二项式定理
二项式定理
4.代数式(x+1)4-4(x+1)3+6(x+1)2-4(x+1)+1可化简为__x_4__. 解析 (x+1)4-4(x+1)3+6(x+1)2-4(x+1)+1 =C04(x+1)4+C14(x+1)3(-1)1+C24(x+1)2(-1)2+C34(x+1)·(-1)3+C44(-1)4 =[(x+1)-1]4=x4.
跟踪训练 1 求2x-23x25 的展开式.
解 方法一 2x-23x25=C05(2x)5+C15(2x)4·-23x2+C25(2x)3-23x22 +C35(2x)2-23x23+C45(2x)·-23x24+C55-23x25 =32x5-120x2+18x0-1x345+480x57 -3224x310. 方法二 2x-23x25=43x32-x1035=321x10[C05(4x3)5+C15(4x3)4(-3)+C25(4x3)3(-3)2 +C35(4x3)2(-3)3+C45(4x3)(-3)4+C55(-3)5] =32x5-120x2+18x0-1x345+480x57 -3224x310.
令3-k=2,解得k=1,
所以含x2的项为第2项,且T2=-192x2.
反思感悟 (1)求二项展开式的特定项的常见题型 ①求第k项,Tk=Ckn-1an-k+1bk-1;②求含xk的项(或xpyq的项);③求常数项; ④求有理项. (2)求二项展开式的特定项的常用方法 ①对于常数项,隐含条件是字母的指数为0(即0次项); ②对于有理项,一般是先写出通项公式,其所有的字母的指数恰好都是 整数的项.解这类问题必须合并通项公式中同一字母的指数,根据具体要 求,令其属于整数集,再根据数的整除性来求解; ③对于二项展开式中的整式项,其通项公式中同一字母的指数应是非负 整数,求解方式与求有理项一致.
二项式定理
在展开式C中 15x(x只 3)有 24才存x的 在项 , 其系数 C15为 324 240
方法3 (x2+3x+2)5=[x2+(3x+2)]5
在展开式C 中50(3只 x有 2)5才存x的 在项 , 其系数 C15为 324 240
( x1)6(2x1)5 的通项是
CC(1)2 x s r 56
s
5s
16r2s 2
5、 的系数.
求 ( x1)6(2x1)5的展开式中 x 6 项
解:( x 1)6 的通项是 C 6 r( x)6rC 6 rx6 2r
(2 x 1)5 的通项是
C 5 s ( 2 x ) 5 s ( 1 ) s C 5 s ( 1 ) s 2 5 s x 5 s
( x1 )6(2x1 )5 的通项是
CC(1)2 x s r 56
s
5s
16r2s 2
课堂小结:
1、二项式定理、通项公式及二项式系数的性 质。
2、要区分二项式系数与展开式项的系数的异 同。
3、熟练求算二项展开式的Tr+1项、常数项、x 的r次方项等题型。
二项式定理的复习
1.二项展开式:
a bn
c n 0 a n c 1 n a n 1 b c n ra n rb r c n n b n
这个公式叫做二项式定理,等号后面的 式子叫做(a+b)n的二项展开式,其中 Cnk(k=0,1,2,…,n)叫做二项式系数。
二项展开式中的第k+1项为Cnkan-kbk
用(1-x)3 展开式中的一次项乘以(1+x)10 展开式中 的x4项可得到(-3x)(C104x4)=-3C104x5;
二项式定理
二项式定理一、基础知识1.二项式定理(1)二项式定理:(a +b )n =C 0n a n +C 1n a n -1b +…+C k n a n -k b k +…+C n n b n (n ∈N *)❶;(2)通项公式:T k +1=C k n an -k b k ,它表示第k +1项; (3)二项式系数:二项展开式中各项的系数为C 0n ,C 1n ,…,C n n ❷.2.二项式系数的性质(1)项数为n +1.(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n .二项式系数与项的系数的区别二项式系数是指C 0n ,C 1n ,…,C n n ,它只与各项的项数有关,而与a ,b 的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a ,b 的值有关.如(a +bx )n 的二项展开式中,第k +1项的二项式系数是C k n ,而该项的系数是C k n an -k b k.当然,在某些二项展开式中,各项的系数与二项式系数是相等的.考点一 二项展开式中特定项或系数问题考法(一) 求解形如(a +b )n (n ∈N *)的展开式中与特定项相关的量 [例1] (1)(2018·全国卷Ⅲ)⎝⎛⎭⎫x 2+2x 5的展开式中x 4的系数为( ) A.10 B.20 C.40D.80(2)(2019·合肥调研)若(2x -a )5的二项展开式中x 3的系数为720,则a =________. (3)(2019·甘肃检测)已知⎝⎛⎭⎫x -a x 5的展开式中x 5的系数为A ,x 2的系数为B ,若A +B =11,则a =________.[解析] (1)⎝⎛⎭⎫x 2+2x 5的展开式的通项公式为T r +1=C r 5·(x 2)5-r ·⎝⎛⎭⎫2x r =C r 5·2r ·x 10-3r ,令10-3r =4,得r =2.故展开式中x 4的系数为C 25·22=40. (2)(2x -a )5的展开式的通项公式为T r +1=(-1)r ·C r 5·(2x )5-r ·a r =(-1)r ·C r 5·25-r ·a r ·x 5-r ,令5-r =3,解得r =2,由(-1)2·C 25·25-2·a 2=720,解得a =±3.(3)⎝⎛⎭⎫x -a x 5的展开式的通项公式为T r +1=C r 5x 5-r ·⎝⎛⎭⎫-a x r =C r 5(-a )rx 5-32r .由5-32r =5,得r =0,由5-32r =2,得r =2,所以A =C 05×(-a )0=1,B =C 25×(-a )2=10a 2,则由1+10a 2=11,解得a =±1.[答案] (1)C (2)±3 (3)±1 [解题技法]求形如(a +b )n (n ∈N *)的展开式中与特定项相关的量(常数项、参数值、特定项等)的步骤第一步,利用二项式定理写出二项展开式的通项公式T r +1=C r n an -r b r,常把字母和系数分离开来(注意符号不要出错);第二步,根据题目中的相关条件(如常数项要求指数为零,有理项要求指数为整数)先列出相应方程(组)或不等式(组),解出r ;第三步,把r 代入通项公式中,即可求出T r +1,有时还需要先求n ,再求r ,才能求出T r +1或者其他量.考法(二) 求解形如(a +b )m (c +d )n (m ,n ∈N *)的展开式中与特定项相关的量 [例2] (1)(1-x )6(1+x )4的展开式中x 的系数是( ) A.-4 B.-3 C.3D.4(2)(2019·南昌模拟)已知(x -1)(ax +1)6的展开式中含x 2项的系数为0,则正实数a =________.[解析] (1)法一:(1-x )6的展开式的通项为C m 6·(-x )m =C m 6(-1)m x m 2,(1+x )4的展开式的通项为C n 4·(x )n =C n 4x n 2,其中m =0,1,2,…,6,n =0,1,2,3,4. 令m 2+n2=1,得m +n =2, 于是(1-x )6(1+x )4的展开式中x 的系数等于C 06·(-1)0·C 24+C 16·(-1)1·C 14+C 26·(-1)2·C 04=-3.法二:(1-x )6(1+x )4=[(1-x )(1+x )]4(1-x )2=(1-x )4(1-2x +x ).于是(1-x )6(1+x )4的展开式中x 的系数为C 04·1+C 14·(-1)1·1=-3. (2)(ax +1)6的展开式中含x 2项的系数为C 46a 2,含x 项的系数为C 56a ,由(x -1)(ax +1)6的展开式中含x 2项的系数为0,可得-C 46a 2+C 56a =0,因为a 为正实数,所以15a =6,所以a =25. [答案] (1)B (2)25[解题技法]求形如(a +b )m (c +d )n (m ,n ∈N *)的展开式中与特定项相关的量的步骤 第一步,根据二项式定理把(a +b )m 与(c +d )n 分别展开,并写出其通项公式; 第二步,根据特定项的次数,分析特定项可由(a +b )m 与(c +d )n 的展开式中的哪些项相乘得到;第三步,把相乘后的项合并即可得到所求特定项或相关量. 考法(三) 求形如(a +b +c )n (n ∈N *)的展开式中与特定项相关的量 [例3] (1)(x 2+x +y )5的展开式中x 5y 2的系数为( ) A.10 B.20 C.30D.60(2)将⎝⎛⎭⎫x +4x -43展开后,常数项是________. [解析] (1)(x 2+x +y )5的展开式的通项为T r +1=C r 5(x 2+x )5-r ·y r ,令r =2,则T 3=C 25(x2+x )3y 2,又(x 2+x )3的展开式的通项为T k +1=C k 3(x 2)3-k ·x k =C k 3x6-k,令6-k =5,则k =1,所以(x 2+x +y )5的展开式中,x 5y 2的系数为C 25C 13=30.(2)⎝⎛⎭⎫x +4x -43=⎝⎛⎭⎫x -2x 6展开式的通项是C k 6(x )6-k ·⎝⎛⎭⎫-2x k =(-2)k ·C k 6x 3-k. 令3-k =0,得k =3.所以常数项是C 36(-2)3=-160.[解析] (1)C (2)-160 [解题技法]求形如(a +b +c )n (n ∈N *)的展开式中与特定项相关的量的步骤 第一步,把三项的和a +b +c 看成是(a +b )与c 两项的和; 第二步,根据二项式定理写出[(a +b )+c ]n 的展开式的通项; 第三步,对特定项的次数进行分析,弄清特定项是由(a +b )n-r的展开式中的哪些项和c r 相乘得到的;第四步,把相乘后的项合并即可得到所求特定项或相关量.[题组训练]1.(2018·洛阳第一次统考)若a =∫π0 sin x d x ,则二项式⎝⎛⎭⎫a x -1x 6的展开式中的常数项为( )A.-15B.15C.-240D.240解析:选D 由a =∫π0 sin x d x =(-cos x )|π0=(-cos π)-(-cos 0)=1-(-1)=2,得⎝⎛⎭⎫2x -1x 6的展开式的通项公式为T r +1=C r6(2x )6-r ⎝⎛⎭⎫-1x r =(-1)r C r 6·26-r ·x 3-32r ,令3-32r =0,得r =2,故常数项为C 26·24=240. 