古典概型说课稿
说课稿-古典概型-高中数学必修3
高中数学必修3《古典概型》说课稿说教材《古典概型》出自于人教版高中必修3第三章第二节的内容,本节课的主要内容是古典概型的定义以及如何求古典概型事件的概率。
本节课是学生在学习了随机事件和了解的频率、概率概念的基础上来进行学习的,同时为学生以后学习几何概型及其概率等相关概率知识打下了基础。
因此,本节课在统计与概率中起着承上启下的作用。
之所以首先对文本有一个全面透彻的把握,是为了接下来的教学目标等内容的设置更加准确具体,下面我来说一下本节课的教学目标:1.学生正确理解基本事件的概念,理解古典概型的两个特点以及利用古典概型概率公式求随机事件的概率,形成相应的数学方法和思想,数学抽象的能力不断加强。
2.通过对各种不同的实际情况的分析、判断、探索,培养学生的应用能力,数据分析的能力不断加强;发展学生类比、归纳、猜想等合情推理能力,培养学生的逻辑推理素养。
3.通过各种有趣的,贴近学生生活的素材,激发学生学习数学的热情和兴趣,培养学生勇于探索,善于发现的创新思想。
基于以上对教材地位和作用的分析,为了更好的实现教学目标,本节课的教学重难点。
教学重点理解古典概型的概念并会求概率。
教学难点古典概型中基本事件的个数和试验中基本事件的总数。
说学情奥苏伯尔认为:“影响学习的最重要的因素,就是学习者已经知道了什么,要探明这一点,并据此进行教学。
”因而在教学之始,必须关注学生的基本情况:学习本节课以前,已经接触过有关概率的一些相关知识,有了一定的基础,为本节课的学习奠定了良好的开端。
高中生的认知发展已接近成人的水平。
他们精力旺盛,思想敏锐,能言善辩,反应迅速,能够用发展的眼光看问题。
但毕竟还未完全成熟,对他们还不能完全用对成人的要求来对待。
高中生情感和情绪有了一定程度的稳定。
集体意识、自尊心、友谊等的需要都表现得非常明显。
自我意识得到了很大发展,自尊心、自信心等更为强烈。
这个特点是高中生最为重要的。
因此,我会在课堂上给学生更多的自我展示的机会,同时在这过程中也需要发挥我的指示和引导作用。
古典概型说课稿参考模板范本
古典概型(说课稿)各位评委下午好!今天我说课的题目是《古典概型》。
接下来我将从:教材分析,教学目标,教法学法,教学过程,作业布置、教学评价六方面来阐述我这节课的设计。
一、教材分析:《古典概型》位于苏教版必修三第三章第二节。
是在学习随机事件之后,几何概型之前。
所以本节内容是随机事件知识的延续,也是学习几何概型的基础。
本节课所讲的基本概率知识,是以后数学学习中不可缺少的部分,也是今后高考的必考内容。
二、教学目标:(1)正确理解基本事件的概念,准确求出基本事件及其个数;(2)在数学建模的过程中,正确理解古典概型的两个特点;(3)推导和掌握古典概型的概率计算公式,感受化归的重要思想,会用列举法计算一些随机事件所含的基本事件数及其事件发生的概率,学会运用数形结合、分类讨论的思想解决概率的计算问题。
教学重点:1、理解古典概型的概念;2、利用古典概型概率公式求解随机事件的概率。
难点:1、判断一个随机试验是否为古典概型;2、古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。
三、教法学法分析教学方法在教学中以问题为核心,采取引导发现法,通过“提出问题、思考问题、解决问题”的教学过程,借助实物试验、多媒体课件引导学生进行试验探究、观察类比、概括归纳古典概型的概念及其概率公式,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。
学生学法学生通过“试验观察、思考探究、归纳总结”的自主学习解惑过程,体验了从特殊到一般的数学思维过程,体会学以致用和数学的严谨之美,增强学习的兴趣和信心。
四、教学过程一、提出问题、情景引入二、类比归纳、引出概念三、例题分析、加深理解四、练习反馈、强化目标五、总结概括、提炼精华上述五个方面由表及里、由浅入深,层层递进。
从数到形,螺旋上升。
多层次、多角度地加深对概念的理解,进行对重点难点的突破。
提高学生学习的兴趣,以达到良好的教学效果一) 提出问题、情景引入课前模拟实验:教学活动:老师布置学生分组实验,并提出2个问题;学生实验并回答问题,科代表统汇总结果和问题答案课前模拟试验:(1)抛掷一枚质地均匀的硬币,观察哪个面朝上的试验。
高二上册数学古典概型说课稿范文
高二上册数学古典概型说课稿高二上册数学古典概型说课稿范文一、教材分析本节课人教版普通高中课程标准实验教科书数学必修3第三章概率第二节古典概型的第一课时。
古典概型是在随机事件的概率之后,几何概型之前进行教学的。
古典概型是一种理想的数学模型,也是一种最基本的概率模型,它的引入避免了大量的重复试验,而且得到的是概率准确值,有利于理解概率的概念,有利于计算一些简单事件的概率,有利于解释生活中的一些现象与问题。
而接下来要学习的几何概型与古典概型有很多相通之处,学好古典概型可以为学习几何概型奠定基础,起到了承前启后的作用。
古典概型在高等数学中概率论中也占有相当重要的地位,为学生学习高等数学做好衔接和铺垫。
二、学情分析认知分析:学生已经了解概率的意义,掌握了概率的基本性质,知道了互斥事件和对立事件的概率公式,这三者形成了学生思维的“最近发展区”。
此时学生们并没有学习排列组合的知识。
随机事件的概率在教材中主要通过观察和试验的方法,得到一些事件的概率估计,学生的认知水平更多的停留在感性认识的层面,还未上升到理性认识的高度。
能力分析:学生已经具备了一定的归纳、猜想能力,但数学的理性的思维能力和应用意识仍需提高。
但对知识的理解和方法的掌握在一些细节上不完备,反映在解题中就是思维不慎密,过程不完整,解决问题的能力还略显单薄。
情感分析:由于本章开始的内容起点低,坡度小,与实际联系紧密,多数学生对本章的学习有一定的兴趣,心里有想好好学习的意愿和信心。
三、教学目标在新课标让学生经历“学数学、做数学、用数学”的理念指导下,以教材为背景,我将本节课的教学目标分为以下三个方面:知识与技能:1。
理解古典概型的概念2。
利用古典概型求解随机事件的概率过程与方法:在教学过程中,进一步发展学发现问题,分析问题,解决问题的能力;培养学生归纳、类比等合情推理能力;培养学生的应用能力与意识。
情感态度与价值观:激发学生学习数学的热情,培养学生勇于探索,善于发现的创新思想;结合问题的现实意义,培养学生的合作精神。
古典概型说课稿
古典概型说课稿
3.2.1古典概型(说课稿)
一教材分析
1.本节内容在高中教材中的地位和作用
