多边形的内角和与外角和习题

合集下载

多边形的内角和与外角和练习题

多边形的内角和与外角和练习题


设一个外角为x°,则内角为(x+36)° 因为多边形的内角与相邻的外角互补;
所以 x+x+36=180
解得
x=72
360÷72=5
答 这个多边形的五边形.
10.∠A+∠B+∠C+∠D+∠E+∠F+∠G=540°.
A
G
B
E
D
O
F C
11. 如图在 ABC中,D是ACB 与 ABC的角平分 线的交点,BD的延长线交AC于E,且 EDC 50, 则 A的度数为多少?
12.如图,在六边形ABCDEF中,AF // CD, AB// DE, 且 A 120,∠B 80 ,则 ∠C 的度数是多少,D 的度 数是多少?
13.如图,在ABC中,BD是ABC的角平分线,DE//BC, 交AB于E,∠A= 45 , ∠BDC= 60 ,求ΔBDE各内
角的度数.
A
E
DBCຫໍສະໝຸດ 14.如图,已知DC是△ABC中∠ACB的外角平分线, 说明为什么∠BAC>∠B.
(第 13 题)
360°
C
7.当一个多边形的边数增加时,其外角和 ( )
A 8.某.增学加生在计算B四.减个少多边形C的.内不角变和时,得D到.不下能列确四定
个答案,其中错误的是( C )
A.180° D.1080°
B.540°
C.1900°
9. 一个正多边形的一个内角比相邻外角大36°,求这 个正多边形的边数.
多边形内角和与外 角和的练习题
复习
n边形内角和公式、外角和公式?
1. n边形的内角和等于(n-2)·180. 2. n边形的外角和都等于360°.
1、一个多边形的每个外角都是 30,这个多边形 2、的正边十数二是边_形__的1_2。每个内角的度数是_1_5_.0

多边形的内角和与外角和练习题及其完整答案

多边形的内角和与外角和练习题及其完整答案

多边形的内角和与外角和➢基础巩固题一、填空题1.若一凸多边形的内角和等于它的外角和,则它的边数是______.2.五边形的内角和等于______度.3.十边形的对角线有_____条.4.正十五边形的每一个内角等于_______度.5.内角和是1620°的多边形的边数是________.6.用正n边形拼地板,则n的值可能是_______.二、选择题7.一个多边形的内角和是720°,则这个多边形是( )A.四边形B.五边形C.六边形D.七边形8.一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是( )A.5B.6C.7D.89.若正n边形的一个外角为60°,则n的值是( )A.4B.5C.6D.810.下列角度中,不能成为多边形内角和的是( )A.600°B.720°C.900°D.1080°11.若一个多边形的内角和与外角和之和是1800°,则此多边形是( )A.八边形B.十边形C.十二边形D.十四边形12.用下列两种正多边形能拼地板的是( )A.正三角形和正八边形B.正方形和正八边形C.正六边形和正八边形D.正十边形和正八边形三、解答题13.一个多边形的每一个外角都等于45°,求这个多边形的内角和.14.已知一个多边形的内角和是1440°,求这个多边形的对角线的条数.15.一个多边形,除一个内角外,其余各内角之和等于1000°,求这个内角及多边形的边数.➢ 强化提高题16.一个多边形中,每个内角都相等,并且每个外角等于它的相邻内角的23, 求这个多边形的边数及内角和.17.如图,一个六边形的六个内角都是120°,AB=1,BC=CD=3,DE=2,求该六边形的周长.EF DB C A➢ 课外延伸题19.若两个多边形的边数之比是1:2,内角和度数之比为1:3, 求这两个多边形的边数.20.如果多边形恰有四个内角是钝角,那么多边形的边数共有几种可能? 其中最多是几边形?最少是几边形?➢中考模拟题22.已知四边形ABCD中,∠A:∠B=7:5,∠A-∠C=∠B,∠C=∠D-40°, 求各内角的度数.23.一个多边形除了一个内角等于α,其余角的和等于2750°,求这个多边形的边数及α.24.一个广场地面的一部分如图所示,地面的中央是一块正六边形的地砖, 周围用正三角形和正方形的大理石地砖拼成,从里往外共12层(不包括中央的正六边形地砖),每一层的外界都围成一个多边形.若中央正六边形地砖的边长是0.5米, 则第12层的外边界所围成的多边形的周长是多少?一、1、42、540°3、354、156°5、116、3,4,6二、7、C8、C9、C10、A11、B12、B三、13、1080°14、1015、80° 816、5 540°17、15(延长三边相交)19、4,820、最少五边形,最多七边形22、∠A=140°∠B=100°∠C=40°∠D=80°23、18 130°24、6n+6 39。

多边形的内角与外角题目

多边形的内角与外角题目

多边形的内角与外角题目1. 三角形的一个内角是45度,那么这个三角形的所有内角之和是多少度?2. 请问一个正方形的外角是多少度?3. 如果一个多边形的所有外角都是120度,那么这个多边形有多少条边?4. 请问一个等边三角形的内角是多少度?5. 请计算一个五边形的所有内角之和。

6. 请问一个正六边形的每个外角是多少度?7. 如果一个多边形的内角和是360度,那么这个多边形有多少条边?8. 请问一个等腰三角形的底角之和是多少度?9. 请计算一个七边形的所有外角之和。

10. 请问一个正八边形的每个内角是多少度?11. 如果一个多边形的每个外角都是60度,那么这个多边形有多少条边?12. 请问一个等边三角形的每个外角是多少度?13. 请计算一个九边形的所有内角之和。

14. 请问一个正十边形的每个外角是多少度?15. 如果一个多边形的内角和是180度,那么这个多边形有多少条边?16. 请问一个等腰三角形的顶角是多少度?17. 请计算一个十一边形的所有外角之和。

18. 请问一个正十二边形的每个内角是多少度?19. 如果一个多边形的每个外角都是30度,那么这个多边形有多少条边?20. 请问一个等边三角形的每个内角是多少度?21. 请计算一个十三边形的所有内角之和。

22. 请问一个正十四边形的每个外角是多少度?23. 如果一个多边形的内角和是540度,那么这个多边形有多少条边?24. 请问一个等腰三角形的底角各是多少度?25. 请计算一个十五边形的所有外角之和。

26. 请问一个正十六边形的每个内角是多少度?27. 如果一个多边形的每个外角都是45度,那么这个多边形有多少条边?28. 请问一个等边三角形的每个外角是多少度?29. 请计算一个十七边形的所有内角之和。

30. 请问一个正十八边形的每个外角是多少度?31. 如果一个多边形的内角和是720度,那么这个多边形有多少条边?32. 请问一个等腰三角形的顶角是多少度?33. 请计算一个十九边形的所有外角之和。

正多边形内角和与外角和练习题

正多边形内角和与外角和练习题

正多边形内角和与外角和练习题本练题旨在帮助学生巩固和深入理解正多边形的内角和与外角和的概念和计算方法。

问题一求一个正五边形的内角和与外角和。

答:正五边形的内角和可以通过以下公式计算得出:内角和 = (n - 2) × 180°其中,n 表示正多边形的边数。

正五边形的内角和 = (5 - 2) × 180° = 540°正五边形的外角和可以通过以下公式计算得出:外角和 = 360°外角和 = 内角和的补角正五边形的外角和 = 360° - 540° = -180°问题二求一个正六边形的内角和与外角和。

