喀兴林高等量子力学习题EX1.矢量空间

合集下载

高等量子力学习题

高等量子力学习题

高等量子力学习题† 量子力学中的对称性1、 试证明:若体系在线性变换Qˆ下保持不变,则必有0]ˆ,ˆ[=Q H 。

这里H ˆ为体系的哈密顿算符,变换Qˆ不显含时间,且存在逆变换1ˆ-Q 。

进一步证明,若Q ˆ为幺正的,则体系可能有相应的守恒量存在。

2、 令坐标系xyz O -绕z 轴转θd 角,试写出几何转动算符)(θd R ze的矩阵表示。

3、 设体系的状态可用标量函数描述,现将坐标系绕空间任意轴n转θd 角,在此转动下,态函数由),,(z y x ψ变为),,(),()',','(z y x d n U z y x ψθψ =。

试导出转动算符),(θd n U的表达式,并由此说明,若体系在转动),(θd n U下保持不变,则体系的轨道角动量为守恒量。

4、 设某微观粒子的状态需要用矢量函数描述,试证明该粒子具有内禀自旋1=S 。

5、 证明宇称算符的厄米性和幺正性,并证明宇称算符为实算符。

6、 试证明幺正算符U 与复数共轭算符K 的乘积为反幺正算符。

7、 试证明自旋不为零的粒子的时间反演算符可表为K e T y S i π-=。

8、 试讨论由时间反演不变性引起的Kramers 简并。

† 角动量理论1、 角动量算符可以从两个方面来定义,一种是按矢量算符三个分量所满足的对易关系定义,另一种是按坐标系转动时,态函数的变换规律来定义,试证明这两种定义是等价的。

2、 试证明任意个相互独立的角动量算符之和仍是角动量算符。

3、 定义角动量升降算符yx J i J J ˆˆˆ±=±,试利用升降算符讨论,对给定的角量子数j ,相应的磁量子数m 的取值范围。

4、 给出角量子数1=j 情况下,角动量平方算符及角动量各分量的矩阵表示。

5、 设总角动量算符21J J J +=,1J 、2J相应的角量子数分别为1j 和2j ,试讨论总角动量量子数j 的取值情况。

6、 利用已知的C-G 系数的对称性关系,证明以下三个关系式:11332222221133111122332233221111212)1(1212)1(1212)1(32313m j m j m j m j m j m j m j m j m j m j m j m j m j m j m j C j j C j j C j j C -+----+++-=++-=++-=7、 已知在3ˆs表象中,⎪⎪⎭⎫ ⎝⎛=01102ˆ1 s ,⎪⎪⎭⎫⎝⎛-=002ˆ2i i s ,问在1ˆs 表象中2ˆs 的矩阵表示是怎样的? 8、 已知∑>>>=113322112211|||m m m j m j m j m j m j Cjm ,其中m m j j jm m j ''|''δδ>=<,1111''1111|''m m j j m j m j δδ>=<,2222''2222|''m m j j m j m j δδ>=<。

高等量子力学练习题及答案解析

高等量子力学练习题及答案解析

练习28.1 证明: ()[]()t G t G -=-++00证明: 根据公式(28.4)()()()00H t t ie t t it t G '--±'±='-θ可知()()00tH ie t it G-+-=θ()()()00H t i e t i t G ---+=-θ则()[]()()000tH i tH i e t ie t i t G θθ=⎥⎦⎤⎢⎣⎡-=+-++()()()t G e t i H t i-==---00θ #28.2证明下列二式成立:()()()()⎰∞∞-±±±±--+-=-''dt 't t VG ''t t G 't t G 't t G 00()()()()⎰∞∞-±±±±--+-=-''dt 't ''t VG ''t t G 't t G 't t G 00证明:因为:()()()⎰∞+∞---±±π=-dE e E G 21't t G 't t E i()()()⎰∞+∞---±±π=-dE e E G 21't t G 't t E i00又因为:()()()()E VG E G E G E G 00±±±±+=即有()()()()()()[]()()()()()()()()()()()()()''dt t ''t VG ''t t G 't t G dE e E VG E G 21't t G dE e E VG E G 21dE e E G 21dE e E VG E G E G 21dE e E G 21't t G '00't t E i00't t E i 0't t E i 0't t E i00't t E i00--+-=π+-=π+π=+π=π=-±∞+∞-±±∞+∞---±±±∞+∞---±±∞+∞---±∞+∞---±±±∞+∞---±±⎰⎰⎰⎰⎰⎰又因为()()()()()()()E VG E G E G E VG E G E G E G 0000±±±±±±±+=+=同理可证得()()()()''dt t ''t VG ''t t G 't t G 't t G '00--+-=-±+∞∞-±±±⎰综上所述()()()()()()()()''dt t ''t VG ''t t G 't t G 't t G ''dt t ''t VG ''t t G 't t G 't t G '0'00--+-=---+-=-±∞+∞-±±±±+∞∞-±±±⎰⎰两式成立。

客兴林高等量子力学习题EX34-36

客兴林高等量子力学习题EX34-36

34.134.2 按照正文中的对哈特利—福克方程(34.22)式中第二项的理解,这一项是处于k 态的电子同其余电子之间的库仑相互作用。

既然这样,()ρ即(34.20)式对j 的取和中,就不应含有j=k 的项,但是现在(34.22)式中并未将j=k 这一项去掉,这是为什么?(邱鸿广) 解:文中哈特利-福克方程(31.14)式在位置表象中的形式为()()()()()2''2''*'''2''*'22''=-⎪⎭⎫ ⎝⎛ ⎝⎛-⎪⎭⎫ ⎝⎛ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+∇-∑∑⎰∑∑⎰σϕλσϕσσϕσϕσσϕσϕσσr r r r d d V m k k k j j j j k j j k在式子中当k j =时,式子中的第二项和第三项相减就消去了。

所以(34.22)式中并未将k j =这一项去掉。

#练习34.3 在本小节位置表象的范围内,证明满足哈特利-福克方程的不同单粒子态)(σϕj 和)(ϕr k 是互相正交的。

(做题人:田军龙 审题人:丘鸿广)证明: τσϕσϕd k j )()(⎰*τd b b k j ⎰=k j b b =i b 是一套正交归一基矢量且k j ≠ ∴0==jk k j b b δ 当k j ≠∴ 0)()(=⎰*τσϕσϕd k j∴ )(σϕr j 和)(σϕr k 是互相正交的。

35.1 态函数的正交归一化条件是什么?(侯书进做。

韩丽芳审核) 解:归一化条件是()()() ll n n n n n n n n i l l n n n n n n n n n n ''''∑-=''''δδδδδψψ332211321321#35.2 (1)利用 ()() 1321321,-++ψ=ψ=l l l l l l l l n n n n n n n n n a a a N ε以及 ()()13213211+ψ+=ψl l l l l n n n n n n n n n a ε()()l l l l n n n n n n n n n N 321321ψ=ψ证明:(2)上式是否说明() l n n n n 321ψ是占有数算符l N ˆ的本征函数?如果是,说明理由:如果不是,那么lN ˆ的本征函数是什么?(侯书进做。

