛋白质。
是指在一定的条件下,用适当的溶剂或者溶液处理含酶原料,使酶充分溶解到 溶剂或者溶液中的过程。
是指在份子水平上不同粒径份子的混合物在通过半透膜时,实现选择分离的技术,半透膜又称为分离膜,膜壁弥漫小孔,根据孔径大小可以分为:微滤膜( )、超滤膜(uF)、纳滤膜(NF)、反渗透膜(RO)等,分离都采用错流过滤方式。
酶工程考试复习题及答案
![酶工程考试复习题及答案](https://img.taocdn.com/s3/m/2f0d1284250c844769eae009581b6bd97f19bc91.png)
酶工程考试复习题及答案一、选择题1. 酶工程是指对酶进行改造和利用的科学,其主要目的不包括以下哪一项?A. 提高酶的稳定性B. 增强酶的催化效率C. 改变酶的底物专一性D. 降低酶的生产成本答案:D2. 在酶工程中,下列哪一项技术不属于酶的改造方法?A. 基因工程B. 蛋白质工程C. 酶的固定化D. 酶的纯化答案:D3. 固定化酶技术的优点不包括以下哪一项?A. 可重复使用B. 提高酶的稳定性C. 便于酶的分离和纯化D. 增加酶的底物专一性答案:D二、填空题4. 酶工程中常用的酶固定化方法包括_______、_______和_______。
答案:吸附法、包埋法、共价结合法5. 酶的催化效率通常用_______来表示,它是酶催化反应速率与_______的比值。
答案:kcat、底物浓度三、简答题6. 简述酶工程在工业生产中的应用。
答案:酶工程在工业生产中的应用主要包括食品加工、制药、生物燃料生产、环境保护等领域。
通过酶的改造和固定化技术,可以提高生产效率,降低成本,实现绿色生产。
7. 描述酶的改造方法之一——蛋白质工程的基本过程。
答案:蛋白质工程的基本过程包括:(1) 确定目标酶的氨基酸序列;(2) 设计预期的氨基酸序列变化;(3) 通过基因突变或基因合成技术实现氨基酸序列的改变;(4) 表达改造后的酶蛋白;(5) 评估改造酶的性能,如稳定性、催化效率等。
四、论述题8. 论述固定化酶在生物反应器中的应用及其优势。
答案:固定化酶在生物反应器中的应用主要包括连续流反应器和批式反应器。
固定化酶的优势包括:(1) 酶的稳定性提高,延长使用寿命;(2) 易于从反应体系中分离,便于回收和再利用;(3) 可以提高底物转化率,减少副反应;(4) 有助于实现工业化大规模生产。
五、案例分析题9. 某制药公司希望通过酶工程提高一种药物前体的合成效率。
请分析可能采取的策略,并讨论这些策略的潜在优势和局限性。
答案:可能采取的策略包括:(1) 利用基因工程技术改造酶的基因,提高酶的催化效率;(2) 通过蛋白质工程技术改变酶的结构,提高其稳定性和底物专一性;(3) 采用固定化技术,使酶在反应过程中易于分离和重复使用。
酶工程复习资料(整理)
![酶工程复习资料(整理)](https://img.taocdn.com/s3/m/6c29ab42ae1ffc4ffe4733687e21af45b307fe6a.png)
酶工程复习资料(整理)第一章:(一)酶工程的概念是将酶、细胞或细胞器等置于特定的生物反应装置中,利用酶所具有的生物催化功能,借助工程手段将相应原料转化成有用物质并应用于社会生活的一门科学技术一、酶的分类1.氧化还原酶:2.转移酶:3.水解酶:4.裂合酶:5.异构酶6.连接酶,7. 核酶(一)酶的组成形式1.单体酶( monomeric enzyme) :由一条或多条肽链组成,肽链间以共价键结合的酶。
2 .寡聚酶(oligomeric enzyme) :由若干相同或不相同的亚基以非共价键结合而组成,亚基一般没有活性,必须相互结合后才有活性。
3.多酶复合体(multienzyme system) :由2个或2个以上功能相关的酶通过非共价键连接而成的、能进行连续反应的体系就是多酶复合体。
(二)酶的结构特点(holoenzyme) (apoenzyme) (cofactor)全酶 = 酶蛋白 + 辅因子(金属离子、辅酶、辅基)金属离子无机离子金属离子有机化合物辅酶、辅基辅酶(coenzyme) :指与酶蛋白结合比较松弛的小分子有机物质,通过透析方法可以除去。