2.(2019·福州四校联考)在(1-x 3)(2+x )6的展开式中,x 5的系数是________.(用数字作答)解析:二项展开式中,含x 5的项是C 562x 5-x 3C 2624x 2=-228x 5,所以x 5的系数是-228.答案:-2283.⎝⎛⎭⎫x 2+1x +25(x >0)的展开式中的常数项为________. 解析:⎝⎛⎭⎫x 2+1x +25(x >0)可化为⎝ ⎛⎭⎪⎫x 2+1x 10,因而T r +1=C r 10⎝⎛⎭⎫1210-r (x )10-2r ,令10-2r =0,得r =5,故展开式中的常数项为C 510·⎝⎛⎭⎫125=6322.答案:6322考点二 二项式系数的性质及各项系数和[典例精析](1)若⎝⎛⎭⎪⎫x +13x n的展开式中各项系数之和大于8,但小于32,则展开式中系数最大的项是( )A.63x B.4x C.4x 6xD.4x或4x 6x (2)若⎝⎛⎭⎫x 2-1x n 的展开式中含x 的项为第6项,设(1-3x )n =a 0+a 1x +a 2x 2+…+a n x n ,则a 1+a 2+…+a n 的值为________.(3)若(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =________.[解析] (1)令x =1,可得⎝⎛⎭⎪⎫x +13x n的展开式中各项系数之和为2n ,即8<2n<32,解得n =4,故第3项的系数最大,所以展开式中系数最大的项是C 24(x )2⎝ ⎛⎭⎪⎫13x 2=63x . (2)⎝⎛⎭⎫x 2-1x n 的展开式的通项公式为T r +1=C r n (x 2)n -r ·⎝⎛⎭⎫-1x r =C r n (-1)r x 2n -3r , 因为含x 的项为第6项,所以r =5,2n -3r =1,解得n =8, 在(1-3x )n 中,令x =1,得a 0+a 1+…+a 8=(1-3)8=28, 又a 0=1,所以a 1+…+a 8=28-1=255.(3)设(a +x )(1+x )4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5, 令x =1,得16(a +1)=a 0+a 1+a 2+a 3+a 4+a 5,① 令x =-1,得0=a 0-a 1+a 2-a 3+a 4-a 5,② ①-②,得16(a +1)=2(a 1+a 3+a 5),即展开式中x 的奇数次幂项的系数之和为a 1+a 3+a 5=8(a +1),所以8(a +1)=32,解得a =3.[答案] (1)A (2)255 (3)3[解题技法]1.赋值法的应用二项式定理给出的是一个恒等式,对于x ,y 的一切值都成立.因此,可将x ,y 设定为一些特殊的值.在使用赋值法时,令x ,y 等于多少,应视具体情况而定,一般取“1,-1或0”,有时也取其他值.如:(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子,求其展开式的各项系数之和,只需令x =1即可.(2)形如(ax +by )n (a ,b ∈R )的式子,求其展开式各项系数之和,只需令x =y =1即可. 2.二项展开式各项系数和、奇数项系数和与偶数项系数和的求法 若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )的展开式中 (1)各项系数之和为f (1).(2)奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2.(3)偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.[题组训练]1.(2019·包头模拟)已知(2x -1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则|a 0|+|a 1|+…+|a 5|=( )A.1B.243C.121D.122解析:选B 令x =1,得a 5+a 4+a 3+a 2+a 1+a 0=1,①令x =-1,得-a 5+a 4-a 3+a 2-a 1+a 0=-243,② ①+②,得2(a 4+a 2+a 0)=-242, 即a 4+a 2+a 0=-121.①-②,得2(a 5+a 3+a 1)=244, 即a 5+a 3+a 1=122.所以|a 0|+|a 1|+…+|a 5|=122+121=243.2.若(x +2+m )9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为________.解析:令x =0,则(2+m )9=a 0+a 1+a 2+…+a 9, 令x =-2,则m 9=a 0-a 1+a 2-a 3+…-a 9, 又(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=(a 0+a 1+a 2+…+a 9)(a 0-a 1+a 2-a 3+…+a 8-a 9)=39, ∴(2+m )9·m 9=39,∴m (2+m )=3, ∴m =-3或m =1. 答案:-3或13.已知(1+3x )n 的展开式中,后三项的二项式系数的和等于121,则展开式中二项式系数最大的项为________.解析:由已知得C n -2n +C n -1n +C n n =121,则12n ·(n -1)+n +1=121,即n 2+n -240=0,解得n =15(舍去负值),所以展开式中二项式系数最大的项为T 8=C 715(3x )7和T 9=C 815(3x )8.答案:C 715(3x )7和C 815(3x )8考点三 二项展开式的应用[典例精析]设a ∈Z ,且0≤a <13,若512 018+a 能被13整除,则a =( ) A.0 B.1 C.11D.12[解析] 由于51=52-1,512 018=(52-1)2 018=C 02 018522 018-C 12 018522 017+…-C 2 0172 018521+1,又13整除52, 所以只需13整除1+a , 又0≤a <13,a ∈Z , 所以a =12. [答案] D[解题技法]利用二项式定理解决整除问题的思路(1)要证明一个式子能被另一个式子整除,只要证明这个式子按二项式定理展开后的各项均能被另一个式子整除即可.因此,一般要将被除式化为含相关除式的二项式,然后再展开.(2)用二项式定理处理整除问题,通常把底数写成除数(或与除数密切关联的数)与某数的和或差的形式,再用二项式定理展开.但要注意两点:①余数的范围,a =cr +b ,其中余数b ∈[0,r ),r 是除数,若利用二项式定理展开变形后,切记余数不能为负;②二项式定理的逆用.[题组训练]1.使得多项式81x 4+108x 3+54x 2+12x +1能被5整除的最小自然数x 为( ) A.1 B.2 C.3D.4解析:选C ∵81x 4+108x 3+54x 2+12x +1=(3x +1)4,∴上式能被5整除的最小自然数为3.2.1-90C 110+902C 210-903C 310+…+(-1)k 90k C k 10+…+9010C 1010除以88的余数为________. 解析:∵1-90C 110+902C 210+…+(-1)k 90k C k 10+…+9010C 1010=(1-90)10=8910, ∴8910=(88+1)10=8810+C 110889+…+C 91088+1,∵前10项均能被88整除,∴余数为1. 答案:1[课时跟踪检测]A 级1.(2019·河北“五个一名校联盟”模拟)⎝⎛⎭⎫2x2-x 43的展开式中的常数项为( )A.-32B.3 2C.6D.-6解析:选D 通项T r +1=C r 3⎝⎛⎭⎫2x 23-r·(-x 4)r =C r 3(2)3-r·(-1)r x -6+6r,当-6+6r =0,即r=1时为常数项,T 2=-6,故选D.2.设(2-x )5=a 0+a 1x +a 2x 2+…+a 5x 5,则a 2+a 4a 1+a 3的值为( )A.-6160B.-122121C.-34D.-90121解析:选C 由二项式定理,得a 1=-C 1524=-80,a 2=C 2523=80,a 3=-C 3522=-40,a 4=C 452=10,所以a 2+a 4a 1+a 3=-34. 3.若二项式⎝⎛⎭⎫x 2+ax 7的展开式的各项系数之和为-1,则含x 2项的系数为( ) A.560 B.-560 C.280D.-280解析:选A 取x =1,得二项式⎝⎛⎭⎫x 2+ax 7的展开式的各项系数之和为(1+a )7,即(1+a )7=-1,1+a =-1,a =-2.二项式⎝⎛⎭⎫x 2-2x 7的展开式的通项T r +1=C r 7·(x 2)7-r ·⎝⎛⎭⎫-2x r =C r 7·(-2)r ·x 14-3r.令14-3r =2,得r =4.因此,二项式⎝⎛⎭⎫x 2-2x 7的展开式中含x 2项的系数为C 47·(-2)4=560.4.(2018·山西八校第一次联考)已知(1+x )n 的展开式中第5项与第7项的二项式系数相等,则奇数项的二项式系数和为( )A.29B.210C.211D.212解析:选A 由题意得C 4n =C 6n ,由组合数性质得n =10,则奇数项的二项式系数和为2n -1=29.5.二项式⎝⎛⎭⎫1x -2x 29的展开式中,除常数项外,各项系数的和为( ) A.-671 B.671 C.672D.673解析:选B 令x =1,可得该二项式各项系数之和为-1.因为该二项展开式的通项公式为T r +1=C r 9⎝⎛⎭⎫1x 9-r ·(-2x 2)r =C r 9(-2)r ·x 3r -9,令3r -9=0,得r =3,所以该二项展开式中的常数项为C 39(-2)3=-672,所以除常数项外,各项系数的和为-1-(-672)=671.6.(2018·石家庄二模)在(1-x )5(2x +1)的展开式中,含x 4项的系数为( ) A.-5 B.-15 C.-25D.25解析:选B 由题意含x 4项的系数为-2C 35+C 45=-15.7.(2018·枣庄二模)若(x 2-a )⎝⎛⎭⎫x +1x 10的展开式中x 6的系数为30,则a 等于( ) A.13 B.12 C.1D.2解析:选D ⎝⎛⎭⎫x +1x 10的展开式的通项公式为T r +1=C r 10·x 10-r ·⎝⎛⎭⎫1x r =C r 10·x 10-2r ,令10-2r =4,解得r =3,所以x 4项的系数为C 310.