初二数学期中考试试卷

合集下载

江苏省苏州市苏州园区五校联考2024-2025学年上学期八年级数学期中试题(无答案)

江苏省苏州市苏州园区五校联考2024-2025学年上学期八年级数学期中试题(无答案)

32024-2025学年第一学期期中考试试卷初二年级数学学科 2024年11月 注意事项:1.本试卷满分100分,考试时间100分钟;2.所有的答案均应书写在答题卷上,按照题号顺序答在相应的位置,超出答题区域书写的答案无效;书写在试题卷上、草稿纸上的答案无效;3.字体工整,笔迹清楚。

保持答题纸卷面清洁。

一、选择题:本大题共8小题,每小题2分,共16分.在每小题给出的四个选项中,只有一个选项是正确的,请将正确选项前的字母填在答题卡相应位置上.1.下列四种图案是2024年巴黎奥运会中部分运动项目的示意图,其中是轴对称图形的是( )A .B .C .D .2.下列计算正确的是( )A B C D .3.在实数、、、、中,无理数有( )A .2个B .3个C .4个D.5个4.△ABC 的三条边分别为,下列条件不能判断△ABC 是直角三角形的是( )A .B .C .D .,,5.如图,有三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( )A .在两边高线的交点处B .在两边中线的交点处C .在两边垂直平分线的交点处D .在两内角平分线的交点处(第5题图) (第6题图)6.如图,要在河边l 上修建一个水泵站,分别向A 村和B 村送水,已知A 村、B 村到河边的距离分别为和,且C 、D ,则铺水管的最短长度是( )A .5B .C .7D .2=-==-=3.140.230.10100100017π117a b c 、、222b ac =-A B C =+∠∠∠::3:4:5A B C ∠∠∠=6a =8b =10c =、、A B C AC BC 、AC BC 、AC BC 、A B ∠∠、2km 5km km km147. 勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.则下列选项一定正确的是()A. 直角三角形的面积B. C. D. 较小两个正方形重叠部分的面积(第7题图) (第8题图)8.如图,在△ABC 中,,,,按以下步骤作图:①以A 为圆心,任意长为半径作弧,分别交于点;②分别以为圆心,以大于的长为半径作弧,两弧交于点;③作射线;④以同样的方法作射线交于点O ,连接,则为( )A .8B .4C .2D.1二、填空题:本大题共8小题,每小题2分,共16分.把答案直接填在答题卡相应位置上.9有意义,则实数的取值范围是.10大且比小的所有整数的和是.11.已知实数,,则.12. 如图,一技术人员用刻度尺(单位:cm )测量某三角形部件尺寸.已知,点D 为边的中点,点A 、B 对应的刻度为1、7,则cm .(第12题图) (第13题图) (第14题图)13.如图,圆柱形容器的底面周长是24cm ,高是17cm ,在外侧地面S 处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm 的点F 处有一苍蝇,急于捕捉苍蝇充饥的蜘蛛所走的最短路线长度是cm .14.如图,分别是的垂直平分线,垂足分别为,且,,,则.15.如图,已知AB=AC=DC=DE=3,,△ABC 与△CDE 的面积和为10,则.16.如图所示,在四边形中,,,,,则的S =阴S S =阴正方形①S S =阴正方形②S =阴10AB =8AC =6BC =AB AC ,M N ,M N ,12MN E AE BF AE ,BF OC 2OC x x y 2(1)0y +=x y ==90ACB ∠︒AB =CD OE OF 、AC BD 、E F 、AB CD =116ABD ∠=︒28CDB ∠=︒OBD ∠=180A D ∠+∠=︒=ABCD 12DAC ∠=︒36CAB ∠=︒48ABD ∠=︒24DBC ∠=︒2BEBCD∠.(第15题图) (第16题图)三、解答题:本大题共9小题,共68分.请将解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.17.(8分)求下列各式中的x :(1)(2)18.(8分)计算:(1(2)19.(6分)已知某正数x 的两个平方根分别是和,y 的立方根是,的平方根.20.(6分)已知,,求的值.21.(6分)利用网格作图.要求:只能用无刻度的直尺,保留作图痕迹.(1)在图①中找一点P ,使点P 到AB 和AC 的距离相等且PB =PC ;(2)在图②中,△ABC 的顶点均在正方形网格格点上,作出△ABC 的角平分线BD .22. (8分)如图,长方形纸片的边长,.将矩形纸片沿折叠,使点A 与点C 重合,折叠后在其一面着色.(1)求的长;(2)求图中阴影部分的面积.23.(8分)如图,在中,、分别是与的中点,,.(1)求证:;(2)已知,当∠A =60°时,求EF 的长.=2250x -=()332810x +-=)(2144-3a -215a +3-z 2x y z +-m =n =22m mn n -+ABCD 8AB =4=AD EF FG ABC ∆M N BC EF CF AB ⊥BE AC ⊥MN EF ⊥8=BC24.(8分)若△ABC 和△ADE 均为等腰三角形,且,当和互余时,称△ABC 与△ADE 互为“底余等腰三角形”,△ABC 的边上的高叫做△ADE 的“余高”.(1)如图1,△ABC 与△ADE 互为“底余等腰三角形”.①若连接,,判断△ABD 与△ACE 是否互为“底余等腰三角形”: (填“是”或“否”);②当时,若△ADE 的“余高” ;③当时,判断与之间的数量关系,并证明;(2)如图2,在四边形中,,,,且.①画出△OAB 与△OCD ,使它们互为“底余等腰三角形”;②若△OCD 的“余高”长为,则点到的距离为 (用含的式子表示).25.(10分)如图①,在长方形ABCD 中,已知AB =13,AD =5,动点P 从点D 出发,以每秒1个单位的速度沿线段DC 向终点C 运动,运动时间为t 秒,连接AP ,把△ADP 沿着AP 翻折得到△AEP .(注:长方形的对边平行且相等,四个角都是直角)(1)如图②,射线PE 恰好经过点B ,求出此时t 的值;(2)当射线PE 与边AB 交于点F 时,是否存在这样的t 的值,使得FE =FB ?若存在,请求出所有符合题意的t 的值;若不存在,请说明理由;(3)在动点P 从点D 到点C 的整个运动过程中,若点E 到直线AB 的距离等于3,则此时t =___________.AB AC AD AE ===ABC ∠ADE ∠BC AH BD CE 90BAC ∠=︒AH =DE =0180BAC ︒<∠<︒DE AH ABCD 60ABC ∠=︒DA BA ⊥DC BC ⊥DA DC =a A BC a。

2024学年八年级上册数学期中考试试卷

2024学年八年级上册数学期中考试试卷

2024学年(上)期中考试初二年级数学科试卷(问卷)考试时量:120分钟满分120分一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列常见的手机软件图标中,是轴对称图形的是()A .B .C .D .2.下列长度的三条线段能组成三角形的是()A .1,2,3.5B .4,5,9C .6,8,10D .7,11,33.在平面直角坐标系中.点()5,1M -关于x 轴对称的点在()A .第一象限B .第二象限C .第三象限D .第四象限4.下列几种说法①全等三角形的对应边相等;②面积相等的两个三角形全等;③周长相等的两个三角形全等;④全等的两个三角形的面积相等.其中正确的是()A .①②B .②③C .③④D .①④5.如图1,墙上置物架的底侧一般会各设计一根斜杆,与水平和竖直方向的支架构成三角形,这是利用三角形的()A .全等性B .美观性C .不稳定性D .稳定性6.如图2,已知AF CE =,//BE DF ,那么添加下列一个条件后,能判定ADF ∆≌CBE ∆的是()A .AFD CEB∠=∠B .//AD CBC .AE CF=D .AD BC=7.如图3,一把直尺压住射线OB ,另一把完全一样的直尺压住射线OA 并且与第一把直尺交于点P ,小明说:“射线OP 就是BOA ∠的平分线.”这样说的依据是()A .角平分线上的点到这个角两边的距离相等B .三角形三条角平分线的交点到三条边的距离相等C .在一个角的内部,到角的两边距离相等的点在这个角的平分线上D .以上均不正确8.如图4,ABC ADE △≌△,BC 的延长线交DA 于点F ,交DE 于点G .若105AED ∠=︒,16CAD ∠=︒,30B ∠=︒,则1∠的度数为().A .66︒B .63︒C .61︒D .56︒9.如图5,AD 是△ABC 的角平分线,DF AB ⊥于点F ,点E ,G 分别在AB ,AC 上,且DE DG =,若24ADG S =△,18AED S =△,则△DEF 的面积为()A .6B .5C .4D .310.如图6,在Rt ABC △中,90C ∠=︒,20A ∠=︒.若某个三角形与△ABC 能拼成一个等腰三角形(无重叠),则拼成的等腰三角形有()A .3种B .5种C .7种D .9种二、填空题(本大题共6小题,每小题3分,共18分)11.如图7,小明从坡角为30︒的斜坡的山底(A )到山顶(B )共走了200米,则山坡的高度BC 为米.12.如图8,是由射线AB BC CD DE EF FA ,,,,,组成的平面图形,若135170∠+∠+∠=︒,则246∠+∠+∠=︒.13.如图9,在平面直角坐标系中,以A (2,0)、B (0,4)为顶点作等腰直角△ABC (其中90ABC ∠=︒,且点C 落在第一象限内),则点C 关于y 轴的对称点C '的坐标为.14.如图10,在△ABC 中,点D 是BC 边的中点,∠BAD =75°,∠CAD =30°,AD =3,则AC 的长为.15.等腰三角形中,一腰上的中线把三角形的周长分为6cm 和15cm 的两部分,则该三角形的腰长为.16.如图,在Rt ABC △中,90ACB ∠=︒,12AC =,BC =5,AB =13,(1)点C 到直线AB 的距离:.(2)动点P 在△ABC 内,且使得ACP △的面积为12,点Q 为AB 上的动点,则PB PQ +的最小值为.三、解答题(本大题共9小题,共72分)17.(本小题满分4分)一个多边形的内角和比它的外角和多900°,求这个多边形的边数.18.(本小题满分4分)如图12,在平面直角坐标系中,△ABC 各顶点的坐标分别为:(4,0),(1,4),(3,1)A B C --,△ABC 关于x 轴的对称图形为△A 1B 1C 1,(1)画出△A 1B 1C 1;(2)写出点A 1,B 1,C 1的坐标.19.(本小题满分6分)如图13,D 是△ABC 的边AB 上一点,CF AB ∥,DF 交AC 于点E ,=DE EF .求证:CF =AD .20.(本小题满分6分)如图14,在△ABC 中,BAC BCA ∠=∠,CD 平分ACB ∠,CE ⊥AB 交AB 的延长线于E 点,若∠DCE =54°,求BCE ∠的度数.21.(本小题满分8分)如图15,在ABC 中,AB AC =.(1)利用尺规,作AC 边的垂直平分线交AC 于点E ,交A 于点D ;(不写作法,保留作图痕迹)(2)在(1)中,连接CD ,若BC=a ,AC=b ,求△BDC 的周长.22.(本小题满分10分)如图16,△ABC 为等腰三角形,AC =BC ,△BDC 和△ACE 分别为等边三角形,AE 与BD 相交于点F ,连接CF 交AB 于点G ,求证:(1)G 为AB 的中点;(2)若∠FAG =15°,求∠BCE 的度数.23.(本小题满分10分)如图17,在△ABC 中,∠ABC 的平分线与AC 的垂直平分线相交于点P ,过点P 作PE ⊥AB 交BA 的延长线于点E .(1)画出△PBE 关于直线PB 对称的△PBF ;(2)求证:AB +BC =2BE ;(3)若AB =7,BC =23,求AE 的长.24.(本小题满分12分)在Rt △ABC 中,AB =AC ,OB =OC ,∠A =90°,∠MON =α,∠MON 的两边分别交直线AB 、AC 于点M 、N .(1)如图1,当α=90°时,求证:AM =CN ;(2)如图2,当α=45°时,问线段BM 、MN 、AN 之间有何数量关系?并证明;(3)如图3,当α=45°时,问线段之间BM 、MN 、AN有何数量关系?并证明.25.(本小题满分12分)在等边△ABC 的AC BC 、边上各取一点P 、Q .(1)如图1,若AQ BP 、相交于点O ,若60BOQ ∠=︒,求证AP CQ =;(2)如图1,连接PQ ,若13AP AC =,AQ BP =,求CPQ ABC S S 的值;(3)如图2,若AQ 是等边△ABC 的中线,点E 是线段AQ 上的动点,AE =CP ,请直接写出当BE +BP 取得最小值时∠EBP的度数.图1图2图17。

仁爱版初二下册《数学》期中考试卷及答案【可打印】

仁爱版初二下册《数学》期中考试卷及答案【可打印】

仁爱版初二下册《数学》期中考试卷一、选择题(每题3分,共30分)1. 已知一个数的平方根是±2,则这个数是()。

A. 4B. 4C. 2D. 22. 下列各数中,不是有理数的是()。

A. 3B. 0.5C. √2D. 3/43. 下列等式中,正确的是()。

A. 3x + 4y = 7B. 2x 5y = 3C. 3x + 4y = 3D. 2x 5y = 74. 已知等差数列的前三项分别是2,5,8,则该数列的公差是()。

A. 3B. 2C. 4D. 55. 下列各式中,是同类项的是()。

A. 3x^2y 和 2xy^2B. 5x^3 和 4x^2C. 7y^3 和 6y^2D. 9z^4 和 8z^36. 已知一个三角形的两个内角分别是45°和60°,则第三个内角的度数是()。

A. 75°B. 60°C. 45°D. 30°7. 下列函数中,是一次函数的是()。

A. y = 2x^2 + 3x + 4B. y = 3x + 4C. y = 2x^3 + 5x^2 + 7D. y = 4x + 68. 已知一个圆的半径是5cm,则其周长是()。

A. 10π cmB. 15π cmC. 20π cmD. 25π cm9. 下列图形中,是中心对称图形的是()。

A. 矩形B. 梯形C. 圆D. 正方形10. 下列数列中,是等差数列的是()。

A. 2, 5, 10, 17, 26B. 3, 6, 9, 12, 15C. 4, 8, 16, 32,64 D. 5, 10, 15, 20, 25二、填空题(每题3分,共30分)11. 已知一个数的立方根是2,则这个数是__________。