例如硫胺素、焦磷酸。
辅基(prosthetic group) :是以共价键和酶蛋白结合,结合的较紧密,不能通过透析法除去,需要经过一定的化学处理才能与酶蛋白分开。
四、酶的作用机制(一)酶的结构组成及活性中心调控基团中心外必需基团酶的结构必需基团活性中心结合部位中心内必需基团催化部位活性中心以外的必需基团其它部分1、酶的活性中心(active center) :是指结合底物和将底物转化为产物的区域,通常是相隔很远的氨基酸残基形成的三维实体。
2、结合部位:酶分子中与底物结合,使底物与酶的一定构象形成复合物的基团。
酶的结合基团决定酶反应的专一性。
3、催化部位:酶分子中催化底物发生化学反应并将其转变为产物的基团。
4、4、调控基团:酶分子中一些可与其他分子发生某种程度的结合并引起酶分子空间构象的变化,对酶起激活或抑制作用的基团催化基团决定酶所催化反应的性质,同时也是决定反应的高效性。
《酶工程复习资料》word版
![《酶工程复习资料》word版](https://img.taocdn.com/s3/m/2ef7ba89856a561253d36f35.png)
第一章绪论1.酶:是具有生物催化功能的生物大分子,分为蛋白类酶和核酸类酶两大类别。
酶的生产:是指通过各种方法获得人们所需的酶的技术过程,主要包括微生物发酵产酶、动植物培养产酶和酶的提取与分离纯化等。
酶的改性:是通过各种方法改进酶的催化特性的技术过程,主要包括酶分子修饰、酶的固定化、酶非水相催化和定向进化。
酶的应用:是通过酶的催化作用获得人们所需的物质或者除去不良物质的技术过程,主要包括酶反应器的选择与设计以及酶在各个领域的应用等2.酶催化的作用特点:专一性强、催化效率高和作用条件温和等。
酶的催化作用受到底物浓度、酶浓度、温度、pH值、激活剂浓度、抑制剂浓度等诸多因素的影响。
在酶的应用过程中,必须控制好各种环境条件,以充分发挥酶的催化功能。
3.米氏方程:V=VmS/Km+S,Km为米氏常数,是酶催化反应速度等于最大反应速度一半时的底物浓度。
抑制剂的影响:有可逆抑制剂和不可逆抑制剂之分。
不可逆抑制剂与酶分子结合后,抑制剂难于除去,酶活性不能恢复。
可逆抑制剂与酶的结合是可逆的,只要将抑制剂除去,酶酶活力即可恢复。
可逆性抑制作用可以分为竞争性抑制、非竞争性抑制和反竞争性抑制三种。
①竞争性抑制:是指抑制剂和底物竞争与酶分子结合而引起的抑制作用。
抑制的效果强弱与竞争性抑制剂的浓度、底物浓度以及抑制剂和底物与酶的亲和力大小有关,随着底物浓度增加,酶的抑制作用减弱。
特点:酶催化反应的最大反应速率Vm不变,米氏常数Km 增大。
②非竞争性抑制:是指抑制剂与底物分别于酶分子上的不同位点结合而引起酶活性降低的抑制作用。
特点:最大反应速度Vm减少,米氏常数Km不变。
③反竞争性抑制:在底物与酶分子结合生成中间复合物后,抑制剂再与中间复合物结合而引起的抑制作用称为反竞争性抑制。
特点:最大反应速度Vm和米氏常数Km同时减少。
4.酶的活力测定酶活力:是指在一定条件下,酶所催化的反应初速度。
在外界条件相同的情况下,反应速度越大,意味着酶活力越高。
酶工程复习资料
![酶工程复习资料](https://img.taocdn.com/s3/m/f09fdff97c1cfad6195fa782.png)
四、酶的活力测定 1)酶活力:是指在一定条件下,酶所催化的反应初速度。在外界条件相同的情况下,反
应速度越大,意味着酶活力越高。 2)酶活力单位 酶活力的高低是以酶活力的单位数来表示的。 1961 年国际生物化学与分子生物学联合会规定:在特定条件下(温度可采用 25℃,pH
等条件均采用最适条件),每 1 分钟催化 1μmol 的底物转化为产物的酶量定义为 1 个酶活 力单位(IU)。
和 PH,使不同的酶和蛋白质分离的方法称为β分段盐析。
五、离心分离 1)离心分离:是借助于离心机旋转所产生的离心力,使不同大小和不同密度的物质分开
的技术。是最常用的一种方法。 在离心分离时,要根据预分离物质以及杂质的颗粒大小、密度及特性的不同,选择合适