《古典概型》是高中数学人教A版必修3第三章第二大节的内容,教学安排是2课时,本节课是第一课时。
古典概型是一种特殊的数学模型,它承接着前面学过的随机事件的概率及其性质,它的引入能使概率值的存在性易于被学生理解,也能使学生认识到重复实验在有些时候并不是获取概率值的唯一方法。
同时古典概型也是后面学习条件概率的基础,起到承前启后的作用,在概率论中占有相当重要的地位。
(这节课是在没有学习排列组合的前提下学习的,所以教学重点不是“如何计算”,而是让学生通过生活中的实例与数学模型去理解古典概型的两个特征。
我认为本节课的教学重点是——。
)
2.教学重难点
教学重点:理解古典概型及其概率计算公式。
教学难点:古典概型的判断。
二学情分析
学生在小学已经体验过事件发生的等可能性,和游戏规则的公平性,能计算一些简单事件发生的可能性。
在初中又进一步丰富了对概率的认识,知道了频率与概率的关系,会计算一些简单事件发生的概率。
高中现阶段学生已经了解了概率的意义,掌握了概率的基本性质,知道了互斥事件的加法公式。
有了这些知识作铺垫,学生接受起本节课的内容就会显得轻松很多。
(以教材为背景,根据学情设计了如下的教学目标)。
古典概型说课课件
5.6 总结概括 提炼精华
问题:
这节课你有什么收获?节课的知识结构,回顾思想 方法,使学生对本节课的知识 有一个系统全面的认识,并把 学过的相关知识有机地串联起 来,结合板书内容,便于学生记 忆,让学生的认知更上一层楼。
教学设计说明 教学设计说明
本节课内容特点:
古典概型是一种古老而特殊的概率模型,可以说没有古典概 型的研 究就没有概率学的产生,它 的引入既能避免大量的重复试验, 又能 得到概率的精确值.学习它有 利于深入理解概率的概念,有利 于厘清学生生活中困惑的概率问 题.同时、古典概型 在概率教学 中有着承上启下的作用.
本节课内容重点:
理解古典概型的概念及利用古典概型求解随机事件的概率.
02 教学目标及解析
通过“掷一枚质地均匀
的硬币的试验”和“掷一
枚质地均匀的骰子的试验”
1
了解基本事件的概念和特
点.
3
会用概率计算公式解决简
单的古典概型问题.用有现实 意义的实例,激发学生的学 习兴趣,善于发现的创新思 想.
通过 实例,理解古典概型
“石头、剪刀、布” 是一种起源于中国,如今 在全世界广泛流传的猜拳 游戏,其规则大家都知道, 那么大家知道玩这个游戏 时我们每次出拳获胜的概 率是多少吗?
设计意图
从“石头、剪刀、布”这一身 边熟悉的游戏入手,激发学生 学习兴趣,让学生感知今天即 将要学习的数学知识就在我们 的身边.
5.2 类比归纳 形成概念
1
事件的概率,了解互斥事件及互斥事件概率
加法公式.
2 学生学习的困难在于,对古典概型的 两个特征理解不够深刻,对基本事件的 总数的计算容易产生重复或遗漏.
3 本节课的教学难点:如何判断一个试 验是否是古典概型,分清在一个古典概 型中某随机事件包含的基本事件的个数 和试验中基本事件的总数.
古典概型一等奖优秀教案汇总古典概型公开课说课稿范文
古典概型一等奖优秀教案汇总古典概型公开课说课稿范文一、教学目标【知识与技能】会判断古典概型,会用列举法计算一些随机事件所含的基本事件数和试验中基本事件的总数;能够利用概率公式求解一些简单的古典概型的概率。
【过程与方法】通过从实际问题中抽象出数学模型的过程,提升运用从具体到抽象,特殊到一般的分析问题的能力和解决问题的能力。
【情感态度与价值观】在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是地科学态度,在此过程中还可以增加学习数学的学习兴趣。
二、教学重难点【重点】古典概型的概念以及概率公式。
【难点】如何判断一个试验是否是古典概型。
三、教学过程(一)导入新课提问:口袋里装2个白球和2个黑球,这4个球除颜色外完全相同,白球代表奖品,4个人按顺序依次从中摸球并记录结果,每一个人摸到白球的概率一样吗?追问:如何从理论上来计算出每个人的中奖率呢?引出课题:古典概型(二)探究新知1.探索基本事件和古典概型的概念师生活动:师生共同探讨两个概念的生成(1)抛掷一枚均匀的硬币,出现“正面朝上”和“反面朝上”的概率?(2)掷一粒均匀的骰子,出现“向上的点数为6”的概率是多少?活动:实验的结果只有6个,每种结果的可能性是相等的,每一种结果出现的概率都是(3)转动一个8等份标记的转盘,出现箭头指向4的概率为。
提问:以上三个实验都具有什么特征?预设:(1)试验的所有可能结果只有有限个,每次实验只出现其中的一个结果;(2)每一个试验结果出现的可能性相同。
我们把具有这样两个特征的随机试验的数学模型称为古典概型。
上面三个试验中,试验的每一个可能结果称为基本事件。
如果1次试验的等可能基本事件共有n个,那么每一个等可能基本事件发生的概率都是,如果一些事件A包含了其中M个等可能基本事件,那么事件A发生的概率P(A)=思考:向一个圆面内随机地投一个点,如果该点落在园内任意一点都是等可能的,你认为这是古典概型吗?为什么?(三)巩固提高1.一只口袋内装有大小相同的5只球,其中三只白球,2只黑球,从中一次摸出2只球。
高中数学说课——古典概型比赛说课稿
3.2.1 古典概型说课稿各位评委,老师大家好!我是,我说课的内容是人教A版、必修3、第三章概率的第二节、古典概型第一课时。
针对本节课我将以教什么?怎么教?为什么这么教为主旨,从教材分析、学情分析、教法学法分析、教学过程设计以及评价反思五方面进行介绍。
一.教材分析1.教材的地位和作用古典概型是一种古老而特殊的概率模型,可以说没有古典概型的研究就没有概率学的产生。
它的引入既能避免大量的重复试验,又能得到概率的精确值;学习它有利于深入理解概率的概念,有利于厘清学生生活中困惑的概率问题。
古典概型也是学习几何概型的基础,在概率教学中有着承上启下的作用。
根据新课改对“三维目标”的整体要求,整合确定本节课的教学目标。
1、知识与技能目标会用列举法计算一些随机事件所含基本事件的个数理解并掌握古典概型的概念及其概率计算公式;2、过程与方法目标通过两个课前数学试验让学生理解古典概型的特征,观察类比各个实验结果,归纳、猜想、证明出古典概型概率计算公式,体验由特殊到一般的化归思想。
3、情感态度和价值观目标通过各种有趣的、贴近生活的概率素材,激发学生学习概率的热情。
在古典概型概念探究和辨析时采用团队协作的方式,使学生感受与他人合作的重要性。
根据学生的认知发展水平,结合学情制定教学重点:理解并掌握古典概型的概念及其概率计算公式的应用;教学难点:如何判断一个实验是否是古典概型以及确定基本事件的个数。