12. 下列各数中,是无理数的是__________。

13. 下列等式中,正确的是__________。

14. 已知等差数列的前三项分别是2,5,8,则该数列的公差是__________。

初二数学上册期中考试试卷

初二数学上册期中考试试卷

初二数学上册期中考试试卷一、选择题(每题3分,共30分)1. 下列哪个选项是二次根式?A. 2x+3B. √(x-1)C. x^2-4D. 5x^22. 如果一个数的平方等于9,那么这个数是?A. 3B. -3C. ±3D. 03. 以下哪个是一次函数的图像?A. 直线B. 曲线C. 抛物线D. 双曲线4. 已知a=2,b=3,则a+b的值是多少?A. 5B. 4C. 6D. 75. 以下哪个选项是不等式?A. 3x+2=7C. 4x^2-9=0D. x^2+3x+26. 一个圆的半径是5,那么它的周长是多少?A. 10πB. 20πC. 25πD. 30π7. 以下哪个选项是完全平方公式?A. (a+b)^2=a^2+2ab+b^2B. (a-b)^2=a^2-2ab+b^2C. (a+b)^2=a^2-b^2D. (a-b)^2=a^2+2ab+b^28. 一个等腰三角形的底边长为6,腰长为5,那么它的周长是多少?A. 16B. 17C. 18D. 199. 以下哪个选项是正确的因式分解?A. x^2-4=(x+2)(x-2)B. x^2-4=(x+2)(x+2)C. x^2-4=(x-2)(x-2)D. x^2-4=(x-2)(x+2)10. 如果一个数的绝对值是5,那么这个数可以是?A. 5B. -5D. 0二、填空题(每题3分,共30分)1. 一个数的相反数是-3,那么这个数是________。