的离心机、离心方法和离心条件。 2)离心条件的确定 离心力与转速的换算:
mS m
(注意虚线)
5)产物生成动力学(产酶动力学) 产酶速率与细胞比生长速率、细胞浓度以及细胞产酶模式有关。
RE
X——细胞生长速率
dE dt
X
α——与生长偶联的产酶比系数(IU/g)
β——非生长偶联的比产酶速率(IU/g•h)
E——发酵液中酶浓度(IU/L)。
判断产酶类型:
八、固定化微生物细胞发酵产酶 1)固定化细胞:又称为固定化活细胞或固定化增殖细胞,指采用各种方法固定在载体上,
通过各种化学试剂对细胞膜的作用,而使细胞破碎
酶促破碎
通过细胞本身的酶系或外加酶制剂的催化作用,使细 胞外层结构受到破坏,而达到细胞破碎
方法 捣碎法 研磨法 匀浆法 温度差破碎法 压力差破碎法 超声波破碎法 有机溶剂: 甲苯、丙酮 丁醇、氯仿 表面活性剂: Triton、Tween 自溶法 外加酶制剂法
(整理)酶工程复习提纲
![(整理)酶工程复习提纲](https://img.taocdn.com/s3/m/c7069892d5d8d15abe23482fb4daa58da0111c47.png)
(整理)酶⼯程复习提纲酶⼯程复习提纲第⼆章酶的定义、组成、特征及分类⼀、从化化学本质上讲酶到底是⼀种什么物质?⼆、⼀般催化剂的特性:1.只能进⾏热⼒学上允许进⾏的反应;2.可以缩短化学反应到达平衡的时间,⽽不改变反应的平衡点;3.通过降低活化能加快化学反应速度。
4.它本⾝的数量和化学性质在化学反应后不发⽣改变。
三、酶作为催化剂的显著特点:⾼效、专⼀、温和、可调节四、酶的分类(⼀)、酶的组成分类单纯酶:它们的组成为单⼀的蛋⽩质。
结合酶(全酶):蛋⽩质(酶蛋⽩)+辅因⼦酶蛋⽩决定反应的特异性,辅因⼦决定反应的类型与性质。
辅因⼦:辅酶:与酶蛋⽩结合疏松,可⽤透析或超滤的⽅法除去的辅因⼦。
辅基:与酶蛋⽩结合紧密,不能可⽤透析或超滤的⽅法除去的辅因⼦。
(⼆)、酶的结构分类(1)、单体酶(monomeric enzyme) :仅具有三级结构的酶,即只由⼀条肽链组成的酶。
(2)、寡聚酶(oligomeric enzyme):两个或两个以上的相同或不同亚基以共价键⽅式连接⽽形成的酶。
(3)、多酶复合体(多酶体系,multienzyme system):由⼏种功能不同的酶聚合在⼀起,分⼯合作。
共同催化⼀个⽣化反应过程。
(4)、多功能酶(multifunctional enzyme):⼀些多酶体系在进化的过程中由于基因融合,致使多种不同催化功能存在于⼀条多肽链上,这种⼀条肽链具有多种催化功能的酶叫多功能酶。
(三)、酶的功能组成—酶的活性中⼼酶的活性中⼼:与底物结合并进⾏催化反应的特殊的必需基团。
结合基团:决定酶的专⼀性活性中⼼内的必需基团必需基团:催化基团:决定酶的催化性质活性中⼼外的必需基团:维持酶的空间结构和催化功能所必需的基团五、酶的专⼀性;第三章酶的作⽤机理⼀、酶作⽤专⼀性的机制(⼀)“三点结合”的催化理论三点结合”的催化理论认为酶与底物的结合处⾄少有三个点,只有当三点完全结合的情况下。
催化作⽤才能实现,酶促反应才能进⾏。
《酶工程》总复习整理
![《酶工程》总复习整理](https://img.taocdn.com/s3/m/a30a8d26cc1755270622081d.png)
《酶工程》总复习整理生物酶工程主要研究内容(1)用基因工程技术大量生产酶(克隆酶)如:尿激酶原和尿激酶是治疗血栓病的有效药物。
用DNA重组技术将人尿激酶原的结构基因转移到大肠杆菌中,可使大肠杆菌细胞生产人尿激酶原,从而取代从大量的人尿中提取尿激酶。
(2)用蛋白质工程技术定点改变酶结构基因(突变酶)如:酪氨酰-tRNA合成酶,用Ala5(第5位的丙氨酸)取代Thr51(第51位的丝氨酸),使该酶对底物ATP的亲和力提高了100倍。
(3)设计新的酶结构基因,生产自然界从未有过的性能稳定、活性更高的新酶。