二.学情分析在知识上,学生已经了解概率的意义,掌握了概率的基本性质,会用互斥事件的概率加法公式,这三者形成了学生认知的“最近发展区”,有利于自主学习。
在能力上,高一学生已经具备了一定的归纳、猜想能力,但数学应用意识仍不足。
情感上,在教师激励下多数学生能积极主动参与自主学习,但由于能力发展不均衡,仍有小部分学生心有余而力不足.三.教法学法分析为实现高效课堂的目标,我设计了娱乐化的数学实验、引导学生自主学习、合作探究,分组展示、直至产生质疑、参与点评,尽可能增加学生课堂参与度,将时间、空间还给学生。
说课稿
古典概型一、教材分析《古典概型》是高中数学北师大版必修3第三章概率3.2的内容,教学安排是2课时,本节是第一课时.古典概型是一种特殊的数学模型,他的引入避免了大量的重复试验,而且得到的是概率精确值,同时古典概型,也是后面学习条件概率的基础,起到承前启后的作用,所以在概率论中占有相当重要的地位.二、教学目标(以教材为背景,根据具体学情,设计了本节课的教学目标)1、知识目标:(1)通过试验理解基本事件的概念和特点(2)古典概型的特点(3)在数学建模的过程中,抽离出古典概型的两个基本特征,推导出概率的计算公式. (4)会用列举法计算一些随机事件所含的基本事件数及其发生的概率.2、能力目标:经历公式的推导过程,体验由特殊到一般的数学思想方法的应用.3、情感态度与价值观目标:(1)用有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现的创新思想.(2)培养学生掌握“理论来源于实践,并把理论应用于实践”的辨证思想.三、教学重点与难点这节课是在没有学习排列组合的基础上学习古典概型及其概率公式,所以教学重点:1、重点:(1)基本事件的特点;(2)古典概型的特点(3)会用列举法计算一些随机事件所含的基本事件数及其发生的概率.2、难点:用列举法或树状图表示随机事件的基本事件数及事件发生基本事件数.四、学情分析这个班是高一重点班大多数学生数学基础比较好,但部分学生对数学兴趣不是很强.本节课的学习是建立在学生已经了解了概率的意义,掌握了概率的基本性质,知道了互斥事件和对立事件的概率加法公式基础上,学生已经具备了一定的归纳、猜想能力但在数学的应用意识与应用能力方面尚需进一步培养.多数学生能够积极参与研究但在合作交流意识方面发展不够均衡有待加强.五、教法与学法(教无定法,教要得法,根据这节课的特点和学生的认知水平我设计了本节课的教法与学法)为了培养学生的自主学习能力,激发学习兴趣,培养智能.在教学中采取引导发现法,结合问题式教学,制作实际模型和多媒体等手段构建数学模型,引导学生进行观察讨论、归纳总结.鼓励学生自做自评,让学生做课堂的主人,培养团队精神,并利用了情感暗示以及恰当的评价等教学方法.学法指导,与教法呼应,学生合作探究,归纳总结,抽象概括,自主学习,.教会学生相互之间团结协作的能力,语言表达的能力,归纳概括的能力,发现问题,解决问题的能力.六、教学过程创设情境引出新课通过类比引出概念,开放课堂探究公式,例题分析加深理解,循序渐进知识引申,课堂小结自我评价,上述六个方面由表及里、由浅入深层层递进.从数到形层层上升.多层次、多角度地加深对概念的理解进行对重点难点的突破.提高学生学习的兴趣以达到良好的教学效果.一创设情景引出新课课前模拟试验:1抛掷一枚质地均匀的硬币观察哪个面朝上的试验.2抛掷一枚质地均匀的骰子的试验观察出现点数的试验.3转动一个四等分(分别标有数字1,2,3,4)的转盘,观察箭头指向数字的试验.问题1:列出上面三个试验在一次试验中可能出现的每一个结果?归纳总结出基本事件的概念:设计意图三个试验提高注意力和学生兴趣,问题的引出激发学生的求知欲望和学习兴趣.让学生思考讨论问题直接进入新课把课堂交给学生.模拟实验的目的是把问题具体化过渡到新课时自然有序同时也培养了学生的动手能力和与人合作的能力.二通过类比引出概念.问题2:基本事件有什么特点?以试验2为研究对象回答下列问题:(1)在一次试验中会同时出现“1点”和“2点”两个基本事件?(2)事件“出现奇数点”包含哪几个基本事件?(3)事件“出现的点数不大于4”包含哪几个基本事件?设计意图为了研究基本事件及其特征,教师引导以试验2为研究对象,提出有关试验结果的三个问题,发现它们的关系,学习方式先小组讨论然后全班交流,明确概念.在一个试验可能发生的所有结果中那些不能再分的最简单的随机事件称为基本事件. 基本事件的特点:(1)任何两个基本事件是互斥的(2)任何事件除不可能事件都可以表示成基本事件的和.通过小组交流更能激发学生学习兴趣,让学生总结提高学生语言表达能力,由特殊到一般的思维过程让学生更易接受,符合学生思维过程.问题3:三个试验中每个基本事件出现的概率是多少?(1)试验一:出现“正面向上”与“反面向上”的概率是多少?(2)试验二:出现“1点”,“2点”,“3点”,“4点”,“5点”,“6点”的概率是多少?(3)试验三:出现“箭头指向1” , “箭头指向2”, “箭头指向3”, “箭头指向4”的概率是多少? 问题4:观察对比,找出试验1,试验2和试验3的共同特点:教师引导在上述练习中从基本事件这个角度探究发现它们共同的特点学习方式先小组讨论然后全班交流上述试验它们都具有以下的共同特点(1)试验中所有可能出现的基本事件只有有限个(2)每个基本事件出现的可能性相等.我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型.设计意图两个概念的教学我采用教师引导和学生讨论的方法培养学生用对立统一的辨证唯物主义的观点来分析问题的能力和观察、概括、归纳的能力建立对概念的基本认识.明确两个概念让学生正确理解概念走出概念的认识误区不发生歧义.问题5:判断下列两个事件是不是古典概型?1.某同学随机地向一靶心进行射击,这一试验的结果有:“命中10环”、“命中9环”、“命中8环”、“命中7环”、“命中6环”、“命中5环”和“不中环”.你认为这是古典概型吗?为什么?2.向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?设计意图探究是不是所有的试验都是古典概型, 举例说明通过对问题的探究拓展学生的思维空间进一步正确理解古典概型的概念这一教学重点,热烈的讨论也使本节课将达到学生思维的高潮.问题6:在古典概率模型中,如何求随机事件出现的概率?掷一颗均匀的骰子,事件A为“出现偶数点”,请问事件A的概率是多少?基本事件总数为( ),事件A包含( )个基本事件数.开放课堂探究公式,研究问题6古典概型概率公式,思考在古典概型下随机事件出现的概率如何计算?