答:正六边形的内角和可以通过以下公式计算得出:内角和 = (n - 2) × 180°其中,n 表示正多边形的边数。

正六边形的内角和 = (6 - 2) × 180° = 720°正六边形的外角和可以通过以下公式计算得出:外角和 = 360°外角和 = 内角和的补角正六边形的外角和 = 360° - 720° = -360°问题三求一个正十边形的内角和与外角和。

答:正十边形的内角和可以通过以下公式计算得出:内角和 = (n - 2) × 180°其中,n 表示正多边形的边数。

正十边形的内角和 = (10 - 2) × 180° = 1440°正十边形的外角和可以通过以下公式计算得出:外角和 = 360°外角和 = 内角和的补角正十边形的外角和 = 360° - 1440° = -1080°通过以上练习题,我们可以看出正多边形的内角和与外角和是有固定规律的。

多边形的内角和与外角和练习题及解析

多边形的内角和与外角和练习题及解析

一、选择题1. 从六边形的一个顶点,可以引()条对角线.A.3B.4C.5D.62. 一个凸多边形的每一个内角都等于150∘,则这个多边形所有对角线的条数共有()A.42条B.54条C.66条D.78条3. 一个多边形的内角和是1800∘,则这个多边形是()边形.A.9B.10C.11D.124. 十二边形的外角和是()A.180∘B.360∘C.1800∘D.2160∘5. 从一个多边形的任何一个顶点出发都只有5条对角线,则它的边数是()A.6B.7C.8D.96. 一个多边形的每个外角都等于30∘,则这个多边形的边数是()A.10B.11C.12D.137. 能够铺满地面的正多边形组合是()A.正六边形和正方形B.正五边形和正八边形C.正方形和正八边形D.正三角形和正十边形8. 用同样大小的多边形地砖不能镶嵌成一个平面的是()A.正方形B.正六边形C.正五边形D.正三角形9. 将一长方形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是()A.360∘B.540∘C.720∘D.900∘10. 若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是()A.2:1B.1:1C.5:2D.5:411. 一个多边形的内角和是720∘,这个多边形是()A.五边形B.六边形C.七边形D.六边形12. 如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340∘的新多边形,则原多边形的对角线条数为()A.77B.90C.65D.10413. 小明在加一多边形的角的和时,不小心把一个角多加了一次,结果为1500∘,则小明多加的那个角的大小为()A.60∘B.80∘C.100∘D.120∘二、填空题14. 与正三角形组合在一起能铺满地面的另一种正多边形是________.(只要求写出一种即可)15. 从一个多边形的某个顶点出发,分别连接这个点和其余各顶点,可以把这个多边形分割成15个三角形,则这个多边形的边数为________.16. 当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个________时,就拼成一个平面图形.17. 用边长相等的正三角形与正方形能够密铺,设在一个顶点周围有x个正三角形的角,有y个正方形的角,则x=________,y=________.18. 一个正________边形的每个内角都是108∘,则________=________.19. 过m边形的顶点能作7条对角线,n边形没有对角线,k边形有k条对角线,则(m−k)n=________.20. 用两个边长为1的正六边形拼接成如图(a)的图形,其周长为10;用三个边长为1的正六边形可以拼接成如图(b)或(c)的图形,其周长分别为12和14.若要拼接成周长为18的图形,所需这样的正六边形至少为x个,至多为y个,则x+y=________.21. 现有四种地面砖,它们的形状分别是:正三角形.正方形.正六边形.正八边形,且它们的边长都相等.同时选择其中两种地面砖密铺地面,选择的方式有________种.三、解答题22. 小明在计算一个多边形的内角和,求得的内角和为2220∘,经过检查发现少加了一个内角,请问这个内角为多少度?这个多边形是几边形?23. 已知一个正多边形相邻的内角比外角大140∘.(1)求这个正多边形的内角与外角的度数;(2)直接写出这个正多边形的边数;(3)只用这个正多边形若干个,能否镶嵌?并说明理由.24. 一个凸多边形共有20条对角线,它是几边形?是否存在有18条对角线的多边形?如果存在,它是几边形?如果不存在,说明得出结论的道理.25. 凸六边形纸片剪去一个角后,得到的多边形的边数可能是多少?画出图形说明.26. 某单位的地板有三种边长相等的正多边形铺设,一个顶点处每种多边形只用一个,设这三种正多边形的边数分别是x ,y ,z .求1x +1y +1z 的值. 补充练习1.若一个多边形的边数增加1,则它的内角和 ( ) A.不变 B.增加1 C.增加180° D.增加360°2.当一个多边形的边数增加时,其外角和 ( ) A.增加 B.减少 C.不变 D.不能确定3.某学生在计算四个多边形的内角和时,得到下列四个答案,其中错误的是( ) A.180° B.540° C.1900° D.1080°4.已知:如图,五边形ABCDE 中,AE ∥CD,∠A=107°,∠B=121°,求∠C 的度数..EDBCA5. 如图,一个六边形的六个内角都是120°,AB=1,BC=CD=3,DE=2,求该六边形的周长.6. 一个多边形中,每个内角都相等,并且每个外角等于它的相邻内角的23, 求这个多边形的边数及内角和.7.若两个多边形的边数之比是1:2,内角和度数之比为1:3, 求这两个多边形的边数.8.已知四边形ABCD中,∠A:∠B=7:5,∠A-∠C=∠B,∠C=∠D-40°, 求各内角的度数.9.一个多边形除了一个内角等于α,其余角的和等于2750°,求这个多边形的边数及α.E FDBCAAB10、在ΔABC 中,AB =AC ,中线BD 把ΔABC 的周长分为12和9两部分,求ΔABC 各边的长。

多边形的内角和与外角和综合练习题

多边形的内角和与外角和综合练习题

多边形的内角和与外角和综合练习题多边形是几何学中的基础概念,拥有不同边数的多边形呈现出各种形状。

在研究多边形的性质时,我们常常关注多边形的内角和与外角和。

本文将通过综合练习题来巩固和加深对多边形内、外角和的理解。

练习题1:已知凸多边形的一个内角为75°,其余内角的度数依次递增,最大的内角是其中的第几个内角?解析:凸多边形的每个内角的度数总和等于(边数 - 2) × 180°。

由于题目没有给出具体的边数,我们无法计算出每个内角的具体度数,但可以根据给定信息确定出最大的内角所在的位置。

由于内角度数递增且凸多边形的每个内角都小于180°,最大的内角一定是最后一个内角。

练习题2:已知凸多边形的内角和为1080°,该多边形的边数是多少?解析:根据凸多边形的每个内角的度数总和等于(边数 - 2) × 180°,我们可以得到方程 (边数 - 2) × 180° = 1080°。