令10-2r =6,解得r =2,所以x 6项的系数为C 210.所以(x 2-a )⎝⎛⎭⎫x +1x 10的展开式中x 6的系数为C 310-a C 210=30,解得a =2. 8.若(1+mx )6=a 0+a 1x +a 2x 2+…+a 6x 6,且a 1+a 2+…+a 6=63,则实数m 的值为( ) A.1或3 B.-3 C.1D.1或-3解析:选D 令x =0,得a 0=(1+0)6=1.令x =1,得(1+m )6=a 0+a 1+a 2+…+a 6.∵a 1+a 2+a 3+…+a 6=63,∴(1+m )6=64=26,∴m =1或m =-3.9.(2019·唐山模拟)(2x -1)6的展开式中,二项式系数最大的项的系数是________.(用数字作答)解析:(2x -1)6的展开式中,二项式系数最大的项是第四项,系数是C 3623(-1)3=-160.答案:-16010.(2019·贵阳模拟)⎝⎛⎭⎫x +ax 9的展开式中x 3的系数为-84,则展开式的各项系数之和为________.解析:二项展开式的通项T r +1=C r 9x 9-r ⎝⎛⎭⎫a x r =a r C r 9x 9-2r ,令9-2r =3,得r =3,所以a 3C 39=-84,解得a =-1,所以二项式为⎝⎛⎭⎫x -1x 9,令x =1,则(1-1)9=0,所以展开式的各项系数之和为0.答案:011.⎝⎛⎭⎫x +1x +15展开式中的常数项为________. 解析:⎝⎛⎭⎫x +1x +15展开式的通项公式为T r +1=C r 5·⎝⎛⎭⎫x +1x 5-r .令r =5,得常数项为C 55=1,令r =3,得常数项为C 35·2=20,令r =1,得常数项为C 15·C 24=30,所以展开式中的常数项为1+20+30=51.答案:5112.已知⎝⎛⎭⎪⎫x +124x n的展开式中,前三项的系数成等差数列.(1)求n ;(2)求展开式中的有理项; (3)求展开式中系数最大的项.解:(1)由二项展开式知,前三项的系数分别为C 0n ,12C 1n ,14C 2n ,由已知得2×12C 1n =C 0n +14C 2n ,解得n =8(n =1舍去). (2)⎝ ⎛⎭⎪⎫x +124x 8的展开式的通项T r +1=C r 8(x )8-r ·⎝ ⎛⎭⎪⎫124x r =2-r C r 8x 4-3r 4(r =0,1,…,8), 要求有理项,则4-3r 4必为整数,即r =0,4,8,共3项,这3项分别是T 1=x 4,T 5=358x ,T 9=1256x 2.(3)设第r +1项的系数a r +1最大,则a r +1=2-r C r 8,则a r +1a r =2-r C r82-(r -1)C r -18=9-r 2r ≥1, a r +1a r +2=2-r C r 82-(r +1)C r +18=2(r +1)8-r≥1, 解得2≤r ≤3.当r =2时,a 3=2-2C 28=7,当r =3时,a 4=2-3C 38=7,因此,第3项和第4项的系数最大,B 级1.在二项式⎝⎛⎭⎫x -1x n 的展开式中恰好第五项的二项式系数最大,则展开式中含有x 2项的系数是( )A.35B.-35C.-56D.56解析:选C 由于第五项的二项式系数最大,所以n =8.所以二项式⎝⎛⎭⎫x -1x 8展开式的通项公式为T r +1=C r 8x 8-r (-x -1)r =(-1)r C r 8x8-2r,令8-2r =2,得r =3,故展开式中含有x 2项的系数是(-1)3C 38=-56.2.已知C 0n -4C 1n +42C 2n -43C 3n +…+(-1)n 4n C n n =729,则C 1n +C 2n +…+C nn 的值等于( )A.64B.32C.63D.31解析:选C 因为C 0n -4C 1n +42C 2n -43C 3n +…+(-1)n 4n C n n =729,所以(1-4)n =36,所以n =6,因此C 1n +C 2n +…+C n n =2n -1=26-1=63.3.(2019·济南模拟)⎝⎛⎭⎫x -a x ⎝⎛⎭⎫2x -1x 5的展开式中各项系数的和为2,则该展开式中含x 4项的系数为________.解析:令x =1,可得⎝⎛⎭⎫x -a x ⎝⎛⎭⎫2x -1x 5的展开式中各项系数的和为1-a =2,得a =-1,则⎝⎛⎭⎫x +1x ⎝⎛⎭⎫2x -1x 5展开式中含x 4项的系数即是⎝⎛⎭⎫2x -1x 5展开式中的含x 3项与含x 5项系数的和.又⎝⎛⎭⎫2x -1x 5展开式的通项为T r +1=C r 5(-1)r ·25-r ·x 5-2r ,令5-2r =3,得r =1,令5-2r =5,得r =0,将r =1与r =0分别代入通项,可得含x 3项与含x 5项的系数分别为-80与32,故原展开式中含x 4项的系数为-80+32=-48.答案:-484.设复数x =2i 1-i(i 是虚数单位),则C 12 019x +C 22 019x 2+C 32 019x 3+…+C 2 0192 019x 2 019=( ) A.iB.-iC.-1+iD.-i -1解析:选D 因为x =2i 1-i =2i (1+i )(1-i )(1+i )=-1+i ,所以C 12 019x +C 22 019x 2+C 32 019x 3+…+C 2 0192 019x 2 019=(1+x )2 019-1=(1-1+i)2 019-1=i 2 019-1=-i -1.5.已知(x +2)9=a 0+a 1x +a 2x 2+…+a 9x 9,则(a 1+3a 3+5a 5+7a 7+9a 9)2-(2a 2+4a 4+6a 6+8a 8)2的值为( )A.39B.310C.311D.312解析:选D 对(x +2)9=a 0+a 1x +a 2x 2+…+a 9x 9两边同时求导,得9(x +2)8=a 1+2a 2x +3a 3x 2+…+8a 8x 7+9a 9x 8,令x =1,得a 1+2a 2+3a 3+…+8a 8+9a 9=310,令x =-1,得a 1-2a 2+3a 3-…-8a 8+9a 9=32.所以(a 1+3a 3+5a 5+7a 7+9a 9)2-(2a 2+4a 4+6a 6+8a 8)2=(a 1+2a 2+3a 3+…+8a 8+9a 9)(a 1-2a 2+3a 3-…-8a 8+9a 9)=312.6.设a =⎠⎛012x d x ,则二项式⎝⎛⎭⎫ax 2-1x 6展开式中的常数项为________. 解析:a =⎠⎛01 2x d x =x 2⎪⎪⎪10=1,则二项式⎝⎛⎭⎫ax 2-1x 6=⎝⎛⎭⎫x 2-1x 6,其展开式的通项公式为T r +1=C r 6(x 2)6-r ·⎝⎛⎭⎫-1x r =(-1)r C r 6x 12-3r ,令12-3r =0,解得r =4.所以常数项为(-1)4C 46=15. 答案:15。
二项式定理的定义
二项式定理的定义二项式定理是高中数学中非常重要的定理,在大学的数学、物理、统计等学科中也有广泛的应用。
它可以将二次式展开为多项式,方便我们进行计算和研究。
那么,什么是二项式定理呢?一、定义二项式定理又称为牛顿(Isaac Newton)二项式公式,是一种非常重要的数学定理。
它由镇上的数学家牛顿首先提出,经过一系列证明和推广之后,成为了现代数学中不可或缺的一部分。
二项式定理的表述如下:$$(a+b)^n = \sum_{k=0}^{n}C_n^ka^{n-k}b^k$$其中,$a$和$b$是任意实数,$n$为正整数,$C_n^k$是组合数,表示从$n$个元素中选取$k$个元素的组合数。
公式的左边表示一个二次式的展开式,右边则表示该二次式展开式中各项系数的求法。
二、过程如何推导二项式定理呢?这里我们可以用数学归纳法来证明其有效性。
我们假设二项式定理对于任意正整数$m$都成立,即:$$(a+b)^m = \sum_{k=0}^{m}C_m^ka^{m-k}b^k$$现在我们需要证明,当$m$加1时,二项式定理仍然成立,即:$$(a+b)^{m+1} = \sum_{k=0}^{m+1}C_{m+1}^ka^{m-k+1}b^k$$ 证明过程如下:- 将$(a+b)^{m+1}$展开,得到$a(a+b)^{m} + b(a+b)^{m}$- 根据归纳假设,我们可以将$(a+b)^m$表示为$\sum_{k=0}^{m}C_m^ka^{m-k}b^k$,然后将其带入上式中的每一个因式中- 将所有同类项合并,最终得到$\sum_{k=0}^{m+1}C_{m+1}^ka^{m+1-k}b^k$,这正是二项式定理右边的式子,故定理得证三、应用二项式定理在数学、物理、统计等多个领域中都有广泛应用。
比如,在概率统计中,我们需要计算二项分布,而二项分布的密度函数就可以用二项式定理推导得到。
在物理学中,二项式定理可以被用来计算气体分子的速度和位置等物理参数。
二项式定理(binomialtheorem)
例子
例如,(a+b)^2 = a^2 + 2ab + b^2 是一个二 项式的展开式。
小常识
二项式來源于对“二”的组合数。
二项式定理的公式表述
1
公式1
(a+b)^2 = a^2 + 2ab a^3 + 3a^2b + 3ab^2 + b^3
3
公式3
(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4
二项式定理的性质
对称性
(a+b)^ n = (b+a)^ n
二项式系数的对称性
在二项式定理中,第k(k为整数) 个系数等于第(n-k)个系数。
常数的系数
二项式定理中,每一项系数的 和为2的n次方。
二项式定理的证明方法
数学归纳法
适用于证明二项式定理的基本形式。
杨辉三角形
通过观察杨辉三角形的性质,可以推导出二项式定理。
二项式系数与对称性质
二项式系数具有对称性,即第k个系数等于第n-k个系数。通过对称性质的使用,可以简化二项式定理中 的系数。
二项式定理的推广与应用:多项式定理
在二项式定理的基础上,我们可以进一步推广并建立多项式定理。多项式定理适用于(x+y+z)^n的展开, 同样具有广泛的应用于组合数学等领域。
利用二项式定理求逆元
在计算机科学中,在模m下,a的逆元定义为b等于a乘以b模m余1。利用二项 式定理,可以推导出求逆元的通用公式。
投掷硬币问题与二项式定理
二项式定理可应用于投掷硬币的问题。例如,考虑抛掷硬币n次,期望得到k个正面的概率,可以使用二 项式系数计算。
二项式定理
- - -
+ n· 2n-1=(n+2)· 2n-1, 故 3n>(n+2)· 2n-1.