思考在掷骰子的试验中事件“出现偶数点”发生的概率是多少?设计意图这里没有直接给出公式而是安排了递进的例题引导学生进行知识的迁移培养学生的逻辑思维能力展示学生的思维过程在课堂上把问题交给学生提倡学生自主学习的新理念也对古典概型公式这一重点进行突破.培养学生猜想对比论证的数学思维.对于古典概型任何事件A发生的概率为让学生从感性、理性两方面认识并理解古典概型的计算公式.例1. 从字母a、b、c、d任意取出两个不同字母的试验中,有哪些基本事件?设计意图:利用树状图或列表法列举基本事件,进一步理解与巩固基本事件的概念.例2.单选题是标准化考试中常用的题型一般是从A、B、C、D四个选项中选择一个正确答案如果考生掌握了考察的内容它可以选择唯一正确的答案假设考生不会做他随机的选择一个答案问他答对的概率是多少?设计意图:四例题分析加深理解,培养学生学以致用的能力直接使用公式注意前提培养学生严谨的思维习惯.例3.假设这道选择题是双选题,从A、B、C、D四个选项中选择正确答案,假设考生不会做他随机的选择两个答案,问他答对的概率是多少?多选题更难猜对这是为什么?设计意图让学生用枚举法列出基本事件,明确解决问题的关键突破本节课的重点和难点.例4 .同时掷两个骰子计算(1)一共有多少种不同的结果(2)其中向上的点数之和是9的结果有多少种(3)向上的点数之和是9的概率是多少?设计意图:循序渐近知识延伸, 这节课是在没有学习排列组合的基础上学习如何求概率,所以在教学中引导学生根据古典概型的特征,用列举法解决概率问题.例3也是对古典概型判断的深化.首先,让学生列举所有不同的结果,可以预计学生的列举不一定是完整的36种结果.其次,让列举对的同学帮助列举不对的同学找出问题,并解决问题.最后,让学生自己总结出解决这类问题应注意什么.在解决例3 的基础上,课后思考交流问题学生会迎刃而解.这样设计,从心理学上讲,让学生经历挫折,并在同学的帮助下解决问题,有利于心理的健康发展,并提高团队合作能力;从教育学上讲,挫折教育使学生经历知错改错之后,会增强信心,使他们以后面对人生会更坚强,迎难而上,无所畏惧!课堂练习1.转动图示转盘,计算下列事件的概率(1)箭头指向8;( ) (2)箭头指向3或8;( )(3)箭头不指向8;( ) (4)箭头指向奇数;( )(5)箭头指向偶数;( ) (6)箭头指向24的约数;( )(7)箭头指向3的倍数;( ) (8)箭头指向不小于3的数.( )2.一副扑克牌,去掉大王和小王,在剩下的52张牌中随意抽出一张牌,试求以下各个事件的概率:A:抽到一张Q B:抽到一张“梅花”C:抽到一张红桃K设计意图:课堂练习强化古典概型的概率计算公式,巩固知识.以扑克牌为背景更贴近生活,学生便于理解.课堂小结自我评价1.知识点:2.古典概型的解题方法与步骤:3.思想方法:设计意图:在课的尾声,我让学生对本节课进行了总结.目的是帮助他们认清这节课的知识结构,使知识系统化,培养他们的归纳总结能力.七、课后思考及作业设计意图:课后思考进一步提高学生的思维深度,知识在课后得到延伸,激发学生兴趣,并且具有梯度性,让学有余力的同学提高知识和思想方法.作业是为了巩固知识,让所有学生加深对知识的理解.八、教学反思本节课的教学通过实物模型引入,激发学生兴趣,提出问题,引导学生发现问题,经历思考交流概括归纳后得出古典概型的概念,由两个问题的提出进一步加深对古典概型的两个特征的理解.再通过学生观察类比推导出古典概型的概率计算公式.这一过程能够培养学生发现问题、分析问题、解决问题的能力. 在解决概率的计算上教师鼓励学生尝试列表和画出树状图让学生感受求基本事件个数的一般方法从而化解由于没有学习排列组合而学习概率这一教学困惑.在例题的选择上没有按照课本上的例子进行讲解,而是选择一些同学们常见例子,比如选择题,掷筛子,扑克牌等例子,更接近生活,便于同学们思考,使问题简单化,激发学生兴趣,由此整个教学设计可以在教师的期盼中实施.请各位老师批评指证.。
高中数学 人教A版 必修3 第三章 3.2 古典概型说课稿
古典概型说课稿1.说教材本节内容是选自人民教育出版社出版的普通高中课程标准实验教科书数学必修3 A版第三章第二节第一小节的内容,属于概率部分的知识。
在此之前学生已经学习了统计以及概率的运算和基本性质等,而本节内容是在此基础上延续和拓展。
古典概型是一种数学模型,它的引入避免了大量的重复试验,有利于学生理解概率的概念和概率值的存在。
也为后面学习几何概率作铺垫,同时学习了本节内容,能够帮助学生解决生活中的一些问题,激发学生的学习兴趣,因此本节知识在高中概率论这一块中起着举足轻重的作用。
本节课的重点:掌握古典概型这一模型难点:古典概型中概率值的计算公式2、说目标基于以上对教材的认识,根据数学课程标准发展学生的数学应用意识的基本理念,考虑到学生已有的认知结构与心理特征,制定如下教学目标知识与技能:1、掌握基本事件的,古典概型的概念和特点。
2、会用列举法计算古典概型中任何事件的概率过程与方法:通过模拟实验让学生理解古典概型的特征,观察类比各个实验让学生归纳总结出古典概型概率计算公式,体现了化归的思想,使学生掌握用列举法,分类讨论的方法解决概率计算问题情感态度与价值观:通过古典概率这一数学模型的学习,使学生能对现实生活中的一些数学模式进行思考和判断,发展学生数学应用意识和创新意识,提高学习兴趣,在不同的探究活动中形成锲而不舍的钻研精神和科学态度3、说教法学法为突出重点,突破难点,使学生能达到本节课设定的目标,根据本节课的内容特点我采取了引导探究,讨论交流的教学模式,即通过再次考察前面做过的两个实验引入课题,根据学习情况,在合适的时机提出问题,设置合理有效的教学情境,让每一位学生都参与课堂讨论,提供学生思考讨论的时间与空间,师生一起探讨古典概型的特点以及概率值的求法。
学法上:课前已经安排学生做过两个试验,本节课上学生在教师的引导下对试验结果进行探讨交流,解决问题,完善知识结构。
从根本上理解古典概型这一模型,4、说教学过程一、提出问题引入新课课前,老师已经布置学生完成掷一枚质地均匀的硬币和一枚均匀的骰子是试验,试验一:抛掷一枚质地均匀的硬币,记录“正面朝上”和“反面朝上”的次数,每组同学至少做20次试验二:抛掷一枚质地均匀的骰子,分别记录点数为“1,2,3,4,5,6”出现的次数,每组同学至少完成60次。
高中数学古典概型说课稿
