温度采集系统
温度采集系统
方案设计与分析1温度控制系统方案测温系统采用集成温度传感器AD590测量温度,AD590具有线性优良、性能稳定、灵敏度高、无需补偿、热容量小、抗干扰能力强、可远距离测温且使用方便等优点。
可广泛应用于各种冰箱、空调器、粮仓、冰库、工业仪器配套和各种温度的测量和控制等领域。
将AD590测得的温度信号经转换电路转换为电压量输出,再经AD转换后,将数据送入单片机处理,最后由显示电路显示所测温度,此外还设有键盘,用来设置温度,将测得温度与设置温度比较后,由指示灯指示系统所处的工作状态。
2硬件资源简介2.1 89C51简介89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—F alsh Programmable and Erasable Read Only Memory)的低电压,高性能CMOS8位微处理器,俗称单片机。
89C2051是一种带2K字节闪烁可编程可擦除只读存储器的单片机。
单片机的可擦除只读存储器可以反复擦除100次。
该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。
由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的89C51是一种高效微控制器,89 C2051是它的一种精简版本。
89C单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。
2.3三端稳压器LM7805简介三端稳压集成电路lm7805电子产品中,常见的三端稳压集成电路有正电压输出的lm78 ××系列和负电压输出的lm79××系列。
顾名思义,三端IC是指这种稳压用的集成电路,只有三条引脚输出,分别是输入端、接地端和输出端。
它的样子象是普通的三极管,TO- 220 的标准封装,也有lm9013样子的TO-92封装。
用lm78/lm79系列三端稳压IC来组成稳压电源所需的外围元件极少,电路内部还有过流、过热及调整管的保护电路,使用起来可靠、方便,而且价格便宜。
温度采集电子系统设计报告
温度采集电子系统设计报告1. 简介本报告介绍了一个温度采集电子系统的设计。
该系统可以实时采集环境温度,并将数据传输到计算机进行处理和显示。
本报告将详细介绍系统的硬件设计和软件实现。
2. 硬件设计2.1 传感器选择为了实时采集温度数据,我们选择了一款精度高、响应快的温度传感器。
该传感器具有数字输出和I2C接口,能够方便地与单片机进行通信。
2.2 单片机选择我们选用了一款功能强大的单片机作为系统的主控芯片。
该单片机具有丰富的外设接口和强大的计算能力,能够满足系统的需求。
同时,该单片机还有丰富的开发资源和社区支持,使得开发过程更加便捷。
2.3 电路设计系统的电路设计主要包括传感器和单片机之间的连接电路和稳压电路。
传感器与单片机的连接采用了I2C接口,通过外部电阻进行电平转换和保护。
稳压电路采用了线性稳压芯片,确保供电电压的稳定性。
3. 软件实现3.1 硬件驱动为了与传感器进行通信,我们编写了相应的硬件驱动程序。
该驱动程序通过配置单片机的I2C接口,实现了与传感器的数据交换和控制。
3.2 数据采集与处理在软件实现中,我们使用了单片机的定时器和ADC模块来定期采集温度数据。
通过ADC转换,我们可以将模拟温度信号转换成数字信号。
随后,我们对这些数据进行滤波和校准,以获取准确的温度值。
3.3 数据传输与显示为了将采集到的温度数据传输到计算机,我们使用了串口通信。
通过配置单片机的UART模块和计算机的串口接口,我们可以实现数据的传输。
在计算机端,我们编写了相应的数据接收和显示程序,实现了温度数据的实时显示。
4. 实验结果与分析经过实验测试,系统能够准确、稳定地采集温度数据,并进行实时显示。
通过与其他温度计的比较,我们发现系统的测量误差在可接受范围内。
系统的响应速度也非常快,能够在短时间内实时更新温度数据。
5. 总结通过设计和实现温度采集电子系统,我们成功地实现了温度数据的实时采集和显示。
该系统具有稳定性高、响应速度快的特点,可以满足实际应用的需求。
项目十8路温度采集监控系统
存储器操作命令
Copy Scratchpad[48h] 这条命令把暂存器的内容拷贝到DS18B20的EEPROM里,即把温度报警触发字节存入非易失性存储器里。
02
03
04
Convert T[44h]
温度转换命令被执行,而后DS18B20保持等待状态。
这条命令启动一次温度转换而无需其他数据。
如果总线控制器在这条命令之后跟着发出读时间隙,而DS18B20又忙于做时间转换的话,DS18B20将在总线上输出“0”,若温度转换完成,则输出“1”。
-55℃
1111 1100 1001 0000
FC90h
存储器
配置寄存器
配置寄存器字节各位的意义如下: 低五位一直都是1。 TM用于设置DS18B20在工作模式还是在测试模式。出厂时该位被设置为0,用户不要去改动。 R1和R0用来设置分辨率,出厂时被设置为12位。
R1
R0
分辨率
温度最大转换时间
温度采集电路设计
DQ引脚电路
供电方式选择
监控电路设计
键盘电路设计 8路温度采集监控系统有两种工作模式。 用MODE按键进行工作模式切换,在手动模式下按UP键通道加1,按DOWN键通道减1。 这3个按键分别接到P3口的P3.0、P3.1和 P3.2引脚。 显示电路设计 数码管动态扫描显示电路由6个共阴极数码管、74 LS 245及电阻组成。 P0口输出显示段码,经由一片74LS245驱动输出给数码管,P1口输出位码(片选)。