2 n 例 4:已知( x- 2) (n∈N*)的展开式中第五项的系数与第三 x 项的系数的比是 10∶1. (1)求展开式中各项系数的和; (2)求展开式中含x 的项; (3)求展开式中系数最大的项和二项式系数最大的项.
2 3 1 ( x 2) 【 3】 展开式中的常数项是_______. 2 x
20
1 1 3 3 C x C 2 C1 ( 2) C3 (2) x
1 3 2 1 2
20.
( x 2 12 2)3 ( x 1 )6 x x
Tr +1 = (1) C x
r n- r r n- r r a=2x,b=3y,Tr+1=Cn2 · 3 x y ,其中 r Cn
2n-r3r 就是 Tr+1 项的系数.
求展开式中的特定项或特 定项的系数
1 x+ n 例 1 在二项式 4 的展开式中,前三项的系数成等 2 x 差数列,求展开式中的有理项和二项式系数最大的项.
4 所以x的系数为 C4 5 3 2 240.
【点评】三项式不能用二项式定理,必须转化 为二项式.
例1. 求(x2十3x十2)5的展开式中x的系数. 解法二:因为 (x2 十 3x 十 2)5 = (x2 十 3x 十 2)(x2 十 3x十2)(x2十3x十2)(x2十3x十2)(x2十3x十2), 所以 (x2 十 3x 十 2)5 展开式的各项是由五个 因式中各选一项相乘后得到的. 则它的一次项只能从五个因式中的一个取 一次项3x,另四个因式中取常数项2相乘得到.
二项式定理公式大全
二项式定理公式大全一、二项式定理基本公式。
1. 二项式定理。
- 对于(a + b)^n=∑_k = 0^nC_n^ka^n - kb^k,其中C_n^k=(n!)/(k!(n - k)!),n∈N^*。
- 例如,当n = 3时,(a +b)^3=C_3^0a^3b^0+C_3^1a^2b^1+C_3^2a^1b^2+C_3^3a^0b^3。
- 计算各项系数:- C_3^0=(3!)/(0!(3 - 0)!)=1- C_3^1=(3!)/(1!(3 - 1)!)=(3!)/(1!2!)=3- C_3^2=(3!)/(2!(3 - 2)!)=(3!)/(2!1!)=3- C_3^3=(3!)/(3!(3 - 3)!)=1- 所以(a + b)^3=a^3+3a^2b + 3ab^2+b^3。
2. 二项展开式的通项公式。
- 二项式(a + b)^n展开式的第k + 1项T_k+1=C_n^ka^n - kb^k(k =0,1,·s,n)。
- 例如,在(x + 2)^5中,其通项公式为T_k + 1=C_5^kx^5 - k2^k。
当k = 2时,T_3=C_5^2x^5 - 22^2。
- 计算C_5^2=(5!)/(2!(5 - 2)!)=(5×4)/(2×1)=10- 所以T_3=10x^3×4 = 40x^3二、二项式系数的性质。
1. 对称性。
- 在二项式(a + b)^n的展开式中,与首末两端“等距离”的两项的二项式系数相等,即C_n^k=C_n^n - k。
- 例如,在(a + b)^5的展开式中,C_5^1=C_5^4,C_5^2=C_5^3。
- 计算C_5^1=(5!)/(1!(5 - 1)!)=5,C_5^4=(5!)/(4!(5 - 4)!)=5;C_5^2=(5!)/(2!(5 - 2)!)=10,C_5^3=(5!)/(3!(5 - 3)!)=10。
二项式定理ppt课件
二项式定理的应用领域
总结词
二项式定理的应用领域非常广泛,包括组合数学、概率论、统计学和物理学等。
详细描述
二项式定理在数学中有着广泛的应用,它可以应用于组合数学中的排列和组合计 算,概率论中的概率分布计算,统计学中的样本方差和总体方差计算,以及物理 学中的量子力学和统计力学等领域。
02
二项式定理的公式与性质
统计力学
在统计力学中,二项式定理用于计算 分子在特定条件下可能处于的微观状 态数。
二项式定理在计算机科学中的应用
数据压缩
二项式定理用于计算数据压缩的比特率,以确定压缩后数据的存储空间。
加密算法
二项式定理用于实现某些加密算法,如RSA公钥加密算法。
二项式定理在其他工程领域的应用
控制系统
在控制系统的分析和设计中,二项式定理用于计算系统的传递函数。
03
创新研究方法
随着数学研究方法的不断创新,二项式定理的研究方法也将不断更新和
完善,以适应新的研究需求和挑战。
THANKS
感谢பைடு நூலகம்看
二项式定理的化简技巧
合并同类项
在展开二项式定理后,可以将同类项 合并,以便简化表达式。
利用代数恒等式化简
利用二项式定理的逆用
在某些情况下,可以利用二项式定理 的逆用对表达式进行化简,如 $(ab)^n = sum_{k=0}^{n} (-1)^k C_n^k a^{n-k} b^k$。
在展开过程中,可以运用代数恒等式 对表达式进行化简,如 $(a+b)^2 = a^2 + 2ab + b^2$。
二项式定理展开与化简的应用
解决组合计数问题
二项式定理可以用于解决组合计 数问题,例如计算从 $n$ 个不同 项中选取 $k$ 个的不同方式的数
二项式定理ppt课件
题型分类 深度剖析
题型一 求展开式中的特定项或特定项的系数
【例1】在二项式 ( x 1 )n 的展开式中,前三项的 24 x
系数成等差数列,求展开式中的有理项和二项式系
数最大的项.
思维启迪 利用已知条件前三项的系数成等差数
列求出n,再用通项公式求有理项.
解 ∵二项展开式的前三项的系数分别是1,n ,
探究提高 用二项式定理处理整除问题,通常把 底数写成除数(或与除数密切关联的数)与某数的 和或差的形式,再用二项式定理展开,只考虑后面 (或者是前面)一、二项就可以了. 同时,要注意余数的范围,a=cr+b,其中余数b∈ [0,r),r是除数,利用二项式定理展开变形后, 若剩余部分是负数要注意转换.
(
1)r x
(1)r
Crn
x2n3r ,
常数项是15,则2n=3r,且 C=rn 15,验证n=6时,r=4
合题意.
5.(2009·北京理,6)若(1+ 2)5=a+b 2(a、b为
有理数),则a+b=
(C )
A.45
B.55
C.70
D.80
解析 ∵(1+ 2 )5=1+5 2 +20+20 2 +20+4 2 =41+29 2 =a+b 2, 又a、b为有理数,∴ a=41, ∴a+b=41+29=70.
2)3,则a2的值为
( B)
A.3
B.6
C.9
D.12
解析 ∵x3=[2+(x-2)]3,
∴展开式中含(x-2)2项的系数为
a2=T2+1= C32 ×23-2=3×2=6.
二项式定理知识点总结
二项式定理知识点总结一、概念:(a+b)^n=C(n,0)a^nb^0+C(n,1)a^(n-1)b^1+C(n,2)a^(n-2)b^2+...+C(n,n-1)a^1b^(n-1)+C(n,n)a^0b^n其中,C(n,k)表示组合数,即从n个元素中取出k个元素的组合方式数。
二、证明:可以用排列组合的方法证明二项式定理。
考虑对(a+b)^n展开式中每一项的系数,将(a+b)^n表示为n个相加的项,每一项由a和b组成。
可以把这n个项分成若干组,每组的项数k从0到n,且对于固定的k有k个a和n-k个b。
根据组合数的定义,对于每组项数k,其系数为C(n,k),因此可以得到二项式定理。
三、应用:1.计算组合数:二项式定理可以用来计算组合数。
当a=b=1时,二项式展开后的每一项系数即为对应的组合数。
例如,(1+1)^n=2^n,系数为1,n,n(n-1)/2,n(n-1)(n-2)/6,...,依次为组合数C(n,0),C(n,1),C(n,2),...2. 多项式展开:利用二项式定理,可以方便地展开多项式。
例如,(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^33.计算幂数:二项式定理可以用于计算幂,即对于任意整数m,可以使用二项式定理计算(a+b)^m的展开式,将其中的每一项进行计算,得到每一项的幂数。
4.计算二项式系数:二项式定理可以用来计算二项式系数,即对于给定的a,b和n,可以通过二项式定理展开式中的各项系数得到相应的二项式系数。
五、推广:1.负指数:二项式定理不仅适用于非负整数n,也适用于负指数n,即(a+b)^n=C(n,0)a^nb^0+C(n,1)a^(n-1)b^1+C(n,2)a^(n-2)b^2+...+C(n,n-1)a^1b^(n-1)+C(n,n)a^0b^n。
这样可以扩展二项式定理的应用范围。
2. 多变量二项式定理:二项式定理不仅限于两个变量a和b,可以推广到多变量的情况。
二项式定理的展开公式
二项式定理的展开公式
二项式定理是数学中一个重要的公式,用于展开一个二项式的幂。
它的一般形式如下:
(a + b)^n = C(n,0) * a^n * b^0 + C(n,1) * a^(n-1) * b^1 + C(n,2) * a^(n-2) * b^2 + ... + C(n,k) * a^(n-k) * b^k + ... + C(n,n) * a^0 * b^n
其中,a和b是实数或变量,n是非负整数。
C(n,k)表示组合数,即从n中选取k个元素的组合数,可以通过下式计算:
C(n,k) = n! / (k! * (n-k)!)