高中数学古典概型说课稿(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、合同协议、总结报告、演讲致辞、规章制度、自我鉴定、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as workplace documents, contract agreements, summary reports, speeches, rules and regulations, self-assessment, emergency plans, teaching materials, essay summaries, other sample essays, etc. If you want to learn about different sample essay formats and writing methods, please stay tuned!高中数学古典概型说课稿高中数学古典概型说课稿作为一名人民教师,编写说课稿是必不可少的,借助说课稿我们可以快速提升自己的教学能力。
古典概型优质课比赛说课教案(配有相应PPT课件,见教学课件文件夹内) 精品
古典概型(一)说课教案一、教材分析1. 教材的地位及作用:本节课是高中数学(必修3)第三章概率的第二节古典概型的第一课时,是在学习了随机事件的概率、概率的加法公式之后,学习几何概型之前,尚未学习排列组合的情况下进行教学的。
古典概型安排在这一节,是因为古典概率公式推导要用到加法公式,学了古典概型后有利于计算一些事件的概率,避免了大量重复试验。
有利于进一步理解概率的概念,有助于几何概型的学习,也可以为以后概率的学习奠定基础。
古典概型是一种特殊的数学模型,能培养学生建模的思想,同时它与生活联系密切,有利于解释生活中的一些问题,增加学生的兴趣。
2.教学重点:理解古典概型及其概率计算公式。
3.教学难点:(1)对古典概型两个特点的理解。
(2)确定在一个古典概型中试验的所有基本事件二、目标分析根据学生的认知结构特征以及教材内容的特点,依据新课程标准要求,确定本节教学目标如下:知识目标:理解古典概型及其概率计算公式;会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。
能力目标:培养学生运用观察对比,归纳的方法探究问题的能力,注重化归,数形结合,分类思想的应用,逐步培养学生建模思想,来解决实际问题。
情感目标:通过各种贴近学生生活的素材,激发学生学习数学的热情和兴趣,培养学生勇于探索,善于发现的创新思想;通过参与探究活动,领会理论与实践对立统一的辨证思想。
三、教法与学法分析导悟学启发接受诱导问题探究激励知识完成应用1.教法我采用:(1)引导发现和归纳概括相结合的教学方法,通过试验、设置表格、提出问题、分析问题,解决问题等教学过程,一步步地来概括归纳古典概型的概念及其概率公式,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性。
(2)多媒体辅助教学,体现直观,突破难点。
2.学法(1)新旧知联系:学生已正确理解了概率的意义,像游戏的公平性,这能促进本节“等可能”的理解。
引导学生进行知识迁移。
苏教版高中高二数学必修3《古典概型》说课稿
苏教版高中高二数学必修3《古典概型》说课稿一、编写目的和依据本文档是针对苏教版高中高二数学必修3教材中的《古典概型》进行的说课稿。
《古典概型》是高中数学必修课的一部分,主要介绍了古典概型的概念、性质、计数原理等内容。
通过本节课的学习,学生将会掌握古典概型的基本概念和计数方法,并能够应用于实际问题中。
本说课稿的编写依据是教育部发布的高中数学必修课程标准以及苏教版高中数学必修3教材,同时结合教材中的教学内容和教学目标进行编写。
二、教学目标1.知识与技能:–理解古典概型的基本概念;–掌握古典概型的性质和计数方法;–能够应用古典概型解决实际问题。
2.过程与方法:–注重培养学生的逻辑思维能力;–采用课堂讲授与情境模拟相结合的教学方法;–引导学生主动参与课堂讨论和思考。
3.情感态度与价值观:–培养学生的数学兴趣和创新精神;–引导学生认识到古典概型在真实生活中的应用价值。
三、教学内容和重点难点本节课的教学内容主要包括以下几个方面:1.古典概型的概念和性质:–古典概型的定义;–古典概型的性质和基本计数原理。
2.古典概型的计数方法:–基本计数法则;–排列与组合的计数方法。
本节课的重点和难点主要集中在古典概型的计数方法上,包括使用基本计数法则、排列和组合解决实际问题。
四、教学过程安排1. 导入与引入(5分钟)•利用问题情境引入古典概型的概念,并介绍古典概型在生活中的应用。
2. 知识点讲解(20分钟)•简要介绍古典概型的定义和性质;•通过示例解释古典概型的计数方法,并引导学生思考计数过程中的注意事项。
3. 计算练习(20分钟)•给出一些计数问题,让学生运用古典概型的计数方法进行计算练习;•引导学生讨论解题过程,加深对古典概型计数方法的理解。
4. 拓展应用(10分钟)•给出一些实际问题,让学生应用古典概型进行解决,并引导学生思考其应用场景和限制。
5. 总结与归纳(5分钟)•对本节课的主要内容进行总结和归纳,强调古典概型的概念、性质和计数方法。
最新古典概型说课稿10篇
古典概型说课稿最新古典概型说课稿10篇作为一名优秀的教育工作者,总归要编写说课稿,说课稿是进行说课准备的文稿,有着至关重要的作用。
那么你有了解过说课稿吗?以下是小编帮大家整理的最新古典概型说课稿10篇,仅供参考,大家一起来看看吧。
古典概型说课稿 1老师、同学们:早上好。
今天我说课的课题来自普通高中课程标准数学必修3第三章第2节古典概型。
下面,我将围绕教什么,怎么教,为什么要这样教从说教材、说教学目标、说教法学法、说教学过程及说板书设计五个方面来加以说明,请老师、同学们加以批评指正。
一、教材分析教材的地位和作用古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。
它承接着前面学过的随机事件的概率及其性质,又是以后学习条件概率的基础,起到承前启后的作用。
学情分析从心理特征来说,已到高一下学期学生,刚经过高一上学期的适应期,知识增多,能力增强,但思维的局限性还很大,能力也有差距。
从认知状况来说,学生在此之前已经学习了随机事件的概率,对随机事件的概念已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于古典概型的判断与计算,学生可能会产生一定的困难,针对我班学生基础较差,教学中给予以从特殊到一般的认知规律、简单明白深入浅出的分析。
教学的重点和难点根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重难点设计如下:重点:理解古典概型及其概率计算公式。