主要包括: 寄生电源、温度传感器、64位ROM和单总线接口、存放中间数据的高速暂存器RAM、用于存储用户设定温度上下限值的TH和TL触发器、存储与控制逻辑、8位循环冗余校验码(CRC)产生器、配置寄存器等部分。
无线室温采集系统
MHT室内温度采集系统简介及数据表公司简介沈阳中科博微科技股份有限公司是由中国科学院沈阳自动化研究所发起创建的一家高新技术企业,主要从事网络化控制系统、工业通信及仪表、开发、生产和应用。
中科博微承担了多个国家科技重大专项、国家高技术研究发展计划(863计划)、智能制造装备发展专项等国家科技计划项目,是国家网络化控制系统工程研究中心建设依托单位。
中科博微成功地开发了国内第一个通过国际认证的现场总线协议主栈、第一个通过国家认证的现场总线仪表、国内第一个通过德国TüV认证的安全仪表,与其它单位共同主持了制定国内第一个工业以太网协议标准EPA、第一个工业无线通信协议标准WIA-PA,并成为IEC国际标准。
中科博微的产品和技术曾荣获国家科技进步二等奖两项、国家科技发明奖一项、中国科学院科技进步一等奖一项、辽宁省科技进步一等奖一项,产品出口欧美等发达国家,美国Emerson、英国Rotork、英国Bifold等业内顶尖企业都在其产品中采用了博微的关键技术或关键部件,成功完成了200多项大型自动化工程项目。
中科博微是FCG组织成员;是Profibus用户组织(PNO)成员。
中科博微成功通过了ISO9001:2008质量管理体系认证和汽车行业的ISO/TS16949质量体系认证。
优秀的研发团队,丰富的自动化工程设计与实施经验,业界领先的产品,庞大的市场网络,优秀的企业文化,都为公司的创业和持续发展奠定了坚实基础。
承载员工理想,创造客户价值,促进企业发展。
承载员工理想,创造客户价值,促进企业发展。
第1章概述为了实现供暖单位对用户室内温度的采集与记录、管理者随时查看用户室温的变化趋势,辅助管理者分析与决策,对室温超标的用户及时采取措施,减少供热用户投诉,实现最少热能为最大供暖面积提供合格的供暖效果。
我公司自主研制开发出MHT室内温度采集系统,实现了对用户室内温度的不间断监测,让供暖单位通过监控中心可以直观看到温度实时变化,代替过去由人工来完成的温度数据采集任务;同时监控中心对无线温度采集器传输来的温度数据进行存储和查询统计。
实验一温度数据采集系统
实验一温度数据采集系统一、 实验目的 1、掌握计算机数据采集系统的构成与一般设计方法;2、掌握温度数据采集系统的原理与软硬件设计方法;3、了解数据串行通讯协议RS232/485的基本规则和应用,熟悉研华公司ADAM4520串行协议转换模块和ADAM4019温度数据采集模块的使用方法。
二、 实验内容1、实验方案的设计; 2、数据采集程序设计与开发; 3、 系统调试与运行。
三、 实验设备1、微型计算机 一台2、ADAM4019温度数据采集模块 一个3、ADAM4520串行协议转换模块 一个4、K 型热电偶 一个5、电加热水杯 一个6、Visual Basic 6.0软件 一套7、工业温度计 一个8、ADAM-4000 Utility 应用程序 一套四、 实验要求1、完成实验的硬件构成、软件程序的开发 2、完成温度数据采集系统的调试和温度采集测试; 3、要求熟悉热电偶冷端补偿的处理。
五、 实验原理与方法步骤1、 实验原理温度数据采集系统的构成原理图,如图1—1所示。
图1—1 温度数据采集实验的工作原理图K 型热电偶作为温度信号采集的传感器装置,其得到的电压模拟量经过ADAM4019模块转换成符合RS485协议标准的数字信号。
为了便于计算机处理,通过ADAM4520将RS485协议数字信号转换成RS232协议的数字信号,然后通热电偶 ADAM4019 ADAM4520 PC 机 COM1 端口电热水杯电源过计算机的COM1串口将温度数字信号送入计算机中。
可利用VB设计的温度数据采集程序实现对温度信号的采集读取和显示等处理,从而实现对温度量的数据采集。
为了补偿由于热电偶元件性能变化带来的测试误差,根据工业温度计得到的标准/真实温度值,可利用软件冷端温度补偿技术,对采集到的热电偶温度信号进行误差补偿,提高温度采集的精度。
软件冷端温度补偿技术的原理思想:误差的绝对值=|采集到的测量值-真实温度值|;if 实际测量值-真实温度值>0;then 温度量=实际测量值-误差的绝对值;else if 实际测量值-真实温度值<0;then 温度量=实际测量值+误差的绝对值;else温度量=实际测量值;end2、ADAM4019指令的学习(见附件材料)3、VB知识的准备和参考程序设计在此实验中,可能会涉及VB软件中MSComm控件的使用,请同学们自学MSComm控件的相关知识,做到熟悉其属性、方法和事件,并会用其进行程序设计。
温度采集原理
温度采集原理温度采集是指通过传感器等设备获取环境或物体的温度信息的过程。
在工业控制、环境监测、医疗设备等领域,温度采集是非常重要的一项技术。
本文将介绍温度采集的原理及常见的温度传感器类型。
一、温度传感器的原理。
温度传感器是一种能够将温度转换成电信号的装置。
根据其工作原理,常见的温度传感器可以分为接触式和非接触式两种类型。
1. 接触式温度传感器。
接触式温度传感器是通过与被测物体直接接触来获取温度信息的传感器。
其中,最常见的是热电偶和电阻温度计。
