基于有限元的空气弹簧垂直刚度特性分析

基于有限元的空气弹簧垂直刚度特性分析
基于有限元的空气弹簧垂直刚度特性分析

汽车用空气弹簧垂向弹性特性分析与计算.

机械2008年第8期总第35卷设计与研究?9? ———————————————— 收稿日期:2008-04-13 基金项目:湖北省武汉市科技攻关重点项目(200710321089) 汽车用空气弹簧垂向弹性特性分析与计算 黄卫平,鲍卫宁 (江汉大学机电与建工学院,湖北武汉 430056) 摘要:空气悬架系统主要由空气弹簧、推力杆、高度控制阀、减振器和横向稳定杆等组成,空气弹簧是空气悬架系统的核心部件,空气弹簧具有理想的弹性特性,载荷越大弹簧刚度越大;空气弹簧自振频率低,通用性较好,能适应不同载荷和工作高度;空气悬架系统由于有良好舒适性在商用汽车上得到广泛应用。空气悬架设计时,合理选择空气弹簧结构型式,确定气囊的工作高度、承载能力,可获得极其柔软的弹簧特性,空气弹簧垂向特性对于整车平顺性匹配有重要影响,本研究通过对空气弹簧弹性理论的分析,讨论了空气弹簧垂向刚度和自振频率的计算方法,旨在寻求空气弹簧与整车匹配的基本。以城市客车设计为例,探讨了空气弹簧载荷确定、空气弹簧型号选择、刚度匹配设计基本方法,并指出空气弹簧设计匹配注意基本问题。研究结果表明,合理匹配空气弹簧刚度,空气悬架可以获得良好综合特性。关键词:空气弹簧;弹性特性;非线性;匹配设计 中图分类号:U463.33+4.2 文献标识码:A 文章编号:1006-0316(200808-0009-03 The elastic characteristic computation of the automobile air spring HUANG Wei-ping,BAO Wei-ning

(School of Electromechanical & Architectural Engineering,Jianghan University,Wuhan 430056,China Abstract :Introduced the automobile with the air spring structure and the principle of work and the elastic characteristic of air spring, the calculation formulas for stiffness and natural frequency are derived, with the example of the match design of the city bus air suspension system, the analysis and match design is carried out, the suggestion about how to select air spring to match the automobile suspension is also given . Key words:air spring;elasticity characteristic;non-linearity ;suspension design 空气弹簧诞生于上世纪中期,早期主要用于机械设备隔振。1944年,通用和法尔斯通公司首次实现了在客车上的应用;1947年美国的普尔曼车上首次使用了空气弹簧的悬架系统;1951年,美国NEWAY 公司的独立总成成为世界上第一款批量应用的空气悬架系统,因通用性强,结构简单,成本较低而迅速占领北美市场。欧洲则遵循另外一条道路,各自开发适合自己车型的空气悬架系统。由于空气悬架具有良好的性能,使其在汽车悬架中的应用越来越广泛。 目前,国外高级大客车几乎100%使用空气悬架;重型载货车上空气悬架的占有率也达到了85%;大约80%的拖挂车使用空气悬架;空气悬架在轻型 车辆上的应用目前虽然只占市场份额的10%,预测到2008年将达到40%;部分轿车也逐渐装备了空气弹簧悬架。 1 汽车空气悬架结构 空气悬架系统主要由空气弹簧组件、推力杆、高度控制阀、减振器和横向稳定杆等组成,如图1所示。它以空气弹簧为弹性元件,利用空气的可压缩性实现其弹性作用的。通过压缩空气的压力能够随载荷和道路条件变化进行自动调节,不论满载还是空载,整车高度几乎没有变化,可以大大提高乘坐的舒适性。 ?10?设计与研究机械2008年第8期总第35卷

钢板弹簧设计说明书

目录 一、确定断面尺寸及片数 ------------------------------------------------------------------------ 2 二、确定各片钢板弹簧的长度 ------------------------------------------------------------------ 4 三、钢板弹簧的刚度验算 ------------------------------------------------------------------------ 5 四、钢板弹簧总成在自由状态下的弧高及曲率半径计算。 ------------------------------- 7 H ------------------------------------------------------------------------------------ 7 1.钢板弹簧总成在自由状态下的弧高 2.钢板弹簧各片自由状态下曲率半径的确定 -------------------------------------------------------------------------------- 8 五、钢板弹簧总成弧高的核算 ---------------------------------------------------------------- 10 六、钢板弹簧的强度验算 ---------------------------------------------------------------------- 11 二、(修改)确定各片弹簧长度--------------------------------------------------------------- 12 三、(修改)钢板弹簧的刚度验算 ------------------------------------------------------------ 14 四、(修改)钢板弹簧总成在自由状态下的弧高及曲率半径计算 --------------------- 15 五、(修改)钢板弹簧总成弧高的核算 ------------------------------------------------------ 17六(修改)钢板弹簧的强度验算 ------------------------------------------------------------- 18七、钢板弹簧各片应力计算 ------------------------------------------------------------------- 18八,设计结果 ------------------------------------------------------------------------------------- 20 九、参考文献 ------------------------------------------------------------------------------------- 21 十、附总成图 -------------------------------------------------------------- 错误!未定义书签。