则边数 - 2 = 6,边数 = 8。

所以该多边形的边数为8。

练习题3:已知一个内角和为1620°的凸多边形,求它的边数。

解析:同样地,根据凸多边形的每个内角的度数总和等于(边数 - 2) × 180°,我们可以得到方程 (边数 - 2) × 180° = 1620°。

则边数 - 2 = 9,边数 = 11。

所以该多边形的边数为11。

练习题4:一个凸多边形的一个内角的度数是其他内角度数的3倍,且所有内角度数的和为1080°,求这个多边形的边数。

解析:我们设这个内角的度数为3x,则其他内角的度数分别为x。

根据凸多边形的每个内角的度数总和等于(边数 - 2) × 180°,我们可以得到方程 3x + x(边数 - 1) = 1080°。

化简得到 x(边数 + 2) = 1080°。

(试题1)3.6多边形的内角和与外角和

(试题1)3.6多边形的内角和与外角和

《多边形的内角和与外角和》测试题一、画龙点睛·专心填一填(每小题3分 共30分)1.五边形的内角和等于 。

2.一个多边形的每一个外角的度数等于其相邻内角的度数的31,则这个多边形是 边形。

3、一个多边形内角和等于1260º,则这个多边形的边数为 。

4、一个多边形的内角和是外角和的1.5倍,则这个多边形由 对角线。

5、从n 边形的一个顶点可以引6条对角线,则内角和是 。

6、多边形截去一个角后,内角和是900度,则原多边形的边数是 。

7、(2n+1)边数的外角和是 。

8、若一个多边形的的边数增加1,它的内角和增加 。

9、四边形中有两个直角,另外两个内角差为20度,四边形中最小的内角为 。

10、四边形有 条对角线,五边形有 条对角形,n 边形有 条对角线。

二、慧眼识珠·精心选一选(每小题3分 共30分)11、若多边形的边数由3增加到n(n 是正整数),则其外角和的度数为 ( )A .增加B .减少C .不变D .不能确定12、多边形每一个内角都等于150º,则从此多边形一个顶点出发的对角线有 ( )A .7条B .8条C .9条D .10条13、四边形的四个角可能都是 ( )A .锐角B .直角C .钝角D .锐角或钝角14、一个多边形的内角和是它的外角和的5倍,那么这个多边形的边数为 ( )A .19B .10C .11D .1215.如果各角都相等的多边形的一个内角是它的外角的n 倍,则这个多边形是( )A .不存在B .2n+2边形 c .2n-2边形 D .以上都不对16.已知一个多边形只可以从一个顶点引出三条对角线,那么它是( )A .五边形B .六边形C .七边形D .八边形17.正八边形的一个内角与正六边形的一个内角的差是( )A .15ºB .22.5ºC .7.5ºD .36º18.2(n+1)边形比2n 边形的内角和增加( )A .180ºB .360ºC .180ºD .0º19.多边形的内角和不可能是( )A .180ºB .540ºC .1000ºD .1980º20、如果一个多边形的各个内角都相等,并且多边形的内角和是1260º,那么这个多边形的每个外角是( )A .20ºB .40ºC .60ºD .80º三、妙笔生花·细心做一做(每小题10分 共60分)21、一个多边形的内角和与外角和相加之后结果是2520º,求这个多边形的边数。

多边形内角和习题

多边形内角和习题

9.2 多边形的内角和与外角和 (A卷)基础巩固题一、填空题1.若一凸多边形的内角和等于它的外角和,则它的边数是______.2.五边形的内角和等于______度.3.十边形的对角线有_____条.4.正十五边形的每一个内角等于_______度.5.内角和是1620°的多边形的边数是________.6.用正n边形拼地板,则n的值可能是_______.二、选择题7.一个多边形的内角和是720°,则这个多边形是( )A.四边形B.五边形C.六边形D.七边形8.一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是( )A.5B.6C.7D.89.若正n边形的一个外角为60°,则n的值是( )A.4B.5C.6D.810.下列角度中,不能成为多边形内角和的是( )A.600°B.720°C.900°D.1080°11.若一个多边形的内角和与外角和之和是1800°,则此多边形是( )A.八边形B.十边形C.十二边形D.十四边形12.用下列两种正多边形能拼地板的是( )A.正三角形和正八边形B.正方形和正八边形C.正六边形和正八边形D.正十边形和正八边形三、解答题13.一个多边形的每一个外角都等于45°,求这个多边形的内角和.14.已知一个多边形的内角和是1440°,求这个多边形的对角线的条数. 15.一个多边形,除一个内角外,其余各内角之和等于1000°,求这个内角及多边形的边数.强化提高题16.一个多边形中,每个内角都相等,并且每个外角等于它的相邻内角的23, 求这个多边形的边数及内角和.17.如图,一个六边形的六个内角都是120°,AB=1,BC=CD=3,DE=2,求该六边形的周长.EFDBCA18.用正四边形和正边形拼地板,画出草图.课外延伸题19.若两个多边形的边数之比是1:2,内角和度数之比为1:3, 求这两个多边形的边数.20.如果多边形恰有四个内角是钝角,那么多边形的边数共有几种可能? 其中最多是几边形?最少是几边形?21.下列地板是由正方形、正六边形、正十二边形拼成的,试说明由这三种正多边形能拼地板的理由.中考模拟题22.已知四边形ABCD 中,∠A:∠B=7:5,∠A -∠C=∠B,∠C=∠D -40°, 求各内角的度数.23.一个多边形除了一个内角等于α,其余角的和等于2750°,求这个多边形的边数及α.24.一个广场地面的一部分如图所示,地面的中央是一块正六边形的地砖, 周围用正三角形和正方形的大理石地砖拼成,从里往外共12层(不包括中央的正六边形地砖),每一层的外界都围成一个多边形.若中央正六边形地砖的边长是0.5米, 则第12层的外边界所围成的多边形的周长是多少?9.2 多边形的内角和与外角和 (B 卷)基础巩固题一、填空题1.如果一个多边形的内角和等于900°,那么这个多边形是_____边形.2.一个正多边形的每个外角都等于30°,则这个多边形边数是______.3.n 边形的外角和与内角和的度数之比为2:7,则边数为_______.4.从一个多边形的一个顶点出发,一共做了10条对角线,则这个多边形的内角和为_____度.5.在四边形ABCD 中,如果∠A:∠B:∠C:∠D=1:2:3:4,则∠D=______.6.用正方形和正十二边形以及正_____边形可以拼地板. 二、选择题7.用下列一种正多边形可以拼地板的是( )A.正五边形B.正六边形C.正八边形D.正十二边形8.多边形每一个内角都等于120°,则从此多边形一个顶点出发可引的对角线的条数是( ) A.5条 B.4条 C.3 D.2条9.一个多边形的内角和是外角和的5倍,那么这个多边形的边数是( ) 10.若一个多边形除了一个内角外,其余各内角之和是2570°,则这个角是( ) A.90° B.15° C.120° D.130° 11.在多边形的内角中,锐角的个数不能多于( ) A.2个 B.3个 C.4个 D.5个 12.n 边形的边数增加一倍,它的内角和增加( ) A.180° B.360° C.(n -2).180° D.n.180° 三、解答题13.六角螺母的一个面是正六边形,求它们每一个内角的度数.14.一个多边形的每一个外角都等于72°,这个多边形是几边形? 它的每个内角是多少度?15.试用黑白两种相同的正三角形拼地板,请你设计两种效果图.强化提高题16.一个多边形的最大外角为85°,其他外角依次减少10°, 求这个多边形的边数.17.已知:如图,五边形ABCDE 中,AE∥CD,∠A=107°,∠B=121°,求∠C 的度数.18.已知一个多边形的内角和与外角和之比为9:2,求边数.课外延伸题19.如图,在四边形ABCD 中,∠A=∠C=90°,作出∠B 和∠D 的平分线, 观察它们之间的关系,作出猜想并加以说明理由.CBAD20.已知:过m 边形的一个顶点有7条对角线,n 边形没有对角线,p 边形有p 条对条线.求(m-p)n .21.一个正多边形的每一个内角比每一个外角的3倍还大20°, 求这个正多边形的内角和.中考模拟题22.如果用正三角形与正六边形拼地板,有几种可能的情形?试画出草图.23.已知一个多边形的内角和与外角和的差为1440°,求这个多边形的边数.24.已知足球是由黑色的正五边形和白色的正六边形组成的,若黑块有12块, 即有12个正五边形,那么白色的正六边形共有几块EDBCA。