2. 一个数的倒数是2,那么这个数是________。

3. 如果一个三角形的内角和为180°,那么一个等边三角形的每个内角是________。

4. 一个数的平方根是4,那么这个数是________。

5. 一个数的立方根是2,那么这个数是________。

6. 如果一个数的绝对值是它本身,那么这个数是________。

7. 一个数的平方等于16,那么这个数是________。

8. 一个数的立方等于-8,那么这个数是________。

2023-2024学年北京市第八中学八年级上学期期中考试数学试卷含详解精选全文完整版

2023-2024学年北京市第八中学八年级上学期期中考试数学试卷含详解精选全文完整版

北京八中2023—2024学年度第一学期期中练习题年级:初二科目:数学一、选择题(每题2分,共20分)在下列各题的四个备选答案中,只有一个....是正确的.1.下面四个图形中,是轴对称图形的是()A. B. C. D.2.下列运算正确的是()A.336x x x += B.2510x x x ⋅= C.()3666x x = D.()22422x x =3.如图,小明书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么小明画图的依据是()A.ASAB.AASC.SASD.SSS4.下列说法错误..的是()A.直角三角形两锐角互余B.直角边、斜边分别相等的两个直角三角形全等C.如果两个三角形全等,则它们一定是关于某条直线成轴对称D.与线段两个端点距离相等的点在这条线段的垂直平分线上5.如图,已知DBE BCA ≌△△,85DBE C =∠=︒∠,55BDE ∠=︒,则EBC ∠的度数等于()A.30︒B.25︒C.35︒D.40︒6.使()()2x p x -+展开整理后不含x 项,则p 的值为()A.1B.2C.3D.47.如图是战机在空中展示的轴对称队形.以飞机B ,C 所在直线为x 轴、队形的对称轴为y 轴,建立平面直角坐标系.若飞机E 的坐标为(40,a ),则飞机D 的坐标为()A.(40,)a -B.(40,)a -C.(40,)a -- D.(,40)a -8.已知2x a ab =-,2y ab b =-,x 与y 的大小关系是()A.x y≥ B.x y≤ C.x y< D.x y>9.在ABC 中,5AC =,中线4=AD ,那么边AB 的取值范围为()A .19AB << B.313AB << C.513AB << D.913AB <<10.甲、乙两位同学进行一种数学游戏.游戏规则是:两人轮流ABC 及A B C ''' 对应的边或角添加等量条件(点A ',B ',C '分别是点A ,B ,C 的对应点),某轮添加条件后,若能判定ABC 与A B C ''' 全等,则当轮添加条件者失败,另一人获胜.轮次行动者添加条件1甲2cmAB A B ''==2乙4cmBC B C ''==3甲…上表记录了两人游戏的部分过程,则下列说法正确的是()①若第3轮甲添加5cm AC A C ''==,则乙获胜;②若甲想获胜,第3轮可以添加条件30C C '==︒∠∠:③若乙想获胜,可修改第2轮添加条件为90A A '∠=∠=︒.A.①②B.①③C.②③D.①②③二、填空题(每题3分,共24分)11.计算:()01π-=_____.12.若一个多边形的内角和等于1260°,它是_____边形,从这个多边形的一个顶点出发共有_____条对角线.13.已知3m a =,4n a =,则2m n a +的值是_________.14.如图,将一把含有45︒角的三角尺的直角顶点放在一张宽3cm 的纸带边沿上,另一个顶点放在纸带的另一边沿上,测得三角尺的一直角边与纸带的一边所在的直线成30︒,则三角尺的直角边的长为______cm .15.等腰三角形的一个内角为50︒,则它的顶角的度数为___________.16.如图,6cm AB AC ==,DB DC =,若60ABC ∠=︒,则BE =______cm .17.如图,在ABC 中,,||AB AC AB CD =,过点B 作BE AC ⊥于E ,BD CD ⊥于D ,8,3,CD BD ABE == 的周长为_________.18.已知在长方形纸片ABCD 中,6AB =,5AD =,现将两个边长分别为a 和b 的正方形纸片按图1、图2两种方式放置(图1、图2中两张正方形纸片中均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为1S ,图2中阴影部分的面积为2S ;若213-=S S 时,则1b -值为______.三、解答题(19题每题4分,共16分;20,21,23每题6分,22题5分;24题8分;25题9分;解答题共56分).19.计算(1)()22124a babc -⋅;(2)()()325n n -+;(3)()()22x y x y ----;(4)()()32222362x y x y xy xy -+÷.20.先化简,再求值:2(21)6(1)(32)(32)a a a a a -++-+-,其中2220230a a +-=.21.如图,在△ABC 和△CED 中,AB ∥CD ,AB =CE ,AC =CD .求证:∠B =∠E .22.作图并填空.在ABC 中,(1)利用尺规作出BC 的垂直平分线,交BC 于D ,连接AD ;(2)画出ADC △的高CH ,CH 与BD 的大小关系为______;(3)画出ADC △的角平分线DM 交AC 点M ,若60ABC S =△,10DCM S =△,设AD a =,DC b =,则:a b =______.23.如图,在平面直角坐标系xOy 中,ABC 三个顶点分别为()2,6A -,()5,1B -,()3,1C .点B 与点C 关于直线l 对称(1)画出直线l ,写出点A 关于l 的对称点A '坐标;(2)则A BC ' 的面积为______;(3)若点P 在直线l 上,90BPC ∠=︒,直接写出点P 坐标.24.如图,ABC 是等边三角形,D 为BC 的中点,BE AB ⊥交AD 的延长线于点E ,点F 在AE 上,且AF BE =,连接CF 、CE .求证:(1)ACF BCE ∠=∠:(2)CF EF =.25.如图,在ABC 中,120180BAC ︒<<︒,AB AC =.AD BC ⊥于点D .以AC 为边作等边ACE △,直线BE 交直线AD 于点F .连接CF 交AE 于M .(1)求证:FEA FCA ∠=∠:(2)探索FE ,FA ,FC 之间的数量关系,并证明你的结论.四、附加题(26题4分,27题6分,共10分)26.小明同学用四张长为x ,宽为y 的长方形卡片,拼出如图所示的包含两个正方形的图形(任意两张相邻的卡片之间没有重叠,没有空隙).(1)通过计算小正方形面积,可推出()2x y +,xy ,()2x y -三者之间的等量关系式为______;(2)利用(1)中的结论,试求:当()()3002001996x x --=时,求()22500x -的值.27.在平面直角坐标系xOy 中,若点P 和点1P 关于y 轴对称,点1P 和点2P 关于直线l 对称,则称点2P 是点P 关于y 轴、直线l 的“二次对称点”.(1)已知点()A 3,5,直线l 是经过()0,2且平行于x 轴的一条直线,点A '为点A 关于y 轴,直线l 的“二次对称点”,则点A '的坐标为______;(2)如图1,正方形ABCD 的顶点坐标分别是()0,1A ,()0,3B ,()2,3C ,()2,1D ;点E 的坐标为()1,1,若点M 为正方形ABCD (不含边界)内一点,点M '为点M 关于y 轴,直线OE 的“二次对称点”,则点M '的横坐标x 的取值范围是______;(3)如图2,(),0T t (0t ≥)是x 轴上的动点,线段RS 经过点T ,且点R 、点S 的坐标分别是(),1R t ,(),1S t -,直线l 经过()0,1且与x 轴夹角为60︒,在点T 的运动过程中,若线段RS 上存在点N ,使得点N '是点N 关于y 轴,直线l 的“二次对称点”,且点N '在y 轴上,则点N '纵坐标y 的取值范围是______.北京八中2023—2024学年度第一学期期中练习题年级:初二科目:数学一、选择题(每题2分,共20分)在下列各题的四个备选答案中,只有一个....是正确的.1.下面四个图形中,是轴对称图形的是()A. B. C. D.【答案】D【分析】根据轴对称图形的定义判断即可.【详解】∵不是轴对称图形,∴A 不符合题意;∵不是轴对称图形,∴B 不符合题意;∵不是轴对称图形,∴C 不符合题意;∵是轴对称图形,∴D 符合题意;故选D .【点睛】本题考查了轴对称图形即沿直线折叠,直线两旁的部分能够完全重合的图形,熟记定义是解题的关键.2.下列运算正确的是()A.336x x x +=B.2510x x x ⋅= C.()3666x x = D.()22422x x =【答案】C【分析】本题考查了合并同类项,幂的乘方,同底数幂的乘法,积的乘方.根据合并同类项法则,同底数幂的乘法法则,幂的乘方法则,积的乘方法则进行判断即可.【详解】解:A 、33362x x x x +=≠,选项错误,不符合题意;B 、21075x x x x ⋅=≠,选项错误,不符合题意;C 、()3666x x =,选项正确,符合题意;D 、()2244242x x x =≠,选项错误,不符合题意.故选:C .3.如图,小明书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么小明画图的依据是()A.ASAB.AASC.SASD.SSS【答案】A【分析】根据图形可知两角及夹边是已知条件即可判断.【详解】解:由图可知,左下角和右下角可测量,为已知条件,两角的夹边也可测量,为已知条件,故可根据ASA 得到与原图形全等的三角形,故选:A .【点睛】本题考查全等三角形的的判定定理,掌握全等三角形的的判定定理是关键.4.下列说法错误..的是()A.直角三角形两锐角互余B.直角边、斜边分别相等的两个直角三角形全等C.如果两个三角形全等,则它们一定是关于某条直线成轴对称D.与线段两个端点距离相等的点在这条线段的垂直平分线上【答案】C【分析】本题考查了直角三角形的性质,全等三角形的判定和性质,垂直平分线的判定.根据直角三角形的性质,全等三角形的判定和性质,垂直平分线的判定等知识,一一判断即可.【详解】解:A 、直角三角形两锐角互余,故A 不符合题意;B 、直角边、斜边分别相等的两个直角三角形全等,故B 不符合题意;C 、如果两个三角形全等,则它们不一定是关于某条直线成轴对称,故C 符合题意;D 、与线段两个端点距离相等的点在这条线段的垂直平分线上,故D 不符合题意.故选:C .5.如图,已知DBE BCA ≌△△,85DBE C =∠=︒∠,55BDE ∠=︒,则EBC ∠的度数等于()A.30︒B.25︒C.35︒D.40︒【答案】A【分析】本题考查三角形全等的性质、三角形内角和的应用,根据DBE BCA ≌△△可得55ABC BDE ∠=∠=︒,再根据DBE ABC EBC =∠-∠∠即可求解.【详解】解:∵DBE BCA ≌△△,∴55ABC BDE ∠=∠=︒,∵85DBE C =∠=︒∠,∴30DB EBC E ABC -∠=︒∠=∠,故选:A .6.使()()2x p x -+展开整理后不含x 项,则p 的值为()A.1B.2C.3D.4【答案】B【分析】本题主要考查多项式乘多项式.根据多项式乘多项式的运算法则可进行把含x 的多项式进行展开,然后再根据题意可求解.【详解】解:()()()2222222x p x x px x p x p x p -+=-+-=+--,∵展开后不含x 项,∴20p -=,解得:2p =;故选:B .7.如图是战机在空中展示的轴对称队形.以飞机B ,C 所在直线为x 轴、队形的对称轴为y 轴,建立平面直角坐标系.若飞机E 的坐标为(40,a ),则飞机D 的坐标为()A.(40,)a -B.(40,)a -C.(40,)a --D.(,40)a -【答案】B【分析】直接利用关于y 轴对称,纵坐标相同,横坐标互为相反数,进而得出答案.【详解】解:根据题意,点E 与点D 关于y 轴对称,∵飞机E 的坐标为(40,a ),∴飞机D 的坐标为(-40,a ),故选:B .【点睛】此题主要考查了关于y 轴对称点的性质,正确记忆横纵坐标的符号关系是解题关键.8.已知2x a ab =-,2y ab b =-,x 与y 的大小关系是()A.x y ≥B.x y≤ C.x y< D.x y>【答案】A【分析】本题主要考查完全平方公式、比较大小.利用作差法即可比较大小关系.【详解】解:已知2x a ab =-,2y ab b =-,则()22a a x yb ab b-=---22a ab ab b =-+-()20a b =-≥,所以x y ≥.故选:A .9.在ABC 中,5AC =,中线4=AD ,那么边AB 的取值范围为()A.19AB <<B.313AB << C.513AB << D.913AB <<【答案】B【分析】作辅助线(延长AD 至E ,使4DE AD ==,连接BE )构建全等三角形BDE ADC △≌△,然后由全等三角形的对应边相等知5BE AC ==;而三角形的两边之和大于第三边、两边之差小于第三边,据此可以求得AB 的取值范围.【详解】解:延长AD 至E ,使4DE AD ==,连接BE ,则8AE =,∵AD 是边BC 上的中线,D 是中点,∴BD CD =,又∵,DE AD BDE ADC =∠=∠,∴()BDE ADC SAS ≌,∴5BE AC ==,由三角形三边关系,得AE BE AB AE BE -<<+,即8585AB -<<+,∴313AB <<.故选:B .【点睛】本题主要考查了全等三角形的判定与性质、三角形三边关系等知识,解题关键是正确作出辅助线构造全等三角形,运用全等三角形的性质判定对应线段相等.10.甲、乙两位同学进行一种数学游戏.游戏规则是:两人轮流ABC 及A B C ''' 对应的边或角添加等量条件(点A ',B ',C '分别是点A ,B ,C 的对应点),某轮添加条件后,若能判定ABC 与A B C ''' 全等,则当轮添加条件者失败,另一人获胜.轮次行动者添加条件1甲2cm AB A B ''==2乙4cm BC B C ''==3甲…上表记录了两人游戏的部分过程,则下列说法正确的是()①若第3轮甲添加5cm AC A C ''==,则乙获胜;②若甲想获胜,第3轮可以添加条件30C C '==︒∠∠:③若乙想获胜,可修改第2轮添加条件为90A A '∠=∠=︒.A.①②B.①③C.②③D.①②③【答案】B 【分析】本题考查全等三角形的判定定理.根据全等三角形的判定定理逐一分析判断即可.【详解】解:①∵如果甲添加5cm AC A C ''==,又∵2cm AB A B ''==,4cm BC B C ''==,∴()SSS ABC A B C '''△≌△,∴乙获胜,故结论①正确;②∵如果甲添加30C C '==︒∠∠,又12AB BC =,反证法,假设90CAB ∠≠︒,那么在AC 上存在另一点D ,使得∠90CDB =︒,则在Rt CDB △中30︒角的对边为斜边的一半,即是12cm 2BD BC ==,又因为一点到直线的垂直线段长度最短,且交点唯一,那么A 与D 应重合,90CDB CAB ∠=∠=︒,∴ABC 是直角三角形,且90A ∠=︒,∴这两个三角形的三边长度就确定下来,且必然对应相等,∴这两个三角形全等,故甲会输,故结论②错误,③如果第二轮条件修改为90A A '∠=∠=︒,则第3轮甲无论添加任何对应的边或角的等量条件,都能判定A ABC B C '''≌△△,则甲失败,乙获胜,故说法正确,符合题意.故选:B .二、填空题(每题3分,共24分)11.计算:()01π-=_____.【答案】1【分析】根据零指数幂的意义即可求出答案.【详解】∵10π-≠,∴()011π-=,故答案为1.【点睛】本题考查零指数幂的意义,解题的关键是熟练运用零指数幂的意义,本题属于基础题型.12.若一个多边形的内角和等于1260°,它是_____边形,从这个多边形的一个顶点出发共有_____条对角线.【答案】①.九②.27【分析】根据多边形内角和公式得到多边形边数,根据多边形对角线的条数的计算公式进行计算即可得到答案.【详解】设这个多边形的边数为n ,∴(n ﹣2)×180°=1260°,解得n =9,∴这个多边形为九边形;∴对角线的条数=(93)92-⨯=27条.故答案为九;27【点睛】本题考查多边形内角和、多边形对角线的条数,解题的关键是掌握多边形内角和、多边形对角线的条数的计算.13.已知3m a =,4n a =,则2m n a +的值是_________.【答案】36【分析】根据()222m n m n mn a a a a a +==g g 求解即可得到答案.【详解】解:∵3m a =,4n a =∴()()22223436m n m n mn a a a a a +===⨯=g g ,故答案为:36.【点睛】本题主要考查了幂的乘方的逆运算,同底数幂乘法的逆运算,解题的关键在于能够熟练掌握相关计算法则进行求解.14.如图,将一把含有45︒角的三角尺的直角顶点放在一张宽3cm 的纸带边沿上,另一个顶点放在纸带的另一边沿上,测得三角尺的一直角边与纸带的一边所在的直线成30︒,则三角尺的直角边的长为______cm .【答案】6【分析】本题考查了含30度角的直角三角形的性质.如图,作AH CD ⊥于H ,根据含30度角的直角三角形的性质求解即可.【详解】解:如图,作AH CD ⊥于H ,∵三角板的一边与纸带的一边所在的直线成30︒角,即30ACH ∠=︒,3cm AH =,∴等腰直角三角形的直角边()26cm BC AC AH ===,故答案为:6.15.等腰三角形的一个内角为50︒,则它的顶角的度数为___________.【答案】80︒或50︒【分析】分50︒的内角是等腰三角形的底角或顶角两种情况,利用三角形内角和定理求解.【详解】解:当50︒的内角是等腰三角形的底角时,它的顶角的度数为:180505080︒-︒-︒=︒;当50︒的内角是等腰三角形的顶角时,它的底角的度数为:()118050652⨯︒-︒=︒,符合要求;故答案为:80︒或50︒.【点睛】本题考查等腰三角形的定义、三角形内角和定理,解题的关键是注意分情况讨论,避免漏解.16.如图,6cm AB AC ==,DB DC =,若60ABC ∠=︒,则BE =______cm .【答案】3【分析】本题考查了垂直平分线的判定与性质、等边三角形的判定与性质;先根据AB AC =,DB DC =,得AD 是BC 的垂直平分线,进而证明ABC 是等边三角形,即可求解.【详解】解:∵AB AC =,DB DC =,∴AD 是BC 的垂直平分线,∴AD BC ⊥,BE CE =,∵60ABC ∠=︒,AB AC =,∴60ACB ∠=︒,∴60BAC ∠=︒,∴ABC 是等边三角形,∴6cm BC AB AC ===,∴13cm 2BE BC ==,故答案为:3.17.如图,在ABC 中,,||AB AC AB CD =,过点B 作BE AC ⊥于E ,BD CD ⊥于D ,8,3,CD BD ABE == 的周长为_________.【答案】11【分析】根据角平分线的性质得出BE BD =,再证明Rt Rt (HL)BEC BDC ≌,得出CE CD =即可求解.【详解】解:∵AB AC =,∴A ABC CB =∠∠,∵||AB CD ,∴ABC BCD ∠=∠,∴BCD ACB ∠=∠,∴CB 平分ACD ∠,∵BD CD ⊥,BE AC ⊥,∴BE BD =,∵BC BC =,∴Rt Rt (HL)BEC BDC ≌,∴CE CD =,∵ABE 的周长AE BE AB =++,∵AB AC =,即ABE 的周长=CA AE BE CE BE CD ++=+=8311BD +=+=,故答案为:11.【点睛】本题考查了全等三角形的判定与性质,角平分线的性质,熟练掌握角平分线的性质是解题的关键.18.已知在长方形纸片ABCD 中,6AB =,5AD =,现将两个边长分别为a 和b 的正方形纸片按图1、图2两种方式放置(图1、图2中两张正方形纸片中均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为1S ,图2中阴影部分的面积为2S ;若213-=S S 时,则1b -值为______.【答案】2【分析】本题主要考查整式的混合运算的实际应用.利用面积的和差关系,分别表示出1S 和2S ,再表示出21S S -,结合213-=S S ,即可求解.【详解】∵四边形ABCD 是长方形,∴6AB CD ==,5AD BC ==,∵2216(5)()(6)30666306S a a b a a a b a ab b a ab =-+--=-+--+=--+,225(6)()(5)30555S a a b a a a b a ab =-+-⋅-=-+--+,∵213-=S S ,∴()212230555306S b S -+--=----++2230555306a a b a ab b a ab=-+--+-++-b =,∵213-=S S ,∴3b =,∴12-=b .故答案是:2.三、解答题(19题每题4分,共16分;20,21,23每题6分,22题5分;24题8分;25题9分;解答题共56分).19.计算(1)()22124a b abc -⋅;(2)()()325n n -+;(3)()()22x y x y ----;(4)()()32222362x y x y xy xy -+÷.【答案】(1)53a b c(2)231310n n +-(3)2244x xy y ++(4)2332x y xy -+【分析】本题考查了整式的混合运算.(1)先计算积的乘方,再计算单项式的乘法即可;(2)利用多项式乘多项式的运算法则即可求解.(3)利用完全平方公式计算即可;(4)利用多项式除单项式的运算法则即可求解.【小问1详解】解:()22124a b abc -⋅24144a b abc =⋅53a b c =;【小问2详解】解:()()325n n -+2321510n n n -+-=231310n n =+-;【小问3详解】解:()()22x y x y ----()22x y =--2244x xy y =++;【小问4详解】解:()()32222362x y x y xy xy -+÷()()()3222223262x y xy x y xy xy xy =÷-÷+÷2332x y xy =-+.20.先化简,再求值:2(21)6(1)(32)(32)a a a a a -++-+-,其中2220230a a +-=.【答案】225a a ++,2028【分析】此题主要考查了整式的混合运算-化简求值.直接利用乘法公式以及整式的混合运算法则化简,再利用已知变形代入即可.【详解】解:2(21)6(1)(32)(32)a a a a a -++-+-2224416694a a a a a =-+++-+,225a a =++,∵2220230a a +-=,∴222023a a +=,∴原式202352028=+=.21.如图,在△ABC 和△CED 中,AB ∥CD ,AB =CE ,AC =CD .求证:∠B =∠E .【答案】证明见解析.【详解】试卷分析:根据AB//CD 得出∠DCA=∠CAB ,结合AB=CE ,AC=CD 得出△CAB ≌△DCE ,从而得出答案.试卷解析:∵AB//CD ,∴∠DCA=∠CAB 又∵AB=CE ,AC=CD ,∴△CAB ≌△DCE ∴∠B=∠E.考点:(1)平行线的性质;(2)三角形全等的判定与性质22.作图并填空.在ABC 中,(1)利用尺规作出BC 的垂直平分线,交BC 于D ,连接AD ;(2)画出ADC △的高CH ,CH 与BD 的大小关系为______;(3)画出ADC △的角平分线DM 交AC 点M ,若60ABC S =△,10DCM S =△,设AD a =,DC b =,则:a b =______.【答案】(1)见解析(2)CH BD<(3)2:1【分析】本题考查了作图−基本作图,角平分线的性质.(1)利用基本作图,作BC 的垂直平分线;(2)根据斜边大于直角边以及线段中点的意义即可求解;(3)作ME CD ⊥于点E ,MF AD ⊥于点F ,利用角平分线的性质求得ME MF =,利用面积法即可求解.【小问1详解】解:如图,直线l 为所作;【小问2详解】解:ADC △的高CH 如图所示,∵CH DH ⊥,∴90H ∠=︒,∴CH CD <,∵BC 的垂直平分线,交BC 于D ,∴BD CD =,∴CH BD <,故答案为:CH BD <;【小问3详解】解:ADC △的角平分线DM 如图所示,作ME CD ⊥于点E ,MF AD ⊥于点F,∵BD CD =,60ABC S =△,∴1302ADC ABC S S == ,∵10DCM S =△,∴20ADM S =△,∵DM 是ADC ∠的角平分线,ME CD ⊥,MF AD ⊥,∴ME MF =,∵12022a AD MF MF ⨯=⨯=,11022b CD MF MF ⨯=⨯=,∴40220a MF b ME ==,∴:2:1a b =故答案为:2:1.23.如图,在平面直角坐标系xOy 中,ABC 三个顶点分别为()2,6A -,()5,1B -,()3,1C .点B 与点C 关于直线l 对称(1)画出直线l ,写出点A 关于l 的对称点A '坐标;(2)则A BC ' 的面积为______;(3)若点P 在直线l 上,90BPC ∠=︒,直接写出点P 坐标.【答案】(1)直线l 见解析,点A 关于l 的对称点A '坐标为()06,;(2)20(3)点P 的坐标为()1,5-和()1,3--.【分析】本题主要考查了坐标与图形,等腰直角三角形的性质和判定,垂直平分线的性质.(1)根据点B 与点C 的坐标求出中点坐标D ,然后过点D 作BC 的垂线即可得出直线l ;(2)根据三角形面积公式求出结果即可;(3)分两种情况:当P 在直线BC 上方时,当P 在直线BC 下方时,分别求出结果即可.【小问1详解】解:∵()5,1B -,()3,1C ,∴中点D 的坐标为()1,1-,过点D 作BC 的垂线,即为所求作的直线l ,如图所示:;∴点A 关于l 的对称点A '坐标为()06,;【小问2详解】解:如图,()1861202A BC S '=⨯⨯-= ;故答案为:20;【小问3详解】解:∵B 与点C 关于直线l 对称,∴直线l 垂直平分BC ,∵点P 在直线l 上,∴BP CP =,∵PD BC ⊥,∴PD 平分BPC ∠,∵90BPC ∠=︒,∴190452BPD CPD ∠=∠=⨯︒=︒,∴BPD △为等腰直角三角形,∴142PD BD BC ===,当P 在直线BC 上方时,如图所示:此时点P 的纵坐标为:145+=,∴此时点P 的坐标为()15-,;当P 在直线BC 下方时,如图所示:此时点P 的纵坐标为:143-=-,∴此时点P 的坐标为()1,3--;综上分析可知,点P 的坐标为()1,5-和()1,3--.24.如图,ABC 是等边三角形,D 为BC 的中点,BE AB ⊥交AD 的延长线于点E ,点F 在AE 上,且AF BE =,连接CF 、CE .求证:(1)ACF BCE ∠=∠:(2)CF EF =.【答案】(1)见解析(2)见解析【分析】(1)先根据条件得到AD 是ABC 的中线,同时是角平分线,高线,再结合BE AB ⊥利用角之间的变换得到EBD CAD ∠=∠,从而证明()SAS CAF CBE ≌,即可得到结论;(2)先根据垂直平分线的性质得到CE BE =,进而得到CE CF =,再根据三角形外角的性质得到60CFD CAF ACF ∠=∠+∠=︒即可证明CFE 是等边三角形,即可得到结论.【小问1详解】证明:∵ABC 是等边三角形,D 为BC 的中点,∴AD 是ABC 的中线,同时是角平分线,高线,AC BC =,∴AD BC ⊥,CAD BAD ∠=∠,∴90DBA BAD ∠+∠=︒,∵BE AB ⊥,∴90DBA EBD ∠+∠=︒,∴EBD BAD ∠=∠,∴EBD CAD ∠=∠,∵AF BE =,AC BC =,∴()SAS CAF CBE ≌,∴ACF BCE ∠=∠;【小问2详解】证明:∵ABC 是等边三角形,∴AC AB =,∴AD 是BC 的垂直平分线,∵点E 在AD 的延长线上,∴CE BE =,由(1)得:()SAS CAF CBE ≌,∴CF BE =,CF AF =,∴CE CF =,∵ABC 是等边三角形,D 为BC 的中点,∴AD 是ABC 的中线,同时是角平分线,高线,∴1302CAD CAB ACF ∠=∠=︒=∠,∴60CFD CAF ACF ∠=∠+∠=︒,∴CFE 是等边三角形,∴CF EF =;【点睛】本题考查了等边三角形的判定与性质,垂直平分线的性质,三角形全等的判定与性质,三角形外角性质,看到等边三角形要想到三线合一,一般证明两个角相等都会用到三角形全等.25.如图,在ABC 中,120180BAC ︒<<︒,AB AC =.AD BC ⊥于点D .以AC 为边作等边ACE △,直线BE 交直线AD 于点F .连接CF 交AE 于M .(1)求证:FEA FCA ∠=∠:(2)探索FE ,FA ,FC 之间的数量关系,并证明你的结论.【答案】(1)见解析(2)2FE FA FD +=,见解析【分析】(1)由等边三角形的性质及等腰三角形的性质,求得FEA FBA ∠=∠,根据线段垂直平分线的性质求得ABE ACF ∠=∠,据此可得出答案;(2)在FC 上截取FN ,使FN FE =,连接EN ,根据等边三角形的性质得出60EFM ∠=︒,根据等边三角形的判定得出EFN 是等边三角形,求出60FEN ∠=︒,EN EF =,求出AEF CEN ∠=∠,根据SAS 推出EFA ENC △≌,根据全等得出FA NC =,求出2FC FD =,即可得出答案.【小问1详解】证明:AD 为边BC 的垂直平分线,AB AC ∴=,ACE Q V 为等边三角形,AC AE ∴=,AB AE =∴,FEA FBA ∴∠=∠;∵直线AD 垂直平分BC ,AB AC ∴=,FB FC =,ABC ACB FBC FCB ∴∠=∠∠=∠,,FBC ABC FCB ACB ∴∠-∠=∠-∠,即ABE ACF ∠=∠,ABE AEF ∠=∠ ,∴FEA FBA ∠=∠;【小问2详解】解:2FE FA FD +=,证明:在FC 上截取FN ,使FN FE =,连接EN ,如图2,由(1)得:AEF ACF ∠=∠,FME CMA ∠=∠ ,EFC CAE ∴∠=∠,等边三角形ACE 中,60CAE ∠=︒,60EFC ∴∠=︒.FN FE = ,EFN ∴ 是等边三角形,60FEN ∴∠=︒,EN EF =,ACE Q V 为等边三角形,60AEC ∴∠=︒,EA EC =,FEN AEC ∴∠=∠,FEN MEN AEC MEN ∴∠-∠=∠-∠,即AEF CEN ∠=∠,在EFA △和ENC ∠中,EF EN AEF CEN EA EC =⎧⎪∠=∠⎨⎪=⎩,()SAS EFA ENC ∴ ≌,FA NC ∴=,FE FA FN NC FC ∴+=+=,60EFC FBC FCB ∠=∠+∠=︒ ,FBC FCB ∠=∠,160302FCB ∴∠=⨯︒=︒,AD BC ⊥ ,90FDC ∴∠=︒,2FC FD ∴=,2FE FA FD ∴+=.【点睛】本题是三角形综合题,考查了等腰三角形的性质,等边三角形的性质和判定,含30︒角的直角三角形的性质,全等三角形的性质和判定的应用,能综合运用知识点进行推理是解此题的关键.四、附加题(26题4分,27题6分,共10分)26.小明同学用四张长为x ,宽为y 的长方形卡片,拼出如图所示的包含两个正方形的图形(任意两张相邻的卡片之间没有重叠,没有空隙).(1)通过计算小正方形面积,可推出()2x y +,xy ,()2x y -三者之间的等量关系式为______;(2)利用(1)中的结论,试求:当()()3002001996x x --=时,求()22500x -的值.【答案】(1)()()224x y x y xy-=+-(2)()22500x -的值是2016.【分析】本题主要考查几何图形与整式乘法.(1)直接利用图象面积得出答案;(2)利用多项式乘法将已知条件变形,即可求出答案.【小问1详解】解:由题意得,小正方形的面积=大正方形的面积4-个长方形的面积和,()()224x y x y xy ∴-=+-,故答案为:()()224x y x y xy -=+-;【小问2详解】解:设300A x =-,200B x =-,∴100A B +=-,2500A B x -=-,1996AB =,∴22()()4A B A B AB -=+-,∴()()222500100419962016x -=--⨯=,故()22500x -的值是2016.27.在平面直角坐标系xOy 中,若点P 和点1P 关于y 轴对称,点1P 和点2P 关于直线l 对称,则称点2P 是点P 关于y 轴、直线l 的“二次对称点”.(1)已知点()A 3,5,直线l 是经过()0,2且平行于x 轴的一条直线,点A '为点A 关于y 轴,直线l 的“二次对称点”,则点A '的坐标为______;(2)如图1,正方形ABCD 的顶点坐标分别是()0,1A ,()0,3B ,()2,3C ,()2,1D ;点E 的坐标为()1,1,若点M 为正方形ABCD (不含边界)内一点,点M '为点M 关于y 轴,直线OE 的“二次对称点”,则点M '的横坐标x 的取值范围是______;(3)如图2,(),0T t (0t ≥)是x 轴上的动点,线段RS 经过点T ,且点R 、点S 的坐标分别是(),1R t ,(),1S t -,直线l 经过()0,1且与x 轴夹角为60︒,在点T 的运动过程中,若线段RS 上存在点N ,使得点N '是点N 关于y 轴,直线l 的“二次对称点”,且点N '在y 轴上,则点N '纵坐标y 的取值范围是______.【答案】(1)()3,1--(2)13x <<(3)31N y '-≤≤【分析】(1)根据“二次对称点”的定义求解即可;(2)由题意,直线OE 的解析式为y x =,点M 关于y 轴对称的点的轴坐标的取值范围为13y <<,由直线OE 的解析式为y x =,得M 关于y 轴,直线OE 的“二次对称点”点M '的横坐标即是关于y 轴的纵坐标,,由此可得结论;(3)如图2中,当点N 与S 重合,且N '在y 轴上时,连接SN ''交直线于点K ,交y 轴于点J ,连接KN ',设直线l 交x 轴于点D ,交y 轴于点C ,如图3中,当点T 与原点重合,N 与()01,重合时,N '和N ''都与()01,重合,此时()01N ',.求出这两种特殊位置N '的坐标,可得结论.【小问1详解】解∶点()A 3,5关于y 轴的对称点为()13,5A -,∵直线l 是经过()0,2且平行于x 轴的一条直线,∴点()13,5A -关于直线l 的对称点为()3,1A '--;故答案为:()3,1--【小问2详解】解∶如图,设直线OE 的解析式为y kx =,∵点E 的坐标为()1,1,∴1k =,∴直线OE 的解析式为y x =,∵()0,1A ,()0,3B ,()2,3C ,()2,1D ,∴点M 关于y 轴对称的点的轴坐标的取值范围为13y <<,∴点M 关于y 轴,直线OE 的“二次对称点”点M '的横坐标x 的取值范围是13x <<,故答案为:13x <<;【小问3详解】解∶如图2,设点N 关于y 轴的对称点为点N ''当点N 与S 重合,且N '在y 轴上时,连接SN ''交直线于点K ,交y 轴于点J ,连接KN ',设直线l 交x 轴于点D ,交y 轴于点C ,∵,60CDO ∠=︒OD KJ ∥,OD OC ⊥,∴60CKJ CDO ∠=∠=︒,30KCJ ∠=︒∵N '和N ''关于直线l 对称,∴18060120CKN CKN ︒'''∠=∠=︒-︒=,∴1801203030KN J KCJ '∠=︒-︒-︒=︒=∠,∴KC KN '=,∵KJ CN '⊥,∴2CJ JN '==,∴3ON '=,∴此时点()0,3N '-,如图3,当点T 与原点重合,N 与()01,重合时,N '和N ''都与()01,重合,此时()01N ',.根据题意得:0t ≥,观察图象得:满足条件的N '的纵坐标为31N y '-≤≤.故答案为:31N y '-≤≤【点睛】本题属于四边形综合题,考查了正方形的性质,轴对称变换,一次函数的性质等知识,解题的关键是学会寻找特殊位置,解决问题,属于中考压轴题.。