汽车钢板弹簧的性能、计算和试验

汽车钢板弹簧的性能、计算和试验 东风汽车公司技术中心陈耀明 1983年3月初稿 2005年1月再稿

目录 前言(2) 一.钢板弹簧的基本功能和特性(3) 1.汽车振动系统的组成(3) 2.悬架系统的组成和各元件的功能(6) 3.钢板弹簧的弹性特性(7) 4.钢板弹簧的阻尼特性(12) 5.钢板弹簧的导向特性(14) 二.钢板弹簧的设计计算方法(17) 1.单片和少片变断面弹簧的计算方法(17) 2.多片钢板弹簧的刚度和工作应力计算(24) 3.多片弹簧各单片长度的确定(32) 4.多片弹簧的弧高计算(36) 5.钢板弹簧计算中的几个具体问题(43)三.钢板弹簧的试验(46) 1.钢板弹簧的静刚度测定(46) 2.钢板弹簧的动刚度测定(50) 3.钢板弹簧的应力测定(52) 4.钢板弹簧单片疲劳试验(53) 5.钢板弹簧总成疲劳试验(54)

前言 本文是为汽车工程学会悬架专业学组所办的“减振器短训班”撰写的讲义,目的是让汽车减振器的专业人员对钢板弹簧拥有一些基本知识,以利于本身的工作。内容分为三部分:钢板弹簧的基本功能和特性,设计计算方法,以及试验等。因为这部分内容非本次短训班的重点,所以要求尽量简单扼要,也许有许多不全面的地方,只供学习者参考。有关钢板弹簧较详细的论述,可参考本学组所编的“汽车悬架资料”。

一.钢板弹簧的基本功能和特性 1.汽车振动系统的组成 汽车在道路上行驶,由于路面存在不平度以及其它各种原因,必然引起车体产生振动。从动态系统的观点来看,汽车是一个多自由度的振动系统。其振源主要来自路面不平度的随机性质的激振,此外还有发动机、传动系统以及空气流动所引起的振动等等。 为改善汽车的平顺性,也就是为减小汽车的振动,关键的问题是研究如何对路面不平度的振源采取隔振措施,这就是设计悬架系统的根本目的。换言之,就是在一定的道路不平度输入情况下,通过悬架系统的传递特性,使车体的振动输出达到最小。 当研究对象仅限于悬架系统时,人们往往把车体当为一个刚体来看待。即使这样,汽车仍然是一个很复杂的多自由度系统,见图1。如果不涉及汽车的横向振动和角振动,可以将左右悬架合并,使汽车振动系统进一步简化,见图2。在一定条件下,也就是当质量分配系数等于1,即前后悬架的输出与输入各自的相干特性达到最大值时,就可以将前、后悬架分开,单独看成一个两自由度振动系统。这时,组成每一个振动系统的元素就是质量(簧载质量与非簧载质量),弹性元件(悬架弹簧和轮胎)和阻尼元件(悬架阻尼元件和轮胎阻尼),见图3。