热电偶利用两种不同金属导线的热电势差来测量温度,其工作原理是当两种不同金属连接处有温度差时,会产生电动势。
而电阻温度计则是利用金属电阻随温度变化的特性来测量温度。
2. 非接触式温度传感器。
非接触式温度传感器是通过测量物体辐射出的红外辐射来获取温度信息的传感器。
红外线可以传播到被测物体表面并被吸收,被吸收的能量与物体的温度成正比。
因此,通过测量红外辐射的强度,就可以间接地得到物体的温度。
二、常见的温度传感器类型。
1. 热电偶传感器。
热电偶传感器具有快速响应、测量范围广、耐高温等特点,适用于高温环境下的温度测量。
2. 电阻温度计。
电阻温度计精度高,稳定性好,适用于精密温度测量,常用于实验室和工业控制领域。
3. 红外线温度传感器。
红外线温度传感器无需接触测量物体,适用于远距离、高温或移动物体的温度测量。
三、温度采集系统。
温度采集系统由传感器、信号调理电路、数据采集模块和数据处理单元组成。
传感器负责将温度转换成电信号,信号调理电路用于放大、滤波和线性化处理信号,数据采集模块负责将模拟信号转换成数字信号,数据处理单元则对数字信号进行处理和分析,最终得到温度信息。
在实际应用中,温度采集系统可以通过传感器将环境或物体的温度信息转换成数字信号,然后通过数据处理单元进行处理和分析,实现对温度的监测、控制和调节。
总结。
温度采集是一项重要的技术,在工业控制、环境监测、医疗设备等领域有着广泛的应用。
温度采集系统
温度采集系统-Date: 8/20/2009背景介绍钢化玻璃是一种预应力玻璃,为提高玻璃的强度,通常使用化学或物理的方法,在玻璃表面形成压应力,玻璃承受外力时首先抵消表层应力,从而提高了承载能力,增强玻璃自身抗风压性,寒暑性,冲击性等。
生产钢化玻璃工艺有两种:一种是将普通平板玻璃或浮法玻璃在特定工艺条件下,经淬火法或风冷淬火法加工处理而成。
另一种是将普通平板玻璃或浮法玻璃通过离子交换方法,将玻璃表面成分改变,使玻璃表面形成一层压应力层加工处理而成。
由于第一种方法生产效率高,周期短,安全性好,并且成本低,所以这种方法广泛采用,工艺流程如图所示:玻璃钢化温度在630℃左右,当玻璃达到此温度时,炉内空间温度要达到700℃以上,而玻璃钢化炉的电加热丝的温度要达到900℃以上。
玻璃表面温度是影响钢化玻璃质量的重要原因,因此对玻璃表面温度的控制至关重要。
并且,在玻璃钢化过程中,要在玻璃钢化炉内保存一定时间,以保证钢化玻璃质量,所以,对玻璃表面的温度以及炉内空间温度的时时监测和控制是非常重要的。
一般每台玻璃钢化炉需要100-200个甚至更多的温度采集点,这些温度采集点分别遍布在加热炉的上下层,而这些采集点距离控制柜有一定的距离,因此要快速、准确并低成本地进行温度的采集,是钢化炉设备的一个关注焦点。
因此,ADAM模块ADAM-4118在此中的应用相当适合,并有成功应用。
水平钢化炉工艺流程示意图:基于ADAM温度采集解决方案:ν硬件部分:采用ADAM-4118坚固型热电偶输入模块,每个模块具有8个通道,可以同时采集8路温度信号,100采样点/秒的采集速率可以满足温控速度。
16位分辨率,温度的分辨精度高,便于做到温度的精细采集和控制,生产更多不同类型的产品;8个通道可以使温度的控制回路数增多,便于更细致的进行温控;自带冷端补偿,无须另外配置。
ADAM-4118坚固型8通道热电偶输入模块主要特点•支持多种热电偶采集,8路可独立配置热电偶类型•采样速率可到100采样点/秒•支持16位分辨率采集•支持Modbus协议和研华ASCII协议•和工控机通过RS-485总线连接•PLC系统中温度采集的绝佳配合说明:工控机通过ADAM-4520将RS-232串口转为RS-485串口和ADAM-4118进行连接。
温度采集原理
温度采集原理温度采集是指利用各种传感器和仪器设备对物体的温度进行测量和采集的过程。
温度是描述物体热状态的物理量,对于许多工业生产和科学研究领域来说,准确地采集和监测温度是非常重要的。
本文将介绍温度采集的原理及相关知识。
一、温度传感器。
温度传感器是温度采集的核心部件,它能够将温度转化为电信号输出,常见的温度传感器有热电偶、热敏电阻、半导体温度传感器等。
热电偶是利用两种不同金属导线焊接成回路,当焊点温度发生变化时,产生的热电动势可测出温度变化;热敏电阻则是利用材料的电阻随温度变化而变化的特性来测量温度;而半导体温度传感器则是利用半导体材料的特性来测量温度。
这些传感器各有优缺点,可根据实际需求选择合适的温度传感器。
二、温度采集原理。
温度采集的原理是利用温度传感器将物体的温度转化为电信号,再经过放大、转换、处理等环节,最终得到我们需要的温度数值。
在温度采集系统中,通常会有模拟信号处理和数字信号处理两种方式。
模拟信号处理是将传感器输出的模拟电信号进行放大、滤波、线性化等处理,然后转换为标准的电压或电流信号;而数字信号处理则是将模拟信号经过A/D转换器转换为数字信号,再经过微处理器或单片机进行数字滤波、数据处理和通信输出。
三、温度采集系统。
温度采集系统是由传感器、信号调理模块、数据采集模块、数据处理模块和显示输出模块等部分组成的。
传感器负责将温度转化为电信号,信号调理模块负责对传感器输出的信号进行放大、滤波、线性化等处理,数据采集模块负责将模拟信号转换为数字信号,然后进行数据处理和存储,最后通过显示输出模块将结果展示出来。
整个系统需要保证采集的温度数据准确、稳定、可靠,以满足不同领域的需求。
四、温度采集应用。