多边形及其内角和练习题(含答案)

多边形及其内角和练习题(含答案)

9.2 多边形的内角和与外角和练习一一、填空题1.若一凸多边形的内角和等于它的外角和,则它的边数是______.2.五边形的内角和等于______度.3.十边形的对角线有_____条.4.正十五边形的每一个内角等于_______度.5.内角和是1620°的多边形的边数是___.6.用正n边形拼地板,则n的值可能是_______. 二、选择题7.一个多边形的内角和是720°,则这个多边形是( )A.四边形B.五边形C.六边形D.七边形8.一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是( ) A.5 B.6 C.7 D.89.若正n边形的一个外角为60°,则n的值是( ) A.4 B.5 C.6 D.810.下列角度中,不能成为多边形内角和的是( )A.600°B.720°C.900°D.1080°11.若一个多边形的内角和与外角和之和是1800°,则此多边形是( )A.八边形B.十边形C.十二边形D.十四边形12.用下列两种正多边形能拼地板的是( )A.正三角形和正八边形B.正方形和正八边形C.正六边形和正八边形D.正十边形和正八边形三、解答题13.一个多边形的每一个外角都等于45°,求这个多边形的内角和.14.已知一个多边形的内角和是1440°,求这个多边形的对角线的条数.15.一个多边形,除一个内角外,其余各内角之和等于1000°,求这个内角及多边形的边数.11.3 多边形及其内角和16.一个多边形中,每个内角都相等,并且每个外角等于它的相邻内角的2/3, 求这个多边形的边数及内角和.17.如图,一个六边形的六个内角都是120°,AB=1,BC=CD=3,DE=2,求该六边形的周长.19.若两个多边形的边数之比是1:2,内角和度数之比为1:3, 求这两个多边形的边数.20.如果多边形恰有四个内角是钝角,那么多边形的边数共有几种可能? 其中最多是几边形?最少是几边形?21.下列地板是由正方形、正六边形、正十二边形拼成的,试说明由这三种正多边形能拼地板的理由.22.已知四边形ABCD中,∠A:∠B=7:5,∠A-∠C=∠B,∠C=∠D-40°, 求各内角的度数.23.一个多边形除了一个内角等于α,其余角的和等于2750°,求这个多边形的边数及α.21.下列地板是由正方形、正六边形、正十二边形拼成的,试说明由这三种正多边形能拼地板的理由.22.已知四边形ABCD中,∠A:∠B=7:5,∠A-∠C=∠B,∠C=∠D-40°求各内角的度数.23.一个多边形除了一个内角等于α,其余角的和等于2750°,求这个多边形的边数及α.24.一个广场地面的一部分如图所示,地面的中央是一块正六边形的地砖, 周围用正三角形和正方形的大理石地砖拼成,从里往外共12层(不包括中央的正六边形地砖),每一层的外界都围成一个多边形.若中央正六边形地砖的边长是0.5米, 则第12层的外边界所围成的多边形的周长是多少1.四边形ABCD中,如果∠A+∠C+∠D=280°,则∠B的度数是()A.80° B.90° C.170° D.20°2.一个多边形的内角和等于1080°,这个多边形的边数是()A.9 B.8 C.7 D.63.内角和等于外角和2倍的多边形是() A.五边形B.六边形C.七边形D.八边形4.六边形的内角和等于_______度.5.正十边形的每一个内角的度数等于______,每一个外角的度数等于_______.6.如图,你能数出多少个不同的四边形?7.四边形的四个内角可以都是锐角吗?可以都是钝角吗?可以都是直角吗?•为什么?8.求下列图形中x的值:综合创新作业9.(综合题)已知:如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,•DF平分∠ADC.BE与DF有怎样的位置关系?为什么?10.(应用题)有10个城市进行篮球比赛,每个城市均派3个代表队参加比赛,规定同一城市间代表队不进行比赛,其他代表队都要比赛一场,问按此规定,•所有代表队要打多少场比赛?11.(创新题)如图,以五边形的每个顶点为圆心,以1为半径画圆,求圆与五边形重合的面积.12.(1)(2005年,南通)已知一个多边形的内角和为540°,则这个多边形为()A.三角形 B.四边形 C.五边形 D.六边形(2)(2005年,福建泉州)五边形的内角和等于_______度.13.(易错题)一个多边形的每一个顶点处取一个外角,这些外角中最多有钝角(• )A.1个 B.2个 C.3个 D.4个14.(探究题)(1)四边形有几条对角线?五边形有几条对角线?六边形有几条对角线?……猜想并探索:n边形有几条对角线?(2)一个n边形的边数增加1,对角线增加多少条?15.(开放题)如果一个多边形的边数增加1,•那么这个多边形的内角和增加多少度?若将n边形的边数增加1倍,则它的内角和增加多少度?攻其不备壁虎在一座油罐的下底边沿A处.它发现在自己的正上方──油罐上边缘的B•处有一只害虫.壁虎决定捕捉这只害虫.为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿着一条螺旋路线,从背后对害虫进行突然袭击如图7-3-5.结果,•壁虎的偷袭得到成功,获得了一顿美餐.请问:壁虎沿着螺旋线爬行是最短的路程吗(线段AB除外)?答案:1.A 点拨:∠B=360°-(∠A+∠C+∠D)=360°-280°=80°.故选A.2.B 点拨:设这个多边形的边数为n,则(n-2)·180=1080.解得n=8.故选B.3.B 点拨:设这个多边形的边数为n,根据题意,得(n-2)·180=2×360.解得n=6.故选B.4.7205.144°;36°点拨:正十边形每一个内角的度数为:(102)18010-⨯︒=144°,每一个外角的度数为:180°-144°=36°.6.有27个不同的四边形.7.解:四边形的四个内角不可以都是锐角,不可以都是钝角,可以都是直角.因为四边形的内角和为360°,如果四个内角都是锐角或都是钝角,•则内角和小于360°或大于360°,与四边形的内角和为360°矛盾.•所以四个内角不可以都是锐角或都是钝角.若四个内角都是直角,则四个内角的和等于360°,与内角和定理相符,所以四个内角可以都是直角.8.解:(1)90+70+150+x=360.解得x=50.(2)90+73+82+(180-x)=360.解得x=65.(3)x+(x+30)+60+x+(x-10)=(5-2)×180.解得x=115.9.解:BE∥DF.理由:∵∠A=∠C=90°,∴∠A+∠C=180°.∴∠ABC+∠ADC=360°-180°=180°.∵∠ABE=12∠ABC,∠ADF=12∠ADC,∴∠ABE+∠ADF=12(∠ABC+∠ADC)=12×180°=90°.又∵∠ABE+∠AEB=90°,∴∠AEB=∠ADF,∴BE∥DF(同位角相等,两直线平行).10.解:12n(n-3)=12×10×(10-3)=12×10×7=35(场).答:按此规定,所有代表队要打35场比赛.点拨:问题类似于求多边形对角线的个数.11.解:(5-2)×180°÷360°×12=1.5.点拨:不能直接求出扇形的度数,用整体法圆与五边形重合部分的角度和正好是五边形的内角和.12.(1)C 点拨:设这个多边形的边数为n,依题意,得(n-2)×180°=540°,解得n=5,故选C.(2)540 点拨:(n-2)×180°=(5-3)×180°=540°.13.C 14.解:(1)四边形有2条对角线;五边形有5条对角线;六边形有9条对角线;…… n边形有(3)2n n-条对角线.(2)当n边形的边数增加1时,对角线增加(n-1)条.点拨:从n边形的一个顶点出发,向其他顶点共可引(n-3)条对角线,n个顶点共可引n(n-3)条,但这些对角线每一条都重复了一次,故n边形的对角线条数为(3)2n n-.15.180°,n·180°.是最短的路程.可用纸板做一个模型,沿AB剪开便可看出结论.。

