热力学与统计物理试题及答案

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

i

中国海洋大学试题答案

填空题(共40 分)

1 . N 个全同近独立粒子构成的热力学系统,如果每个粒子的自由度为 的一个代表点表示。

r ,系统的自由度为(

Nr )。系统的状态可以用(2Nr )维r 空间中

2对于处于平衡态的孤立系统,如果系统所有可能的微观状态数为

Q,则每一微观状态出现的概率为(

1/?),系统的熵为

kin ?

玻色统计与费米统计的区别在于系统中的粒子是否遵从(泡利不相容原理 玻色系统和费米系统在满足(

经典极限条件(或e a <<1)或e a >>1)条件时,可以使用玻尔兹曼统计。

dU - 7 a ] d * _ 二da l

l

1

给出内能变化的两个原因,其中(

、;|da i )项描述传热,

(a a i d ;i )项描述做功。

l

|

(d(E s -E)2

)(如写成 E 2

-(E)2

也得分)。

10.与宏观平衡态对应的是稳定系综,稳定系综的分布函数 归一

化条件。 二.计算证明题(每题 10分,共60 分)

0, 3, 2 3, 3 Q ,OOO ,而且都是非简并的,如果系统含有 6个分子,问:

(1)与总能量3 3相联系的分布是什么样的分布?分布需要满足的条件是什么?

(2) 根据公式0 {a j = -^―n 蛍引计算每种分布的微观态数

''a i

!

1

|

(3) 确定各种分布的概率。 解:能级:

2, 2,

4,

能量值: 0, 3, 2 3, 3 3,

简并度: 1,

1,

1, 1,

分布数:

a 1, a 2, a 3, a 4.

分布$ J 要满足的条件为:一 a i = N = 6

i

' a i = E = 3' ■

专业年级:

学年第2学期

试题名称:热力学与统计物理

(A )

共2页第1页 学号

姓名

授课教师名杨爱玲 分数

)原理,其中(费米)系统的分布必须满足 0 <

6 .对粒子数守恒的玻色系统,温度下降会使粒子的化学势(

的能量 U 0=( 0),压强 p 0=( 0),熵 S 0=( 0)。 升高 );如果温度足够低,则会发生( 玻色一一爱因斯坦凝聚 )。这时系统

已知粒子遵从经典玻尔兹曼分布,其能量表达式为

1 2 (

P x

2m

2 2 2 -P y ■ P

z ) ■

ax bx

,粒子的平均能量为(2kT — b 2/4a

当温度(很低)或粒子数密度( 很大)时,玻色系统与费米系统的量子关联效应会很强。 如果系统的分布函数为

P s ,系统在量子态 s 的能量为 E s ,用p s 和E s 表示:系统的平均能量为(

能量涨落为

P s 具有特点(d P s / dt=0或与时间无关等同样的意思也得分 ),同时P s 也满足

1 •假定某种类型分子(设粒子可以分辨)的许可能及为

满足上述条件的分布有: A : [aj _ [5,0, 0,1,0,…?

B :佝 J = I

4,1,1, 0, 0,

... /

C : C -「3,3, 0,0,0,…?

6!

1

A

1

= 6

5!汇1!

6 !

1 二 30; 4! 1! 1! 6!

1 二 20 3! 3!

R R

1 C

=2 3 4 5 6 - 30 • 20 = 56

(1) 求单粒子的配分函数 Z 1;

(2)

在平衡态,按玻尔兹曼分布率,写出位置在 x 到x + dx , y 到y + dy 内,动量在p x 到

p x + dp x , p y 到p y + dp y 内的分子数dN ; (3) 写出分子按速度的分布; (4) 写出分子按速率的分布。

解: (1)单粒子的配分函数 乙勺=亠[[“対弘入)dxdydp x dp y =$ (2兀mkT )

h 、… h

/、

s^&dxdydp x dP y N 鸟dxdydp x d P y

(2) dN

---------- 2

—— =—— -------------------------------------------- 2——L

h Z 1 h

m 事 2

2

dN v = N( ------------- )e

(v x - V y )dv x dV y

2irkT

(1)温度为T 时处于激发态的粒子数与处于基态的粒子数之比,并说明在极端高温和极端低温时粒子数比的特点; (2 )系统的内能和热容量;

(3)极端高温和极端低温时系统的熵。

2

m v

m 詬

2 二 N ( ------- ) e vdv

2irkT

各分布对应的微观态数为:

所有分布总的微观态数为:

P A

各分布对应的概率为: p B

-门A /'J

= 6/56 = 0.107; = 30 /56 = 0.536; P C

=20 / 56 =0.357;

2 •表面活性物质的分子在液面(面积为

A )上做二维自由运动, 可以看作二维理想气体,设粒子的质量为 m ,总粒子数为N 。

(3)将(1)代入(2),并对dxdy 积分,得分子按速度的分布为

(4)有(3)可得分子按速率的分布为: 2

mv

/ m 、"2kT .

(—)e vdv kT 3 •定域系含有N 个近独立粒子,每个粒子有两个非简并能级 £ 1 = 一£ 0, e 2=£ 0,其中e 0大于零且为外参量

y 的函数。求:

解:(1)单粒子的配分函数为:

八 e" 乂-" e"二e " e"

l

处于基态的粒子数为:

N 1

N - ■ 1 e -0

N e

e

N

打-'-0 ; Z

e e

相关文档
最新文档