高等量子力学-习题及答案 ch01

高等量子力学-习题及答案  ch01

第一章量子力学基本概念和一般理论
一、量子态矢量的定义是什么。

描述微观粒子状态的态矢量ψ等符号代表一个复矢量,而y+是y的厄密共轭矢量或称“对偶矢量"。

用狄拉克符号记为|ψ>,表示波函数ψ的右矢;<ψ|表示左矢。

右矢和左矢是互相独立的,但存在如下关系:。

二、请简述线性算符的运算规则和性质。

(6)若由方程能够唯一地解出|ψ>,则可定义算符A的逆算符
,于是A'满足
(7)若,则U称为幺正算符。

(8),表示算符A的函数。

三、幺正变换的基本性质有哪些。

幺正变换具有许多非常有意义的性质。

(1)幺正变换下两个态矢量的内积不变。

(2)幺正变换下算符方程的形式不变。

(3)幺正变换下力学量算符对应的平均值保持不变。

(4)幺正变换下算符的行列式不变。

(5)幺正变换下算符的本征值谱不变。

(6)幺正变换下算符的迹不变。

(7)利用上述性质(6)可以给出指数算符函数的一一个有用公式。

(8)可以证明,若算符R是厄米算符,即R=R+,则由它所生成的算符
四、时间演化算符U(t,t0)的基本性质有哪些。

1.初始条件
2.幺正性
3.因子化特性
4.时间反演特性
5.薛定谔绘景中的动力学方程
五、矢量空间中的如下运算规则有哪些。

六、什么叫密度矩阵?
如果采用一个具体表象,例如,F表象(分立情形,),则与量子态|ψ>相应的密度算符可表示成如下矩阵形式,称为密度矩阵。

七、请列举混合态密度算符的性质。

高等量子力学习题1

高等量子力学习题1

k ijk j i S i S S ε=],[2322212S SS S ++=>>=+0|)(!1|n b n n ⎰=++-x x x x e e d ****2φφφφπφ高等量子力学第一章习题:1、 两个态矢量|+>和|->形成完全集。

在它们所构成的Hilbert 空间中定义如下三个算符:试证明它们满足如下对易和反对易关系: ij j i S S δ2},{2=+ 并求出两个态矢量 |+>和|->之间的翻转变换算符及算符 的表达式2、 二能级系统的哈密顿算符一般可表达为:H =a|1><1| + b|2><2| + c|1><2| + d|2><1|其中|1>和|2>分别表示二能级的状态,形成正交归一集。

问:H 的厄密性对系数a,b,c,d 有何限制?求该系统的能量本征值及相应的本征态矢量(表示为|1>和|2>的线性叠加)。

3、 已知一线性谐振子在其哈密顿表象中的本征态矢量为其中,基态|0>满足b|0>=0,并且b 和b +与其坐标和动量算符的关系为试求态矢量|n>转换到坐标表象表达式<x|n>。

4、 设某系统的哈密顿算符为: H(t)=a 1(t)J ++a 2(t) J 0+a 3(t) J -其中a i (t),i=1 , 2 , 3为任意时间t 的函数,J + , J 0 , J -为SU(1,1)群的生成元,其满足下述对易关系: [J + , J -]=-2 J 0 , [J 0 , J ±]=±J ±试证明该系统的时间演化算符可表示为:U(t,0)=exp[C 1(t)J +]exp[C 2(t)J 0]exp[C 3(t)J -] , 并导出确定C i (t)的方程.。

5、 已知算符b 和b +的对易关系为[b , b +]=1,在 b + b 对角表象的本征态矢量为且基态满足b|0>=0, 引入算符b 的本征态b|z>=z|z>试求归一化态矢量|z>在b + b 对角表象的表示式,由基矢量组|z>构成的表象称作为相干态表象,试求态矢量|n>在相干态表象的波函数6、 题的已知条件与题5相同,并可利用题5的结果,试证明:(i )相干态表象的基矢量不具有正交性,并说明其原因。

喀兴林高等量子力学习题EX1.矢量空间

喀兴林高等量子力学习题EX1.矢量空间

EX1.矢量空间练习 1.1 试只用条件(1)~(8)证明2ψψψ+=,0ψ=O 和1ψψ-=-()。

(完成人:梁立欢 审核人:高思泽) 证明:由条件(5)、(7)得 11112ψψψψψψ+=+=+=()只需证明O =0ψ和ψψ-=-)1(这两式互相等价 根据条件(7)00)00(0ψψψψ+=+= 现在等式两边加上)0(ψ-,得)0()00()0(0ψψψψψ-++=-+ 根据条件(4), 上式左O =-+=)0(0ψψ 根据条件(4)、(2)上式右00)00(0ψψψψψ=O +=-+= O =∴0ψ由O =0ψ,根据条件(4)、(7)得ψψψψψψ-=O =-+=-=)1()11(0 ψψ-=-⇒)1( #练习 1.2 证明在内积空间中若()()ϕψϕψ,,21=对任意ϕ成立,则必有21ψψ=。

(完成人:谷巍 审核人:肖钰斐)证明 由题意可知,在内积空间中若()()ϕψϕψ,,21=对任意ϕ成立,则有(1ψ,)ϕ-(2ψ,)ϕ=0(1) 于是有()0,21=-ϕψψ(2)由于在内积空间中()()ϕψϕψ,,21=对任意ϕ成立,则可取21ψψϕ-=,则有()2121,ψψψψ--=0 成立 (3)根据数乘的条件(12)可知,则必有021=-ψψ(4) 即21ψψ=故命题成立,即必有21ψψ=. #练习1.3 矢量空间运算的12个条件是不是独立的?有没有一条或两条是其余各条的逻辑推论?如有,试证明之。

(完成人:赵中亮 审核人:张伟) 解:矢量空间运算的12个条件是独立的。

#练习 1.4 (1)在第二个例子中若将加法的规定改为:和矢量的长度为二矢量长度之和,方向为二矢量所夹角()︒〈180的分角线方向,空间是否仍为内积空间? (2)在第二个例子中若将二矢量B A 和内积的定义改为θ或θ,空间是否仍为内积空间? (3)在第三个例子的空间中,若将内积的定义改为 ()4*43*32*21*1432,m l m l m l m l m l +++=空间是否仍为内积空间?(4)在第四个例子的函数空间中,若将内积的定义改为()()⎰⎰==baba dxx x g x f x g x f xdx x g x f x g x f 2**)()()(),()()()(),(或空间是否仍为内积空间?(完成人:张伟 审核人:赵中亮)解:(1)在第二个例子中若将加法的规定改变之后,空间不是内积空间。

喀兴林高等量子力学习题EX12-18

喀兴林高等量子力学习题EX12-18

练习 12.1. 一维谐振子受微扰21X H ε=的问题,使有严格解的,试仿照正文中的方法,在薛定谔绘景中用近似的方法讨论这一问题,并将结果与严格解比较。

(解答人:李泽超 核对人:熊凯) 解:由题意得:受微扰的一维谐振子的哈密顿量是:()1......................................................................10H H H += ()()2.......21212212220⎪⎭⎫ ⎝⎛+=+=+=+++AA A A AA X m P m H ωωω ()()()()⎪⎪⎪⎪⎭⎫ ⎝⎛-=+=-=+=+++A A m i P A A m X iP X m m A iP X m m A 222121 ωωωωωω()()()⎪⎭⎫ ⎝⎛=+++=+==+++++ωεττωεεm AA AA A A A A A A m X H 23.........2221谐振子从0=t 时刻起其状态满足薛定谔方程:()()()4.......................................:,10H H H t H t ti +==∂∂其中ψψ0H 的含时本征矢量的展开为:()()()5...........................................21exp ∑⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-=jj t a t j i j t ωψ ()()⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+=t m i t mt a m ωψ21exp微扰1H 的矩阵元为j H i ,具体的形式为:j AA AA A A A A i j H i +++=++++ τ利用算符A A 和+对本征矢量函数的;上升和下降的性质,得:()()()()()()6..................2121,2,,2j i j i j i i i i i i j H +-+++++-=δδδτ 采用微扰方法近似解薛定谔方程时,薛定谔方程可一化为下式: ()()()()7......................................exp 1t a j H t E E i t a t i j S jj i i ∑⎪⎭⎫⎝⎛-=∂∂将(6)式带入(7)式可得到在题意条件下的微扰方程的表达形式如下:()()()()()()()()()8..21121exp ,2,,2t a i i i i i t E E i t a t i j jj i j i j i j i i ∑+-+++++-⎪⎭⎫⎝⎛-=∂∂δδδτ经化简得:()()()()()()()()()()()()9...212exp 122exp 122t a i i t i t a i t a t i i i i t a dtdi i i i +-++-++--=⇒ωωτ将()t a i 的已知的低级的近似()()t a n i 代入方程的右边,即可以解出高一级的近似()()t a n i 1+。