难点:古典概型的判断及把一些实际问题转化成古典概型。
教学目标分析根据新课标的教学理念,培养学生的数学素养和终身学习的能力,我确立了如下的三维目标:1、知识与技能目标:(1)通过试验理解基本事件的概念和特点。
(2)在数学建模的过程中,抽离出古典概型的两个基本特征,推导出古典概型下的概率的计算公式。
2、能力目标:(1)经历公式的推导过程,体验由特殊到一般的数学思想方法,发展抽象思维能力。
(2)学生通过实际问题的条件判断是否为古典概型,及应用公式解决问题,培养分析问题、解决问题和应用问题的能力。
古典概型的说课稿
古典概型的说课稿一、说教材古典概型作为概率论中的一个重要概念,它在我国高中数学课程中占据着举足轻重的地位。
本文主要围绕古典概型的定义、性质、计算方法等方面进行阐述,旨在帮助学生建立完整的概率知识体系,培养他们的逻辑思维能力和解决实际问题的能力。
本文在教材中的作用和地位如下:1. 承上启下:本文在概率论知识体系中,起到了连接前后知识的桥梁作用。
它既是对之前所学概率基础知识的巩固,也为后续学习更复杂的概率问题打下基础。
2. 知识拓展:通过学习古典概型,学生可以了解到概率论在不同领域中的应用,提高他们对数学学科的兴趣。
3. 方法论培养:本文通过讲解古典概型的计算方法,引导学生运用数学方法解决实际问题,培养他们的逻辑思维能力和创新意识。
本文的主要内容可以分为以下几个部分:1. 古典概型的定义:介绍什么是古典概型,以及它与其他类型概率的区别。
2. 古典概型的性质:阐述古典概型的基本性质,如有限性、等可能性等。
3. 古典概型的计算方法:介绍如何计算古典概型,包括直接计算法、树状图法、排列组合法等。
4. 古典概型的应用:通过实例分析,展示古典概型在生活中的广泛应用。
二、说教学目标学习本课,学生需要达到以下教学目标:1. 知识与技能:(1)理解古典概型的定义,掌握其性质和计算方法。
(2)能够运用古典概型解决实际问题。
2. 过程与方法:(1)通过实例分析,培养学生运用数学方法解决实际问题的能力。
(2)通过小组合作,培养学生的团队协作能力。
3. 情感态度价值观:(1)激发学生对概率论的兴趣,提高他们学习数学的积极性。
(2)培养学生严谨、认真的学习态度。
三、说教学重难点本文的教学重点是古典概型的定义、性质和计算方法,以及如何运用这些知识解决实际问题。
教学难点主要包括:1. 理解古典概型的定义和性质,尤其是等可能性的概念。
2. 掌握古典概型的计算方法,能够灵活运用。
3. 学会运用古典概型解决实际问题,提高解决问题的能力。
人教版古典概型说课稿
人教版古典概型说课稿一、说课背景与目标在人教版高中数学教材中,古典概型是一个重要的知识点,它不仅是概率论的基础,也是培养学生逻辑思维能力的重要内容。
通过本节课的学习,学生将能够理解古典概型的概念,掌握计算古典概型事件概率的方法,并能够运用这些知识解决实际问题。
二、教学内容与分析1. 古典概型的定义古典概型,又称为等可能概型,是指在一次试验中,所有基本事件发生的可能性相等的情况。
在这种情况下,我们可以通过计算各个事件发生的次数来确定其概率。
2. 计算方法对于古典概型,事件的概率可以通过该事件发生的基本事件数除以所有基本事件的总数来计算。
即 P(A) = m/n,其中 m 是事件 A 发生的基本事件数,n 是所有基本事件的总数。
3. 实际应用古典概型在现实生活中有广泛的应用,例如掷硬币、掷骰子等随机事件的概率计算,都可以通过古典概型的方法来解决。
三、教学目标1. 知识与技能学生能够准确理解古典概型的定义,并掌握其概率的计算方法。
2. 过程与方法通过实际问题的分析与解决,培养学生运用古典概型知识的能力。
3. 情感态度与价值观培养学生对数学学习的兴趣,激发学生探索数学问题的热情。
四、教学重点与难点1. 教学重点明确古典概型的定义,掌握其概率的计算公式。
2. 教学难点如何将抽象的数学概念与学生的生活实际相结合,提高学生的实际应用能力。
五、教学方法与手段1. 启发式教学通过提问和引导,激发学生的思考,帮助学生自主构建知识体系。
2. 案例分析结合具体的生活实例,分析问题,引导学生运用古典概型进行概率计算。
3. 小组讨论通过小组合作,让学生在交流中深化对古典概型的理解。
六、教学过程1. 导入新课通过掷硬币的例子,引出古典概型的概念。
2. 讲解概念详细解释古典概型的定义和特点,并通过板书进行强化。
3. 例题演示展示并解析几个典型的古典概型问题,让学生掌握计算方法。
4. 学生练习学生独立完成几个练习题,巩固所学知识。
古典概型教案7篇
古典概型教案7篇古典概型教案篇1一、教学目标:1、知识与技能:(1)正确理解古典概型的两大特点:1)试验中全部可能涌现的基本领件只有有限个;2)每个基本领件涌现的可能性相等;(2)掌控古典概型的概率计算公式:p(a)=2、过程与方法:(1)通过对现实生活中详细的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培育规律推理技能;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。
3、情感立场与价值观:通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.二、重点与难点:重点是掌控古典概型的概念及利用古典概型求解随机事项的概率;难点是如何判断一个试验是否是古典概型,分清一个古典概型中某随机事项包含的基本领件的个数和试验中基本领件的总数。
三、教法与学法指导:依据本节课的特点,可以采纳问题探究式学案导学教学法,通过问题导入、问题探究、问题解决和问题评价等教学过程,与同学共同探讨、合作争论;应用所学数学知识解决现实问题。
四、教学过程:1、创设情境:(1)掷一枚质地匀称的硬币的试验;(2)掷一枚质地匀称的骰子的试验。
师生共同探讨:依据上述状况,你能发觉它们有什么共同特点?同学分组争论试验,每人写出试验结果。
依据结果探究这种试验所求概率的特点,尝试归纳古典概型的定义。
在试验(1)中结果只有2个,即正面朝上或反面朝上,它们都是随机事项。
在试验(2)中,全部可能的试验结果只有6个,即涌现1点2点3点4点5点和6点,它们也都是随机事项。
2、基本概念:(看书130页至132页)(1)基本领件、古典概率模型。
(2)古典概型的概率计算公式:p(a)= .3、例题分析:(呈现例题,深刻体会古典概型的两个特征依据每个例题的不同条件,让每个同学找出并回答每个试验中的基本领件数和基本领件总数,分析是否满意古典概型的特征,然后利用古典概型的`计算方法求得概率。