温度采集在工业自动化、环境监测、医疗仪器、农业生产等领域有着广泛的应用。
在工业自动化中,温度采集系统可以用于监测生产过程中的温度变化,保证产品质量和生产安全;在环境监测中,可以用于大气温度、水温、土壤温度等的监测,为环境保护和资源管理提供数据支持;在医疗仪器中,可以用于体温测量、病房温度监测等,保障患者的健康和安全;在农业生产中,可以用于温室大棚的温度监测,为作物生长提供合适的环境条件。
温度采集原理
温度采集原理温度是物体内部分子或原子的运动状态的直接表现,是物体内部微观粒子活动程度的一种表现。
温度的高低直接影响着物体的性质和状态,因此温度的准确采集对于许多领域来说都是非常重要的。
本文将介绍温度采集的原理及其相关知识。
一、温度传感器。
温度传感器是用来测量物体温度的装置,其工作原理是利用物质的热膨胀、电阻、热电效应、光学效应等特性来实现温度的测量。
常见的温度传感器有热敏电阻、热电偶、红外线传感器等。
其中,热敏电阻是一种电阻随温度变化而变化的元件,通过测量电阻值的变化来确定温度的变化;热电偶则是利用两种不同金属导体在不同温度下产生电动势的原理来测量温度。
二、温度采集原理。
温度采集的原理是通过温度传感器将物体的温度转化为电信号,再通过数据采集模块将电信号转化为数字信号,最终通过微处理器进行处理和显示。
在这个过程中,温度传感器起到了关键作用,它能够将温度转化为电信号,并且具有较高的灵敏度和稳定性。
数据采集模块则负责将模拟信号转化为数字信号,并进行一定的处理和存储。
微处理器则是整个系统的核心,它能够对采集到的数据进行处理、分析和显示,同时还可以通过通信接口将数据传输到外部设备。
三、温度采集系统的应用。
温度采集系统广泛应用于工业自动化、环境监测、医疗设备、家用电器等领域。
在工业自动化中,温度采集系统可以用于监测生产过程中的温度变化,保证产品质量和生产安全;在环境监测中,可以用于监测大气温度、水温等环境参数,用于环境保护和气象预测;在医疗设备中,可以用于监测患者的体温,保证医疗过程中的安全和有效性;在家用电器中,可以用于空调、冰箱等电器的温度控制,提高产品的舒适性和节能性能。
四、温度采集系统的发展趋势。
随着科学技术的不断发展,温度采集系统也在不断更新和完善。
未来,温度采集系统将更加智能化、便捷化和精准化。
智能化体现在系统将具有更高的自动化程度,能够实现远程监控和控制;便捷化体现在系统将更加简单易用,用户可以通过手机、平板等设备随时随地查看和控制温度;精准化体现在系统将具有更高的测量精度和稳定性,能够满足更加严格的应用要求。
基于ZigBee技术的温度数据采集监测系统的设计
基于ZigBee技术的温度数据采集监测系统的设计一、概述随着物联网技术的飞速发展,无线传感器网络在工业生产、环境监测、智能农业等领域得到了广泛应用。
温度数据采集作为基础且关键的环境参数之一,对于保障生产安全、提高生产效率、实现智能化管理具有重要意义。
ZigBee技术作为一种短距离、低功耗的无线通信技术,凭借其低成本、易部署、高可靠性等特点,已成为无线传感器网络的主流技术之一。
本文旨在设计一种基于ZigBee技术的温度数据采集监测系统。
该系统利用ZigBee无线传感器网络采集环境温度数据,通过数据传输和处理,实现对温度信息的实时监测和分析。
系统设计注重实用性和可靠性,力求在保证数据准确性的同时,降低成本和提高效率。
本论文的主要内容包括:对ZigBee技术和无线传感器网络进行概述,分析其在温度数据采集监测系统中的应用优势详细阐述系统设计的整体架构,包括硬件选型、软件设计、网络通信协议等方面对系统的关键技术和实现方法进行深入探讨,如数据采集、传输、处理及显示等通过实验验证系统的性能和稳定性,并对实验结果进行分析和讨论。
本论文的研究成果将为无线传感器网络在温度数据采集监测领域的应用提供有益参考,对推动相关行业的技术进步和产业发展具有积极意义。
1.1 研究背景随着物联网技术的飞速发展,无线传感器网络(Wireless Sensor Networks, WSN)在环境监测、工业控制、智能农业等领域得到了广泛的应用。
作为WSN的关键技术之一,ZigBee技术因其低功耗、低成本、短距离、低速率、稳定性好等特点,成为实现WSN的重要手段。
温度数据采集监测系统作为WSN的一个重要应用,通过对环境温度的实时监测,为生产生活提供准确的数据支持,对于保障生产安全、提高生活质量具有重要意义。
传统的温度数据采集监测系统多采用有线方式,存在布线复杂、扩展性差、维护困难等问题。
为了解决这些问题,基于ZigBee技术的无线温度数据采集监测系统应运而生。
基于STM32的温度采集系统设计
基于 STM32的温度采集系统设计摘要:本文利用STM32的一种微型处理器来当主控的CPU,通过使用一个独立的数据采集模块采集数据,在这个基础上实现了智能化的温度数据采取、然后还有传输、处理和显示等功能。
并商讨了该怎么提高系统的速度、性能和拓展性。
数据采集是获取信号对象信息的过程。
关键词:嵌入式系统;ARM;DS18B20温度传感器;STM32;温度采集;数据的处理一、引言当今社会,随着社会的不断发展,科学技术的不断进步,测温仪器在各个领域的广泛应用,智能化服务已成为这个时代温控系统发展的重要趋势。
温度控制在生活中还有在工业领域中涉及的非常多,像室内、供暖机构、天气预告等这些场所的温度控制。
像之前传统的温度控制都是手动的,操作起来很麻烦。
本文系统设计目的,首先它得是实现一种精准度高的系统来采集的温度控制系统,其应用必须得以普及,功能强大。