展开的结果是一个多项式,它包含了各项的系数和各项的幂次。
这个定理在代数、概率论、组合数学等领域都有广泛的应用。
它可以帮助我们计算乘法的结果,特别是在幂的情况下。
通过展开后的结果,我们可以得到二项式的各项系数,从而简化计算或进一步推导。
二项式定理知识点总结
二项式定理知识点总结二项式定理专题一、二项式定理:二项式定理是一个重要的恒等式,它表示了任意实数a,b 和正整数n之间的关系。
具体地,对于任意正整数n和实数a,b,有以下恒等式成立:a+b)^n = C(n,0)*a^n + C(n,1)*a^(n-1)*b +。
+ C(n,n-1)*a*b^(n-1) + C(n,n)*b^n其中,C(n,k)表示从n个元素中选取k个元素的组合数,也就是n个元素中取k个元素的方案数。
右边的多项式叫做(a+b)的二项式展开式,其中各项的系数C(n,k)叫做二项式系数。
二项式定理的理解:1)二项展开式有n+1项。
2)字母a按降幂排列,从第一项开始,次数由n逐项减1到0;字母b按升幂排列,从第一项开始,次数由0逐项加1到n。
3)二项式定理表示一个恒等式,对于任意的实数a,b,等式都成立。
通过对a,b取不同的特殊值,可为某些问题的解决带来方便。
例如,当a=1,b=x时,有以下恒等式成立:1+x)^n = C(n,0) + C(n,1)*x +。
+ C(n,n-1)*x^(n-1) +C(n,n)*x^n4)要注意二项式定理的双向功能:一方面可将二项式(a+b)展开,得到一个多项式;另一方面,也可将展开式合并成二项式(a+b)^n。
二、二项展开式的通项公式:二项展开式的通项公式是指,二项式展开式中第k+1项的系数C(n,k)的公式。
具体地,对于任意正整数n和实数a,b,有以下通项公式成立:T(k+1) = C(n,k)*a^(n-k)*b^k其中,T(k+1)表示二项式展开式中第k+1项的系数。
通项公式体现了二项展开式的项数、系数、次数的变化规律,是二项式定理的核心。
它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用。
三、二项展开式系数的性质:在二项式展开式中,二项式系数具有以下性质:①对称性:与首末两端“等距离”的两项的二项式系数相等,即C(n,0) = C(n,n)。
二项式定理
课堂互动讲练
(2)通项公式 Tr+1=C8r· ( 2 x)
8- r
2 r · (- 2) x
r r 8- r = C8 · (- 2) · x -2r,
8- r 3 令 - 2r= ,则 r=1, 2 2 3 3 故展开式中含 x 的项为 T2=-16x . 2 2 (3)由 n= 8 知第 5 项二项式系数最大, 此时 T5=1120x .
课堂互动讲练
2 2 3 T3= C5 x (3x2)2= 90x6, 3 22 3 2 2 2 3 T4= C5 x (3x ) = 270x . 3 3
2 (2)展开式的通项公式为 Tr+1= C5 3 · x 3 (5+2r).
r r
假 设 Tr +
2
课堂互动讲练
【误区警示】 这类带有减号的 二项展开式最容易出现的问题就是忽 视了(-1)r这个因素,导致最后结果产 生符号的差异,出现错误.
课堂互动讲练
互动探究
1. ( x+ 1 4 x )n 展开式中各项系数的和
为 256. 求(1)n 的值; (2)展开式中所有有理项.
课堂互动讲练
解: (1)由题意 2n= 256,∴n=8. 1 r r 8- r (2)通项公式 Tr+ 1= C8 ( x ) 4 = x r 16- 3r C8 x , 4 16- 3r 3r 又 = 4- ,其中 0≤r≤8, 4 4
第3课时
二项式定理
基础知识梳理
1.二项式定理 n 1 n- 1 r 公式 (a+ b)n= C0 a + C a b +…+ C n n n n- r r n n a b +…+Cn b (n∈N+),所表示的定理叫 做二项式定理.
二项式定理知识点总结
二项式定理知识点总结咱们今天来好好聊聊二项式定理,这可是数学里一个相当重要的家伙!先来说说二项式定理是啥。
简单说,就是对于一个形如\((a + b)^n\)的式子,它展开后的各项系数是有规律的。
这个规律就是二项式定理要告诉咱们的。
比如说,\((a + b)^2 = a^2 + 2ab + b^2\),这里系数分别是 1、2、1。
再看\((a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3\),系数变成了 1、3、3、1。
那要是\((a + b)^4\)呢?自己算算就知道,系数是 1、4、6、4、1。
那这些系数到底咋来的呢?这就得提到杨辉三角了。
这杨辉三角就像一个神奇的密码表,能帮咱们轻松找到二项式展开的系数。
还记得我上学那会,老师让我们自己动手画杨辉三角,我当时可认真了,一笔一划地写,还跟同桌比谁画得又快又准。
那时候,满脑子都是这些数字,感觉它们就像一群调皮的小精灵,在我的本子上蹦跶。
二项式定理还有通项公式呢,\(T_{r+1} = C_{n}^r a^{nr}b^r\)。
这里的\(C_{n}^r\)就是组合数,表示从\(n\)个里面选\(r\)个的方案数。
给大家举个例子啊,比如说要展开\((2x y)^5\),咱们先确定通项公式,然后依次代入\(r\)的值,就能得到展开式的每一项啦。
在做题的时候,经常会碰到让咱们求特定项的系数,或者是二项式系数之和之类的问题。
这时候,可别慌,只要咱们把定理和公式牢记于心,多做几道题练练手,就没啥大问题。
我记得有一次考试,就有一道关于二项式定理的大题,我一开始还紧张得不行,后来静下心来,按照平时练习的步骤一步一步来,嘿,还真就做出来了!还有啊,二项式定理在实际生活中也有用呢。
比如说在概率统计里,计算某些事件发生的概率就可能会用到。
总之,二项式定理虽然有点复杂,但只要咱们用心去学,多练习,多总结,一定能把它拿下!相信大家都没问题的,加油哦!。
二项式定理
二项式定理一、基础知识 1.二项式定理(1)二项式定理:(a +b )n =C 0n a n +C 1n a n -1b +…+C k n a n -k b k +…+C n n b n (n ∈N *);(2)通项公式:T k +1=C k n an -k b k ,它表示第k +1项; (3)二项式系数:二项展开式中各项的系数为C 0n ,C 1n ,…,C n n .2.二项式系数的性质(1)项数为n +1.(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n . 二项式系数与项的系数的区别二项式系数是指C 0n ,C 1n ,…,C n n ,它只与各项的项数有关,而与a ,b 的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a ,b 的值有关.如(a +bx )n 的二项展开式中,第k +1项的二项式系数是C k n ,而该项的系数是C k n an -k b k .当然,在某些二项展开式中,各项的系数与二项式系数是相等的.考点一 二项展开式中特定项或系数问题考法(一) 求解形如(a +b )n (n ∈N *)的展开式中与特定项相关的量 [例1] (1)(2018·全国卷Ⅲ)52)2(xx +的展开式中x 4的系数为( )A.10B.20C.40D.80(2)(2019·合肥调研)若(2x -a )5的二项展开式中x 3的系数为720,则a =________. (3)(2019·甘肃检测)已知5)(xa x -的展开式中x 5的系数为A ,x 2的系数为B ,若A +B =11,则a =________. [解析] (1)52)2(xx +的展开式的通项公式为T r +1=C r 5·(x 2)5-r ·)2(xr =C r 5·2r ·x 10-3r,令10-3r =4,得r =2.故展开式中x 4的系数为C 25·22=40. (2)(2x -a )5的展开式的通项公式为T r +1=(-1)r ·C r 5·(2x )5-r ·a r =(-1)r ·C r 5·25-r ·a r ·x 5-r ,令5-r =3,解得r =2,由(-1)2·C 25·25-2·a 2=720,解得a =±3. (3)5)(x a x -的展开式的通项公式为T r +1=C r 5x 5-r ·r xa )(-=C r 5(-a )rx 5-32r .由5-32r =5,得r =0,由5-32r =2,得r =2,所以A =C 05×(-a )0=1,B =C 25×(-a )2=10a 2,则由1+10a 2=11,解得a =±1. [答案] (1)C (2)±3 (3)±1 [解题技法]求形如(a +b )n (n ∈N *)的展开式中与特定项相关的量(常数项、参数值、特定项等)的步骤第一步,利用二项式定理写出二项展开式的通项公式T r +1=C r n an -r b r ,常把字母和系数分离开来(注意符号不要出错);第二步,根据题目中的相关条件(如常数项要求指数为零,有理项要求指数为整数)先列出相应方程(组)或不等式(组),解出r ;第三步,把r 代入通项公式中,即可求出T r +1,有时还需要先求n ,再求r ,才能求出T r +1或者其他量. 考法(二) 求解形如(a +b )m (c +d )n (m ,n ∈N *)的展开式中与特定项相关的量 [例2] (1)(1-x )6(1+x )4的展开式中x 的系数是( )A.-4B.-3C.3D.4(2)(2019·南昌模拟)已知(x -1)(ax +1)6的展开式中含x 2项的系数为0,则正实数a =________.[解析] (1)法一:(1-x )6的展开式的通项为C m 6·(-x )m =C m 6(-1)m x m 2,(1+x )4的展开式的通项为C n 4·(x )n=C n 4x n 2,其中m =0,1,2,…,6,n =0,1,2,3,4.令m 2+n 2=1,得m +n =2, 于是(1-x )6(1+x )4的展开式中x 的系数等于C 06·(-1)0·C 24+C 16·(-1)1·C 14+C 26·(-1)2·C 04=-3. 法二:(1-x )6(1+x )4=[(1-x )(1+x )]4(1-x )2=(1-x )4(1-2x +x ).