喀兴林高等量子力学习题EX30

喀兴林高等量子力学习题EX30

30.1 两个全同粒子构成一个系统,讨论它的自旋希尔伯特空间。

证明若粒子的自旋为s ,则对称希尔伯特空间与反对称希尔伯特空间维数之比为s s )1(+。

(韩丽芳)证明:该系统有两个全同粒子构成,下面讨论它的自旋希尔伯特空间。

χ代表单粒子的一组完备自旋物理量, ,,βαχχ代表这组物理量各组不同的本征值。

则整个系统的希尔伯特空间的基失为21βαχχ则对称化基失为2121;2βαβαχχχχ∑=PSP反对称化的基失为21)(21;2βαβαχχχχ∑-=PP AP若自旋为s ,对于对称化的基失,若βαχχ=,则有)12(+s 个基失;若βαχχ≠,则有()s s C s 12212+=+个基失。

对于反对称化的基失βαχχ≠,则有()s s C s 12212+=+个基失。

则()()()ss s s s s s 1121212+=++++即证得对称希尔伯特空间与反对称希尔伯特空间维数之比为s s )1(+。

#30.2 两个自旋为1的粒子构成全同粒子系统。

若其单粒子自旋态矢量βα,和γ的z S 量子数分别为0,1和1-。

试在其自旋希尔伯特空间中具体写出系统的全部对称基失和反对称基失,并给出每个基失的总自旋角动量2J 和z J 之值。

(韩丽芳) 证明:对于两个粒子构成的系统 对称化基失为2121;2βαβαχχχχ∑=PSP反对称化的基失为21)(21;2βαβαχχχχ∑-=PP AP因为单粒子自旋态矢量βα和γ,则该系统的希尔伯特空间的全部基失为对称化基失:21;2αααα=S1,1=z S 226 =J 2=z J 21;2ββββ=S0,0=z S 02=J 0=z J21;2γγγγ=S1,1--=z S 222 =J 2-=z J()212121;2αββααβ+=S0,1=z S 222 =J =z J ()212121;2αγγααγ+=S1,1-=z S 02=J 0=z J ()212121;2βγγββγ+=S1,0-=z S 02=J -=z J 对反称化基失:()212121;2αββααβ-=A0,1=z S 222 =J =z J ()212121;2αγγααγ-=A 1,1-=z S 02=J 0=z J()212121;2βγγββγ-=A 1,0-=z S 02=J -=z J#练习 30.3 取单电子算符B 为自旋z S ,则本征值2,221-=+=b b ,简写为-=+=21,b b 。

喀兴林高等量子力学

喀兴林高等量子力学

《嘿,说说那让人头疼的喀兴林高等量子力学》嘿,你知道喀兴林高等量子力学不?一开始我可完全不知道这是啥玩意儿呢。

有一天,我和我的好朋友小明、小花一起去图书馆自习。

我们找了个安静的角落坐下,正准备开始学习呢,突然看到旁边一个学霸模样的同学桌上放着一本厚厚的书,书名是《喀兴林高等量子力学》。

“哇,这是啥书呀?” 小花好奇地问。

我们凑过去仔细瞧。

小明瞪大了眼睛说:“这书名听起来就好高深莫测啊。

” 我也点头说:“是啊,感觉好厉害的样子。

” 这时候,那个学霸同学抬起头来,看到我们好奇的样子,笑了笑说:“这是一本关于量子力学的书哦。

” 我们仨面面相觑,异口同声地问:“啥?量子力学?那是啥东西呀?”学霸同学解释说:“量子力学啊,就是研究微观世界的一门学问。

这本喀兴林高等量子力学可是很有深度的呢。

” 我们还是不太明白。

小明挠挠头说:“哎呀,听不太懂呢。

微观世界是啥样的呀?” 学霸同学想了想说:“就比如说,原子、电子那些小小的东西,它们的行为跟我们平常看到的东西可不一样哦。

”小花又问:“那这本书难不难看呀?” 学霸同学笑了笑说:“挺有难度的呢,不过要是对物理感兴趣,认真看还是能学到很多东西的。

” 我们又在那儿聊了一会儿量子力学,虽然还是一知半解,但觉得很神奇。

后来,我们回到自己的座位上,还在讨论那本喀兴林高等量子力学。

“你说我们以后会不会也学量子力学呀?” 我问。

小明说:“那肯定很难吧。

” 小花笑着说:“哈哈,不过要是学会了肯定很厉害。

”嘿,这次在图书馆看到喀兴林高等量子力学这本书,让我们对神秘的量子力学有了点好奇。

虽然我们现在还不是很明白量子力学的全部奥秘,但感觉这是个很有趣的东西呢。

以后要是再看到关于量子力学的书,我肯定会想起这次好玩的经历。

高等量子力学喀兴林答案

高等量子力学喀兴林答案

高等量子力学喀兴林答案【篇一:量子力学】03 1309050325 吴富贤摘要:给出了不同学者关于量子力学态叠加原理的几种表述,分析比较了关于该原理的有关观点的争议,并对其中的原因进行了讨论,与此同时,也对量子力学在其它方面的应用进行了表述。

关键词:量子态;态叠加原理;量子力学基本问题;量子力学的应用。

一.引言:量子态的叠加原理是量子力学中一个重要的原理.但是在目前量子力学的一些专著和教科书中对这一原理的表述方式却是多种多样的,其中存在不少有争议的问题。

对一些有关的问题进行讨论,并提出一种新的关于这一原理的表述方式的建议。

同时量子力学是现代物理学的两大支柱之一,是20 世纪基础物理学取得的两大成就之一,是反映微观粒子运动规律的理论.量子力学态叠加原理(以下简称态叠加原理)是量子力学的一个基本原理,在量子力学理论体系中占有相当重要的地位.虽然量子力学诞生至今已近80年了,叠加原理也得到了一系列实验的证明,如电子衍射实验、中子干涉实验、电子共振俘获等,但时至今日,人们对态叠加原理的认识却仁者见仁、智者见智.本文对这个问题进行了比较、分析和讨论还对量子力学的应用和发展进行了一些研究。