空气弹簧研究综述

空气弹簧研究综述 1.3 空气弹簧研究综述 1.3.1 国内外空气弹簧发展简史 空气弹簧的发展仅有五十多年的时间。美国自1947年,在普尔曼车上首先采用空气弹簧,后来在意大利、英国、法国等许多欧洲国家对空气弹簧做了大量研究工作,装有空气弹簧的转向架相继出现。1955年,日本国家铁路技术研究院机车车辆动力试验室,对在车辆上安装的空气弹簧进行了系统的研究,为设计空气弹簧提供了宝贵的基本数据;同时,对装有空气弹簧的车辆进行了一系列的试验工作。目前,日本不仅在铁路客车上成功地装用了多种型式的空气弹簧,而且在货车上也予以采用。 在日本,装有空气弹簧的转向架,不仅数量多,而且型式多样。空气弹簧绝大多数用于中央悬挂,轴箱弹簧为螺旋钢弹簧。起初只安装三曲囊式空气弹簧,用以改善车辆的垂向振动性能,横向复原仍采用摇动台。为了取消复杂、笨重的摇动台结构,于是研制出了约束膜式空气弹簧和自由膜式空气弹簧,这类空气弹簧不仅能承受垂向振动,而且可以利用其具有良好的横向刚度的优点来承受横向振动;同时,可以与牵引拉杆两端部的弹性元件共同作为横向复原装置。牵引拉杆一端连接摇枕,另一端连接在构架(对心盘支重的转向架)上,或连接在车体(对旁承支重的转向架)上。牵引拉杆两端弹性元件的横向复原力,对空气弹簧来说,是比较小的。 1957年,我国第一机械工业部汽车研究所,对空气弹簧做了大量的试验研究工作,并装在汽车上试用,积累了一些经验。1958年,沈阳机车车辆厂在试制的“东风号”客车上,首先装用空气弹簧,即由天津车辆段和天津橡胶研究所共同研制出一种双曲囊式空气弹簧(图),其有效直径为460mm时,高度为184mm,最大外径为520mm。这种空气弹簧曾先后在天津车辆段、北京车辆段,装在101型、201型和202型转向架上,以代替叠板弹簧。实践证明:这种空气弹簧的垂向振动性能具有良好的运行品质。但是,由于没有采用高度控制阀,在列车返段时,只好采用人工加气;同时,泄漏问题也没有得到很好的解决,所以没有继续应用。 1959年,四方机车车辆厂在新造低重心车辆的转向架上,1960年在新造双层客车的转向架上,又安装了双曲囊式空气弹簧。但是由于车辆自重较大,空气弹簧的有效承压面积不够,同时受到列车管压力的限制,支承不了簧上重量,只好与螺旋钢弹簧联合使用,并设计了机械式高度控制阀,对空气弹簧的高度进行自动控制;同时,在垂向振动性能方面也取得了比只用钢弹簧更好的运行品质,受到旅客好评。 1965年,长春客车厂在试制DK1型转向架时,又对双曲囊式空气弹簧稍加改进,并设计了电磁式高度控制阀,采用无摇动台结构,在摇枕中下部和构架侧梁内侧之间加装横向复 km,因此,垂向振动性能原弹簧。经过多次试验,由于地铁电动客车运行速度不超过80h 很好。但由于采用横向复原螺旋钢弹簧,在车辆进出曲线和通过道岔时侧摆较大,横向振动性能仍不理想,横向复原弹簧安装也很不方便,故未扩大应用。长春客车厂于同年在试制高速列车的CCKZ1型转向架上,安装了外筒锥角为40o,内筒为0o的约束膜式空气弹簧;四方机车车辆厂于同年也在同列高速客车的KZ2型转向架上安装了内外筒皆为0o的约束膜式空气弹簧,这两种转向架均采用旁承支重的无摇动台结构,用节流孔产主阻尼,代替垂直油

QCC-JT---汽车钢板弹簧技术条件

QCC-JT---汽车钢板弹簧技术条件

————————————————————————————————作者:————————————————————————————————日期:

Q/CC x x汽车股份有限公司企业标准 Q/CC JT018—2008 代替Q/CC JT018—2006 汽车钢板弹簧技术条件 Technical Requirements of Leaf Spring Used on Vehicle 2008-09-06发布2008-12-01实施xx汽车股份有限公司发布

目次 前言................................................................................. II 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 技术要求 (1) 5 检验和试验方法 (3) 6 检验规则 (3) 7 标志、包装、贮存 (4) 8 质量保证 (4) 附录A (规范性附录)汽车用钢板弹簧台架试验方法 (5)

前言 本标准是对Q/CC JT018—2006《汽车钢板弹簧技术条件》的修订。本标准在修订过程中主要参考了GB/T 19844-2005《钢板弹簧》。本标准与Q/CC JT018—2006相比,主要变化如下: ——增加了“3术语和定义”; ——增加了“附录A(规范性附录)”; ——增加了“4.4热处理”中洛氏硬度的数值要求; ——修订了“5 检验和试验方法”细化了具体方法; ——对相关条款进行调换和规范; ——删除了旧版中有关产品“断裂数据”方面的内容。 本标准自实施之日起代替Q/CC JT018—2006。 本标准由xx汽车股份有限公司技术研究院提出。 本标准由xx汽车股份有限公司技术研究院标准化科归口。 本标准由xx汽车股份有限公司技术研究院K-底盘部负责起草。 本标准主要起草人:纪国锋、宗召波。