二、整体系统设计(一)系统方案设计第一个方案:需要使用模拟分立的元件,例如电容、电感、晶体管等非线性元件,观察采集的温度和显示的具体效果,这个方案的设计十分的好理解,特别简单,并且它的操作也不是特别的难,还有个好处,就是它的价格是非常合适的。
缺点就是如果用分立的元件,会造成它的分散性特别的大,对集成数字化是十分不好,而且最后测量之后,会存在很大的误差的,所以这个方案的可行性不太好,尽量不用。
第二个方案:选用PC机作为本次设计的主控机。
利用温度传感器来选用温度的信号,通过信号放大器之后,再送到A/D转换芯片中,然后再一次的经过拥有单片机的检测系统来进行下一步的解析和处理,然后再利用通信线路到PC机的上面,在PC的上面也可以通过对温度信号来进行很多的解析和处理的方式,所以这个方案简单来说还是不错的。
(二)系统工作原理通过了解设计需求方面确定了系统的总体方案,这个整体的系统其实是根据使用单片机、温度的传感器、显示屏的模块、报警器还有按键等五个部分来组成的。
使用者最开始得先将这个温度的报警的值输入到程序里,也就是温度的上下限。
温度采集系统
南京理工大学温度采集系统开发实践报告学院:电光院专业:姓名:学号:指导老师:摘要:温度检测是现代检测技术的重要组成部分,在保证产品质量、节约能源和安全生产等方面起重要作用。
本次实践采用数字式温度传感器DS18B20采集外界温度,核心器件单片机AT89C52用于温度的接收、转换、存储和传送,最终数据传至PC,由PC中用于串口通信的MFC对话框来显示实时温度,并显示温度变化的折线图。
关键词:温度采集、DS18B20、AT89C52、串口通信目录1.绪论 (4)1.1 背景及意义 (4)1.2 目的和内容 (4)2.主要器件介绍 (4)2.1 数字式温度传感器DS18B20 (4)2.1.1 概述 (4)2.1.2 工作原理 (4)2.1.3 内部结构及引脚 (6)2.1.4 控制命令 (8)2.1.5 性能特点 (9)2.1.6 应用范围 (9)2.2 单片机AT89C52 (9)2.2.1 概述 (9)2.2.2 内部结构 (10)2.2.3 工作原理 (11)2.2.4 性能特点 (12)3.硬件设计 (12)3.1 设计要求 (12)3.2 温度采集电路 (12)3.3 串口通信电路 (12)4.软件设计 (13)4.1 RS232串口显示实时温度数据,ds18b20模块 (13)4.2 串口通信程序 (17)5.过程分析及调试 (20)6.结论与收获 (24)7.参考文献 (24)1.绪论1.1背景及意义温度是一种最基本的环境参数,日常生活和工农业生产中都需要时常检测与采集温度。
传统的靠人工控制的温度采集系统,多用热电偶或热电阻,其外围电路较为复杂、测量精度较低、分辨力不高,因此越来越不适应社会和市场的要求。
随着科技的发展,由单片集成电路构成的温度传感器种类越来越多,其功能越来越强大,凭借其方便和成本低等优势得到广泛应用。
其中,DS18B20温度传感器是美国DALLAS半导体公司最新推出的一种改进型智能温度传感器,与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。
温度采集系统介绍温度采集系统介绍温度采集系统介绍温
温度采集系统介绍温度采集系统介绍(澳德数据采集 )1、使用使用传统传统传统温度传感器温度传感器温度传感器的采集系统的采集系统从上图上看,系统有如下方面组成:• 温度传感器(热电偶或热电阻)• 变送器(4-20毫安输出或电压输出)• 24V 直流电源• 采集器(DSS14, U12, U3, UE9)• 计算机温度传感器温度传感器选择选择主要由测温范围决定,热电偶的比热电阻的大。
另外一个考虑是传感器的安装。
这些传感器有各种安装方式供选择,如螺纹安装,卡套,法兰等。
接线方式也有引线式,航空插头式,防水/防暴接线盒方式。
传感器的保护管径也不同,一般有3-20mm 。
请参见有关温度传感器选择手册。
变送器变送器选择选择如果传感器的位置和采集器的位置较远,如5米以上;如果环境的噪声较大(如工业现场),一般使用电流输出变换器(有两线的,也有4线的变换器,但一般现在使用两线的较多)。
如果在实验室中,一般使用电压输出型,因为它们更方便,但它们看干扰能力差。
如果使用电流型,那么在采集器方就需要使用一个电阻。
一般来说,U12/UE9使用500欧,DSS14使用250欧,U3用120欧。
电阻的作用是把电流信号变换成电压信号,连接方法见上图。
如果使用电压型,那么它们的输出电压值要用来确定采集器的选择。
一般来说U12和UE9都可以使用,DSS14适合于输出电压在5V以内,而U3适合于输出电压在2。
45V以内。
采集器选择一般温度变化率低,不会存在要选择高速采集设备,所以所有的采集器都适用。
但是需要考虑下面的几个方面:•测量精度: DSS14、U12、U3、UE9有12位或以上的分辨率,所以一般来说都适用。
•变换器的输出:上面已经介绍•采集通道数:DSS 14有12 路,U12有8路,U3有16路,UE9有14路(但可以方便地扩展到112路)。
当然可以使用多个U12或U3来增加采集通道。
•价格:DSS14价格最低,最适合于通道少,使用台式电脑的场合。
温度湿度压差等数据采集系统安全操作及保养规程
温度湿度压差等数据采集系统安全操作及保养规程摘要温度湿度压差等数据采集系统被广泛应用于环境监测、仓储管理、生产制造等领域。