《多边形的内角和与外角和》典型例题

《多边形的内角和与外角和》典型例题

《多边形的内角和与外角和》典型例题【题1】正五边形的一个内角的度数是 .【解析】一个多边形的内角和为(n-2)×180°,外角和为360°,因此可通过两种方法求内角度数.方法1:设正五边形的一个内角的度数为a ,则a=5180)25(︒⨯-=108° 方法2:因为5360︒=720°,所以一个内角的度数=180°-72°=108° 【知识规律串讲】一、多边形的内角和与外角和公式n 边形的内角和为:(n-2)·180°(正n 边形的每个内角的度数是n ︒⨯1802)-(n ) n 边形的外角和为360°(正n 边形的每个外角的度数都是n︒360) 二、多边形的内角和与外角和的运用1.求多边形的边数例1:1.若一个多边形的每个外角都等于45°,则这个多边形的边数是 .2.如果一个多边形的内角和是540°,那么这个多边形是 边形. 解析: 第1题计算的根据是多边形的外角和都等于360°,n 边形有n 个外角,360÷40=9,即为多边形的边数,注意多边形的外角和与边数无关.第2题的解答主要依据多边形的内角和(n-2)·180°.此公式的逆向的运用,即可用内角和公式求边数.答案:1. 九边形 2. 五边形点评:在利用多边形的内角和公式时一定要注意到n-2,在由公式求边数时,一般先求出n-2,再求n.例如:已知一个多边形的内角和是2340°,则这个多边形的边数是_______. 答案: 十五边形2. 外角和的性质n 边形的外角和为360°,它不随边数的变化而变化.例2:随着边数的增加, n边形的外角和()A. 不变B. 增加C. 减少D. 不一定答案:A3.判断角的可能性例3:在四边形的四个内角中,最多能有几个钝角?最多能有几个锐角?最多能有三个钝角,最多能有三个锐角.理由是:解析:设四边形的四个内角的度数分别为:α°,β°,γ°,δ°,则α+β+γ+δ=360°,α、β、γ、δ的值最多能有三个大于90°,否则α、β、γ、δ都大于90°.α+β+γ+δ>360°.同理最多能有三个小于90°.4.内角的镶嵌例4:下图是三个完全相同的正多边形拼成的无缝隙不重叠的图形的一部分,这种多边形是几边形?为什么?解析:这种正多边形是正六边形,理由是:设这个正多边形的一个内角为x°,则由题图得:3x=360°.x=120°.再根据多边形的内角和公式得:n×120°=(n-2)×180°.解得n=6答案:六边形。