二.正文:原理的表述在量子力学发展史上,尤其是现行的量子力学专著或教材里,不同的学者对态叠加原理进行了不同的描述.我们选择国内外3种比较典型的说法作一下简单介绍.(1)狄拉克的表述据说,狄拉克1930年在《量子力学原理》一书的初版里,首次系统地论述了量子力学里的态叠加原理.他在此书第一章“态叠加原理”里[4],先是正确地强调了态叠加原理的物理意义:“量子力学的叠加的一般原理,应用于任何一个动力学系统的态.”“把一个态表示成为一些其他态的叠加的结果,那是一种数学运算,总是可以允许的,??然而,这种运算是否有用,取决于所研究问题的特殊物理条件.” 可是,狄拉克接着是这样讲解“叠加过程的非经典本性”的:“我们考虑两个态a和b的叠加,这两个态的性质是??当观察处在态a的系统时,肯定得出一个特定的结果,比方说是a;而当观察处在态b的系统时,则肯定得出一个不同的结果,比方说是b.当观察处在叠加态的系统时??所得到的结果将有时是a,有时是b??而决不会既不是a,又不是b.”然而,狄拉克在这里讲的,不正是对于所有普通统计学都适用的规则吗?例如,一个年级有两个班,a班的年龄分布是集合{a},b班的年龄分布是另一个集合{b}.那么全年级的年龄分布不就是{a}与{b}这两个集合的和集吗?亦即是说,全年级任何一位同学的年龄,都决不会既不属于{a},又不属于{b}.这哪里是什么“非经典本性”呢?由于狄拉克在这里没有把握住量子力学里的态叠加原理的要领,在接下来的一句关于“由叠加而成的态的中间性质”的论断里,就难免出了点毛病[5,6].他自己也不得不为此加了一处脚注,承认他的结论没有普遍性,它的成立是“有一些限制”的.总而言之,在狄拉克书中的第一章里,还没有引入概率幅这个概念,因而不可能讲清楚量子力学里的态叠加原理.可以这样说,在这一章里,还没有进入到量子力学(2)朗道的表述(3)喀兴林的表述态叠加原理对态叠加原理的表述我们还可以列出许多.从这些不同表述中可以看出学者们关于以下几个方面的观点是一致的(1)关于态和态函数的表述基本上大多数人们都认为体系的态(运动状态或状态的简称)是指一个体系的每一种可能的运动方式,即在受到独立的、互不矛盾和完全的条件限制下而确定的每一种运动方式.与宏观体系的运动状态的确定是决定性的相对立,微观体系的运动状态的确定是非决定性的、统计性的,称微观体系的态为量子态.量子态由希尔伯特空间中的矢量表征,称为态矢量.希尔伯特空间又称为态矢量空间或态空间(2)态叠加原理的基本内容(3)量子叠加与经典、数学叠加的区别经典物理中也有叠加原理,例如波的叠加、矢量的叠加等,它们与量子力学里的态叠加原理形式上有相似之处,但实质内容不同.首先经典矢量叠加是物理量的叠加,遵循平行四边形法则;而态矢量无明显的物理意义,且完全由希尔伯特空间中的矢量方向决定,与矢量长度无关.经典波的叠加是两列或多列波的叠加,量子态叠加则是同一体系的两个或多个同时可能的运动状态的叠加.其次,量子态叠加也不同于数学上将体系的一个波函数按一个基函数完备组展开.后者要求基函数完备,但量子叠加不需要相叠加的波函数完备。

高等量子力学喀兴林答案

高等量子力学喀兴林答案

高等量子力学喀兴林答案【篇一:量子力学】03 1309050325 吴富贤摘要:给出了不同学者关于量子力学态叠加原理的几种表述,分析比较了关于该原理的有关观点的争议,并对其中的原因进行了讨论,与此同时,也对量子力学在其它方面的应用进行了表述。

关键词:量子态;态叠加原理;量子力学基本问题;量子力学的应用。

一.引言:量子态的叠加原理是量子力学中一个重要的原理.但是在目前量子力学的一些专著和教科书中对这一原理的表述方式却是多种多样的,其中存在不少有争议的问题。

对一些有关的问题进行讨论,并提出一种新的关于这一原理的表述方式的建议。

同时量子力学是现代物理学的两大支柱之一,是20 世纪基础物理学取得的两大成就之一,是反映微观粒子运动规律的理论.量子力学态叠加原理(以下简称态叠加原理)是量子力学的一个基本原理,在量子力学理论体系中占有相当重要的地位.虽然量子力学诞生至今已近80年了,叠加原理也得到了一系列实验的证明,如电子衍射实验、中子干涉实验、电子共振俘获等,但时至今日,人们对态叠加原理的认识却仁者见仁、智者见智.本文对这个问题进行了比较、分析和讨论还对量子力学的应用和发展进行了一些研究。

二.正文:原理的表述在量子力学发展史上,尤其是现行的量子力学专著或教材里,不同的学者对态叠加原理进行了不同的描述.我们选择国内外3种比较典型的说法作一下简单介绍.(1)狄拉克的表述据说,狄拉克1930年在《量子力学原理》一书的初版里,首次系统地论述了量子力学里的态叠加原理.他在此书第一章“态叠加原理”里[4],先是正确地强调了态叠加原理的物理意义:“量子力学的叠加的一般原理,应用于任何一个动力学系统的态.”“把一个态表示成为一些其他态的叠加的结果,那是一种数学运算,总是可以允许的,??然而,这种运算是否有用,取决于所研究问题的特殊物理条件.” 可是,狄拉克接着是这样讲解“叠加过程的非经典本性”的:“我们考虑两个态a和b的叠加,这两个态的性质是??当观察处在态a的系统时,肯定得出一个特定的结果,比方说是a;而当观察处在态b的系统时,则肯定得出一个不同的结果,比方说是b.当观察处在叠加态的系统时??所得到的结果将有时是a,有时是b??而决不会既不是a,又不是b.”然而,狄拉克在这里讲的,不正是对于所有普通统计学都适用的规则吗?例如,一个年级有两个班,a班的年龄分布是集合{a},b班的年龄分布是另一个集合{b}.那么全年级的年龄分布不就是{a}与{b}这两个集合的和集吗?亦即是说,全年级任何一位同学的年龄,都决不会既不属于{a},又不属于{b}.这哪里是什么“非经典本性”呢?由于狄拉克在这里没有把握住量子力学里的态叠加原理的要领,在接下来的一句关于“由叠加而成的态的中间性质”的论断里,就难免出了点毛病[5,6].他自己也不得不为此加了一处脚注,承认他的结论没有普遍性,它的成立是“有一些限制”的.总而言之,在狄拉克书中的第一章里,还没有引入概率幅这个概念,因而不可能讲清楚量子力学里的态叠加原理.可以这样说,在这一章里,还没有进入到量子力学(2)朗道的表述(3)喀兴林的表述态叠加原理对态叠加原理的表述我们还可以列出许多.从这些不同表述中可以看出学者们关于以下几个方面的观点是一致的(1)关于态和态函数的表述基本上大多数人们都认为体系的态(运动状态或状态的简称)是指一个体系的每一种可能的运动方式,即在受到独立的、互不矛盾和完全的条件限制下而确定的每一种运动方式.与宏观体系的运动状态的确定是决定性的相对立,微观体系的运动状态的确定是非决定性的、统计性的,称微观体系的态为量子态.量子态由希尔伯特空间中的矢量表征,称为态矢量.希尔伯特空间又称为态矢量空间或态空间(2)态叠加原理的基本内容(3)量子叠加与经典、数学叠加的区别经典物理中也有叠加原理,例如波的叠加、矢量的叠加等,它们与量子力学里的态叠加原理形式上有相似之处,但实质内容不同.首先经典矢量叠加是物理量的叠加,遵循平行四边形法则;而态矢量无明显的物理意义,且完全由希尔伯特空间中的矢量方向决定,与矢量长度无关.经典波的叠加是两列或多列波的叠加,量子态叠加则是同一体系的两个或多个同时可能的运动状态的叠加.其次,量子态叠加也不同于数学上将体系的一个波函数按一个基函数完备组展开.后者要求基函数完备,但量子叠加不需要相叠加的波函数完备。