) 例1 从字母a,b,c,d中任意取出两个不同的试验中,有哪些基本领件?分析:为了得到基本领件,我们可以根据某种顺次,把全部可能的结果都列出来。
古典概型说课稿
四、教学过程
环节四: 【例题分析】
例2.单选题是标准化考试中常见的题型,一般是从A、B、C、D 四个选项中选择一个正确答案.如果考生掌握了考察内容,他可 以选择唯一正确的答案.假设考生不会做,他随机的选择一个答 案,问他答对的概率是多少?
探究:在标准化的考试中既有单选题又有多选题,多选题是从 A、B、C、D四个选项中选择所有正确答案,同学们有一种感觉, 如果不知道正确答案多选题更难猜对,这是为什么?
基本事件的两个特点:
(1)______________ (2)______________
四、教学过程 环节二: 【形成概念】
例1.从字母 a, b, c, d 中任意取出两个不同字母的试验中,
有哪些基本事件?
提问:例1和上述试验的共同特点是什么? 古典概型: (1)_______________. (2)_______________. 具有这两个特点的概率模型称为古典概率模型,简称古典概型
情感方面:
通过新课程理念下的教学,学生参与意识、自主探 究的意识明显增强,对新问题具有较强探索兴趣。
教材分析
古
学生的认知水平分析
典
教学方法和学法指导
概
教学过程
型
教学评价设计
三、教学方法和学法指导:
教学方法:
(1)我将运用引导发现和归纳概括相结合的教学方法, 通过试验、提出问题、分析问题、解决问题等教学过程,一 步步地来概括归纳古典概型的概念及其概率公式,再通过具 体问题的提出和解决,来激发学生的学习兴趣,调动学生学 习的主体能动性。
(2)古典概型中某随机事件中所包含基本 事件的个数和基本事件总数的确定
教材分析
古
学生的认知水平分析
典
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
古典概型山东沂源二中石玉台一.内容和内容解析本节课是高中数学3(必修)第三章概率的第二节古典概型的第一课时,是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。
古典概型是一种特殊的数学模型,他的引入避免了大量的重复试验,而且得到的是概率精确值,同时古典概型也是后面学习条件概率的基础,起到承前启后的作用,所以在概率论中占有相当重要的地位。
主要内容有:1.基本事件的概念及特点:(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和。
2.古典概型的特征:(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等。
3.古典概型的概率计算公式,用列举法计算一些随机事件所含的基本事件的个数及事件发生的概率。
随机事件概率的基本算法是通过大量重复试验用频率来估计,而其特殊的类型――古典概型的概率计算,可通过分析结果来计算。
学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题。
本节课的重点是理解古典概型的概念及利用古典概型求解随机事件的概率。
二.目标和目标解析1.通过“掷一枚质地均匀的硬币的试验”和“掷一枚质地均匀的骰子的试验”了解基本事件的概念和特点。
2.通过实例,理解古典概型及其概率计算公式。
根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想。
适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例。
使得学生在体会概率意义的同时,感受与他人合作的重要性以初步形成实事求是地科学态度和锲而不舍的求学精神。
3.会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。
掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题。
4.会初步应用概率计算公式解决简单的古典概型问题。
用有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现的创新思想。
培养学生掌握“理论来源于实践,并把理论应用于实践”的辨证思想。
三.教学问题诊断分析学生已有的知识结构是,已经学习了随机事件的概率,通过实例,已经了解随机事件的不确定性和频率的稳定性。
了解了概率的意义,了解互斥事件及有限个互斥事件概率加法公式。
和老教材的区别在于,学生是在尚未学习排列组合的情况下学习概率的。
学生学习的困难在于,对古典概型的两个特征理解不够深刻,一看到试验包含的基本事件是有限个就用古典概型的公式求概率,没有验证“每个基本事件出现是等可能的”这个条件;另外对基本事件的总数的计算容易产生重复或遗漏。
本节课的教学难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。
在解决概率的计算上,教师鼓励学生尝试列表和画出树状图,让学生感受求基本事件个数的一般方法,让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏,从而化解由于没有学习排列组合而学习概率这一教学困惑。
在判断一个试验是否是古典概型时,教师可以设置一些问题让学生判断,加深对两个特点缺一不可的理解。
在例3的教学中,给出由于忽略等可能的条件而导致的错误解法,引起学生的认知冲突,有利于学生的掌握知识。
四.教法学法为了有效实现教学目标,教学中,我准备采用问题诱导、自主探究、合作交流的教法和学法。
另外,课上借助计算机进行辅助教学。
进行例3教学时,通过模拟和分析两种方式中每个基本事件的等可能性,引导学生发现在第二种情况下每个基本事件不是等可能的。
五.教学过程设计(一)创设情境,引出课题问题1:考察两个试验:(1)抛掷一枚质地均匀的硬币的试验;(2)掷一颗质地均匀的骰子的试验。
在这两个试验中,可能的结果分别有哪些?设计意图:通过掷硬币与掷骰子两个接近于生活的试验的设计。
先激发学生的学习兴趣,然后引导学生观察试验,分析结果,找出共性。
师生活动:学生思考、讨论,教师利用试验给出所有可能出现的结果即基本事件。
问题2:基本事件有什么特点?师生活动:教师加以引导与启发,利用基本事件的关系发现基本事件的特点。