多边形及其内角和练习题含答案

多边形及其内角和练习题含答案

9.2 多边形的内角和与外角和练习一一、填空题1.若一凸多边形的内角和等于它的外角和,则它的边数是______.2.五边形的内角和等于______度.3.十边形的对角线有_____条.4.正十五边形的每一个内角等于_______度.5.内角和是1620°的多边形的边数是___.6.用正n边形拼地板,则n的值可能是_______. 二、选择题7.一个多边形的内角和是720°,则这个多边形是( )A.四边形B.五边形C.六边形D.七边形8.一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是( ) A.5 B.6C.7D.89.若正n边形的一个外角为60°,则n的值是( ) A.4 B.5 C.6 D.810.下列角度中,不能成为多边形内角和的是( )A.600°B.720°C.900°D.1080°11.若一个多边形的内角和与外角和之和是1800°,则此多边形是( )A.八边形B.十边形C.十二边形D.十四边形12.用下列两种正多边形能拼地板的是( )A.正三角形和正八边形B.正方形和正八边形C.正六边形和正八边形D.正十边形和正八边形三、解答题13.一个多边形的每一个外角都等于45°,求这个多边形的内角和.14.已知一个多边形的内角和是1440°,求这个多边形的对角线的条数.15.一个多边形,除一个内角外,其余各内角之和等于1000°,求这个内角及多边形的边数.11.3 多边形及其内角和16.一个多边形中,每个内角都相等,并且每个外角等于它的相邻内角的2/3, 求这个多边形的边数及内角和.17.如图,一个六边形的六个内角都是120°,AB=1,BC=CD=3,DE=2,求该六边形的周长.19.若两个多边形的边数之比是1:2,内角和度数之比为1:3, 求这两个多边形的边数.20.如果多边形恰有四个内角是钝角,那么多边形的边数共有几种可能? 其中最多是几边形?最少是几边形?21.下列地板是由正方形、正六边形、正十二边形拼成的,试说明由这三种正多边形能拼地板的理由.22.已知四边形ABCD中,∠A:∠B=7:5,∠A-∠C=∠B,∠C=∠D-40°, 求各内角的度数.. ,求这个多边形的边数及α其余角的和等于2750°23.一个多边形除了一个内角等于α,试说明由这三种正多边形能拼地下列地板是由正方形、正六边形、正十二边形拼成的,21. 板的理由.度的各内角∠C=∠D-40°求A-形ABCD中,∠A:∠B=7:5,∠∠C=∠B,22.已知四边数.求这个多边形的边数2750°,23.一个多边形除了一个内角等于α,其余角的和等于 . 及α周围用正三角, ,地面的中央是一块正六边形的地砖24.一个广场地面的一部分如图所示每一层的外),(不包括中央的正六边形地砖,从里往外共12层形和正方形的大理石地砖拼成层的外边界所围成的则第12若中央正六边形地砖的边长是0.5米, 界都围成一个多边形. 多边形的周长是多少)°,则∠B的度数是(∠.四边形ABCD中,如果∠A+C+∠D=2801 ° D.2090.°C.170° A.80° B )1080°,这个多边形的边数是( 2.一个多边形的内角和等于6 ..7 D A.9 B.8 C D.八边形B.六边形C.七边形)3.内角和等于外角和2倍的多边形是( A.五边形_______度.4.六边形的内角和等于.______,每一个外角的度数等于_______.正十边形的每一个内角的度数等于5 .如图,你能数出多少个不同的四边形?6为什么?.四边形的四个内角可以都是锐角吗?可以都是钝角吗?可以都是直角吗??7x的值:8.求下列图形中综合创新作业9.(综合题)已知:如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,?DF平分∠有怎样的位置关系?为什么?DF与BE.ADC.10.(应用题)有10个城市进行篮球比赛,每个城市均派3个代表队参加比赛,规定同一城市间代表队不进行比赛,其他代表队都要比赛一场,问按此规定,?所有代表队要打多少场比赛?11.(创新题)如图,以五边形的每个顶点为圆心,以1为半径画圆,求圆与五边形重合的面积.12.(1)(2005年,南通)已知一个多边形的内角和为540°,则这个多边形为()A.三角形 B.四边形 C.五边形 D.六边形(2)(2005年,福建泉州)五边形的内角和等于_______度.13.(易错题)一个多边形的每一个顶点处取一个外角,这些外角中最多有钝角(? )A.1个 B.2个 C.3个 D.4个14.(探究题)(1)四边形有几条对角线?五边形有几条对角线?六边形有几条对角线?……猜想并探索:n边形有几条对角线?(2)一个n边形的边数增加1,对角线增加多少条?15.(开放题)如果一个多边形的边数增加1,?那么这个多边形的内角和增加多少度?若将n边形的边数增加1倍,则它的内角和增加多少度?攻其不备壁虎在一座油罐的下底边沿A处.它发现在自己的正上方──油罐上边缘的B?处有一只害虫.壁虎决定捕捉这只害虫.为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿着一条螺旋路线,从背后对害虫进行突然袭击如图7-3-5.结果,?壁虎的偷袭得到成功,获得了一顿美餐.请问:壁虎沿着螺旋线爬行是最短的路程吗(线段AB除外)?答案:1.A 点拨:∠B=360°-(∠A+∠C+∠D)=360°-280°=80°.故选A.2.B 点拨:设这个多边形的边数为n,则(n-2)·180=1080.解得n=8.故选B..故n=6.解得360×180=2·)n-2,根据题意,得(n点拨:设这个多边形的边数为B .3.(10?2)?180?=144°,36°点拨:正十边形每一个内角的度数为: 7205选B.4..144°;10每一个外角的度数为:180°-144°=36°.6.有27个不同的四边形.7.解:四边形的四个内角不可以都是锐角,不可以都是钝角,可以都是直角.因为四边形的内角和为360°,如果四个内角都是锐角或都是钝角,?则内角和小于360°或大于360°,与四边形的内角和为360°矛盾.?所以四个内角不可以都是锐角或都是钝角.若四个内角都是直角,则四个内角的和等于360°,与内角和定理相符,所以四个内角可以都是直角.8.解:(1)90+70+150+x=360.解得x=50.(2)90+73+82+(180-x)=360.解得x=65.(3)x+(x+30)+60+x+(x-10)=(5-2)×180.解得x=115.9.解:BE∥DF.理由:∵∠A=∠C=90°,∴∠A+∠C=180°.11∠ABC,∠ADF=∠ADC-180°=180°.∵∠ABE=,∴∠ABC+∠ADC=360°2211(∠ABC+∠ADC)=×180°=90°.又∵∠∠∴∠ABE+ADF=ABE+∠AEB=90°,22∴∠AEB=∠ADF,∴BE∥DF(同位角相等,两直线平行).111n(n-3)=×10×(.解:10-3)=×10×7=35(场). 10222答:按此规定,所有代表队要打35场比赛.点拨:问题类似于求多边形对角线的个数..解:(5-2)×180°÷360°×1=1.5.点拨:不能直接求出扇形的度数,用整体法圆与五211边形重合部分的角度和正好是五边形的内角和.12.(1)C 点拨:设这个多边形的边数为n,依题意,得(n-2)×180°=540°,解得n=5,故选C.(2)540 点拨:(n-2)×180°=(5-3)×180°=540°.13.C 14.解:(1)四边形有2条对角线;五边形有5条对角线;六边形有9条对角线;n(n?3)条对角线.边形有…… n2(2)当n边形的边数增加1时,对角线增加(n-1)条.点拨:从n边形的一个顶点出发,向其他顶点共可引(n-3)条对角线,n个顶点共可n(n?3).边形的对角线条数为(引nn-3)条,但这些对角线每一条都重复了一次,故n 215.180°,n·180°.是最短的路程.可用纸板做一个模型,沿AB剪开便可看出结论.。