北京市大峪中学2024-2025学年八年级上学期期中考试数学试卷

北京市大峪中学2024-2025学年八年级上学期期中考试数学试卷

大峪中学2024—2025第一学期初二年级数学学科期中考试试卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(共8小题,每小题2分,共16分).1..下列计算正确的是A.342a a a ⋅=B.()339a a =C.33()ab a b =D.824a a a ÷=2.如图,△ABC 中AB 边上的高线为3.如图,盖房子时,在窗框未安装之前,木工师傅常常先在窗框上斜钉一根木条,使其不变形,这种做法的根据是()A .两点之间,线段最短B .三角形的稳定性C .长方形的四个角都是直角D .四边形的稳定性4.将两个含30°和45°的直角三角板如图放置,则∠α的度数是()A .10°B .15°C .20°D .25°5.如图为了测量B 点到河对而的目标A 之间的距离,在B 点同侧选择了一点C ,测得65ABC ∠=︒,35ACB ∠=︒,然后在M 处立了标杆,使65MBC ∠=︒,35MCB ∠=︒,得到MBC ABC ≌△△,所以测得MB 的长就是A ,B 两点间的距离,这里判定MBC ABC ≌△△的理由是()A .SAS B .AAS C .ASA D .SSS(A )AD(B )CE (C )AF (D )BG的值为()是完全平方式,则已知m 9y 42++my 6.图中的四边形均为长方形,用等式表示下图中图形面积的运算为()A.()2222a b a ab b -=-+ B.()()22a b a b a b +-=-C.()2a a b a ab +=+ D.()222a b a ab b +=++7.A.6 B.12 C.6± D.12±8.设a ,b 是实数,定义一种新运算()2a b a b =-☆,下面有四个推断:①a b b a=☆☆②()222a b a b =☆☆③()()a b a b -=-☆☆④()a b c a b a c+=+☆☆☆其中所有正确推断的序号是A .①②③④B .①③④C .①②D .①③二、填空题:(共8小题,每小题2分,共16分).9.三角形两边长分别是4,6,则第三边边长a 的取值范围是.10.一个多边形的每个外角都是40°,则这个多边形的边数是__________.11.===+n m n m a a a 32则,2,3若__________.12.如图,△ABC 中,∠B=20°,D 是BC 延长线上一点,且∠ACD=60°,则∠A的度数是____________.第12题图第13题图13.如图,△ABC 中,∠A=90°,BD 平分∠A BC ,交AC 于点D ,DE ⊥BC 于E,若AB=6,BC=10,AC=8,则ΔCDE 的周长为__________.的条件是,可添加ADC ≌ABC ,添加一个条件使得AD AB 中,ABCD 如图,在四边形∆∆=97103)4(⨯.的值5)-x (2-3)x )(3-x (1)-x 求代数式(,12x 已知22++=-x 14.如图,已知方格纸中是4个相同的小正方形,则=∠+∠+∠321_________.15.________.16.如图,动点C 与线段AB 构成△ABC ,其边长满足AB =9,CA =22a +,CB =23a -.点D 在∠ACB 的平分线上,且∠ADC =90°,则a 的取值范围是_______,△ABD 的面积的最大值为_______.14题图15题图16题图三、解答题:(17题每小题3分共12分;18题6分;19-20题每题4分;21题3分;22-26题每小题5分;27-28题每小题7分)17.计算7352)()1(a a a ∙+)3()31215)(2(3224x x y x y x -÷--)2)(2()2)(3(2y x y x y x -+-+18.19.下面是证明三角形内角和定理的两种添加辅助线的方法,选择其中一种,并完成证明.三角形内角和定理:三角形三个内角的和等于180°.已知:如图,△ABC .求证:∠A+∠B+∠C=180°..的距离相等CA ,BC ,AB 内,且到三边ABC 在P ,使得点P 求作:点.ABC 已知:如图,∆∆.的度数DAE 求,50,30B 若.的高和角平分线ABC 分别是AE ,AD 中,ABC 如图,在∠=∠=∠∆∆ C方法一证明:如图,过点A 作DE ∥BC .方法二证明:如图,过点C 作CD ∥AB .20.如图,点B ,F ,C ,E 在一条直线上,BF =CE ,AB∥ED ,AC ∥FD .求证:△ABC ≌△DEF .21.22.23.已知一个等腰三角形的两边长分别为3cm 和8cm ,求它的周长..的倍数8是)1-n2(1)(2n两个连续奇数的平方差证明:当n是整数时,22-+24.(2)从上面的计算中你发现的规律(用含n的一般形式表示).25.26.已知:如图,A、B、D三点在同一直线上,AC=BC,DC=EC,∠ACB=∠DCE=90°,判断线段AD与线段BE的关系,并证明你的结论。

江西省南昌市2023-2024学年八年级上学期期中数学试题(含答案)

江西省南昌市2023-2024学年八年级上学期期中数学试题(含答案)