于是(1-x )6(1+x )4的展开式中x 的系数为C 04·1+C 14·(-1)1·1=-3. (2)(ax +1)6的展开式中含x 2项的系数为C 46a 2,含x 项的系数为C 56a ,由(x -1)(ax +1)6的展开式中含x2项的系数为0,可得-C 46a 2+C 56a =0,因为a 为正实数,所以15a =6,所以a =25.[答案] (1)B (2)25[解题技法]求形如(a +b )m (c +d )n (m ,n ∈N *)的展开式中与特定项相关的量的步骤 第一步,根据二项式定理把(a +b )m 与(c +d )n 分别展开,并写出其通项公式;第二步,根据特定项的次数,分析特定项可由(a +b )m 与(c +d )n 的展开式中的哪些项相乘得到; 第三步,把相乘后的项合并即可得到所求特定项或相关量. 考法(三) 求形如(a +b +c )n (n ∈N *)的展开式中与特定项相关的量 [例3] (1)(x 2+x +y )5的展开式中x 5y 2的系数为( )A.10B.20C.30D.60(2)将3)44(-+xx 展开后,常数项是________. [解析] (1)(x 2+x +y )5的展开式的通项为T r +1=C r 5(x 2+x )5-r ·y r ,令r =2,则T 3=C 25(x 2+x )3y 2,又(x 2+x )3的展开式的通项为T k +1=C k 3(x 2)3-k ·x k =C k 3x 6-k ,令6-k =5,则k =1,所以(x 2+x +y )5的展开式中,x 5y 2的系数为C 25C 13=30.(2)3)44(-+x x =6)2(x x -展开式的通项是C k 6(x )6-k ·k x)2(-=(-2)k ·C k 6x3-k. 令3-k =0,得k =3.所以常数项是C 36(-2)3=-160.[解析] (1)C (2)-160 [解题技法]求形如(a +b +c )n (n ∈N *)的展开式中与特定项相关的量的步骤 第一步,把三项的和a +b +c 看成是(a +b )与c 两项的和; 第二步,根据二项式定理写出[(a +b )+c ]n 的展开式的通项;第三步,对特定项的次数进行分析,弄清特定项是由(a +b )n -r 的展开式中的哪些项和c r 相乘得到的;第四步,把相乘后的项合并即可得到所求特定项或相关量.[题组训练]1.(2018·洛阳第一次统考)若a =⎰πs inxdx ,则二项式6)1(xx a -的展开式中的常数项为( )A.-15B.15C.-240D.240解析:选D 由a =∫π0 sin x d x =(-cos x )|π0=(-cos π)-(-cos 0)=1-(-1)=2,得6)12(xx -的展开式的通项公式为T r +1=C r 6(2x )6-rr x )1(-=(-1)r C r 6·26-r ·x 3-32r ,令3-32r =0,得r =2,故常数项为C 26·24=240.2.(2019·福州四校联考)在(1-x 3)(2+x )6的展开式中,x 5的系数是________.(用数字作答)解析:二项展开式中,含x 5的项是C 562x 5-x 3C 2624x 2=-228x 5,所以x 5的系数是-228.答案:-228 3.5)212(++x x (x >0)的展开式中的常数项为________. 解析:5)212(++x x (x >0)可化为10)12(xx +,因而T r +1=C r 10)21(10-r (x )10-2r ,令10-2r =0,得r =5,故展开式中的常数项为C 510·)21(5=6322. 答案:6322考点二 二项式系数的性质及各项系数和[典例精析](1)若nxx )1(3+展开式中各项系数之和大于8,但小于32,则展开式中系数最大的项是( ) A.63x B.4x C.4x 6x D.4x或4x 6x(2)若nxx )1(2-的展开式中含x 的项为第6项,设(1-3x )n =a 0+a 1x +a 2x 2+…+a n x n ,则a 1+a 2+…+a n 的值为________.(3)若(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =________. [解析] (1)令x =1,可得nxx )1(3+的展开式中各项系数之和为2n ,即8<2n <32,解得n =4,故第3项的系数最大,所以展开式中系数最大的项是C 24(x )223)1(x =63x .(2)nxx )1(2-的展开式的通项公式为T r +1=C r n (x 2)n -r ·r x)1(-=C r n (-1)r x2n-3r,因为含x 的项为第6项,所以r =5,2n -3r =1,解得n =8, 在(1-3x )n 中,令x =1,得a 0+a 1+…+a 8=(1-3)8=28, 又a 0=1,所以a 1+…+a 8=28-1=255.(3)设(a +x )(1+x )4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5, 令x =1,得16(a +1)=a 0+a 1+a 2+a 3+a 4+a 5,① 令x =-1,得0=a 0-a 1+a 2-a 3+a 4-a 5,② ①-②,得16(a +1)=2(a 1+a 3+a 5),即展开式中x 的奇数次幂项的系数之和为a 1+a 3+a 5=8(a +1),所以8(a +1)=32,解得a =3. [答案] (1)A (2)255 (3)3[解题技法]1.赋值法的应用二项式定理给出的是一个恒等式,对于x ,y 的一切值都成立.因此,可将x ,y 设定为一些特殊的值.在使用赋值法时,令x ,y 等于多少,应视具体情况而定,一般取“1,-1或0”,有时也取其他值.如: (1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子,求其展开式的各项系数之和,只需令x =1即可. (2)形如(ax +by )n (a ,b ∈R )的式子,求其展开式各项系数之和,只需令x =y =1即可. 2.二项展开式各项系数和、奇数项系数和与偶数项系数和的求法 若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )的展开式中 (1)各项系数之和为f (1).(2)奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2.(3)偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.[题组训练]1.(2019·包头模拟)已知(2x -1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则|a 0|+|a 1|+…+|a 5|=( )A.1B.243C.121D.122 解析:选B 令x =1,得a 5+a 4+a 3+a 2+a 1+a 0=1,① 令x =-1,得-a 5+a 4-a 3+a 2-a 1+a 0=-243,② ①+②,得2(a 4+a 2+a 0)=-242, 即a 4+a 2+a 0=-121.①-②,得2(a 5+a 3+a 1)=244,即a 5+a 3+a 1=122. 所以|a 0|+|a 1|+…+|a 5|=122+121=243.2.若(x +2+m )9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为________.解析:令x =0,则(2+m )9=a 0+a 1+a 2+…+a 9,令x =-2,则m 9=a 0-a 1+a 2-a 3+…-a 9, 又(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=(a 0+a 1+a 2+…+a 9)(a 0-a 1+a 2-a 3+…+a 8-a 9)=39,∴(2+m )9·m 9=39,∴m (2+m )=3, ∴m =-3或m =1. 答案:-3或13.已知(1+3x )n 的展开式中,后三项的二项式系数的和等于121,则展开式中二项式系数最大的项为________.解析:由已知得C n -2n +C n -1n +C n n=121,则12n ·(n -1)+n +1=121,即n 2+n -240=0,解得n =15(舍去负值),所以展开式中二项式系数最大的项为T 8=C 715(3x )7和T 9=C 815(3x )8. 答案:C 715(3x )7和C 815(3x )8考点三 二项展开式的应用[典例精析]设a ∈Z ,且0≤a <13,若512 018+a 能被13整除,则a =( )A.0B.1C.11D.12 [解析] 由于51=52-1,512 018=(52-1)2 018=C 02 018522 018-C 12 018522 017+…-C 2 0172 018521+1,又13整除52,所以只需13整除1+a ,又0≤a <13,a ∈Z ,所以a =12.[答案] D[解题技法]利用二项式定理解决整除问题的思路(1)要证明一个式子能被另一个式子整除,只要证明这个式子按二项式定理展开后的各项均能被另一个式子整除即可.因此,一般要将被除式化为含相关除式的二项式,然后再展开.(2)用二项式定理处理整除问题,通常把底数写成除数(或与除数密切关联的数)与某数的和或差的形式,再用二项式定理展开.但要注意两点:①余数的范围,a =cr +b ,其中余数b ∈[0,r ),r 是除数,若利用二项式定理展开变形后,切记余数不能为负;②二项式定理的逆用.[题组训练]1.使得多项式81x 4+108x 3+54x 2+12x +1能被5整除的最小自然数x 为( )A.1B.2C.3D.4解析:选C ∵81x 4+108x 3+54x 2+12x +1=(3x +1)4,∴上式能被5整除的最小自然数为3.2.1-90C 110+902C 210-903C 310+…+(-1)k 90k C k 10+…+9010C 1010除以88的余数为________. 解析:∵1-90C 110+902C 210+…+(-1)k 90k C k 10+…+9010C 1010=(1-90)10=8910,∴8910=(88+1)10=8810+C 110889+…+C 91088+1,∵前10项均能被88整除,∴余数为1.答案:1[课时跟踪检测]A 级 1.