轨道交通车辆转向架用空气弹簧

轨道交通车辆转向架用空气弹簧 作者:陆海英出自:时代新材 1概述 现代轨道交通车辆不断地朝着高速化、轻量化以及低噪音方向发展,空气弹簧悬挂系统具诸多钢制螺旋弹簧不具备的优点,因此在干线高速铁道车辆转向架和城市轨道交通车辆转向架中均日益广泛地采用空气弹簧作为二系悬挂装置。与空气弹簧相比,钢弹簧由于具有线性刚度特性,使其在轨道交通车辆上的应用受到限制,这主要有两方面的原因:一,在高速轨道交通领域刚弹簧不能够大幅度提高车辆悬挂系统静挠度以降低车体的自振频率,尤其是车辆的载客量较大时;二,城市轨道交通车辆的载客量大而且要求地板高度在不同载客量时基本不变,钢弹簧不具备这种特性。总之,空气弹簧悬挂的采用可以显著提高车辆系统的运行平稳性,大大简化转向架的结构,使转向架实现轻量化和易于维护。一般来讲,轨道交通车辆对空气弹簧的采用可以分为三个阶段: 图-1 B型城市轨道交通车辆动车无摇枕转向架 ⑴利用空气弹簧的垂向特性,提高车辆系统的垂向运行平稳性; ⑵空气弹簧的垂向和横向特性并用,取消转向架二系悬挂装置中的摇动台,简化转向架结构; ⑶充分利用大变位(包括扭转)、低横向刚度空气弹簧的三维特性(图-1,图-2),取消摇枕,彻底实现转向架二系悬挂装置的轻量化,同时使抗蛇行运动减振器的采用成为可能,可更好地协调转向架蛇行运动稳定性和良好的曲线通过性能之间的矛盾。

图-2 利用空气弹簧三维特性的城轨 无摇征转向架二系悬挂装置 2 空气弹簧悬挂系统的构成 空气弹簧悬挂的整个系统如图-3所示,主要由空气弹簧本体、附加空气室、高度控制装置、差压阀和节流孔(阀)等组成。该系统的工作原理为:车辆静载荷增加时,空气弹簧1被压缩使空气弹簧工作高度降低,这样高度控制阀2随车体下降,由于高度调整连杆3的长度固定,此时高度调整杠杆4 图-3 空气弹簧悬挂系统 1.空气弹簧 2.高度控制阀 3.高度调整连杆 4. 高度调整杠杆 5.列车风源 6.排气口 7.节流孔(阀) 8. 附加空气室 9.差压阀 发生转动打开高度控制阀的进气机构,压力空气由列车风源5通过高度控制阀的进气机构进入空气弹簧1和附加空气室8,直到高度调整杠杆回到水平位置即空气弹簧恢复其原来的工作高度;车辆静载荷减小时,空气弹簧1伸长使空气弹簧的工作高度增大,高度控制阀2随车体上升,同样由于高度调整连杆3的长度固定,高度调整杠杆4发生反向转动打开高度控制阀的排气机构,压力空气由空气弹簧1和附加空气室8通过高度控制阀的排气机构经排气口6排入大气,直到高度调整杠杆回到水平位置。 2.1 空气弹簧和附加空气室 2.1.1 空气弹簧