学生归纳与总结,鼓励学生用自己的语言表述,从而提高学生的表达能力与数学语言的组织能力。
问题3:在掷骰子试验中,随机试验“出现偶数点”可以由哪些基本事件组成?设计意图:通过举例,进一步加深对基本事件的理解,从而为引出古典概型的定义做好铺垫。
问题4:例1.从字母a,b,c,d中任意取出两个不同字母的实验中,有那些基本事件?设计意图:为了引出古典概型的概念,设计了例1。
将数形结合和分类讨论的思想渗透到具体问题中来。
由于没有学习排列组合,因此用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏。
解决了求古典概型中基本事件总数这一难点。
师生活动:教师引导学生列举时做到不重复、不遗漏。
学生列举出基本事件。
教师指出画树状图是列举法的基本方法(二)通过设疑,引出概念问题1:你知道掷均匀硬币出现正面朝上的概率是多少?掷骰子出现偶数点的概率是多少?例1中出现字母“d”的概率又是多少?设计意图:学生根据已有的知识,已经可以独立得出概率,通过教师的步步追问,引导学生深层次的考虑问题,看到问题的本质,得出概率公式。
让学生带着思考问题观察试验,使其有目的的去寻找答案,有效的利用课堂时间,达到教学目标。
公式的推导是在老师的启发引导下,让学生带着好奇心去观察数学模型。
师生活动:学生较容易得出上述问题的概率。
教师追问:这些概率你是怎么得出的?学生:(1)从实验来的;(2)从可能性角度分析得到的。
对于掷骰子试验,出现各个点的可能性相同,记出现1点,2点,…,6点的事件分别为A1,A2,…,A6,记“出现偶数点”为B,则P(A1)=P(A2)=…=P(A6),又P(A1)+P(A2)+…=P(A6)=P(必然事件)=1所以:P(A1)=P(A2)=…=P(A6)=教师追问:出现偶数点的概率为什么是?师生:记“出现偶数点”为事件B,利用概率的加法公式有P(B)=P(A2)+P(A4)+P(A6)==推导出概率公式:问题2:上述概率公式的推导过程中基本事件有什么特点?设计意图:培养运用从具体到抽象、从特殊到一般的辩证唯物主义观点分析问题的能力,充分体现了数学的化归思想。
启发诱导的同时,训练了学生观察和概括归纳的能力。
通过问题的解决引出古典概型的概念。
师生活动:教师引导学生找出共性。
具有下列两个特点的概率模型才能运用上述公式,我们称为古典概率模型,简称古典概型。
(1)试验中所有可能出现的基本事件只有有限个;(有限性)(2)每个基本事件出现的可能性相等。
(等可能性)问题3:(1)向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?(2)某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环。
你认为这是古典概型吗?为什么?(3)从五位学生中随机地选择两位去参加一项集体活动。
你认为这是古典概型吗?为什么?(4)向一个方格随机地投一个石子,如果该石子落在方格内任意一点都是等可能的。
你认为这是古典概型吗?为什么?(5)某一同学把面包上抹上果酱来模拟硬币落地的情况,结果抹果酱的一面着地,这一事件是否为古典概型?为什么?设计意图:几个问题的设计是为了让学生更加准确的把握古典概型的两个特点。
突破了如何判断一个试验是否是古典概型这一教学难点。
师生活动:学生互相交流,回答补充,教师归纳。
(1)、(4)不是古典概型,因为试验的所有可能结果是圆面(方格)内所有的点,试验的所有可能结果数是无限的;(2)不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环……命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件。
(3)是古典概型。
(5)不是古典概型,因为果酱两面着地不是等可能的,即不满足古典概型的第二个条件。
(三)例题分析,加深理解问题1:例2.单选题是标准化考试中常用的题型,一般是从A、B、C、D四个选项中选择一个正确答案。
如果考生掌握了考察内容,他可以选择唯一正确的答案。
假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?设计意图:这节课的难点就是古典概型的判断,对例2 的分析是突破难点的契机,引导学生分析例2是否满足古典概型的两个基本特征有限性与等可能性,由此掌握求此类题目的方法,让学生进一步理解古典概型的概率计算公式,体验概率与实际生活是息息相关的。
师生活动:教师引导学生思考是否满足古典概型的特征?学生思考、讨论、交流,说出看法,教师对学生的回答进行归纳与总结。
解决这个问题的关键,即讨论这个问题什么情况下可以看成古典概型。
如果考生掌握或者掌握了部分考察内容,这都不满足古典概型的第2个条件——等可能性,因此,只有在假定考生不会做,随机地选择了一个答案的情况下,才可以化为古典概型。
学生根据已学知识回答:问题2:在标准化的考试中既有单选题又有多选题,多选题是从A、B、C、D四个选项中选择所有正确答案,同学们有一种感觉,如果不知道正确答案多选题更难猜对,这是为什么?设计意图:上述问题的设计,让学生感受到数学模型的生活化,能用所学知识解决新问题是数学学习的主旨。
当学生用自己的知识解决问题后,会有极大的成就感,提高了学习兴趣,体验了数学学习的真谛。
师生活动:教师引导学生列举15种可能出现的答案,判断是否满足古典概型的特征,利用概率公式求值。
问题3:例3. 同时掷两个骰子,计算:(1)一共有多少种不同的结果?(2)其中向上的点数之和是5的结果有多少种?(3)向上的点数之和是5的概率是多少?设计意图:这节课是在没有学习排列组合的基础上学习如何求概率,所以在教学中引导学生根据古典概型的特征,用列举法解决概率问题。
深化巩固对古典概型及其概率计算公式的理解,和用列举法来计算一些随机事件所含基本事件的个数及事件发生的概率。
培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度。
通过观察对比,发现两种结果不同的根本原因是——研究的问题是否满足古典概型,从而再次突出了古典概型这一教学重点,体现了学生的主体地位,逐渐养成自主探究能力。
师生活动:(1)教师给出问题,学生思考求解。
(2)教师将学生的结果汇总展示,学生给出的答案可能会有两种,然后引导学生分析原因,寻找解答中存在的问题。
其中这两种答案分别对应了解题中的两种处理方法:把骰子标号进行解题和不标号进行解题,可以提示学生先把这两种方法下的基本事件全部列出来,然后验证是否为古典概型。