南昌市2023—2024学年第一学期期中形成性测试八年级(初二)数学试卷说明:本卷共有六个大题,23个小题,全卷满分120分,考试时间120分钟。

一、选择题(本大题6小题,每小题3分,共18分,每小题只有一个正确选项)1.2023年暑假期间,国家高度重视预防溺水安全工作,要求各级各类学校积极落实防溺水安全教育,以下与防溺水相关的标志中是轴对称图形的是( )A .B .C .D .2.如图,是线段的垂直平分线,为直线上的一点,已知线段,则线段的长度为( )A .6B .5C .4D .33.下列计算正确的是( )A .B .C .D .4.我国的纸伞工艺十分巧妙,如图,伞圈能沿着伞柄滑动,伞不论张开还是缩拢,伞柄始终平分同一平面内所成的角,为了证明这个结论,我们的依据是( )A .B .C .D .5.如图,在Rt 中,是角平分线,,则的面积为()CD AB P CD 5PA =PB 3332b b b ⋅=()()2222x x x +-=-22(2)4a a -=222()a b a b +=+D AP BAC ∠SAS SSS AAS ASAABC △90,C AF ∠=︒35,2AB CF ==AFB △A .5 B. C . D .6.如图,在Rt 中,,以的一边为边画等腰三角形,使得它的第三个顶点在的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .5B .6C .7D .8二、填空题(本大题共6小题,每小题3分,共18分)7.在平面直角坐标系中,点关于轴对称点的坐标为______________.8.分解因式:______________.9.如图所示,已知是上的一点,,请再添加一个条件:______________,使得.10.已知:,则______________.11.如图,等腰三角形的底边长为4,面积是14,腰的垂直平分线分别交于点,若点为底边的中点.点为线段上一动点,则的周长的最小值为______________.11.已知中,如果过顶点的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为的关于点的二分割线.如图1,Rt 中,显然直线是的关于点的二分割线.在图2的中,,若直线是的关于点154152132ABC △90C ∠=︒ABC △ABC △()2,5y 22ax ay -=P AD ABP ACP ∠=∠ABP ACP △≌△2,3m na a ==2m n a +=ABC BC AB EF ,AB AC E F 、D BC M EF BDM △ABC △B ABC △B ABC △BD ABC △B ABC △110ABC ∠=︒BD ABC △B的二分割线,则的度数是______________.三、(本大题共5小题,每小题6分,共30分)13.(1)计算:(2)如图,点在一条直线上,,.求证:.14.先化简,再求值:,其中.15.如图所示,的顶点分别为.(1)画出关于直线(平行于轴且该直线上的点的横坐标均为2)对称的图形,则的坐标分别为(______________),(______________),(______________);(2)求的面积.16.如果,那么我们规定,例如:因为,所以.(1)【理解】根据上述规定,填空:______________,______________;(2)【应用】若,试求之间的等量关系.17.如图是由小正方形组成的网格,每个小正方形的顶点叫做格点.的三个顶点都是格点,仅CDB ∠()()424242y y y y +÷--,,,B E C F ,B DEF BE CF ∠=∠=A D ∠=∠AB DE =()()()2232a b ab b b a b a b --÷-+-1,12a b ==-ABC △()()()2,3,4,1,1,2A B C ---ABC △2x =y 111A B C △111,,A B C 1A 1B 1C 111A B C △nx y =(),x y n =239=()3,92=()2,8=()2,4=()()()4,12,4,5,4,60a b c ===,,a b c 66⨯ABC △用无刻度的直尺在给定的网格中完成作图.(1)在图1中,作边上的中线;(2)在图2中,作边上的高.四、(本大题3小题,每小题8分,共24分)18.为了测量一幢高楼的高,在旗杆与楼之间选定一点.测得旗杆顶的视线与地面的夹角,测楼顶的视线与地面的夹角,量得点到楼底距离与旗杆高度相等,等于8米,量得旗杆与楼之间距离为米,求楼高是多少米?19.如图,甲长方形的两边长分别为,面积为;乙长方形的两边长分别为.面积为(其中为正整数).(1)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积与图中的甲长方形面积的差(即)是一个常数,求出这个常数;(2)试比较与的大小.20.如图:已知等边中,是的中点,是延长线上的一点,且,垂足为.AC BH AC BD AB CD P C PC 17DPC ∠=︒A PA 73APB ∠=︒P PB 33DB =AB 1,7m m ++1S 2,4m m ++2S m S 1S 1S S -1S 2S ABC △D AC E BC ,CE CD DM BC =⊥M(1)试问和有何数量关系?并证明之;(2)求证:是的中点.五、(本大题2小题,每小题9分,共18分)21.图1是一个长为、宽为的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的正方形的周长等于______________;(2)观察图2,请直接写出下列三个代数式之间的等量关系;(3)运用你所得到的公式,计算:若为实数,且,试求的值;(4)如图3,点是线段上的一点,以为边向两边作正方形,设,两正方形的面积和,求图中阴影部分面积.22.课本再现:如图,一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等,我们把这种图形的变换叫全等变换.生活体验:(1)数学作图工具中有一个三角尺是等腰直角三角形,它的两个锐角相等,都是______________.问题解决:(2)如图1,在等腰直角三角形中,为边上的一点(不与点重合),连接,把绕点顺时针旋转后,得到,点与点恰好重合,连接.DM DE M BE 2a 2b 22(),(),a b a b ab +-m n 、3,4mn m n =-=m n +C AB AC BC 、8AB =1226S S +=︒AOB 90,,AOB AO BO C ∠=︒=AB ,A B OC AOC △O 90︒BOD △A B CD①填空:______________;______________.②若,求的度数.结论猜想:(3)如图1,如果是直线上的一点(不与点重合),其他条件不变,请猜想与的数量关系,并直接写出猜想结论.六、(本大题共12分)23.【探究发现】(1)如图1,中,,点为的中点,分别为边上两点,若满足,则之间满足的数量关系是______________.【类比应用】(2)如图2,中,,点为的中点,分别为边上两点,若满足,试探究之间满足的数量关系,并说明理由.【拓展延伸】(3)在中,,点为的中点,分别为直线上两点,若满足,请直接写出的长.OC OD COD ∠=30AOC ∠=︒BDC ∠C AB ,A B AOC ∠BDC ∠ABC △,90AB AC BAC =∠=︒D BC E F 、AC AB 、90EDF ∠=︒AE AF AB 、、ABC △,120AB AC BAC =∠=︒D BC E F 、AC AB 、60EDF ∠=︒AE AF AB 、、ABC △5,120AB AC BAC ==∠=︒D BC E F 、AC AB 、1,60CE EDF =∠=︒AF南昌市2023—2024学年第一学期期中形成性测试八年级(初二)数学试卷参考答案一.选择题(共6小题)1.D2.B .3.C .4.B5.B6.C二.填空题(共6小题)7.(﹣2,5).8. . 9. ∠BAP=∠CAP 或∠APB=∠APC 或AP 平分∠BAC(答案不唯一) .10. 12 11. 9. 12. 140°或90°或40°三.解答题13.(1)计算:解:(1)y 4+(y 2)4÷y 4﹣(﹣y 2)2=y 4+y 8÷y 4﹣y 4=y 4+y 4﹣y 4=y 4;……………………3分(2)证明:∵BE=CF∴BE+EC=CF+EC即BC=EF……………………1分在△ABC 和△EDF 中,∴△ABC ≌△DEF (AAS ),∴AB=DE……………………3分14.解:原式…………………1分…………………3分…………………4分将代入上式得,原式…………………6分15.,,,则为所求作的三角形,…………………4分如图所示:()()y x y x a -+⎪⎩⎪⎨⎧=∠=∠∠=∠EF BC DEFB D A 22222()a ab b a b =----22222a ab b a b =---+2ab =-112a b ==-,12(1)2=-⨯⨯-1=()16,3A ()18,1B ()15,2C 111A B C △1111111111A B C DA C EB C FA B DEB F S S S S S =--- 矩形…………………6分16.解:(1)23=8,(2,8)=3,,(2,4)=2,故答案为:3;2;……………………2分(2)证明:∵(4,12)=a ,(4,5)=b ,(4,60)=c ,∴4a =12,4b =5,4c =60,∴4a ×4b =60,∴4a ×4b =4c ,∴a +b =c ;………………6分17.即中线BH 为所求 ………………3分即高BD 为所求 ………………6分18.,,,,………………2分在和中,,∴(ASA ), (5)分11132132211222=⨯-⨯⨯-⨯⨯-⨯⨯2=17CPD ∠=︒ 73APB ∠=︒90CDP ABP ∠=∠=︒73DCP APB ∴∠=∠=︒CPD ∆PAB ∆CDP ABP DC PBDCP APB ∠=∠⎧⎪=⎨⎪∠=∠⎩CPD PAB ≅,米,米,………………7分(米),答:楼高是25米.………………8分19.解:(1)图中的甲长方形周长为2(m +7+m +1)4=4m +16,∴该正方形边长为m +4,∴S ﹣S 1=(m +4)(m +4)﹣(m +1)(m +7)=(m 2+8m +16) -(m 2+8m +7)=9,∴该正方形面积S 与图中的甲长方形面积S 1的差是一个常数9;……………4分(2)S 1=(m +1)(m +7)=m 2+8m +7,S 2=(m +2)(m +4))=m 2+6m +8,S 1﹣S 2=(m 2+8m +7)﹣(m 2+6m +8)=2m ﹣1,∵m 为正整数,∴2m ﹣1>0,∴S 1>S 2.……………………8分20.(1)DM 和DE 有何数量关系为:DE=2DM证明:∵三角形ABC 是等边△ABC ,∴∠ACB =∠ABC =60°,又∵CE =CD ,∴∠E =∠CDE ,又∵∠ACB =∠E +∠CDE ,∴∠E=∠ACB =30°;又∵∠DME=90°∴DE=2DM………………………4分(2)证明:连接BD ,∵等边△ABC 中,D 是AC 的中点,∴∠DBC=∠ABC =30°由(1)知∠E =30°∴∠DBC =∠E =30°∴DB =DE又∵DM ⊥BC∴M 是BE 的中点.………………………8分21.(1)阴影部分的正方形边长为a -b ,故周长为4(a -b )=4a -4b ;故答案:4a -4b ;………………………1分(2)大正方形面积可以看作四个矩形面积加阴影面积,故可表示为:4ab +(a -b )2,大正方形边长为a+b ,故面积也可表达为:(a +b )2,因此(a +b )2=(a -b )2+4ab ;故答案为:(a +b )2=(a -b )2+4ab ; (3)分为DP AB ∴=33DB = 8PB =33825AB ∴=-=AB(3)由(2)知:(m +n )2=(m -n )2+4mn ;………………………4分已知m -n =4,mn =-3;所以(m +n )2=42+4×(-3)=16-12=4;所以m +n =2或一2;………………………6分(4)设AC =a ,BC =b ;因为AB =8,S 1+S 2=26;所以a +b =8,a 2+b 2=26;因为(a +b )2=a 2+b 2+2ab ,所以64=26+2ab ,解得ab =19,由题意:∠ACF =90°,所以S 阴影=ab =,故答案为:.………………………9分22.解:(1)∵三角形的内角和为180°,等腰直角三角形的两个锐角相等,∴它的两个锐角都是;故答案为:.………………………1分(2)①根据旋转可得,∴,∴,∴是等腰直角三角形,故答案为:.………………………3分②∵等腰直角三角形中,,∴,∵,∴∵∴∵是等腰直角三角形,∴,∴………………………7分(3)当在上时,1219219245︒45ACO BDO ≌AOC BOD ∠=∠OC OD=90COD AOB ∠=∠=︒COD △90=︒,AOB 90,AOB AO BO ∠=︒=45A ∠=︒30AOC ∠=︒105ACO ∠=︒ACO BDO≌105BDO ∠=︒COD △45CDO ∠=︒60BDC BDO CDO ∠=∠-∠=︒C AB∵,∵∴∵是等腰直角三角形,∴,∴即;………………………8分当在的延长线上时,如图所示,∵,∵∴∵是等腰直角三角形,∴,∴即;当在的延长线上,如图所示,∵,∵∴∵是等腰直角三角形,∴,∴即;………………………9分综上所述,或.23.(1)()180135ACO A AOC AOC ∠=︒-∠+∠=︒-∠ACO BDO≌135BDO AOC AOC∠=∠=︒-∠COD △45CDO ∠=︒90BDC BDO CDO AOC∠=∠-∠=︒-∠90AOC BDC ∠+∠=︒C BA 45ACO AOC ∠=︒-∠ACO BDO≌45BDO AOC AOC∠=∠=︒-∠COD △45CDO ∠=︒454590BDC BDO CDO AOC AOC ∠=∠+∠=︒+︒-∠=︒-∠90AOC BDC ∠+∠=︒C AB 180135ACO BAC AOC AOC ∠=-∠-∠=︒-∠ACO BDO≌135BDO AOC AOC∠=∠=︒-∠COD △45CDO ∠=︒()4513590BDC CDO BDO AOC AOC ∠=∠-∠=︒-︒-∠=∠-︒90AOC BDC ∠-︒=∠90AOC BDC ∠+∠=︒90AOC BDC ∠-︒=∠如图1,∵AB =AC ,∠BAC =90°,∴∠B =∠C =45°,∵D 为BC 中点,∴AD ⊥BC ,∠BAD =∠CAD =45°,AD =BD =CD ,∴∠ADB =∠ADF +∠BDF =90°,∵∠EDF =∠ADE +∠ADF =90°,∴∠BDF =∠ADE ,∵BD =AD ,∠B =∠CAD =45°,∴△BDF ≌△ADE (ASA ),∴BF =AE ,∴AB =AF +BF =AF +AE ;故答案为:AB =AF +AE ;………………………2分(2)AE +AF=AB .理由是:………………………4分如图2,作AG=AD ,∵AB =AC ,∠BAC =120°,点D 为BC 的中点,∴∠BAD =∠CAD =60°,AD ⊥BC又∵AG=AD∴△AGD 为等边三角形∴DG =AG =AD∴∠GDA =∠BAD =60°,即∠GDF +∠FDA =60°,又∵∠FAD +∠ADE =∠FDE =60°,∴∠GDF =∠ADE ,在和中,12GDF ∆ADE ∆,∴(ASA )∴GF =AE ,∵AD ⊥BC ,∠BAD=60°∴∠B=90°-60°=30°又∵∠AGD=60°∴∠GDB=∠AGD-∠B=60°-30°=30°∴BG=GD又∵GD=AG∴AG=BG∴AG=AB =AF +FG =AE +AF ,∴AE +AF =AB ;………………………8分(3)当点E 在线段AC 上时,如图3,作AH=AD 同理可得△AD H 为等边三角形当AB =AC =5,CE =1,∠EDF =60°时,AE =4,此时F 在BA 的延长线上,∴∠DAF=180-∠BAD=180°-60°=120° ∠DHC=180-∠AHD=180°-60°=120°∴∠FAD=∠CHD=120°同(2)可得:△ADF ≌△HDE (ASA ),∴AF =HE ,同(2)可得:DH=HC ,AH=DH∴AH=HC∵AH =CH =AC =,CE =1,∴,GDF ADE DG ADAGD DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩GDF ADE ≅ 1212125253122AF HE CH CE ==-=-=当点E 在AC 延长线上时,如图4,同理可得:;综上:AF 的长为或.………………………12分57122AF HE CH CE ==+=+=3272。