高量1-矢量空间

高量1-矢量空间
( , ) | |2
( , ) 0
模方的正平方根称为模,记作| | ,又称作 矢量 的长度。 3. 归一化矢量: 模等于1的矢量称为归一化矢量。
15
二、与模有关的基本关系
1. Schwartz不等式 对于任意矢量 和 ,有 | ( , ) || | | | [证]给定 和 后,构造一个矢量 ( , ) 2 | | 2 作 的模方,则 | | 0
(数乘结合律,单位元)
所以 0 故若 a 0 a 0 或 0
7. (a, ) a* ( , ) 8. ( , ) ( , ) ( ) 9. ( , O) 0 注意数和矢量的写法
10
三、矢量空间举例
1. 有理数域上的矢量空间
每项都在上述空间中。但当 n 时, n e 2.7182818 S 这是一个无理数,不在有理数空间内。 所以,有理数域的空间并非完全的内积空间。
11
2. 位置矢量空间
数学对象为 3D位形空间中由一点引出的不同方向, 不同长短的线段的全体。 规定(1)加法:平行四边形法则 (2)数乘:方向不变,长度乘以a (3)内积:两矢量点乘积 这是一个实数域上的内积空间。
3. 复矩阵
数学对象为 一组有次序的复数。如四个数写成列阵 l1 l2 l l3 l 4
12
定义加法、数乘和内积分别为
l1 m1 l2 m2 lm l3 m2 l m 2 4 l1a l2 a la la 3 l a 4
19
i 1 n
对无穷个矢量集合,若任意有限的子集合都是线 性无关的,则整个集合就是线性无关的。 (2) 完全集 一个矢量空间中的一组完全集,是一个线性无关 的矢量集合,比如

喀兴林高等量子力学习题EX4.表象理论

喀兴林高等量子力学习题EX4.表象理论

EX4.表象理论练习4 .1 在任何表象中,与厄米算符H 对应的矩阵(ij H )称为厄米矩阵,与幺正算符对应的矩阵(ij U )称为幺正矩阵。

证明它们分别满足下列关系:*=ij ji H Hij kkj ik kj kki U U U U σ==∑∑** (做题:陈捷狮,审查人:刘强。

) 解:(1)***=====ij ji H jH i Hj i Hj i H j H(2) 利用完全性关系可得:*****∑∑∑∑∑∑======jkkik kijkk kkj kki UU Ukj Uk Uj k k Ui j Uk iUk j U k i U k U U σ证毕!练习4.2 在某表象中,算符Aˆ的矩阵形式为 ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛++-+-+=)()()()(21102110202110211ˆA (1) 求Aˆ的本征值及相应的本征矢量;(2) 用A ˆ的一组正交归一化本征矢量集表示这一表象的三个基失。

解:(1)本征值方程为⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛++-+-+c b a c b aλ)()()()(21102110202110211 则久期方程为:021102110202110211=-++--+--+)()()()()(λλλ 解得:λ1=λ2=2,λ3=2当λ1=λ2=2时本征函数为:⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛01010121K K c b a即此时本征函数分别为:⎪⎪⎪⎪⎪⎭⎫⎝⎛=220221ψ ,⎪⎪⎪⎭⎫ ⎝⎛=ψ0102 当时λ3=2本征函数为:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=220223ψ因为0*0*0*323121===ψψψψψψ,,所以用Aˆ的一组正交归一化本征矢量集表示这一表象的三个基失为ψ1,ψ2,ψ3。

#练习4.3 在三维空间中,K 表象的基是1ε,2ε,3ε。

有一算符A ,在此表象中的矩阵为 ⎪⎪⎪⎪⎭⎫ ⎝⎛=503020307A(1)求A 的本征矢量在K 表象中的形式及相应的本征值;(2)取A 的本征矢量1α,2α,3α为L 表象(即A 表象)的基,求表象变换的幺正矩阵U 和1-U ; (3)验证所求矩阵的幺正性;(4)用U 与1-U 计算算符A 在L 表象中的矩阵。

喀兴林高等量子力学习题EX2.算符

喀兴林高等量子力学习题EX2.算符

兴林高等量子力学习题EX2.算符EX2.算符2.1证明下列常用公式 (陈玉辉解答 项鹏核对 ) (1)C B A C A B BC A ],[],[],[+= 证明: CB AC A B C BA AB CA AC B BAC ABC BCA BAC BCAABC BC A ],[],[][][],[+=-+-=-+-=-= (2)B C A C B A C AB ],[],[],[+= 证明:BC A C B A B CA AC CB BC A CAB ACB ACB ABC CABABC C AB ],[],[][][],[+=-+-=-+-=-=2.2 若算符B 与],[B A 对易,证明: (陈玉辉解答 项鹏核对 )],[],[1B A nB B A n n -=证明:],[],[],[],[111---+=⋅=n n n n B A B B B A B B A B A 将n 换成(n-1),就有],[],[],[221---+=n n n B A B B B A B A],[],[2],[],[],[],[2212211-----+=++=⇒n n n n n n B A B B B A B A B B B A B B A B A重复这种递推过程(n-1)次,即得],[],[],)[1(],[],)[1(],[111)1(11B A nB B A B B B A n B A B B B A n B A n n n n n n n n -------=+-=+-=#练习2.3 证明: (输入人:杜花伟 核对人:王俊美)(1)若A 有逆,a ≠0,则aA 也有逆,且111)(--=A a aA ;(2)若A,B 都有逆,则AB 也有逆,且111)(---=A B AB ; (3)})(1{)(111---+-=+B A B A B A ;(4)⋅⋅⋅+++=--------11121111)(BA BA A BA A A B A λλλ.(λ为复数); 证明:(1)若A 有逆,a ≠0,满足1,111==--aa AA ,则 11111==----AA aa A aAa 所以aA 有逆,且111)(--=A aaA . (2) 若A,B 都有逆,满足1,111==--BB AA ,则 1111==---AA A ABB 所以AB 有逆,且111)(---=A B AB . (3)})(1{})())({(}))({(})({)()(111111111111------------+-=+-++=+-+=+=+=+B A B A B A B B A B A A B A B B A A B A A A B A A A B A(4) 由于1)1(--χ(x 极小,即x →0时)展为级数: ⋅⋅⋅++++=--3211)1(χχχχ故(⋅⋅⋅+++=⋅⋅⋅+++=-=-=----------------111211*********11)1()1()]1([)(BA BA A BA A A BA BA BA A BA A BA A B A λλλλλλλ#2.4 若线性算符A 有逆,{|μ>}(i=1,2,3,…,n )是A 的有限维的定义域的中的一组完全集。

高等量子力学考试题

高等量子力学考试题

1.一个包含两个质量和频率都相同的线性谐振子系统,它们之间存在相互作用,其哈密顿算符为:121222222ˆˆˆ()()1ˆ()...(1,2)22i i i H H x H x x x H x m x i m x λω=++∂=-+=∂ (1) 试证明该系统可以表述为两个非耦合谐振子系统(2) 求出该系统的能量2.由李普曼-许温格方程01V E H i ϕε±±ψ=+ψ-± 试计算下列关系式: (1)b a ++ψψ(2) b a -+ψψ3.已知混沌场密度算符1H k T B Z e ρ--=,其中H k T B Z Tre -=,系统的哈密顿量1ˆ()2H a a ω+=+,求此混沌场系统中ˆN a a +=和2ˆN 平均值。

4.设两种系统的哈密顿能量分别为:221ˆˆˆˆˆ()()2H b b b b ωα++=+++和ˆˆˆˆˆˆˆˆˆ(1)()Ha ab b ab a b ωα++++=++++,其中ˆˆa b 、和++ˆˆa b 、为玻色子算符,求两种系统的元激发谱。

5.已知位移算符*ˆˆˆ()exp()Db b ααα+=-,α为非零复数,ˆb +是声子产生算符,ˆb 是声子消灭算符。

(1) 试计算关系式4()()?D b D αα+= (2) 将位移算符作用于声子真空态得到相干态()0D αα=,试证明相干态α就是ˆb的本征态,对应的本征值为α。

(3) 计算相干态在坐标表象中的结果:?x α=(4) 试证等式*()b αααααα+∂=+∂和*()b αααααα∂=+∂ (5) 试判断声子产生算符ˆb +是否存在本征态,并证明你的判断。

喀兴林高等量子力学习题EX(docX页)

喀兴林高等量子力学习题EX(docX页)