多边形的内角和和外角和提高题

多边形的内角和和外角和提高题

多边形的内角和与外角和提高题一.选择题(共5小题)1.一名模型赛车手遥控一辆赛车,先前进1m,然后,原地逆时针方向旋转角a(0°<α<180°)被称为一次操作.若五次操作后,发现赛车回到出发点,则角α为()A.72°B.108°或144°C.144°D.72°或144°2.如图是由10把相同的折扇组成的“蝶恋花"(图1)和梅花图案(图2)(图中的折扇无重叠),则梅花图案中的五角星的五个锐角均为()A.36°B.42°C.45°D.48°3.如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数为何?()A.40° B.45°C.50°D.60°4.如图所示,在折纸活动中,小明制作了一张△ABC纸片,点D,E分别是边AB、AC上,将△ABC沿着DE重叠压平,A与A′重合,若∠A=70°,则∠1+∠2=()A.140°B.130°C.110°D.70°5.有一程序,如果机器人在平地上按如图的步骤行走,那么机器人回到A点处共走的路程是()A.24米B.48米C.15米D.30米二.填空题(共20小题)6.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数为.7.在如图一、图二、图三中,分别是由1个、2个、n个正方形连接成的图形.在图1中,x=70°;在图二中,y=28°;通过(1)、(2)的计算,请写出图三中a+b+c+…+d与n的数量关系式.8.一个机器人从点O出发,每前进1米,就向右转体a°(1<a<180),照这样走下去,如果他恰好能回到O点,且所走过的路程最短,则a的值等于.9.如图是探索多边形的对角线d与边线n的关系n 3 4 5 6 …n …d 0 2 5 9则n边形的对角线d=(用n表示)10.小林从P点向西直走12米后,向左转,转动的角度为α,再走12米,如此反复,小林共走了108米回到点P,则角α的度数为.11.一个多边形中,它的内角最多可以有个锐角.12.小张由于粗心,计算一个多边形的内角和少加了一个内角的度数,得到2009度,那么他少加的内角是.13.如图,一块试验田的形状是三角形(设其为△ABC),管理员从BC边上的一点D出发,沿DC→CA→AB→BD的方向走了一圈回到D处,则管理员从出发到回到原处在途中身体转过°.14.某科技小组制作了一个机器人,它能根据指令要求进行行走和旋转.某一指令规定:机器人先向前行走1米,然后左转45°,若机器人反复执行这一指令,则从出发到第一次回到原处,机器人共走了米.15.小明在阅览时发现这样一个问题“在某次聚会中,共有6人参加,如果每两人都握一次手,共握几次手?”,小明通过努力得出了答案.为了解决更一般的问题,小明设计了下列图表进行探究:请你在图表右下角的横线上填上你归纳出的一般结论.参加人数 2 3 4 5 …n握手示意图握手次数 1 2+1=3 3+2+1=6 4+3+2+1=10 …16.正六边形的每一个内角都等于度.17.过四边形一个顶点的对角线可以把四边形分成两个三角形;过五边形或六边形的一个顶点的对角线,分别把它们分成个三角形;过n边形一个顶点的对角线可以把n边形分成个(用含n的代数式表示)三角形.18.凸n边形的对角线的条数记作a n(n≥4),例如:a4=2,那么:①a5=;②a6﹣a5=;③a n+1﹣a n=.(n≥4,用n含的代数式表示)19.将一块正五边形纸片(图①)做成一个底面仍为正五边形且高相等的无盖纸盒(侧面均垂直于底面,见图②),需在每一个顶点处剪去一个四边形,例如图①中的四边形ABCD,则∠BAD的大小是度.20.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了米.21.在一张三角形纸片中,剪去其中一个50°的角,得到如图所示的四边形,则图中∠1+∠2的度数为度.22.如图是一个五角星图案,中间部分的五边形ABCDE是一个正五边形,则图中∠ABC的度数是度.23.如图,四边形ABCD中,若去掉一个60°的角得到一个五边形,则∠1+∠2=度.24.一块正六边形硬纸片(如图),做成一个底面仍为正六边形且高相等的无盖纸盒(侧面均垂直于底面,见面2),需在每一个顶点处剪去一个四边形,例如图1中的四边形AGA′H,那么∠GA′H的大小是度.25.如图,正十二边形A1A2…A12,连接A3A7,A7A10,则∠A3A7A10=.三.解答题(共5小题)26.已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.27.在四边形ABCD中,∠D=60°,∠B比∠A大20°,∠C是∠A的2倍,求∠A,∠B,∠C的大小.28.在凸多边形中,四边形有2条对角线,五边形有5条对角线,经过观察、探索、归纳,你认为凸八边形的对角线条数应该是多少条?简单扼要地写出你的思考过程.29.将一个正六边形的纸片对折,并完全重合.那么得到的图形是几边形?它的内角和(按一层计算)是多少度?30.阅读材料:多边形上或内部的一点与多边形各顶点的连线,将多边形分割成若干个小三角形.图1给出了四边形的具体分割方法,分别将四边形分割成了2个,3个,4个小三角形.请你按照上述方法将图2中的六边形进行分割,并写出得到的小三角形的个数.试把这一结论推广至n边形.。

初一数学多边形的内角和与外角和试题

初一数学多边形的内角和与外角和试题

初一数学多边形的内角和与外角和试题1.(2014•呼伦贝尔)一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形【答案】C【解析】首先求得外角的度数,然后利用360除以外角的度数即可求解.解:外角的度数是:180﹣108=72°,则这个多边形的边数是:360÷72=5.故选C.点评:本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理2.(2014•衡阳)若一个多边形的内角和是900°,则这个多边形的边数是()A.5B.6C.7D.8【答案】C【解析】根据多边形的内角和公式(n﹣2)•180°,列式求解即可.解:设这个多边形是n边形,根据题意得,(n﹣2)•180°=900°,解得n=7.故选:C.点评:本题主要考查了多边形的内角和公式,熟记公式是解题的关键.3.(2014•莱芜)若一个正n边形的每个内角为156°,则这个正n边形的边数是()A.13B.14C.15D.16【答案】C【解析】由一个正多边形的每个内角都为156°,可求得其外角的度数,继而可求得此多边形的边数,则可求得答案.解:∵一个正多边形的每个内角都为156°,∴这个正多边形的每个外角都为:180°﹣156°=24°,∴这个多边形的边数为:360°÷24°=15,故选:C.点评:此题考查了多边形的内角和与外角和的知识.此题难度不大,注意掌握多边形的外角和定理是关键.4.(2014•攀枝花)下列说法正确的是()A.多边形的外角和与边数有关B.平行四边形既是轴对称图形,又是中心对称图形C.当两圆相切时,圆心距等于两圆的半径之和D.三角形的任何两边的和大于第三边【答案】D【解析】根据多边形的外角和是360°,可以确定答案A;根据平行四边形只是中心对称图形,可以确定答案B;根据两圆相切时,存在内切和外切两种情况,可以确定答案C;根据三角形的任意两边之和大于第三边,可以确定答案D.解:A、多边形的外角和是360°,所以多边形的外角和与边数无关,所以答案A错误;B、平行四边形只是中心对称图形,不是轴对称图形,所以答案B错误;C、当两圆相切时,分两种情况:两圆内切和两圆外切,结果有两种,所以答案C错误;D、答案正确.故选:D.点评:本题考查了基本定义的应用,解答此类问题的关键在于熟练记住基本定理、性质以及公式的运用.5.(2014•临沂)将一个n边形变成n+1边形,内角和将()A.减少180°B.增加90°C.增加180°D.增加360°【答案】C【解析】利用多边形的内角和公式即可求出答案.解:n边形的内角和是(n﹣2)•180°,n+1边形的内角和是(n﹣1)•180°,因而(n+1)边形的内角和比n边形的内角和大(n﹣1)•180°﹣(n﹣2)•180=180°.故选:C.点评:本题主要考查了多边形的内角和公式,是需要识记的内容.6.(2014•曾都区模拟)如图,四边形ABCD中,∠A+∠B=200°,∠ADC、∠DCB的平分线相交于点O,则∠COD的度数是()A.80°B.90°C.100°D.110°【答案】C【解析】由于∠A+∠B=200°,根据四边形的内角和定理求出∠ADC+∠DCB的度数,然后根据角平分线的定义得出∠ODC+∠OCD的度数,最后根据三角形内角和定理求出∠COD的度数.解:∵∠A+∠B+∠ADC+∠DCB=360°,∠A+∠B=200°,∴∠ADC+∠DCB=160°.又∵∠ADC、∠DCB的平分线相交于点O,∴∠ODC=∠ADC,∠OCD=,∴∠ODC+∠OCD=80°,∴∠COD=180°﹣(∠ODC+∠OCD)=100°.故选C.点评:本题主要考查了三角形及四边形的内角和定理.三角形的内角和等于180°;四边形的内角和等于360°.7.(2014•大丰市模拟)如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2=()A.90°B.135°C.270°D.315°【答案】C【解析】先根据直角三角形的性质求得两个锐角和是90度,再根据四边形的内角和是360度,即可求得∠1+∠2的值.解:∵∠C=90°,∴∠A+∠B=90°.∵∠A+∠B+∠1+∠2=360°,∴∠1+∠2=360°﹣90°=270°.故选:C.点评:本题考查了直角三角形的性质和四边形的内角和定理.知道剪去直角三角形的这个直角后得到一个四边形,根据四边形的内角和定理求解是解题的关键.8.(2014•工业园区一模)如图,已知O是四边形ABCD内一点,OA=OB=OC,∠ABC=∠ADC=65°,则∠DAO+∠DCO的度数是()A.130°B.230°C.262.5°D.165°【答案】D【解析】根据OA=OB=OC,可以得到△AOB与△OBC都是等腰三角形,而∠ABC是两个等腰三角形的底角的和,即可得到∠BAO与∠BCO的和,在四边形AOCD中,根据四边形的内角和定理即可求解.解:四边形ABCD中,∵∠ABC+∠BCD+∠ADC+∠BAD=360°,∴∠BAD+∠BCD=360﹣65﹣65=230°.∵OA=OB=OC,∴∠1=∠2,∠3=∠4,∴∠1+∠4=∠2+∠3=∠ABC=65°,∴∠DAO+∠DCO=230﹣65=165°.故选D.点评:本题是等腰三角形的性质与四边形的内角和定理的综合应用.9.(2014•苏州高新区二模)若一个正n边形的一个外角为36°,则n等于()A.4B.6C.8D.10【答案】D【解析】利用多边形的外角和即可解决问题.解:n=360°÷36°=10.故选D.点评:本题主要考查了正n边形的外角特点.因为外角和是360度,所以当多边形是正多边形时,每个外角都相等.直接利用外角求多边形的边数是常用的方法.10.(2014•义乌市三模)正n边形的一个内角比一个外角大100°,则n为()A.7B.8C.9D.10【答案】C【解析】根据正n边形的内角与外角的和等于180°方程求解即可.解:设内角为x°,则外角为(x﹣100)°,根据题意得:x+x﹣100=180,解得:x=140,所以外角为40°,∴360°÷40°=9,故选C.点评:本题考查了多边形的内角与外角,解题的关键是知道多边形的外角和为360°.。