酶工程原理和基本过程菌种→扩大培养→发酵→发酵酶液→酶的提取→酶成品↓原料→前处理→杀菌→酶反应器←酶的固定化↓反应液→产品提取→产品●世界三大酶制剂公司Novo Nordisk (丹麦)Genencor International(美国杰能科国际公司)Cuitor(芬兰)●三大公司销售额占世界总额的70%2、米氏常数的意义Km:米氏常数,物理意义为反应速率为最大速率Vmax一半时底物的浓度,单位与底物浓度同(1)Km 是酶的一个特性常数,Km大小只与酶性质有关,而与酶浓度无关。
当底物确定,反应温度,pH及离子强度一定时,Km值为常数,可用来鉴别酶。
Km一般在1×10-6~10-1mol/L之间不同的酶Km 值不同,测定Km要在相同测定条件(pH、温度、离子强度)下进行。
(2)Km 值可用于判断酶的专一性和天然产物,若一个酶有几种底物就有几个Km值,其中Km值最小的底物称为该酶的最适底物,又称天然底物。
(3)可近似表示酶与底物亲和力的大小。
真正表示酶与底物亲和力为Ks =k2/k1(注 Km = k2+k3/ k1)(4)已知Km可由[S]计算v,或由v计算[S]。
酶活力是指一定条件下,酶所催化的反应初速度;酶催化反应速度用单位时间内底物的减少量或产物的增加量来表示。
V=-dS/dt=dP/dt二、酶的活力单位:表示酶活力大小所用的两个国际单位1IU:在最适反应条件下,每分钟催化1μmol底物转化为产物所需的酶量,称一个IU。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
酶学与酶工程复习资料
上一届考试试题
一、名字解释
1、酶的活性中性:酶分子中直接与底物结合,并和酶催化作用直接有关的区域叫酶的活性中心,参与构成酶的活性中心和维持酶的特定构象所必需的基团为酶的必需基团。
2、米式方程及各字母的意义:米氏方程表示一个酶促反应的起始速度v与底物浓度S关系的速度方程,v=V max·S/(K m+S)。
其中K m值称为米氏常数,V max是酶被底物饱和时的反应速度,[S]为底物浓度。
由此可见K m值的物理意义为反应速度(v)达到1/2V max时的底物浓度(即K m=[S]),单位一般为mol/L,只由酶的性质决定,而与酶的浓度无关。
3、别构效应:一个蛋白质与其配体(或其他蛋白质)结合后,蛋白质的空间结构发生改变,使它适用于功能的需要,这一类变化称为别构效应或变构效应。
4、遗传密码:遗传密码决定蛋白质中氨基酸顺序的核苷酸顺序,由3个连续的核苷酸组成的密码子所构成。
5、盐析:增加中性盐浓度使蛋白质、气体、未带电分子溶解度降低的现象。
是蛋白质分离纯化中经常使用的方法,最常用的中性盐有硫酸铵、硫酸钠和氯化钠等。
6、内囊性包埋法:系利用天然的或合成的高分子材料(统称为囊材)作为囊膜壁壳,将固态或液态药物包裹成为的药库型微型胶囊。
7、固定化酶:水溶性酶经物理或化学方法处理后,成为不溶于水的但仍具有酶活性的一种酶的衍生物。
在催化反应中以固相状态作用于底物。
8、必需水:维持酶分子完整的空间构象所必需的最低水量。
二、问答题
1、温度对酶促反应的影响及原因。
答:温度对酶促反应的影响包括两方面:一方面是当温度升高时,反应速度也加快,这与一般化学反应相同。
另一方面,随温度升高而使酶逐步变性,即通过减少有活性的酶而降低酶的反应速度。
在低于最适温度时,前一种效应为主,在高于最适温度时,则后一种效应为主,因而酶活性丧失,反应速度下降。
2、操纵子的定义及组成。
答:操纵子:指启动基因、操纵基因和一系列紧密连锁的结构基因的总称,基因表达的协同单位,转录的功能单位。
很多功能上相关的基因前后相连成串,由一个共同的控制区进行转录的控制,包括结构基因以及调节基因的整个DNA 序列。
操纵子通常由2个以上的编码序列与启动序列、操纵序列以及其他调节序列在基因组中成簇串联组成。
3、蛋白质合成过程当中的主要物质。
答:主要为mRNA、tRNA、氨基酸、核糖核蛋白体以及有关的酶和辅助因子。
蛋白质合成是以mRNA为模板,以氨基酸为底物,在核糖体上通过各种tRNA、酶和辅助因子的作用,合成多肽链的过程。
4、酶生物合成模式有哪几种及其特点?简述其接近理想模式的方法?