北京二中教育集团2024—2025学年上学期 八年级数学期中考试卷(含答案)

北京二中教育集团2024—2025学年上学期 八年级数学期中考试卷(含答案)

北京二中教育集团2024—2025学年度第一学期初二数学期中考试试卷考查目标1.知识:人教版八年级上册《三角形》、《全等三角形》、《轴对称》、《整式的乘法与因式分解》的全部内容.2.能力:数学运算能力,逻辑推理能力,阅读理解能力,实际应用能力,数形结合能力,分类讨论能力.考生须知 1.本试卷分为第Ⅰ卷、第Ⅱ卷和答题卡,共16页;其中第Ⅰ卷2页,第Ⅱ卷6页,答题卡7页。

全卷共三大题,28道小题。

2.本试卷满分100分,考试时间120分钟。

3.在第Ⅰ卷、第Ⅱ卷指定位置和答题卡的密封线内准确填写班级、姓名、考号、座位号。

4.考试结束,将答题卡交回。

第Ⅰ卷(选择题共 16分)一、选择题(共16分,每题2分,以下每题只有一个正确的选项)1.中国古典建筑中有着丰富多彩的装饰纹样,以下四个纹样中,不是轴对称图形的是() A.B.C.D.2.下列计算正确的是( )A. B. C. D.3.如图是尺规作图中“画一个角等于已知角”的示意图,该作法运用了“全等三角形的对应角相等”这一性质,那么判定图中两三角形全等的条件是( )A.SSSB.SASC.AASD.ASA 4.如图,在中,边上的高是()32m m m -=326m m m ⋅=624m m m ÷=()239m m =ABC △BCA. B. C. D.5.如图,在中,,于D ,点B 关于直线的对称点是点,若,则的度数为( )A.8°B.10°C.20°D.40°6.已知式子的计算结果中不含x 的一次项,则a 的值为()A. B.3 C.1.5D.07.根据下列已知条件,不能画出唯一的是()A.,, B.,,C.,, D.,,8.如图,和分别是的内角和外角的角平分线,,连接.以下结论:①;②;③;④,其中正确的结论有( )A.1个B.2个C.3个D.4个第Ⅱ卷(非选择题 共84分)二、填空题(共16分,每题2分)9.已知等腰三角形的两条边长分别为2和5,则这个等腰三角形的周长为______.10.若有意义,则x 的取值范围是______.11.如图,摄影师在拍照时为了确保照片的清晰度,往往会放一个三脚架来固定和支撑相机,这里用到的数学道理是______.BD CE BE AFABC △90BAC ∠=︒AD BC ⊥AD B '50B ∠=︒B AC '∠()()23x x a +-3-ABC △10AB =6BC =5CA =10AB =6BC =30A ∠=︒10AB =6BC =60B ∠=︒10AB =6BC =90C ∠=︒BD AD ABC △ABC ∠CAE ∠AD BC P CD AB AC =2BAC BDC ∠=∠4EAC ADB ∠=∠90ADC ABD ∠+∠=︒()021x -12.如图是一个五边形,图形中x 的值为______°.13.如图,在长方形中,,垂足为E ,交于点F ,连接.请写出一对面积相等但不全等的三角形______.14.若,,则______.15.如图,在等腰中,,,,,点C 的坐标是______.16.如图,等边的边长为5,点E 在上,,射线,垂足为点C ,点P 是射线上一动点,点F 是线段上一动点,当的值最小时,的长为______.ABCD AF BD ⊥AF BC DF 3a x =2b x =3a b x +=Rt ABC △90CAB ∠=︒AB AC =2OA =3OB =ABC △BC 2CE =CD BC ⊥CD AB EP FP +BF三、解答题(共68分,其中第17-21,23题每题5分,第22,24,25,26题每题6分,第27-28题每题7分)17.计算:.18.因式分解:.19.因式分解:.20.已知,求代数式的值.21.如图,中,,于点E ,于点D ,与相交于点F .求证:.22.如图,已知.(1)根据要求尺规作图:①作的平分线;②在上取点C ,作边的垂直平分线交于点D ,连接;(要求:保留作图痕迹,不写作法)(2)在(1)所作的图中,求证:.解:平分 垂直平分线段(____________)(填推理依据) (____________)(填推理依据)()2533a a a⋅--2328x y y -()()314x x +-+2410m m --=()()()22311m m m ---+ABC △45ABC ∠=︒BE AC ⊥AD BC ⊥BE AD BF AC =AOB ∠AOB ∠OP OP OC MN OA CD CD OB P OC AOB ∠AOC BOC ∴∠=∠MN OCDO DC ∴=AOC DCO ∴∠=∠BOC DCO ∴∠=∠CD OB∴P23.如图:在平面直角坐标系中,其顶点坐标如下:,,.(1)画出关于x 轴对称的图形.其中A 、B 、C 分别和、、对应;(2)点P 在y 轴上,若为等腰三角形,则满足条件的点P 的个数是______个.24.如图,是等边三角形,于D ,为边中线,,相交于点O ,连接.(1)判断的形状,并说明理由(2)若,求的长.25.如图1有三种纸片,A 种纸片是边长为a 的正方形,B 种纸片是边长为b 的正方形,C 种纸片是长为b ,宽为a 的长方形,老师用A 种纸片一张,B 种纸片一张,C 种纸片两张拼成如图2的大正方形.(1)观察图2的面积关系,写出一个数学公式______;(2)根据数学公式,解决问题:已知,,求的值.26.我们已经学习过多项式除以单项式,多项式除以多项式一般可用竖式计算,例如:计算,可用竖式除法.步骤如下:①把被除式、除式按某个字母降幂排列,并把所缺的项用零补齐;②用被除式的第一项除以除式第一项,得到商式的第一项;③用商式的第一项去乘除式,把积写在被除式下面(同类项对齐),再把两式相减;ABC △xOy ()3,1A -()1,2B --()1,3C ABC △111A B C △1A 1B 1C ACP △ABC △BD AC ⊥AE BC AE BD DE CDE △2OD =OB 7a b +=2229a b +=()2a b -()()43267121x x x x ---÷+46x 2x 33x 33x ()21x +()4363x x +④把相减所得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止.被除式=除式×商式+余式.若余式为零,说明这个多项式能被另一个多项式整除.余式为0,可以整除.请根据阅读材料,回答下列问题(直接填空):(1)请在两个方框内分别填入正确的数或式子;(2)多项式除以商式为______,余式为______;(3)多项式的一个因式是,则该多形式因式分解的结果为______.27.已知,,,连接和.(1)如图1,①求证:;②当时,的延长线交于点F ,写出与的数量关系并证明;(2)如图2,与的延长线交于点P ,连接,直接写出的度数(用含的式子表示)28.在平面直角坐标系,中,已知点,过点且垂直于x 轴的直线记为直线,过点且垂直于y 轴的直线记为直线.给出如下定义:将图形G 关于直线对称得到图形,再将图形关于直线得到图形,则称图形是图形G 关于点M 的双对称图形.(1)已知点M 的坐标为,点关于点M 的双对称图形点的坐标为______;()3210x x-- 432671x x x ∴---21x +2357x x +-2x +324839x x x +--1x -AB AC =AD AE =BAC DAE α∠=∠=BD CE BD CE =AD BD ⊥ED BC BF CF CE DB AP APB ∠αxOy (),M m n (),0m x m =()0,n y n =x m =1G 1G y n =2G 2G ()0,1()2,3N 2N(2)如图,的顶点坐标是,,.①已知点M 的坐标为,点,点,线段关于点M 的双对称图形线段位于内部(不含三角形的边),求n 的取值范围;②已知点M 的坐标为,直线l 经过点且平行于第一三象限的角平分线,当关于点M 的双对称图形与坐标轴有交点时,直线l 上存在满足条件的双对称图形上的点,直接写出k 的取值范围.北京二中教育集团2024—2025学年度第一学期初二数学期中考试参考答案一、选择题(共16分,每小题2分)1-5.ACADB 6-8.CBD二、填空题(共16分,每小题2分)9.12 10.11.三角形具有稳定性 12.121°13.和(和,和,和)14.24 15. 16.3.5三、解答题(共68分,其中第17-22题每题5分,第23-26题每题6分,第27-28题每题7分)17.原式18.原式19.原式20.解:原式当时 原式21.证明:, ABC △()2,3A -()4,1B -()0,1C ()1,1-()4,P n ()4,1Q n +PQ 22P Q ABC △(),3m m -+()0,k ABC △222A B C △222A B C △12x ≠ABF △DBF △ABD △AFD △BCD △AFD △ABE △DEF △()5,2--66698a a a=-=-()()()2224222y x yy x y x y =-=+-()222234211x x x x x =+-+=++=+2224129131210m m m m m =-+-+=-+2410m m --=31013=+=BE AC ⊥ AD BC ⊥90ADB ADC BEC ∴∠=∠=∠=︒, 在与中 22.(1)图略(2)线段垂直平分线上的点与线段两个端点距离相等 等边对等角23.解:(1)图略 (2)524.(1)等边三角形证:在等边中,,, 又为边上的中线 又 是等边三角形(2),,,为边上的中线, 在中, 25.解:(1)(2)9又 26.解:(1)2,(2),(3)27.解:(1)①证: 90EBC C ∴∠+∠=︒90DAC C ∠+∠=︒EBC DAC ∴∠=∠45ABC ∠=︒ 9045BAD ABC ∴∠=︒-∠=︒ABC BAD∴∠=∠AD BD ∴=BFD △ACD △ADB ADC BD ADEBC DAC ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA BFD ACD ∴≌△△BF AC∴=ABC △AB BC AC ==60C ABC BAC ∠=∠=∠=︒AB BC = BD AC ⊥12CD AC ∴=AE BC 12CE BC ∴=CD CE ∴=60C ∠=︒ CDE ∴△AB BC = AB AC =BD AC ⊥AE BC 1302ABD ABC ∴∠=∠=︒1302BAE CAE BAC ∠=∠=∠=︒ABD BAE ∴∠=∠OA OB ∴=BD AC ⊥ 90BDA ∴∠=︒ Rt AOD △30CAE ∠=︒24OA OD ∴==4OB OA ∴==()2222a b a ab b +=++7a b += ()249a b ∴+=()()()22222a b a b a b ++-=+ ()2229499a b ∴-=⨯-=32105x x--31x -5-()()2123x x -+BAC DAE α∠=∠= BAC CAD DAE CAD ∴∠+∠=∠+∠在与中 ②法1:延长至G ,使,连接。

广东省深圳市福田区实验教育集团侨香学校2024-2025学年八年级上学期期中考试数学试卷

广东省深圳市福田区实验教育集团侨香学校2024-2025学年八年级上学期期中考试数学试卷

2024-2025学年初二年级期中质量检测数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题) 两部分,第Ⅰ卷为 1-8题,共24分, 第Ⅱ卷为 9 -20 题, 共 76 分。

满分100分, 考试用时90分钟注意事项:1、答题前,请将学校、姓名、班级、考场和座位号写在答题卡指定位置,将条形码贴在答题卡指定位置。

2、选择题答案,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动请用2B橡皮擦干净后,再涂其它答案,不能答在试题卷上。

非选择题,答题不能超出题目指定区域。

3、考试结束,监考人员将答题卡收回。

第Ⅰ卷 (本卷共计24 分)一. 选择题:(每小题只有一个选项,每小题3分,共计24分)1. 下列各数中,是无理数的是 ( )B. 7C. - 2D. 1.5A.132. 下列各组数中,能作为直角三角形三边长的是 ( )A. 1, 2, 3B. 4, 5, 6C. 6, 8, 10D. 7, 8, 93. 在平面直角坐标系中, 点(-3, 4) 在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 下列是二元一次方程的是 ( )=2B.x²+y=1 C. x+2y=3 D. 2x-1=5A.y+1x5. 关于正比例函数 y=-2x,下列结论不正确的是 ( )A. 图象经过原点B. y随x的增大而减小C. 点 (1, 2) 在函数 y=-2x的图象上D. 图象经过二,四象限6.在同一坐标系中, 函数 y= mx与函数 y=x-m的图象可能是( )7. 已知x+y=0, 且x, y满足二元一次方程组{2x+5y=kx―4y=15,则k的值为( )A. - 9B. 9C. 0D. 18.《时代学习报·数学周刊》,其徽标是我国古代“弦图”的变形(见示意图).该图可由直角三角形AB C绕点O 同向连续旋转三次(每次旋转90°) 而得. 因此有“数学风车”的动感. 假设中间小正方形的面积为1,整个徽标(含中间小正方形)的面积为92,AD=2,则徽标的外围周长为( )A. 40B. 44C. 46D. 48第Ⅱ卷 (本卷共计76 分)二. 填空题:(本大题共5小题,共计15分)9. 点P(-1,5)关于x轴的对称点 P' 的坐标是。

2023-2024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)

2023-2024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)

20232024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)(考试时间:90分钟,满分:100分)一、选择题(每题2分,共20分)1. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=62. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=63. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=64. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8D. 4x2y=65. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=66. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=67. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=68. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=69. 下列哪个选项是正确的?A. 3x+5y=10C. 5x+3y=15D. 4x2y=610. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=6二、填空题(每题2分,共20分)1. 2x+3y=6,求x的值。