多边形的内外角和的练习题

多边形的内外角和的练习题

多边形的内外角和的练习题一、填空题1、因为正多边形的每个内角都,且它的内角和为 ,所以,正n边形的每个内角为:。

因此,正三角形的每一个内角是:;正四边形的每一个内角是: ,正五边形的每一个内角是: ;正六边形的每一个内角是:;正八边形的每一个内角是:。

2、一个多边形的内角和为362160°,则多边形的边数为。

3、一个正方形截去一个角后内角和为度。

4、n边形对角线条数:条。

5、一个多边形的内角和等于它的外角和的5倍,它是边形。

6、在四边形的四个内角中,最多能有个钝角;最多能有个锐角。

7、一个多边形的每一个外角都等于72度,它是边形。

8、在四边形ABCD中,∠A=90°,∠C=60°,则∠B+∠D=_______度。

9、多边形的内角和与其一个外角的度数总和为1350°,则这个多边形的边数为________.10、从五边形ABCDE中过点A画对角线可画______条,由此把五边形分成_____个三角形。

二、选择题11、一个五边形的三个内角是直角,另两个内角相等,则相等的这两个角是()A.45°B.135°C.120°D.108°12、一个多边形的每一个外角都等于45°,则这个多边形的内角和为()A.720°B.675°C.1080°D.905°13、若一个多边形的外角和与它的内角和相等,则这个多边形是()边形。

A.三 B.四 C.五 D.六14、一个多边形的外角不可能都等于()A.30° B.40° C.50° D.60°15、一个多边形截去一个角(•不过顶点)•后, •所形成的一个多边形的内角和是2520°,那么原多边形的边数是()A.13 B.15 C.17 D.19三、解答题16、一个多边形除去一个内角后,其余各内角的和为2750°,则这个内角是多少?17、有两个多边形,它们的边数的比为1:2,内角和的比为1:4,你能确定它们各是几边形吗?试试看18、已知四边形ABCD中,∠A:∠B=7:5,∠A-∠C=∠B,∠C=∠D-40°, 求各内角的度数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品文档
多边形的内角和与外角和
1. n边形的内角和= _______ 度,外角和= _______ 度。

2. 从n边形(n>3)的一个顶点出发,可以画_______ 条对角线,这些对角线把n边形分
成______ 三角形,分得三角形内角的总和与多边形的内角和___________ 。

-
3. 如果一个多边形的内角和与它的外角和相等,那么这个多边形是_________ 边形。

4. 如果一个多边形的内角和等于它的外角和5倍,那么这个多边形是 ______ 边形。

5. 若n边形的每个内角都是150°,则n= _______ 。

6. 一个多边形的每个外角都是36°,这个多边形是________ 边形。

7. 如果一个多边形的每个内角都相等,且内角的度数是与它相邻的外角度数的2倍,那么这个边形的每个内角是______ 度,其内角和等于_______ 度。

8. 若一个多边形的内角和是1800。

,则这个多边形的边数是_________ 。

9. 若一个多边形的边数增加1,则它的内角和()■
A.不变 B .增加1 C.增加180° D .增加360 °
10. 当一个多边形的边数增加时,其外角和()
A .增加
B .减少
C .不变
D .不能确定
11. 某学生在计算四个多边形的内角和时,得到下列四个答案,其中错误的是()
A.180 °
B.540 °
C.1900 °
D.1080 °
12. 分别画出下列各多边形的对角线,并观察图形完成下列问题:
(1) ________________________________________________________ 试写出用n边形的边数n表示对角线总条数S的式子:______________________________________ 。

(2) __________________________________ 从十五边形的一个顶点可以引出条对角线,十五边形共有_________________________________ 条对角
线:
(3)如果一个多边形对角线的条数与它的边数相等,求这个多边形的边数。

13. _______________________ n 边形的内角和等于 ______________ 度。

任意多边形的外角和等于 __________________________ 度。


14. 一个多边形的外角和是它的内角和的 4,这个多边形是 _______ 边形。

15. 如果十边形的每个内角都相等,那么它的每个内角都等于 __________ 度,每个外角都等
于 _____ 度。

16. 若多边形的内角和是 1080。

,则这个多边形是 _______ 边形。

17. 如果一个多边形的内角和是 720 °,那么这个多边形的对角线的条数是( ) A .6 B .9 C .14 D .20
18. 如果一个多边形的内角和是它的外角和的 n 倍,则这个多边形的边数是( ) A .n B .2n-2 C .2n D .2n+2
19. 一个多边形截去一个角(不过顶点)后,形成的多边形的内角和是
2520。

,那么原 多边形的边数是( )
A .13
B .14
C .15
D .13 或 15
20. 若两个多边形的边数之比为 1 : 2,两个多边形的内角和之和为
1440 ° ,求这两个多 边形的边数。

21. 判断:外角和等于内角和的多边形一定是四边形。


) 22. 一个多边形的内角和是它的外角和的 4倍,这个多边形是 (
) A .四边形 B .六边形 C .八边形 D .十边形
23. 一个多边形中,除一个内角外,其余各内角和是
120°,则这个角的度数是( ) A .60 ° B .80 ° C .100 ° D .120 °
24. 如果一个多边形的内角和等于 1800 °,则这个多边形是 _________ 边形;如果一个n 边
形每一个内角都是 135°,则 _____________ ;
如果一个n 边形每一个外角都是 36°,则=“ __________ 。

(5)
欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等等
打造全网一站式需求。

相关文档
最新文档