练习31.1 证明)(b a 与)'(b a 的对易关系(31.4)和)(b a 与)'(b a +的对易关系(31.6)式。

0)()'()'()(=-b a b a b a b a ε (31.4)0)()'()'()(=-++b a b a b a b a ε (31.6)(解答:熊凯 ; 校对:李泽超)证明:将)'()(b a b a 和)()'(b a b a 分别作用在n 粒子基左矢νγβαb b b b n ....;上νγβανγβανγβαεbb b b bb n n n b b b bb b n n n b a b a b b b b n ....';2)2)(1(....';2)2)(1()'()(....;+++=+++= (1)νγβανγβαb b b b bb n n n b a b a b b b b n ....';2)2)(1()'()(....;+++= (2)由)2()1(ε-得:0)()'()'()(=-b a b a b a b a ε(2)将)'()(b a b a +与)()'(b a b a +分别作用在右矢νγβαb b b b n ....;上μγβανγαβνγβανγβανγβανγβαδεδεεδδb b b b b n b b b b b b n b b b b b b n b b b b b b n b b b b b b b n b a n b b b b n b a b a v n ....';)(........';)(....';)(....;)'(....';1)(1....;)'()(2-++-+-+-=++=+ (3)μγβανγαβνγβαμγβνβαγνγαβνγβανγβαδεεδδδεδεεδδb b b b b n b b b b b b n b b b b b b n b b b b b n b b b b b n b b b b b n b b b b b n b b nb a b b b b n b a b a v n v n ....';)(........';)(....';)(]....;1)(........;1)(....;1)(....;1)([1)'(....;)()'(112-++-+-=--++--+--+--=--++ (4)由)4()3(ε-得:)'()()'()'()(b b b a b a b a b a -=-++δε □练习31.2 计算下列对易关系:)]()'()'()(),()([b a b a b a b a b a b a +++ )]()'()'()(),'()'([b a b a b a b a b a b a +++(解答:熊凯 ; 校对:李泽超)解:(1)令)()()(b a b a b N +=为处于b 态的占有数算符由(31.10)、(31.11)两式可得:)'()()](),([b b b a b a b N -=++δ (31.10) )'()()](),([b b b a b a b N --=δ (31.11))'()]()'()'()([)'()'()()'()()'()'()]'(),([)]'(),()['()]'()'(),([)]'(),([=--=-+--=+==+++++++b b b a b a b a b a b b b a b a b b b a b a b a b a b N b a b N b a b a b a b N b N b N δδδ从上式可以看出当'b b =时中括号为0,'b b ≠时δ函数为0,所以上式为零 因为:)()]'(),()[()()]'()'(),()()[()()]'()'(1),()(1)[()()]'()'(),()()[()()]()()'()'()'()'()()()[()()()()'()'()()()'()'()()()()]()'()'()(),()([22===++==-=-=++++++++++++++++++++++++b a b N b N b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a εεεε上式中第四步计算用到了(31.6)式∴ 0)]()'()'()(),()([=+++b a b a b a b a b a b a(2))}'()'()()()'()'(){'()}'()'()()'()()'()'()'({)}'()'()'()()()'()'()'({)]}(),'()['()()()'()](),'({[)]}()'(),'()[()()'()](),'({[)]()'()(),'([)]()'()'()(),'([)]()'()'()()(),'([)]()'()'()()()(),'([)]())'()'(1)((),'([)]())'()'()''()((),'([)]()'()'()(),'()'([b a b N b a b a b N b a b b b a b N b a b b b a b N b a b b b b b a b N b a b a b N b b b a b a b N b N b a b a b N b a b N b a b N b N b a b a b N b a b N b a b N b a b N b a b a b a b a b N b a b a b a b a b N b N b a b a b a b a b a b a b N b a b a b a b a b N b a b a b a b b b a b N b a b a b a b a b a b a +++++++++++++++++++++++++--=---=---=+=+===+=+=+=+-=εδδδεδδεεεεεεεεεδ从上式可以看出:当'b b =时括号为0,'b b ≠时δ函数为0,所以上式为0∴0)]()'()'()(),'()'([=+++b a b a b a b a b a b a□练习31.3 讨论全同粒子的自旋态,设自旋为1/2的粒子的单粒子z S 的本征矢量为>>βα||和,相应的本征值为2/2/ -+和;ββααa a a a ,,++和分别是α态和β态的产生和消灭算符。

2023高考物理量子力学练习题及答案

2023高考物理量子力学练习题及答案

2023高考物理量子力学练习题及答案一、单项选择题1. 根据量子力学的原理,下列哪个量是离散的?A. 电子的动量B. 电子的位置C. 粒子的质量D. 粒子的速度答案:B2. 在量子力学中,波粒二象性指的是什么?A. 粒子存在着波动性B. 粒子的波动速度与光速相等C. 粒子的波动性与粒子性同时存在D. 粒子的波动性只存在于空间中答案:C3. 下列哪个现象不能用经典物理学解释?A. 光的干涉与衍射现象B. 光电效应C. 康普顿效应D. 高速电子的波动性答案:D4. 以下哪项不是量子力学的基本假设之一?A. 波函数包含了粒子的全部信息B. 波函数的平方描述了粒子在不同位置出现的概率C. 粒子的位置和速度可以同时确定D. 波函数的演化遵循薛定谔方程答案:C5. 根据薛定谔方程,粒子波函数的时间演化是:A. 线性的B. 非线性的C. 随机的D. 不可逆的答案:A二、计算题1. 一束入射光照射到金属表面,发生了光电效应。

入射光的波长为550 nm,逸出功为2 eV,求最大能量的光电子的动能。

答案:入射光的能量E = hc/λ = (6.63 × 10^-34 J·s × 3.00 × 10^8 m/s) / (550 ×10^-9 m) = 1.20 × 10^-19 J最大动能K = E - φ = 1.20 × 10^-19 J - (2 × 1.60 × 10^-19 J) = -0.40 ×10^-19 J2. 一束入射电子的波长为1 nm,通过一个宽度为1 μm的狭缝后,到达屏幕上的交叉区域。

求交叉区域的宽度。

答案:交叉区域的宽度Δx = λL / d,其中L为屏幕到狭缝的距离,d为狭缝的宽度。

根据德布罗意关系,电子的波长λ = h / mv,其中h为普朗克常量,m为电子质量,v为电子速度。

将已知值代入计算,可得Δx ≈ (6.63 × 10^-34 J·s) / (9.1 × 10^-31 kg × 1 × 10^6 m/s) × (1 × 10^-9 m) / (1 × 10^-6 m) ≈ 7.3 × 10^-6 m三、解答题1. 请简要阐述波粒二象性的概念,并说明量子力学中的波函数是如何描述粒子的。

喀兴林高等量子力学习题

喀兴林高等量子力学习题

练习 在ψ按A 的本征矢量{ia 展开的()式中,证明若ψ是归一化的,则1=∑*iii cc ,即A 取各值的概率也是归一化的。

(杜花伟)证明:若ψ是归一化的,则1=ψψ。

根据式∑=ii ic aψ, ψi i a c =可得1===∑∑*ψψψψi ii i ii a a c c即A 取各值的概率是归一化的。

#练习 (1) 证明在定态中,所有物理量取各可能值的概率都不随时间变化,因而,所有物理量的平均值也不随时间改变.(2) 两个定态的叠加是不是定态? (杜花伟 核对:王俊美)(1)证明:在定态中i E i H i = , Λ3,2,1=i 则()t E i i i i t η-=ψ所以i A i e i A e A t E i t E i i i ==-ηηψψ.即所有物理量的平均值不随时间变化.(2)两个定态的叠加不一定是定态.例如()()()t E i t E i ex v ex u t x 21,ηη--+=ψ当21E E =时,叠加后()t x ,ψ是定态;当21E E ≠时, 叠加后()t x ,ψ不是定态. #证明:当函数)(x f 可以写成x 的多项式时,下列形式上含有对算符求导的公式成立:)(]),([)()](,[X f X i P X f P f Pi P f X ∂∂=∂∂=ηη(解答:陈玉辉 核对:项朋)证明:(1))()()()()()()()()](,[P f Pi P i P f P i P f P f P i Pi P f P f P i X P f P Xf P f X ∂∂=∂∂-∂∂+∂∂=∂∂-∂∂=-=ηηηηηηψψψψψψψψψ所以 )()](,[P f Pi P f X ∂∂=η(2))()()())(())(()()())(()()(]),([X f Xi X f X i X i X f X i X f X f X i X i X f X Pf P X f P X f ∂∂=∂∂--∂∂--∂∂-=∂∂--∂∂-=-=ηηηηηηψψψψψψψψψ所以 )(]),([X f Xi P X f ∂∂=η#练习 下面公式是否正确?(解答:陈玉辉 核对:项朋) ),()],(,[P X f Pi P X f X ∂∂=η 解:不正确。