答:1、同步合成型:酶的生物合成与细胞生长同步进行的一种酶生物合成模式。
该类型酶的
生物合成速度与细胞生长速度紧密联系,又称为生长偶联型。
2、延续合成型:酶的生物合成在细胞的生长阶段开始,在细胞生长进入平衡期后,酶还可以延续合成一段较长时间。
3、中期合成型:酶在细胞生长一段时间以后才开始,而在细胞生长进入平衡期以后,酶的生物合成也随着停止。
4、滞后合成型:酶是在细胞生长一段时间或者进入平衡期以后才开始其生物合成并大量积累,又称为非生长偶联型,许多水解酶的生物合成都属于这一类型。
在酶的发酵生产中,为了提高产酶率和缩短发酵周期,最理想的合成模式应是延续合成型。
属于延续合成型的酶,在发酵过程中没有生长期和产酶期的明显差别。
细胞一开始生长就有酶产生,直至细胞生长进入平衡期以后,酶还可以继续合成一段较长的时间。
对于其他合成模式的酶,可以通过基因工程\细胞工程等先进技术,选育得到优良的菌株, 并通过工艺条件的优化控制, 使他们的生物合成模式更加接近于延续合成型。
其中对于同步合成型的酶,要尽量提高其对应的mRNA的稳定性,为此适当降低发酵温度是可取的措施;对于滞后合成型的酶,要设法降低培养基中阻遏物的浓度,尽量减少甚至解除产物阻遏或分解代谢物阻遏作用,使酶的生物合成提早开始;而对于中期合成型的酶,则要在提高mRNA的稳定性以及解除阻遏两方面考虑,使其生物合成的开始时间提前,并尽量延迟其生物合成停止的时间。
5、举例说明生物酶制剂生产工艺流程。
答:一、植物细胞培养的工艺流程:外植体→细胞的获取→细胞培养→分离纯化→产物。
植物细胞培养产酶的工艺过程——大蒜细胞培养生产超氧化物歧化酶(SOD):1、大蒜愈伤组织的诱导:打破休眠的大蒜蒜瓣,去除外皮消毒在无菌条件下,将蒜瓣切成0.5cm3左右的小块,植入培养基中,25℃、600lux、12h/d光照的条件下培养18d,诱导得到愈伤组织。
2、大蒜细胞悬浮培养:愈伤组织在无菌条件下转入培养基中,加入灭菌玻璃珠,25℃、600lux、12h/d 的光照条件下震荡培养10~12d,使愈伤组织分散成为小细胞团或单细胞筛网将小细胞团或单细胞转入新培养基中,光照培养。
3、超氧化物歧化酶的分离纯化:收集细胞,经过细胞破碎,用pH7.8 的磷酸缓冲液提取、有机溶剂沉淀等,分离得到超氧化物歧化酶。
二、动物细胞培养产酶的工艺过程——人黑色素瘤细胞培养生产组织纤溶酶原活化剂:1、人黑色素瘤细胞培养基。
2、人黑色素瘤细胞培养:(1)细胞的种子细胞用胰蛋白酶消化处理:细胞分散、洗涤、记数、稀释成细胞悬浮液。
(2)接种浓度为(1~3 )×103个细胞/mL,于37 ℃的CO2培养箱中,通入含5%CO2的无菌空气,培养至长成单层致密细胞。
(3)倾去培养液,用pH7.4 的磷酸缓冲液洗涤细胞2~3次。
(4)换入一定量的无血清Eagle培养液,继续培养。
(5)每隔3~4d,取出培养液进行tPA 的分离纯化。
(6)再向反应器中加入新鲜的无血清Eagle培养液,继续培养,以获得大量tPA 。
3、组织纤溶酶原活化剂的分离纯化:在获得培养液中加入一定量的蛋白酶抑制剂和表面活性剂,过滤去沉淀,适当稀释后,采用亲和层析技术进行分离(以tPA抗体为配基,以溴化氰活化的琼脂糖凝胶为母体制成亲和层析剂,上柱、洗涤后用3mol/L KSCN溶液洗脱,分部收集),得到tPA溶液。
经过浓缩、葡聚糖G-150凝胶层析、冷冻干燥,得到精制tPA干粉。
6、简述各种层析方法及其原理。
如有侵权请联系告知删除,感谢你们的配合!。