2. 3x+5y=10,求y的值。

3. 4x2y=6,求x的值。

4. 5x+3y=15,求y的值。

5. 2x4y=8,求x的值。

6. 3x+5y=10,求y的值。

7. 4x2y=6,求x的值。

8. 5x+3y=15,求y的值。

9. 2x4y=8,求x的值。

10. 3x+5y=10,求y的值。

三、解答题(每题5分,共25分)1. 解方程组:2x+3y=63x+5y=102. 解方程组:5x+3y=153. 解方程组:2x4y=83x+5y=104. 解方程组:3x+5y=104x2y=65. 解方程组:5x+3y=152x4y=8四、计算题(每题10分,共30分)1. 计算:2x+3y=63x+5y=102. 计算:4x2y=65x+3y=153. 计算:2x4y=83x+5y=10五、应用题(每题10分,共20分)1. 应用题:2x+3y=62. 应用题: 4x2y=6 5x+3y=15答案解析:一、选择题1. A2. B3. C4. D5. A6. B7. C8. D9. A10. B二、填空题1. x=12. y=23. x=24. y=35. x=26. y=27. x=28. y=39. x=210. y=2三、解答题1. x=1, y=22. x=2, y=33. x=2, y=24. x=2, y=35. x=2, y=2四、计算题1. x=1, y=22. x=2, y=33. x=2, y=2五、应用题1. x=1, y=22. x=2, y=38. 简答题(每题5分,共25分)1. 简述一元二次方程的一般形式。

初二数学期中试卷及参考答案

初二数学期中试卷及参考答案

2023-2024学年度第二学期期中考试初二数学试卷一、选择题:(本大题共8小题,每小题3分,共24分. 请将答案涂到答题纸上.)1.中国“二十四节气”已被正式列入联合国教科文组织人类非物质文化遗产代表作品录,下列“立春”、“谷雨”、“白露”、“大雪”,四幅作品是中心对称图形的是 ( ▲ )A .B .C .D . 2.分式b a 221与c ab 261的最简公分母是 ( ▲ ) A .abc B .a 2b 2c C .6a 2b 2c D .12a 2b 2c3.下列计算正确的是 ( ▲ )A .39±=B .1028=+C .()55-2=D .326=÷4.如图,在平行四边形ABCD 中,∠A +∠C =80°,则∠D = ( ▲ )A .80°B .40°C .70°D .140°5.若k 1<0<k 2,则在同一平面直角坐标系内,函数y =k 1x 和xk y 2=的图象大致是( ▲ ) A . B . C . D .6.若点A (﹣2,y 1),B (﹣1,y 2)都在函数xy 6=的图象上,则y 1,y 2的大小关系是( ▲ ) A .y 1>y 2 B .y 1=y 2 C .y 1<y 2 D .不能确定7.甲、乙两人每小时一共可做30个电器零件,两人同时开始工作,当甲做了90个零件时乙做了60个零件,设甲每小时能做x 个零件,根据题意可列分式方程为 ( ▲ )A .x x -=309060B .x x -=306090C .x x +=309060D .xx +=309090 8.现有一张平行四边形纸片ABCD ,AD >AB ,要求用尺规作图的方法在边BC ,AD 上分别找点M .N ,使得四边形AMCN 为平行四边形,甲、乙两位同学的作法如图所示,下列判断正确的是 ( ▲ )A .甲对、乙不对B .甲不对、乙对C .甲、乙都对D .甲、乙都不对第4题 第8题二、填空题:(本大题共8小题,每小题3分,共24分. 请将答案填写在答题纸上.)9.若代数式51-x 有意义,则实数x 的取值范围是 ▲ . 10.已知最简二次根式1-x 与二次根式22是同类二次根式,则x = ▲ .11.如图,A ,B 两地被池塘隔开,小明先在AB 外选一点C ,然后测出AC ,BC 的中点M ,N ,并测量出MN 长为12m ,由此可知A ,B 间距离= ▲ m .12.如图,矩形ABCD 的对角线相交于点O ,AB =3,AD =4,则线段AO 的长度为 ▲ .13.如图,在正方形网格中,图②是由图①经过变换得到的,其旋转中心可能是点 ▲ .14.若关于x 的方程xm x x -=--554有增根,则m = ▲ . 15.a 是方程x 2﹣x ﹣1=0的一个根,则代数式2024﹣2a 2+2a 的值是 ▲ .16.如图,在平面直角坐标系中,正方形OABC 的顶点O 与原点重合,顶点A ,C 分别在x 轴,y 轴上,反比例函数()0,0>>=x k xk y 的图象与正方形的两边AB ,BC 分别交于点M ,N ,连接OM ,ON ,MN ,若∠MON =45°,MN =3,则k 的值为 ▲ .三. 解答题:(本大题共9小题,共72分. 请将解答过程填写在答题纸上.)17.(6分)计算:(1)3232-2-210⨯+⎪⎭⎫ ⎝⎛ . 解方程:(2)0542=--x x 18.(6分)先化简44222112+--÷⎪⎭⎫ ⎝⎛-+x x x x ,再从不等式组0≤x <3中选择一个适当的整数,代入求值.19.(7分)如图,菱形ABCD 的对角线交于O 点,BE ∥AC ,CE ∥DB .(1)求证:四边形OBEC 是矩形;(2)若AB =5,BD =6,则四边形OBEC 的面积为 .20.(8分)已知关于x 的一元二次方程x 2﹣(m ﹣4)x ﹣m +3=0.(1)求证:该方程总有两个实数根; 第11题 第12题 第13题 第16题(2)若x 1,x 2是该方程的两个实数根,且(x 1+1)(x 2+1)=a ,求a 的值.21.(9分)如图1,反比例函数()0≠=m xm y 与一次函数y =kx+b (k ≠0)的图象交于点A (1,3),点B (n ,1),一次函数y =kx +b (k ≠0)与y 轴相交于点C .(1)求反比例函数和一次函数的表达式;(2)连接OA ,OB ,求△OAB 的面积;(3)当xm b kx >+时,x 的范围为 ▲ .22.(4分)已知平行四边形ABCD 是中心对称图形,点E 是平面上一点,请仅用无刻度直尺画出点E 关于平行四边形ABCD 对称中心的对称点F .(1)如图1,点E 是平行四边形ABCD 的AD 上一点;(2)如图2,点E 是平行四边形ABCD 外一点.23.(8分)第十九届亚运会在杭州举行.某网络经销商购进了一批以杭州亚运会为主题的文化衫进行销售,文化衫的进价每件30元.根据市场调查:在一段时间内,销售单价是45元时,每日销售量是550件;销售单价每涨1元,每日文化衫就会少售出10件.设该批文化衫的销售单价为x 元(x >55).(1)请你写出销售量y (件)与销售单价x (元)的函数关系式 ▲ .(2)若经销商获得了10000元销售利润,则该文化衫单价x 应为多少元?24.(12分)如图,点P 是y 轴正半轴上的一个动点,过点P作y 轴的垂线l ,与反比例函数xy 4-= 的图象交于点A .把直线l 上方的反比例函数图象沿着直线l 翻折,其它部分保持不变,所形成的新图象称为“x y 4-=的l 镜像”. (1)当OP =3时:①点M ⎪⎭⎫ ⎝⎛2-21-, ▲ “x y 4-=的l 镜像”;(填“在”或“不在”) ②“xy 4-=的l 镜像”与x 轴交点坐标是 ▲ ; (2)过y 轴上的点Q (0,﹣1)作y 轴垂线,与“x y 4-=的l 镜像”交于点B 、C ,点B 在点C 左侧。

人教版数学初二上学期期中试题与参考答案(2024年)

人教版数学初二上学期期中试题与参考答案(2024年)

2024年人教版数学初二上学期期中复习试题(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、题目:已知一个长方形的长为8cm,宽为5cm,求该长方形的对角线长度。

A. 6cmB. 10cmC. 12cmD. 13cm2、题目:一个班级有学生40人,其中男生人数是女生人数的1.5倍,求该班级男生和女生的人数。

A. 男生30人,女生10人B. 男生25人,女生15人C. 男生35人,女生5人D. 男生20人,女生20人3、若一个矩形的长是宽的3倍,且其周长为48厘米,则该矩形的面积是多少平方厘米?A. 64B. 108C. 128D. 1444、已知直角三角形的两个锐角之比为1∶2,那么这两个锐角分别是多少度?A. 30°, 60°B. 45°, 45°C. 60°, 30°D. 以上都不正确5、一个长方形的长是10厘米,宽是5厘米,它的面积是()A. 25平方厘米B. 50平方厘米C. 100平方厘米D. 200平方厘米6、一个正方形的周长是24厘米,那么它的边长是()A. 2厘米B. 4厘米C. 6厘米D. 8厘米7、已知一个正方形的边长为(a),如果它的边长增加到原来的1.5倍,则新正方形的面积与原正方形面积之比是多少?A.(1.5:1)B.(2.25:1)C.(3:1)D.(1.52:1)8、若一个等腰三角形的底角为(70∘),则顶角的度数是多少?A.(40∘)B.(50∘)C.(60∘)D.(70∘)9、若直角三角形的两条直角边长分别为3和4,则斜边的长度是()A. 5B. 7C. 8D. 10 10、一个长方形的长是10厘米,宽是8厘米,那么它的面积是()A. 80平方厘米B. 90平方厘米C. 100平方厘米D. 120平方厘米二、填空题(本大题有5小题,每小题3分,共15分)1、若(x−3=7),则(x=)______ 。

初二期中试卷及答案数学

初二期中试卷及答案数学

一、选择题(每题3分,共30分)1. 下列数中,有理数是()A. √9B. √16C. √25D. √36答案:D解析:有理数是可以表示为两个整数之比的数。

选项A、B、C都是无理数,因为它们不能表示为两个整数的比。

而√36 = 6,是有理数。

2. 若a > b,则下列不等式中正确的是()A. a + 1 > b + 1B. a - 1 > b - 1C. a + 1 < b + 1D. a - 1 < b - 1答案:A解析:在不等式两边同时加上或减去相同的数,不等号的方向不变。

因此,a + 1 > b + 1是正确的。

3. 已知x + y = 5,xy = 4,则x^2 + y^2的值为()A. 21B. 25C. 16D. 9答案:A解析:利用公式(x + y)^2 = x^2 + 2xy + y^2,可得x^2 + y^2 = (x + y)^2 -2xy = 5^2 - 2×4 = 25 - 8 = 17。

因此,选项A正确。

4. 下列函数中,反比例函数是()A. y = 2x + 3B. y = 3x^2C. y = 2/xD. y = 5x答案:C解析:反比例函数的形式为y = k/x,其中k为常数。

选项C符合这个形式,因此是反比例函数。

5. 在△ABC中,∠A = 45°,∠B = 60°,则∠C的度数为()A. 75°B. 105°C. 120°D. 135°答案:C解析:三角形内角和为180°,∠A + ∠B + ∠C = 180°。

代入已知角度,得45° + 60° + ∠C = 180°,解得∠C = 180° - 105° = 75°。

因此,选项C正确。

6. 下列图形中,中心对称图形是()A. 等腰三角形B. 正方形C. 等边三角形D. 梯形答案:B解析:中心对称图形是指存在一个点,使得图形上的任意一点关于这个点对称。

数学初二期中试卷及答案

数学初二期中试卷及答案

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √9B. √-9C. πD. √3 - √22. 下列运算中,正确的是()A. (-3)² = 9B. (-3)³ = -27C. (-3)⁴ = 81D. (-3)⁵ = -2433. 已知a = 2,b = -3,则a² - 2ab + b²的值为()A. 5B. -5C. 0D. 14. 下列函数中,是二次函数的是()A. y = 2x + 3B. y = x² + 2x + 1C. y = 3x³ - 2D. y = √x5. 已知二次函数y = ax² + bx + c(a ≠ 0)的图像开口向上,且顶点坐标为(1,-2),则a、b、c的值分别为()A. a > 0,b = 2,c = -1B. a > 0,b = -2,c = -1C. a < 0,b = -2,c = -1D. a < 0,b = 2,c = -16. 下列各数中,属于实数集R的是()A. √-1B. πC. 2/3D. √4 - √97. 已知一元二次方程x² - 4x + 3 = 0,则该方程的解为()A. x₁ = 1,x₂ = 3B. x₁ = 3,x₂ = 1C. x₁ = -1,x₂ = -3D. x₁ = -3,x₂ = -18. 下列各数中,绝对值最小的是()A. -5B. -4C. 0D. 19. 已知a、b是方程2x² - 5x + 3 = 0的两个实数根,则a + b的值为()A. 5/2B. -5/2C. 2D. -210. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = x² + 2x + 1C. y = k/x(k ≠ 0)D. y = 3x³ - 2二、填空题(每题3分,共30分)11. 已知a = -3,b = 4,则a² + b²的值为________。

八年级数学期中考试试卷

八年级数学期中考试试卷

八年级数学期中考试试卷一、选择题(本题共10小题,每小题3分,共30分。

每小题只有一个选项是正确的。

)1. 下列哪个数是无理数?A. 0.5B. √2C. 3.14D. 0.333...2. 一个等腰三角形的两边长分别为5和8,那么它的周长是多少?A. 18B. 21C. 26D. 303. 下列哪个函数的图像是一条直线?A. y = 2x + 3B. y = x^2C. y = √xD. y = 1/x4. 一个数的平方根是它本身,这个数是?A. 0B. 1C. -1D. 以上都不是5. 一个圆的直径是10厘米,那么它的面积是多少平方厘米?A. 25πB. 50πC. 100πD. 200π6. 一个多项式与2x^2 - 3x + 1的乘积是4x^3 - 6x^2 + 3x - 5,那么这个多项式是?A. 2x - 1B. 2x + 1C. -2x + 1D. -2x - 17. 下列哪个选项是正确的不等式?A. 3x > 2x + 1B. 3x ≤ 2x + 1C. 3x < 2x + 1D. 3x ≥ 2x + 18. 一个数的相反数是-5,那么这个数是?A. 5B. -5C. 0D. 109. 下列哪个选项是正确的比例?A. 2:3 = 4:6B. 2:3 = 4:5C. 2:3 = 6:9D. 2:3 = 6:810. 一个三角形的内角和是多少度?A. 90°B. 180°C. 360°D. 540°二、填空题(本题共5小题,每小题4分,共20分。