高等量子力学练习题及答案解析十五

高等量子力学练习题及答案解析十五

15.1 将狄拉克方程(15.11)式左乘以*ψ,再将(15.11)式的左矢形式右乘以ψ,二式相加,从而证明由狄拉克方程可以导出连续方程0=⋅∇+∂∂j ρtψ。

并证明ψc ψψψtψαj j ** ===⋅∇+∂∂ρρ0证明:狄拉克方程:()02=⎥⎦⎤⎢⎣⎡-∇-⋅-∂∂ψmc i c t i β α (15.11) 将(15.11)式左乘以*ψ得到02=-∇⋅+∂∂ψmc ψψψc i ψtψi β***α(1) 将(15.11)式的左矢形式右乘以ψ得到02=+∇⋅+∂∂ψmc ψψψc i ψti βψ***α(2) 将(1)式加上(2)式得到0=∇+∇⋅+∂∂+∂∂)(α)(****ψψψψc i ψtψψt ψi(3) 化简得到0=∇⋅+∂∂)(α**ψψc i ψψti另ψψ*=ρ并且ψc ψαj *=,上式可表述为0=⋅∇+∂∂j ρtψ 即得证。

#15.2 不用具体矩阵形式,证明:(1))A α)(B α(B A )B α)(A α(⋅⋅-⋅=⋅⋅2 (2)011=+⋅+⋅))(B α)()(A α(ββ(3)0000====βαααβααβαβk j i j i i trtr tr tr tr ,,,式中A 和B是位形空间中的矢量算符,互相对易。

证明:(1)α 是自旋空间算符,B ,A 是位形空间算符。

因此,α 与B ,A 是相互对易的。

所以可以利用公式)B A (αB A )B α)(A α(⨯⋅+⋅=⋅⋅i (1) )B A (αB A )A B (αB A )A α)(B α(⨯⋅+⋅=⨯⋅+⋅=⋅⋅i i (2)(1)+(2)得,)A α)(B α(B A )B α)(A α(⋅⋅-⋅=⋅⋅2即得证。

(2)ββββββ)B α()A α()B α()A α()B α)(A α()B α)(A α())(B α)()(A α(⋅⋅+⋅⋅+⋅⋅+⋅⋅=+⋅+⋅11 利用公式αα βββαβαβ-=⇒=+=012i i 且β与B ,A 也是相互对易的。

喀兴林高等量子力学习题EX5

喀兴林高等量子力学习题EX5

喀兴林高等量子力学习题EX51. 问题描述在量子力学中,我们经常需要求解不同自由度的粒子的能量本征值和本征函数。

在这个练习中,我们将研究一个简化的模型:一维势阱中的粒子。

具体而言,我们将考虑一个无限深势阱,其势能函数为:$$ V(x) = \\begin{cases} 0, & 0 < x < L \\\\ +\\infty, &\\text{其他} \\end{cases} $$我们的任务是求解该体系的能量本征值和本征函数。

2. 解析解对于一维无限深势阱,我们可以通过解薛定谔方程来求解其能量本征值和本征函数。

薛定谔方程为:$$\\hat{H}\\psi(x) = E\\psi(x)$$其中,$\\hat{H}$ 是哈密顿算符,$\\psi(x)$ 是波函数,E 是能量本征值。

在一维无限深势阱中,势能函数为E(E)=0,因此薛定谔方程可以简化为:$$\\frac{{d^2\\psi}}{{dx^2}} = -\\frac{{2m}}{{\\hbar^2}}E\\psi(x)$$在边界条件$\\psi(0) = \\psi(L) = 0$下,我们可以得到解析解:$$\\psi_n(x) =\\sqrt{\\frac{{2}}{{L}}}\\sin\\left(\\frac{{n\\pi}}{{L}}x\\rig ht), \\quad n = 1, 2, 3, \\ldots$$对应的能量本征值为:$$E_n = \\frac{{n^2\\pi^2\\hbar^2}}{{2mL^2}}, \\quad n = 1, 2, 3, \\ldots$$3. 数值解除了解析解外,我们还可以使用数值方法来求解一维无限深势阱的能量本征值和本征函数。

在量子力学中,我们通常使用波函数的离散形式来表示一个粒子的状态。

在一维势阱中,我们可以通过离散化空间来得到一个离散的网格,然后使用差分法来近似薛定谔方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

EX1.矢量空间练习 1.1 试只用条件(1)~(8)证明2ψψψ+=,0ψ=O 和1ψψ-=-()。

(完成人:梁立欢 审核人:高思泽) 证明:由条件(5)、(7)得 11112ψψψψψψ+=+=+=()只需证明O =0ψ和ψψ-=-)1(这两式互相等价 根据条件(7)00)00(0ψψψψ+=+= 现在等式两边加上)0(ψ-,得)0()00()0(0ψψψψψ-++=-+ 根据条件(4), 上式左O =-+=)0(0ψψ 根据条件(4)、(2)上式右00)00(0ψψψψψ=O +=-+= O =∴0ψ由O =0ψ,根据条件(4)、(7)得ψψψψψψ-=O =-+=-=)1()11(0 ψψ-=-⇒)1( #练习 1.2 证明在内积空间中若()()ϕψϕψ,,21=对任意ϕ成立,则必有21ψψ=。

(完成人:谷巍 审核人:肖钰斐)证明 由题意可知,在内积空间中若()()ϕψϕψ,,21=对任意ϕ成立,则有(1ψ,)ϕ-(2ψ,)ϕ=0 (1)于是有()0,21=-ϕψψ (2)由于在内积空间中()()ϕψϕψ,,21=对任意ϕ成立,则可取21ψψϕ-=,则有()2121,ψψψψ--=0 成立 (3)根据数乘的条件(12)可知,则必有021=-ψψ(4) 即21ψψ=故命题成立,即必有21ψψ=. #练习1.3 矢量空间运算的12个条件是不是独立的?有没有一条或两条是其余各条的逻辑推论?如有,试证明之。

(完成人:赵中亮 审核人:张伟) 解:矢量空间运算的12个条件是独立的。

#练习 1.4 (1)在第二个例子中若将加法的规定改为:和矢量的长度为二矢量长度之和,方向为二矢量所夹角()︒〈180的分角线方向,空间是否仍为内积空间? (2)在第二个例子中若将二矢量和内积的定义改为θ⋅或θ,空间是否仍为内积空间? (3)在第三个例子的空间中,若将内积的定义改为 ()4*43*32*21*1432,m l m l m l m l m l +++=空间是否仍为内积空间?(4)在第四个例子的函数空间中,若将内积的定义改为()()⎰⎰==baba dxx x g x f x g x f xdx x g x f x g x f 2**)()()(),()()()(),(或空间是否仍为内积空间?(完成人:张伟 审核人:赵中亮)解:(1)在第二个例子中若将加法的规定改变之后,空间不是内积空间。