(2019·河北“五个一名校联盟”模拟)342)2(x x -的展开式中的常数项为( )A.-32B.32C.6D.-6 解析:选D 通项T r +1=C r 3)2(2x3-r ·(-x 4)r =C r 3(2)3-r·(-1)r x -6+6r ,当-6+6r =0,即r =1时为常数项,T 2=-6,故选D.2.设(2-x )5=a 0+a 1x +a 2x 2+…+a 5x 5,则a 2+a 4a 1+a 3的值为( )A.-6160B.-122121C.-34D.-90121解析:选C 由二项式定理,得a 1=-C 1524=-80,a 2=C 2523=80,a 3=-C 3522=-40,a 4=C 452=10,所以a 2+a 4a 1+a 3=-34.3.若二项式72)(xax +的展开式的各项系数之和为-1,则含x 2项的系数为( )A.560B.-560C.280D.-280解析:选A 取x =1,得二项式72)(xa x +的展开式的各项系数之和为(1+a )7,即(1+a )7=-1,1+a =-1,a =-2.二项式72)2(xx -的展开式的通项T r +1=C r 7·(x 2)7-r ·)2(x-r =C r 7·(-2)r ·x 14-3r.令14-3r =2,得r =4.因此,二项式72)2(xx -的展开式中含x 2项的系数为C 47·(-2)4=560.4.(2018·山西八校第一次联考)已知(1+x )n 的展开式中第5项与第7项的二项式系数相等,则奇数项的二项式系数和为( )A.29B.210C.211D.212解析:选A 由题意得C 4n =C 6n ,由组合数性质得n =10,则奇数项的二项式系数和为2n -1=29. 5.二项式92)21(x x-的展开式中,除常数项外,各项系数的和为( )A.-671B.671C.672D.673解析:选B 令x =1,可得该二项式各项系数之和为-1.因为该二项展开式的通项公式为T r +1=C r 9)1(x9-r·(-2x 2)r =C r 9(-2)r ·x 3r -9,令3r -9=0,得r =3,所以该二项展开式中的常数项为C 39(-2)3=-672,所以除常数项外,各项系数的和为-1-(-672)=671.6.(2018·石家庄二模)在(1-x )5(2x +1)的展开式中,含x 4项的系数为( )A.-5B.-15C.-25D.25解析:选B 由题意含x 4项的系数为-2C 35+C 45=-15.7.(2018·枣庄二模)若(x 2-a )10)1(xx +的展开式中x 6的系数为30,则a 等于( )A.13B.12 C.1 D.2 解析:选D 10)1(xx +的展开式的通项公式为T r +1=C r 10·x 10-r ·r x)1(=C r 10·x 10-2r,令10-2r =4,解得r =3,所以x 4项的系数为C 310.令10-2r =6,解得r =2,所以x 6项的系数为C 210.所以(x 2-a )10)1(xx +的展开式中x 6的系数为C 310-a C 210=30,解得a =2.8.若(1+mx )6=a 0+a 1x +a 2x 2+…+a 6x 6,且a 1+a 2+…+a 6=63,则实数m 的值为( )A.1或3B.-3C.1D.1或-3解析:选D 令x =0,得a 0=(1+0)6=1.令x =1,得(1+m )6=a 0+a 1+a 2+…+a 6.∵a 1+a 2+a 3+…+a 6=63,∴(1+m )6=64=26,∴m =1或m =-3.9.(2019·唐山模拟)(2x -1)6的展开式中,二项式系数最大的项的系数是________.(用数字作答)解析:(2x -1)6的展开式中,二项式系数最大的项是第四项,系数是C 3623(-1)3=-160.答案:-16010.(2019·贵阳模拟)9)(xa x +的展开式中x 3的系数为-84,则展开式的各项系数之和为________. 解析:二项展开式的通项T r +1=C r 9x9-rr xa)(=a r C r 9x 9-2r ,令9-2r =3,得r =3,所以a 3C 39=-84,解得a=-1,所以二项式为9)1(xx -,令x =1,则(1-1)9=0,所以展开式的各项系数之和为0. 答案:011.5)11(++xx 展开式中的常数项为________. 解析:5)11(++x x 展开式的通项公式为T r +1=C r 5·)1(xx +5-r .令r =5,得常数项为C 55=1,令r =3,得常数项为C 35·2=20,令r =1,得常数项为C 15·C 24=30,所以展开式中的常数项为1+20+30=51. 答案:51 12.已知n xx )21(4+的展开式中,前三项的系数成等差数列.(1)求n ;(2)求展开式中的有理项; (3)求展开式中系数最大的项.解:(1)由二项展开式知,前三项的系数分别为C 0n ,12C 1n ,14C 2n , 由已知得2×12C 1n =C 0n +14C 2n ,解得n =8(n =1舍去). (2)84)21(xx +的展开式的通项T r +1=C r 8(x )8-r·)21(4xr =2-r C r 8x 4-3r4(r =0,1,…,8), 要求有理项,则4-3r 4必为整数,即r =0,4,8,共3项,这3项分别是T 1=x 4,T 5=358x ,T 9=1256x 2.(3)设第r +1项的系数a r +1最大,则a r +1=2-rC r8,则a r +1a r =2-r C r82-(r -1)C r -18=9-r 2r ≥1,a r +1a r +2=2-r C r 82-(r +1)C r +18=2(r +1)8-r≥1, 解得2≤r ≤3.当r =2时,a 3=2-2C 28=7,当r =3时,a 4=2-3C 38=7,因此,第3项和第4项的系数最大,B 级1.在二项式nxx )1(-的展开式中恰好第五项的二项式系数最大,则展开式中含有x 2项的系数是( )A.35B.-35C.-56D.56解析:选C 由于第五项的二项式系数最大,所以n =8.所以二项式8)1(xx -展开式的通项公式为T r +1=C r 8x 8-r (-x -1)r =(-1)r C r 8x8-2r,令8-2r =2,得r =3,故展开式中含有x 2项的系数是(-1)3C 38=-56.2.已知C 0n -4C 1n +42C 2n -43C 3n +…+(-1)n 4n C n n =729,则C 1n +C 2n +…+C nn 的值等于( )A.64B.32C.63D.31解析:选C 因为C 0n -4C 1n +42C 2n -43C 3n +…+(-1)n 4n C n n =729,所以(1-4)n =36,所以n =6,因此C 1n +C 2n +…+C n n =2n -1=26-1=63.3.(2019·济南模拟)5)12)((xx x ax --的展开式中各项系数的和为2,则该展开式中含x 4项的系数为________. 解析:令x =1,可得5)12)((xx x a x --的展开式中各项系数的和为1-a =2,得a =-1,则5)12)(1(xx x x -+展开式中含x 4项的系数即是5)12(xx -展开式中的含x 3项与含x 5项系数的和.又5)12(xx -展开式的通项为T r +1=C r 5(-1)r ·25-r ·x 5-2r,令5-2r =3,得r =1,令5-2r =5,得r =0,将r =1与r =0分别代入通项,可得含x 3项与含x 5项的系数分别为-80与32,故原展开式中含x 4项的系数为-80+32=-48.答案:-484.设复数x =2i 1-i(i 是虚数单位),则C 12 019x +C 22 019x 2+C 32 019x 3+…+C 2 0192 019x 2 019=( ) A.i B.-i C.-1+i D.-i -1解析:选D 因为x =2i 1-i =2i (1+i )(1-i )(1+i )=-1+i ,所以C 12 019x +C 22 019x 2+C 32 019x 3+…+C 2 0192 019x 2 019=(1+x )2 019-1=(1-1+i)2 019-1=i 2 019-1=-i -1.5.已知(x +2)9=a 0+a 1x +a 2x 2+…+a 9x 9,则(a 1+3a 3+5a 5+7a 7+9a 9)2-(2a 2+4a 4+6a 6+8a 8)2的值为( )A.39B.310C.311D.312解析:选D 对(x +2)9=a 0+a 1x +a 2x 2+…+a 9x 9两边同时求导,得9(x +2)8=a 1+2a 2x +3a 3x 2+…+8a 8x 7+9a 9x 8,令x =1,得a 1+2a 2+3a 3+…+8a 8+9a 9=310,令x =-1,得a 1-2a 2+3a 3-…-8a 8+9a 9=32.所以(a 1+3a 3+5a 5+7a 7+9a 9)2-(2a 2+4a 4+6a 6+8a 8)2=(a 1+2a 2+3a 3+…+8a 8+9a 9)(a 1-2a 2+3a 3-…-8a 8+9a 9)=312.6.设a =⎠⎛012x d x ,则二项式62)1(xax -展开式中的常数项为________.解析:a =⎠⎛012x d x =x 2⎪⎪⎪10=1,则二项式62)1(x ax -=62)1(xx -,其展开式的通项公式为T r +1=C r 6(x 2)6-r ·)1(x-r =(-1)r C r 6x12-3r,令12-3r =0,解得r =4.所以常数项为(-1)4C 46=15.答案:15。
二项式定理
高中数学知识点:二项式定理
一、二项式定理
二项式定理是指这样一个展开式的公式.它是(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3…等等展开式的一般形式,在初等数学中它与各章节的联系似乎不太多,而在高等数学中它是许多重要公式的共同基础,根据二项式定理的展开,才求得y=xn的导数公式y′=nxn-1,同时e≈2.718281…也正是由二项式定理的展开规律所确定。
二、掌握二项展开式的特点
1.项数:共n+1项.
2.系数:组合数Crm叫做二项式系数.要注意"二项式系数"是严格定义的概念,仅指展开式中的组合数,它与"项的系数"是不同的概念.
3.指数:按通项公式记准升幂与降幂的规律.