本文对该系统的操作规程、安全注意事项和日常维护保养进行了详细介绍。
遵守以下规程可以确保系统的稳定性和安全性,同时也能够延长系统的寿命,节约维修成本。
系统操作规程开机准备在开机前,需要按照以下步骤进行准备工作:1.检查电源线是否牢固连接;2.检查数据采集器与上位机的连接是否正确;3.检查传感器是否正常工作。
系统启动在完成开机准备后,按照以下步骤启动系统:1.打开电源开关;2.启动数据采集软件;3.稍等片刻,等待系统自检完成。
数据采集系统启动后,可以进行数据采集。
根据实际需要,可选择手动采集或自动采集模式。
1.手动采集:点击软件界面上的“手动采集”按钮,即可开始手动采集。
2.自动采集:在数据采集软件上设置好采集频率和采集时段,即可开始自动采集。
数据分析与处理采集到的数据需要进行分析和处理。
在进行数据分析和处理时,需要注意以下几点:1.根据环境温度、湿度等情况,进行数据的分析和处理;2.对数据进行分类、整理、存储等处理;3.根据需要生成相应的报表。
关机操作在关机前,需要根据以下步骤进行关机操作:1.停止数据采集;2.关闭数据采集软件;3.关闭电源开关。
系统安全注意事项设备安装在安装设备时,需要注意以下几点:1.固定传感器时,需要保持稳定性,并确保各个传感器的位置和方向正确;2.所有电子设备应远离水分和高温环境。
操作安全在进行系统操作时,需要注意以下几点:1.不得将杯酒释放到系统内部,以防止对系统的损坏;2.严禁非授权人员拆卸、维修系统设备。
系统维护在进行系统维护时,需要注意以下几点:1.定期清洁传感器表面,以确保数据采集的准确性;2.定期检查系统运行状态,及时发现并处理系统异常。
系统保养规程保养频率为了保障系统的长期稳定运行,需要按照以下规程进行保养:1.每月至少清洁一次传感器表面;2.每季度检查系统运行状态和传感器的工作性能。
温度采集系统课程设计PID
温度采集系统课程设计PID一、课程目标知识目标:1. 学生能理解温度采集系统的基本原理,掌握PID控制算法在温度控制中的应用。
2. 学生能描述传感器的工作原理,了解不同类型传感器的特点及选用原则。
3. 学生掌握数据采集、处理和传输的基本方法,了解温度采集系统中各个环节的影响因素。
技能目标:1. 学生能运用所学知识设计简单的温度采集系统,并运用PID算法实现温度的自动控制。
2. 学生能运用编程软件对温度采集系统进行模拟和调试,解决实际操作过程中出现的问题。
3. 学生具备团队协作能力,能够与组员共同完成温度采集系统的设计与搭建。
情感态度价值观目标:1. 学生培养对自动化技术的兴趣,激发创新精神和实践能力。
2. 学生通过课程学习,认识到科技在生活中的应用,增强社会责任感和使命感。
3. 学生在团队协作中学会沟通、分享、尊重和合作,培养良好的团队合作精神。
本课程针对高年级学生,课程性质为理论与实践相结合。
通过本课程的学习,使学生将所学理论知识与实际应用相结合,提高解决实际问题的能力。
教学要求注重培养学生的动手操作能力、团队协作能力和创新能力,使学生在掌握专业知识的同时,形成积极的情感态度和价值观。
课程目标分解为具体学习成果,以便于教学设计和评估的实施。
二、教学内容1. 温度采集系统原理与结构- 传感器原理及其选用- 数据采集、处理与传输- 温度控制算法简介2. PID控制算法理论- PID控制原理- PID参数调整方法- PID算法在温度控制中的应用3. 温度采集系统设计与实现- 系统设计流程与方法- 硬件选型与连接- 软件编程与调试4. 实践操作与团队协作- 温度采集系统搭建- PID参数调试与优化- 团队协作与成果展示教学内容根据课程目标进行选择和组织,注重科学性和系统性。
教学大纲明确教学内容安排和进度,与课本章节相对应。
具体教学内容如上所述,包括温度采集系统原理与结构、PID控制算法理论、温度采集系统设计与实现以及实践操作与团队协作等四个方面,旨在帮助学生全面掌握温度采集系统相关知识,提高实际操作能力。
温度采集系统报告
课程设计说明书题目:温度采集电路设计学生姓名:赵颖娜学号: 201306090211 院(系):电气与信息工程学院专业:网络工程132指导教师:周晓慧2015 年 12 月25日摘要本次课程设计主要是做一个温度测量系统,对于0-100摄氏度的环境温度或者给定温度要求能较为精确的测量(误差小于1摄氏度)并显示在数码管上,让人直观的看到。
要想测量温度,就必须要一个温度测量仪器,而想要用电路实现功能就必须要把温度值转化为电信号量,因此我们选用LM35作为温度感应电路的核心。
LM35可以将温度值转化为电压值,误差小于0.5℃,符合设计要求。
由于输出电压值过小,直接进行A/D转换会造成较大误差,因此将这个电压值进行放大,放大后经A/D转换器将连续的模拟电压值转化为数字信号量,经过AT28C16的存储接两个CD4511驱动两个共阴极的数码管用来显示两个数字,分别为十位和个位,读出的即为温度值。