因为将规定改之后对于任意的矢量不一定存在逆元,如一个不为零的矢量设为,则任意矢量和它相加后,得到的矢量的长度不为零,所以一定不能得到零矢量,即找不到逆元。

所以空间不是内积空间。

(2)在第二个例子中若将内积的定义改之后,空间不是一个内积空间。

证明如下:+≠+,即有() ,=+θ+θθ⋅+≠=()(),,+所以内积的定义改变之后不是内积空间。

(3)在第三个例子中若将内积的定义改之后,空间仍然是一个内积空间。

证明如下: i()()m l m l m l m l m l l m l m l m l m l m ,432)432(,4*43*32*21*1*4*43*32*21*1*=+++=+++=ii .()()()n l m l n l n l n l n l m l m l m l m l n m l n m l n m l n m l n m l ,,)432()432()(4)(3)(2)(,4*43*32*21*14*43*32*21*144*433*322*211*1+=+++++++=+++++++=+ iii .()()m l a m l m l m l m l a am l a m l a m l a m l ma l ,)432(432,4*43*32*21*14*43*32*21*1=+++=+++= iv.()0||4||3||2||,24232221≥+++=l l l l l l ,对任意l 成立 若()0,0,0,4321======l l l l l l l 即则必有综上所述,新定义的内积规则符合条件(9)—条件(12),所以仍为内积空间(4)在第四个例子的函数空间中,若将内积的定义改为()⎰=baxdx x g x f x g x f )()()(),(*后,空间不是内积空间。

因为()⎰⎰==babaxdx x f xdx x f x f x f x f 2*)()()()(),(,积分号内的函数是一个奇函数,它不能保证对于任意的()x f 积分出来后都大于零,即不符合条件(12),所以不是内积空间。

在第四个例子的函数空间中,若将内积的定义改为()⎰=badx x x g x f x g x f 2*)()()(),(后,空间是内积空间。

证明如下:i ()()**2*2*)(),()()()()()(),(x f x g dx x x f x g dx x x g x f x g x f b a ba=⎪⎭⎫ ⎝⎛==⎰⎰ii()()()()()x h x f x g x f dx x x h x f dx x x g x f x h x g x f baba),()(),()()()()()(),(2*2*+=+=+⎰⎰ iii ()())(),()()()()()(),(2*2*x g x f a dx x x g x f a dx ax x g x f a x g x f baba===⎰⎰iv ()成立对任意ψ,0)()(),(22≥=⎰ba dx x x f x f x f若()0)()(),(22==⎰badx x x f x f x f ,则必有()0=x f综上所述,新定义的内积规则符合条件(9)—条件(12),所以仍为内积空间。

#练习 1.5若a 为复数,证明若a ψϕ=时,Schwartz 不等式中的等号成立。

(完成人:肖钰斐 审核人:谷巍)证明:当若a ψϕ=时,分别带入Schwartz 不等式的左边和右边。

左边=()2,ψψψa a =右边=2ψψψa a =⋅左边=右边,说明当a ψϕ=时,Schwartz 不等式中的等号成立。

#练习1.6 证明当且仅当 ||||a a ϕψϕψ-=+ 对一切数a 成立时,ψ与ϕ正交。

并在三维位形空间讨论这一命题的几何意义。

(完成人:赵中亮 审核人:张伟)证明:解:当||||a a ϕψϕψ-=+对一切数a 成立时,有22||||a a ϕψϕψ-=+即 ),(),(a a a a ϕψϕψϕψϕψ--=++得 ),(),(),(),(),(),(),(),(a a a a a a a a ϕϕψϕϕψψψϕϕψϕϕψψψ+--=+++ 即 ),(),(ψϕϕψa a -= **-=),(),(ϕψϕψa a因为a 可以取一切数,所以当a 取纯虚数时,即*-=a a 得 *=),(),(ϕψϕψ由此得),(ϕψ只能是实数 当a 取非零实数时,即*=a a *-=),(),(ϕψϕψ只有0),(=ϕψ时,即ψ与ϕ正交时才成立所以 当 ||||a a ϕψϕψ-=+ 对一切数a 成立时,ψ与ϕ正交。

当ψ与ϕ正交时,0),(=ϕψ 则 0),(),(==*ϕψϕψ 取a 为任意数则 0),(),(=-=**ϕψϕψa a ),(),(ψϕϕψa a -= ),(2),(2ψϕϕψa a -=),(),(2),(),(),(2),(a a a a a a ϕϕψϕψψϕϕϕψψψ+-=++),(),(),(),(),(),(),(),(a a a a a a a a ϕϕψϕϕψψψϕϕψϕϕψψψ+--=+++ ),(),(a a a a ϕψϕψϕψϕψ--=++ 22||||a a ϕψϕψ-=+ 得 ||||a a ϕψϕψ-=+即 ||||a a ϕψϕψ-=+ 对一切数a 成立综上,当且仅当 ||||a a ϕψϕψ-=+ 对一切数a 成立时,ψ与ϕ正交。

在三维位形空间中,这一命题的几何意义是:对角线相等的平行四边形是矩形。

#练习1.7 证明:当且仅当ψϕαψ≥-对一切数α成立时,ψ与ϕ正交。

(完成人:班卫华 审核人:何贤文) 证明:因为ψϕαψ≥-,两边平方得22ψϕαψ≥-2222)(ψαϕαψϕϕψψ≥++-**0)(22≥+-**αψϕϕψαϕ则构成以α为变量的二次函数,要使对一切α成立,判别式恒小于等于零,即0)(2≤+**ψϕϕψ只需0=+**ψϕϕψ即0),(),(=+ψϕϕψ得0),(=ϕψ所以当ψϕαψ≥-对一切数α成立时,ψ与ϕ正交。

练习1.8在四维列矩阵空间中,给定四个不正交也不全归一的矢量:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1111,0111,0011,00014321λλλλ它们构成一个完全集,试用Schmidt 方法求出一组基矢。

(完成人:肖钰斐 审核人:谷巍) 解:由Schmidt 方法,所求基矢:()()()()()()⎪⎪⎪⎪⎪⎭⎫⎝⎛=''=⎪⎪⎪⎪⎪⎭⎫⎝⎛=⋅⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⋅⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⋅⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=---='⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=''=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⋅⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⋅⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=--='⎪⎪⎪⎪⎪⎭⎫⎝⎛=''=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⋅⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-='⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==100010001010010010100011111,,,0100010010010100010111,,00100010100010011,0001444433422411443333223113322211122111νννλννλννλννλννννλννλννλννννλννλνλλν#练习1.9 在上题中,改变四个λ的次序,取⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=0111,0011,1111,00014321λλλλ重新用Schmidt 方法求出一组基矢。

(完成人:何贤文 审核人:班卫华)解:由空间中不满足正交归一条件的完全集{4321,,,λλλλ},求这个空间的一组基矢{4321,,,νννν}.(1)首先取1ν为归一化的1λ:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==0001111λλν(2)取12122a νλν-=',选择常数12a 使'2ν与1ν正交,即 122121),(),(0a -='=λννν 得112=a , ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛='11102ν取2ν为归一化的'2ν:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛='=111031222ννν (3)取23213133a a ννλν--=',选择常数13a 和23a 使'3ν与21,νν正交,即 ⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=--='3131320),(),(32231133λννλννλν归一化的3ν为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=''=112061333ννν (4)取34324214144a a a νννλν---=',选择常数342414,,a a a 使'4ν与已选定的321,,ννν正交,即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=---='212100),(),(),(43342241144λννλννλννλν归一化的4ν为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=''=110021444ννν 则找到一组基矢为 {4321,,,νννν}. #练习 1.10 在三维位形空间中,i ρ,j ρ,k ρ是在互相垂直的x ,y ,z 三个轴上的单位矢量。

相关文档
最新文档