)11. 一个数的立方根是2,那么这个数是______。

12. 如果一个角的补角是120°,那么这个角的度数是______。

13. 一个等差数列的首项是3,公差是2,那么它的第五项是______。

14. 一个二次函数的顶点坐标是(1, -4),且开口向上,那么它的解析式可以表示为y = a(x - 1)^2 - 4,其中a的值是______。

初二上册数学期中考试试卷

初二上册数学期中考试试卷

初二上册数学期中考试试卷一、选择题(每题3分,共30分)1. 下列哪个选项是正数?A. -3B. 0C. 2D. -22. 计算下列哪个表达式的结果是负数?A. 5 - 3B. 3 + (-2)C. 4 × 2D. 6 ÷ 23. 下列哪个图形是轴对称图形?A. 平行四边形B. 梯形C. 等腰三角形D. 不规则多边形4. 一个数的相反数是-7,那么这个数是?A. 7B. -7C. 0D. 145. 以下哪个选项是不等式?A. 3x + 2 = 11B. 4y - 6 > 0C. 5z - 3 < 0D. 所有选项都是6. 计算下列哪个表达式的结果是0?A. 3 × 0B. 0 ÷ 5C. 0 - 0D. 0 + 07. 一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 5或-5D. 都不是8. 下列哪个选项是二次根式?A. √4B. √(-4)C. √0D. √(2/3)9. 一个数的平方是16,那么这个数是?A. 4B. -4C. 4或-4D. 都不是10. 计算下列哪个表达式的结果是正数?A. (-3) × (-2)B. (-4) ÷ 2C. (-5) + (-3)D. (-6) - (-8)二、填空题(每题3分,共30分)11. 一个数的立方是-8,那么这个数是______。

12. 一个数的平方根是2,那么这个数是______。

13. 一个数的倒数是1/3,那么这个数是______。

14. 一个数的绝对值是3,那么这个数可能是______或______。

15. 计算2的平方根是______。

16. 计算(-5)的相反数是______。

17. 计算3的平方是______。

18. 计算4的立方根是______。

19. 计算5的绝对值是______。

20. 计算6的倒数是______。

三、解答题(每题10分,共40分)21. 解下列方程:2x - 5 = 922. 解下列不等式:3y + 7 > 1123. 计算下列表达式的值:(-2)³ + 4 × (-3)² - 524. 证明:如果一个角的补角是120°,那么这个角是60°。

浙江省杭州市杭州中学2024-2025学年八年级上学期期中考试数学试卷(无答案)

浙江省杭州市杭州中学2024-2025学年八年级上学期期中考试数学试卷(无答案)

杭州中学2024学年第一学期初二阶段性综合练习数学试卷命题人:陈恒耘审核人:吕爱芳一、选择题(共10小题,满分30分,每小题3分)1.第33届夏季奥运会于2024年7月26日至8月11日在法国巴黎举行,中国取得金牌榜第一名的好成绩,如图所示巴黎奥运会项目图标中,是轴对称图形的是( )A. B. C. D.2.若三角形的三边长分别是4、9、a ,则a 的取值可能是( )A.3B.4C.5D.63.如图,已知,则下列条件中,不能使成立的是( )A. B. C. D.4.下列各图中,作边AC 边上的高,正确的是( )A. B.C. D.5.若,则下列结论正确的是( )A. B. C.D.6.如图,P 是的平分线OC 上一点,,,垂足分别为D ,E ,若,则PE 的长是( )12∠=∠ABC DCB ≅△△AC BD =AB CD =A D ∠=∠ABC DCB∠=∠ABC △a b <11a b +<+22a b ->-33a b -<-44a b >AOB ∠PD OB ⊥PE OA ⊥2PD =A.2B.3D.47.如图,在中,,由图中的尺规作图得到射线BD ,BD 与AC 交于点E ,点F 为BC 的中点,连接EF ,若,则的周长为( )A.B.4C.D.8.如图,将45°的按下面的方式放置在一把刻度尺上:顶点O 与尺下沿的端点重合,OA 与尺下沿重合,OB 与尺上沿的交点B 在尺上的读数恰为2cm ,若按相同的方式将30°的放置在该刻度尺上,则OC 与尺上沿的交点C 在尺上的读数为( )A.4cmB.3.5cmC.D.9.如图,把纸片的沿DE 折叠,点A 落在四边形CBDE 外,则,与的关系是( )A. B. C. D.10.如图,等腰中,,,于点D ,的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连接DM ,下列结论:①;②;③;④;⑤DM 平分,其中正确结论有( )ABC △AB BC =4BE AC ==EFC △2+2-AOB ∠AOC ∠ABC △A ∠1∠2∠A ∠212A ∠-∠=∠221A ∠-∠=∠122A ∠+∠=∠122A ∠+∠=∠Rt ABC △AB AC =90BAC ∠=︒AD BC ⊥ABC ∠67.5AEB ∠=︒AE AF =ADN BDF ≅△△2BF AM =BMN ∠A.5个B.4个C.3个D.2个二、填空题(共6小题,满分18分,每小题3分)11.x 与3的和不大于2,用不等式表示为__________.12.如图,已知,,,则_________°.13.不等式的正整数解为1,2,则a 的取值范围是______.14.直角三角形的两条边为6和8,则斜边上的中线长是________.15.如图,D 为内一点,CD 平分,,,若,,则BD 的长为________.16.如图,已知在中,,,,D 是AC 上的一点,,点P 从B 点出发沿射线BC 方向以每秒2个单位的速度向右运动.设点P 的运动时间为t.过点D 作于点E.在点P 的运动过程中,当t 为________时能使.三、解答题(共8小题,共72分)17.(6分)解下列不等式(组)(1)求不等式的解(2)解不等式组AOB COD ≅△△95B ∠=︒50C ∠=︒COD ∠=332x a a -≤-ABC △ACB ∠BD CD ⊥A ABD ∠=∠10AC =6BC =Rt ABC △90ACB ∠=︒8AC =16BC =3CD =DE AP ⊥DE CD =()23220x x +-<()432123x x x x +≤+⎧⎪⎨-<⎪⎩18.(6分)在中,,CD 是的高,CE 是的角平分线,求的度数.19.(8分)如图,已知,,.(1)用直尺和圆规作出的角平分线交BC 于点D ,作出点D 的位置(不写作法,保留作图痕迹);(2)在(1)的基础上,若,求的度数.20.(8分)如图,在所给网格图(每小格均是边长为1的正方形)中完成下面各题:(1)作关于直线DE 对称的图形;(2)求的面积.21.(10分)如图,与均为等腰直角三角形,连接AG ,CE ,相交于点H.ABC △1123A B ACB ∠=∠=∠ABC △ACB ∠DCE ∠ABC △90C ∠=︒AC BC <BAC ∠36B ∠=︒CDA ∠ABC △111A B C △ABC △ADC △EDG △(1)求证:;(2)求的大小.22.(10分)某厂租用A 、B 两种型号的车给零售商运送货物,已知用2辆A 型车和1辆B 型车装满可运货10吨;用1辆A 型车和2辆B 型车装满货物一次可运货11吨;厂家现有21吨货物需要配送,计划租用A 、B 两种型号车6辆一次配送完货物,且A 车至少1辆.根据以上信息,解答下列问题:(1)1辆A 型车和1辆B 型车都装满货物一次可分别运货多少吨?(2)请你帮助厂家设计租车方案完成一次配送完21吨货物;(3)若A 型车每辆需租金80元每次,B 型车每辆需租金100元每次.请选出最省钱的租车方案,并求出最少租车费.23.(12分)定义:如果经过三角形一个顶点的线段把这个三角形分成两个小三角形,其中一个三角形为等腰三角形,另外一个三角形和原三角形的三个内角分别相等,那么这条线段称为原三角形的“和谐分割线”,例如:如图1,等腰直角三角形斜边上的中线就是一条“和谐分割线”.图1 图2 图3(1)判断命题真假:等边三角形存在“和谐分割线”是______命题;(填“真”或“假”)(2)如图2,在中,,,是否存在“和谐分割线”?若存在,求出“和谐分割线”的长度;若不存在,请说明理由;(3)如图3,在中,,若线段CD 是的“和谐分割线”,且是等腰三角形,求出所有符合条件的的度数.24.(12分)如图,在中,,,P 为线段AC 上一点,点Q ,P 关于直线BC 对称,于点D ,DQ 与BC 交于点E ,连结DP ,设.AG CE =AHE ∠Rt ABC △90C ∠=︒30B ∠=︒AC =Rt ABC △ABC △42A ∠=︒ABC △BCD △B ∠Rt ABC △10AB =BC AC ⊥QD AB ⊥AP m =(1)若,求AC 的长,并用含m 的代数式表示PQ 的长;(2)在(1)的条件下,若,求CP 的长;(3)连结PE ,若,与的面积之比为1:2,求m 的值.8BC =AP PD =60A ∠=︒PCE △PDE △。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验中学2020-2021学年第一学期期中考试
八年级数学试卷
考试时间:100分钟总分:100分
命题人:一审:二审:
第I卷(选择题)
一、精心选一选(本大题共10小题,每小题2分,共20分)
1.下列图案中,是轴对称图形的是()
2..若等腰三角形底角为72°,则顶角为()
A.108°B.72°C.54°D.36°
3.如图:已知AD=AC,BD=BC,O为AB上一点,那么,图中共有()对全等三角形.
A. 1
B. 2
C.3
D.4
B'
A'
B
C
A
第3题图第5题图第6题图
4.若x2-mx+16是完全平方式,则m的值为( )
A.4 B.±4 C.±8 D.8
5.如图:∠1=100°,∠2=145°,那么∠3=()
A. 55°
B. 65°
C. 75°
D. 85°
6.如图:△ACB≌△A´CB´,∠BCB´=30°,则∠ACA´的度数为()
A.20°B.30°C.35°D.40°
7.如图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC,DE垂直于横梁AC, AB=8 m,∠A=30°,则DE等于()
A. 1 m
B. 2 m
C. 3 m
D. 4 m
8.如图所示:,,,
AB DE AC DF AC DF
=
∥∥下列条件中,不能判断ABC DEF
△≌△的
是( )
A.AB=DE
B.∠B=∠E
C.EF=BC
D.EF∥BC
9.如图所示,在△ABE中,∠E=25°,AE的垂直平分线MN交BE于点C,且 AB+BC=BE,则∠B的度数是( )
A.45° B.60° C.50° D.55
第7题图第8题图第9题图
10.已知∠AOB=45°,点P在∠AOB内部,P
1
与P关于OB对称,P
2
与P关于OA对称,则
P
1
OP
2
三点构成的三角形是()
A.直角三角形
B.等腰三角形
C.等边三角形
D.等腰直角三角形
第II卷(非选择题)
二、细心填一填(本大题共10小题,每小题2分,共20分)
11.已知点A(x,-4)与点B(3,y)关于y轴对称,那么x+y的值为_______。

12.若等腰三角形的两边长分别为3cm和8cm,则它的周长是。

13.因式分解:=
-2
3xy
x___________.
14.如图所示,在△ABC和△FED中,AD=FC,AB=FE,当添加条件_________
____________时,即可以得到△ABC≌△FED。

(只需填写一个你认为正确的条件)
第14题图第15题图第16题图
15.如图:一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2= 。

16.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3= 。

17.如图,AE∥BD,C是BD上的点,且AB=BC,∠ACD=110°,则∠EAB=_______。

18.已知4
=
+b
a,3
=
-b
a,则=
-2
2b
a
19.如图所示,在△ABC中,∠C=90°,AD平分∠CAB,BC=8 cm,BD=5 cm,那么点
D到直线AB的距离是 cm
20.如图:在△ABC中,AB=AC,AD是BC边上的高,点E、F是AD的三等分点,若
△ABC的面积为122
cm,则图中阴影部分的面积为2
cm。

第17题图第19题图第20题图
三、画图(每共12分)
21.(8分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(-5, 0),B(-2,4),C(-1,-2),△A′B′C′与△ABC关于y轴对称.
(1)直接写出点A′,B′,C′的坐标;(3分)
(2)画出△A′B′C′;(1分)
(3)△ABC
的面积为 .(2分)
(4)在y轴上找一点p,使得PB+PC的和最小(2分)
四、尺规作图(4分)
22、近年来,国家实施“村村通”工程和农村医疗卫生改革,某县计划在张村、李村
之间建一座定点医疗站P,张、李两村座落在两相交公路内(如图所示).医疗站
必须满足下列条件:①使其到两公路距离相等,②到张、李两村的距离也相等;
请你通过作图确定P点的位置.(不写作法,要保留作图痕迹)
第22题图第23题图
五、解答题(共48分)
23.(6分)如图所示:∠B=∠C,CD=BE求证:ΔABE≌ΔACD。

24.(6分)如图:在△ABC中,AD是高,AE是角平分线,∠EAD=20°,∠B=40°,求∠C的度数。

(5
分)
25.(8分)如图:已知E是∠AOB的平分线上的一点,EC⊥OA,ED⊥OB,垂足分别是C,D.
求证: OE垂直平分CD。

E D
A
B C
E
C
C'
D
A
B
第24题图第25题图第27题图
26.(8分)如图,把长方形纸片ABCD纸沿对角线折叠,设重叠部分为△EBD,求证:(1)△EBD是等
腰三角形.(2)若∠ABCˊ=30°AB=2cm,求BD的长。

(8分)
27.(8分)如图,△ABC为等边三角形,点D,E分别在边BC,AC上,且AE=CD,AD与
BE相交于点F.(1)求证:△ABE≌△CAD;(2)求∠BFD的度数.
28. (12分)如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边三角
形ABC和等边三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,
连接PQ.(1)求证:ΔACD≌ΔBCE(2)ΔCPQ是等边三角形(3)PQ∥AE
F
E
D C
B
A。

相关文档
最新文档