目录第一章技术指标1.1整体功能要求┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈1第二章方案论证2.1 方案比较┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈12.2 方案确定┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈1第三章单元电路设计3.1 LM35电源电路┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈13.2 信号放大电路┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈23.3 A/D转换电路┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈33.4 数码显示电路┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈33.5 AT28C16 ┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈33.6 555多谐振荡器┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈3第四章组装、调试4.1 使用的主要仪器和仪表┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈44.2 调试电路的方法和技巧┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈44.3 测试的数据和波形并与计算结果比较分析┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈54.4 调试中出现的故障、原因及排除方法┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈6第五章设计总结、收获、体会┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈7参考文献┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈8附录Ⅰ图纸┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈9附录Ⅱ元件清单┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈10第一章技术指标1.1 整体功能要求设计并整理一个温度测量与显示系统,基本原理如图8所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子仪器设计
专业:测控技术与仪器
班级:03061405
*****
学号:04
花木温室的温度采集系统设计
1、方案思路: 系统采集可以采用多路采集也可以采用单通道数据采集。
多路采集需要的传感器或A/D转换器的个数较多从价格方面考虑比较昂贵。
本系统由温度采集系统(温度传感器、放大电路、和A/D转换电路)、8051单片机、显示存储单元和时序控制单元组成。
传感器不断的对温度进行转换电量操作,而A/D转换电路采取适时的采集转换(即有时钟控制它的选通)一个温度传感器接一个放大电路A/D转换电路,这样一方面简化了大量测量放大电路,节省了资金,缩小了成品电路的体积,提高产品的测量精度,且通过放大器与A/D的校准,可完成对整个测量控制板的校准,提高产品可调性,完成系统性能,缩短了产品研制财期。
系统框图如下图1所示。
图1 系统硬件的整体框图
2、温度采集电路的设计与分析
2.1传感器的选择:目前最常用的传感器有热电偶,热繁电阻,热电阻,半导体集成温度传感器,热辐射高温传感谢器,光导纤维温度传感谢器等。
热电偶常用于高温检测,测温时容易引入误差(冷端误差)需要温度补偿
热电阻传感器,电阻值随温度增加,最常见的构成材料是铂,镍或铜,其线性度好,但价格较高,阻值小,连入测量电路中须考虑引线电阻的影响。
热敏电阻由钴,锰等金属的氧化物以不同的配方高温烧结而成,包括正温度系数热敏电阻(CTR),负温度系数热敏电阻(NTC)和在其某一特定温度下是阻值会发生突变的临界温度电阻器(CRT),在温度测量中主要采用NTC和PTC,尤其NTC应用较多。
热敏电阻随温度变化而迅速变化,即灵敏度高,温度变化1度阻值变化3%-6%,且阻值较大(十几欧的引线电阻对测量结果影响较小可忽略)适合测量微弱温度变化,但非线性严重,使用时需进行
线性化处理。
其它像热辐射与光纤传感器主要用于高温测量且成本高。
则本系统需要的传感器数量大,考虑到成本等多种因素,选用NTC型热敏电阻较为合适2.2 温度电路设计
2.2.1温度电压转换电路由不平衡电轿实现,放大电器采用LF347四运放芯片,构成差分放大电路,将电桥输出电压转换为对地电压,其实现整体电路如下图3,电桥中的电位器用于调平电桥。
2.2.2测温元件的温度特性分析与线性化处理
热敏电阻的阻值与温度的关系可用以下公式表示:
可见aT是随温度的降低迅速增大,因此适用于本系统中测量相对较低温度。
式中,Rt =R0 exp B
热敏电阻的线性化方法有很多种,分为硬件线性化方法和软件线性化方法。
硬件线性化方法采用串并联电阻的方法对热敏电阻进行线性化,软件线性化方法可采用查表法读取温度值。
串并联电阻可在某一温度区间(如0℃~50℃)获得较好的线性化效果。
以串联电路为例,由图2可列出串联电路分压的电路方程:
(3)
图2串联电路与并联电路
归一化处理,令
(4)
并联电路经推导得出的电阻值表达式与(7)式相同。
由上式得到的并联电阻值与热敏电阻并联,得到的并联电阻值,从阻值与温度曲线可看出,在常用温度测量区间(0℃~50℃)左右,热敏电阻的阻值的线性化程度有了明显的改善.