4.因为二项式系数就是组合数,所以应将上一节学过的组合数的两个性质与本节学习的性质综合起来概括出组合数的所有有用的性质.。
二次项公式
二次项公式二次项公式是(a+b)^n=Cn^0xa^n+Cn^1xa^n-1b^1+…+Cn^rxa^n-rb^r+…+Cn^nxb^n(n∈Nx)。
二次项公式又称牛顿二项式定理,由艾萨克·牛顿于1664年、1665年间提出。
该定理给出两个数之和的整数次幂诸如展开为类似项之和的恒等式。
二项式定理可以推广到任意实数次幂,即广义二项式定理。
二项式定理最初用于开高次方。
在中国,成书于1世纪的(九章算术)提出了世界上最早的多位正整数开平方、开立方的一般程序。
11世纪中叶,贾宪在其(释锁算书)中给出了“开方作法本原图〞,满足了三次以上开方的需要。
但是,贾宪并未给出二项式系数的一般公式,因而未能建立一般正整数次幂的二项式定理。
什么是二次项系数比方:y=3x^2+2x+1,3是二次项系数,2是一次项系数,1是常数项。
任何一个一元二次方程都可以转换成 ax^2+bx+c=0 〔a≠0〕。
这里面 a就是二次项系数也就是说,〔a的一次幂+x的一次幂〕整个整体,为二次项。
二次项系数的作用在一元二次方程或二次函数中,二次项系数的作用是决定函数图像的开口方向和开口大小,同时也运用在分析和求解二次不等式的根中。
二次项定理的公式为(a+b)^n=Cn0·a^n+Cn1 ·a^n-1·b+…+Cnr·a^n-r·b^r+…+Cnn·b^n(n∈N﹢)这个公式所表示的规律叫做二次项定理,等式右边的多项式叫做(a+b)^n的二项展开式,它一共有n+1项,其中各项系数Cnr(r=0,1,…,n〕叫做展开式的二项式系数。
展开式中的Cnr·a^n-r·b^r项叫做二项展开式的通项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四节二项式定理考纲解读1. 能用计数原理证明二项式定理•2. 会用二项式定理解决与二项式展开式有关的简单问题命题趋势探究1. 高考对本节内容的考查常以选择题或填空题的形式出现,并且高于中等偏易试题2. 主要考查内容是:①利用通项求解展开式中的某指定项;②利用二项式特别是 1 x n的展开式求解系数或求某些类似于二项展开式的式子的值;③二项式系数的有关问题知识点精讲一、二项式定理(a +b n=C0a n b°+c n a nJL b +…+c n a n_r b r+…+C n n a°b n(n乏N*).展开式具有以下特点:(1 )项数:共n • 1项•(2)二项式系数:依次为组合数c0,c n,c:,…,C:.(3)每一项的次数是一样的,都为n次,展开式依a的降幕、b的升幕排列展开.特别地,(1+xf =1+弘+弘2 + …+C:x n.二、二项式展开式的通项(第r 1项)二项式展开的通项为「1 =c n a n」b r r = 0,1,2,3,…,n..其中U的二项式系数.令变量(常用x )取1,可得T r 1的系数.注通项公式主要用于求二项式展开式的指数、满足条件的项数或系数、展开式的某一项或系数.在应用通项公式时要注意以下几点:①分清C;a n_r b r是第r 1项,而不是第r项;②在通项公式T r = C n r a n_r b r中,含T r gC:, a, b, r, n这6个参数,只有a, b, r, n是独立的,在未知r,n的情况下利用通项公式解题,一般都需要先将通项公式转化为方程组求n和r .三、二项式展开式中的系数(1)二项式系数与项的系数二项式系数仅指c0,c n,C:,…,Cn而言,不包括字母a,b所表示的式子中的系数.例如:2 x n的展开式中,含有x r的项应该是「1 =c n2n」x n,其中c n叫做该项的二项式系数,而x r的系数应该是C;2nJ(即含x r项的系数)(2)二项式系数的性质①在二项式展开式中,与首末两端“等距离”的两项的二项式系数相等,即0 n 1 nJ 2 n -2C n =C n,C n =C n , C n - C n ,…,C n r-c n -rn②二项展开式中间项的二项式系数最大n -如果二项式的幕指数 n 是偶数,中间项是第 -1项,其二项式系数 c n 最大;如果二2 n +1n +1项式的幕指数n 是奇数,中间项有两项,即为第 亠」项和第 —1项,它们的二项式系2 2nJn 1数C 石和cF 相等并且最大• (3 )二项式系数和与系数和①二项式系数和c0 +C ; +…+ C : =(1+1)n =2n奇数项二项式系数和等于偶数项二项式系数和,②系数和 求所有项系数和,令 X =1 ;求变号系数和,令 X = -1 ;求常数项,令 x = 0。
题型归纳及思路提示题型172二项式定理展开式的应用思路提示对二项展开式的认识不仅要关注展开式中对各项的特点,更重要的是要理解等 式两边的关系,右边是左边 n 个因式a b 积的结果,而左边是右边各项和的结果,这就为 此类问题的解决提供了思考的方向和解决的思路。
例12.30用计数原理证明:a b n Wa n L c2a n 'b 2 jl Fami • £b n n N , r = 0,1,2,…,n .解析: a • b “二;a • b LI a • b _…LI a • b,,,其展开式的通项为 vn 个a b 中的n-r 个a b 中每一个取a , r 个a b 中每一个取b 相乘取得的,这样 的取法(只需从 r个a b 中取b ,自然剩余 n - r 个a b 中取a )共有C :种,即 rA =6 (r =0,1,2…,n ).故 a ■ b “ 二C °a n ' c n a n 'b ' c ;a n 'b 2 •丨11 • da " ”b r JI I ' c :b n 变式1在x-1 x-2 x-3 x-4 x-5的展开式中,x 的系数为()A. -15B. 85C. -120D. 274即 C 0 ■ C 2 ■ Cn ■ =c n +。
;十^匕…=2n 」A r a n_c b r ,是由 n 个2 5变式2在(x +4x+2)的展开式中,x的系数为______________ (用数字作答)的展开式中整理后的常数项为_________ (用数字作答)题型173 二项展开式通项的应用思路提示二项展开式的通项从微观角度反映了二项展开式的全貌,项展是展开式的缩影,它可以用于求开式的任意指定项及其系数等。
(1屮例12.31 (1)x22 冷-1的展开式的常数项是l x丿A. -3B. -2C. 2D. 3⑵1 2&3 1-3x 5展开式中x的系数为(A. -4B. -2C. 2D. 410变式1 (1 — X2X1 + X )展开式中x5的系数为_________,/ <0变式2 (1 +扳:S +丄丨展开式中的常数项为_____________________变式3已知(仆心;+学的展开式中没有常数项,nW,且2S8 , nI x丿例12.32 (1)求证:2n_2 n,2n・N,n_3 .(「V(2)求证:2 :11 3 n _2,n Nn变式 1 a,b^R , a+b 启0, n w N*.求证:a\2 I 2丿n n n变式 2 求证:2n「I [2n j 亠[2n-1 n N变式3对于n+,求证:3^1+丄厂I n丿J n +1丿例12.33⑵(2017新课标川理数) (x+y)(2x-y)5的展开式中x3 y 3的系数为B. -40C. 40D. 801变式1X dx的展开式中含x15的项的系数为(a丫变式2设二项式x (a 0)的展开式中X3的系数为A,常数项为B,若B=4A, I仮丿则a的值为变式3 (x-展开式中x3y7与x7y3的系数和为________________________ (用数字作答)。
20例12.34 (x+V3y)展开式中系数为有理数的项共有_________________ 项。
n变式2 1.2 a 2 (a,b 为有理数),则a b =()A. 45B. 55C. 70D. 80fi 屮变式3 : xJX-— |展开式中存在常数项,正整数n 的最小值为 ___________k x 丿的第三项和第二项系数之比为 11: 2,求展开式中有理项有多少个?变式1题型174 二项展开式的系数和问题思路提示有关系数和的问题不仅要注意二项式系数和的结果,重要的是研究二项式系数所用的方法即赋值法,这里就需要读者根据题目结合已知条件进行赋值。
7 2 7例12.35 已知1-2x = a o y x • a2X -11|a7x .求(1)a1• a2a7;(2)a i ■ a3 ■ a5 ■ a7 ;(3)a0 a2 a4■ a6;(4)& + a a7 .44 2 2变式1已知二项展开式2x • 3 = a0• a/ 亠亠a4x,贝U a0 a2 a^ - ia1- a3变式2 ,x+a”2x-丄]的展开式中各项系数的和为2,则该展开式中常数项为()I x人x丿A. -40B. -20C. 20D. 40. n n(…苛 x + a ° gx+…+ a n X变式 2 若(1 —2x 丫 =a 0 +印乂+…+ a 7x 7,则 6 +2a 2 中…+ 7a 7 = ____________例 12.36 若 1_2x 2015=ao a/ ...a 2015X2015(X R ),则号•黃…•躺的值为()A. 2B.C. -1D. -2a 1 - a 2a n J=29 - n ,那么自然数 n 的值为()A. 3B. 4C. 5D. 6题型175 二项展开式中系数或项的最大、最小问题思路提示二项式系数最大(小)问题按前述“知识点精讲”原理求解•系数或项的最大、最小问题需按该项大于(或小于)等于相邻两项,列不等式组求解。
例12.37 (a+b$展开式中:(1) _______________________________________________ 只有第7项的二项式系数最大,则n= ;(2)第7项二项式系数取最大值,n = _____________ .10变式1 求(1 -X )展开式的系数最大项和最小项。
11变式2 求(1 +2x )展开式中二项式系数最大项数和系数最大项数。
12.已知fn(x)=(1+x)n(n^ 。
最有效训练题52 (限时30分钟)1. 2X2-1的二项展开式中,x的系数为()I X丿A. 10B.-10C.40D. -40n 5 62. 1 3x (其中n • N且n _ 6)展开式中,x与x的系数相等,则n =()A. 6B. 7C.8D. 93 x a的展开式中,x3的系数为10,则实数a等于()x1A. -1B.C. 1D. 224. (2017新课标I理数).(「Ax—X)6展开式中x2的系数为x5. 若X2 -1展开式中的所有二项式系数和为512,则该展开式中的常数项为()I X丿A. -84B. 84C. -36D. 362 9 2 116. 设x 1 2x 1 =80 81 x 2 • a? x • 2 i亠亠厲必,则a°•印………钏的值为()A. 2B. -1C.-2D. 1(1 ^n 17. 若x •丄的展开式中第3项与第7项的二项式系数相等,则该展开式中的厶的系数X X2为—n 28. (2017山东理)已知(1+3x j的展开式中含有x项的系数是54,则n=__________________ .1 09.已知(x+1j =a<i+a2x+…+耳必10,若数列a「a2,电…,a k (1兰k兰11,k^Z )是个单调递增数列,则k的最大值为_____________ .3 2 54 3 210. (2017浙江)已知多项式(x+1) (x+2) =x +a1X +a?x +a3X +a4x+a5,则a4= _________________nk nk C n 二n 2A. 15B. 20C. 30D. 3511.证明:k =02011 、(1) 右f 2011 x = a°■a)X ■…a201l X ,求a i ■a3 …a2009 a2011 的值;(2) 若g(x) = f6 x ]亠2 f? x ]亠3f8 x,求g(x)中含x6的项的系数;(3) 证明:曲+2曲书+3C爲+…+ nC;z = |冒);1'C^|_ —■12.已知fn(x)=(1+x)n(n^ 。