只采用硬件的处理并不能较为理想地解决线性化的问题,必须采用软件方法进行线性化补偿校正,并联电阻后使曲线较为平坦,但相邻温度(1℃)之间的电阻差值变小,再连入电桥后相邻温度之间的电压差值变小,从而会影响测量温度的分辨率。
因此,直接将热敏电阻连入电桥中,平衡温度为25℃(电阻10KΩ),将热敏电阻放入恒温浴槽中,改变温度值测定电压值,多次测量选择较为理想的数据。
在常用温度范围内(0℃~40℃),温度与电压之间的线性关系较好,相邻温度(1℃)之间电压差值为40mv左右。
处理数据可采用多项式拟合的方法,得出温度与电压之间的函数关系式。
本系统采用查表的方法,在测量范围内,以1℃为间隔,将所测量的数据列表存储在ROM中。
若测量温度在两个电压数据之间,则采用逐次插值的方法,先计算相邻两点之间的斜率,再根据两点之间的直线方程计算温度值,由公
式8得出,
(8)
2.3 A/D转换部分显示器件和存储设备选择
A/D转换芯片选用MAX1241,它是12位逐次逼近型串行输出的A/D转换器。
其最大线性误差小于1LSB,转换时间为9微秒,采用三线式串行接口,内置快速采样保持电路。
该芯片具有引脚少体积小的特点,接口所需的I/O位数也比较少,对于提高仪器的集成度和减少体积是有利的。
由于输出显示时需用到汉字,例如“XX号的温度是XX.X”, 显示器采用字符型液晶显示模块。
液晶显示模块在各类测量及控制仪表中由于其功耗低、寿命长、价格低、接口控制方便等优点而被广泛的应用。
其中字符型液晶显示模块是一类专用于显示字母、数字、符号的点阵式液晶显示模块。
以HD44780(HITACHI) 为主控制驱动电路及其扩展驱动电路HD44100 的液晶显示模块是以若干个5 ×8 或5 ×11 点阵块组成的字符块集。
该字符块集中的每一个字符块为一个字符位, 字符间的点距和行距均为一个点的宽度。
它的内部具有字符发生器ROM 以及可显示192 种字符和64 个字节的自定义字符RAM, 因而可自定义8 个5 ×8 点阵字符或4 个5 × 11 点阵字符。
而且模块的接口信号和操作指令具有广泛的兼容性,并能直接与单片机接口。
另外,它还具有专用指令,可方便地实现各种不同的操作。
8051单片机内有程序存储器4KB加128B的数据存储器。
温度信号包括数据2字节,通道号1字节,月、日、时、分数据4字节,每天10分钟采集一次,24小时总共6*24=144次,24小时共需要存储量大于128B。
所以需加一存储器。
本设计中使用串行EEPROM24C01。
串行EEPROM24C01的SCL时为串行时钟端,SDA为串行数据/地址端。
SCL与SDX都是,双向传输线,由于是漏极开路需接上上拉电阻至VCC,WP为保护端接高电平为只读,接低电平是存储器可读可写。
本设计图中接低电平,芯片只需单电源供电。
VCC电压范围为1.8到5.5V. A0、A1、A2为片选或块选引脚可将A0、A1、A2接VCC或地形成片选地址。
3、单元电路设计
3.1温度测量电路(包括非电量部分转换成电量部分和放大信号部分设计)
图3 温度测量电路
3.2 时钟控制
时钟控制部分先采用软件部分实现,即产生周期为10分钟的脉冲计数。
之后连入计时器8253实现24小时的控制。
编程如下:
3.2.1 用单片机内置定时器T0实现10分钟的时钟(即10分钟系统进行采集测温一次)
实现软件编程部分:
ORG 0000H
MX BIT P1.7
CLOCK DATA 30H
LMP MAIN ;跳到主程序
ORG 000BH ;T0中断入口地址
LJMP T0_INT ;转向中断服务程序
ORG 0100H
MAIN: MOV TMOD , #01H ;置T0工作方式为1
MOV TH0, #08DH ;装入指针
MOV TL0, #0F0H
SETB ET0 ;T0断开
SETB EA ;CPU开中断
SETB TR0 ;启动T0
STMP $ ;等待中断
T0_INT : PUSH ACC ; 现场保护
PUSH PSW
CLR TR1
MOV TH0, #0D8H ;重新装入初值
MOV TL0, #0B0H
SETB TR1
INC CLOCK ;软时钟加1
MOV A, CLOCK
CJNE A, #7B70H TMPL
TMPL: JC RETURN ;不到10分钟返回
CPL MX ;到10分钟P1.7取反
MOV CLOCK , #0H ;软时钟清零
RETURN: POP PSW
POP ACC
RETI
END
3.2.2 8253实现计数24小时内测温次数144编程部分:
LMP MAIN ;跳到主程序
ORG 0013H ;外部中断1入口地址
LJMP MN ;转向中断服务程序
MAIN: SETB EX1 ;外部中断
SETB EA ;CPU开中断
SETB TR0 ;启动T0
STMP $ ;等待中断
MN: MOV R0, #010H ;写控制字
MOV ACC, #043H
MOV ACC, R0
MOV 1A, #040H
MOV ACC, #090H ;计数器0的计数初值
MOV A, ACC
SETB
RETI
END
3.3系统硬件电路图: (图3示)
4、小结:
系统在实现数据采集转换过程中基本能能满足系统要求,性能方面个人认为还比较好能达到技术要求。
路电现实体整统系3图。