板簧计算

汽车平衡悬架钢板弹簧设 计 东风德纳车桥有限公司 2005年9月15日

一、 钢板弹簧作用和特点 a. 结构简单,制造、维修方便; b. 弹性元件作用; c. 导向作用; d. 传递侧向、纵向力和力矩的作用; e. 多片弹簧片间摩擦还起系统阻尼作用; f. 在车架或车身上两点支承,受力合理; g. 可实现变刚度特性; h. 相比螺旋弹簧和扭杆弹簧而言,单位质量的储能量较小,在同样的使用条件下,钢板弹簧要重一些。 二、 钢板弹簧的种类、材料热处理及弹簧表面强化 1. 目前,汽车上使用的钢板弹簧常见的有以下几种: 1) 普通多片钢板弹簧; 2) 少片变截面钢板弹簧; 3) 两级变刚度复式钢板弹簧; 4) 渐变刚度钢板弹簧 2. 钢板弹簧材料的一般要求 钢板弹簧与其它弹性元件一样,弹簧使用寿命与材料及制造工艺有很大关系,因此选用弹簧材料时应考虑以下几个方面因素 1) 弹性极限 弹簧在弹性极限范围内变形时,希望弹簧储存的弹性变形能要大,而弹簧在单位中单位体积内储存的弹性变形能是与材料的弹性极限平方成正比,而与弹性模量与反比,因此从提高材料贮存的弹性变形能角度看,希望提高材料的弹性极限。一般说材料抗拉强度高,弹性极限也高。弹性极限与材料的化学成分和金相组织有较大关系,在弹簧钢中如果提高碳、硅、锰元素含量,可以提高材料弹性极限。弹簧采用中温回火处理,能够得到具有较高弹性极限的回火屈氏体组织。 2) 弹性模量 弹性模量有两种,即拉伸弹性模量E 和剪切弹性模量G 。材料弹性模量愈小,材料变形和贮存的弹性变形能愈大。从这个角度看,国外采用了弹性模量较低的增强树脂材料弹簧(FRP 弹簧)。 3) 疲劳强度 由于弹簧多在交变载荷下工作,所以要求材料应有较高的疲劳极限,疲劳强度与材料抗拉强度b 和屈服强度s σ成正比,因此为了提高弹簧的疲劳强度,应设法提高材料的抗拉强度b σ和屈服强度与抗拉强度之比(b s σσ)。 4) 淬透性 对于断面较厚的或变截面钢板弹簧,希望用淬透性较好的材料。材料如不能淬透,淬火组织中将含有较多的非马氏体组织,使淬火后硬度降低。虽然可以通过降低回火温度来达到所需要的硬度,但其机械性能较差。为保证材料在整个截面内具有相同的机械性能,要求淬火时不仅表面而且心部也能淬透,且淬火后表面硬度和心部硬度相差不能太大。 综上所述,汽车钢板弹簧材料应具有较高的抗拉强度、屈服极限、疲劳强度及一定冲击韧性。此外要求材料具有良好的淬透性,热处理不易脱碳等性能。 3. 钢板弹簧材料 目前国内使用最多的弹簧钢板材料是钢Mn Si -,如Mn Si 260和MnA Si 260该钢种

汽车钢板弹簧悬架设计方案

汽车钢板弹簧悬架设计 (1)、钢板弹簧种类 汽车钢板弹簧除了起弹性元件作用之外,还兼起导向作用,而多片弹簧片间磨擦还起系统阻尼作用。由于钢板弹簧结构简单,使用维修、保养方便,长期以来钢板弹簧在汽车上得到广泛应用。目前汽车使用的钢板弹簧常见的有以下几种。 ①通多片钢板弹簧,如图1-a所示,这种弹簧主要用在载货汽车和大型客车上,弹簧弹性特性如图2-a所不,呈线性特性。 变形 载荷变形 载荷变形载荷 图1 图2 ②少片变截面钢板弹簧,如图1-b所不,为减少弹簧质量,弹簧厚度沿长度方向制成等厚,其弹性特性如一般多片钢板弹簧一样呈线性特性图2-a。这种弹簧主要用于轻型货车及大、中型载货汽车前悬架。 ③两级变刚度复式钢板弹簧,如图1-c 所示,这种弹簧主要用于大、中型载货汽车后悬架。弹性特性如图2-b 所示,为两级变刚度特性,开始时仅主簧起作用,当载荷增加到某值时副簧与主簧共同起作用,弹性特性由两条直线组成。 ④渐变刚度钢板弹簧,如图1-d 所示,这种弹簧多用于轻型载货汽车与厢式客车后悬架。副簧放在主簧之下,副簧随汽车载荷变化逐渐起作用,弹簧特性呈非线性特性,如图2-c 所示。

多片钢板弹簧 钢板弹簧计算实质上是在已知弹簧负荷情况下,根据汽车对悬架性能(频率)要求,确定弹簧刚度,求出弹簧长度、片宽、片厚、片数。并要求弹簧尺寸规格满足弹簧的强度要求。 3.1钢板弹簧设计的已知参数 1)弹簧负荷 通常新车设计时,根据整车布置给定的空、满载轴载质量减去估算的非簧载质量,得到在每副弹簧上的承载质量。一般将前、后轴,车轮,制动鼓及转向节、传动轴、转向纵拉杆等总成视为非簧载质量。如果钢板弹簧布置在车桥上方,弹簧3/4的质量为非簧载质量,下置弹簧,1/4弹簧质量为非簧载质量。 2)弹簧伸直长度 根据不同车型要求,由总布置给出弹簧伸直长度的控制尺寸。在布置可能的情况下,尽量增加弹簧长度,这主要是考虑以下几个方面原因。 ①由于弹簧刚度与弹簧长度的三次方成反比,因此从改善汽车平顺性角度看,希望弹簧长度长些好。 ②在弹簧刚度相同情况下,长的弹簧在车轮上下跳动时,弹簧两卷耳孔距离变化相对较小,对前悬架来说,主销后倾角变化小,有利于汽车行驶稳定性。 ③增加弹簧长度可以降低弹簧工作应力和应力幅,从而提高弹簧使用寿命。 ④增加弹簧长度可以选用簧片厚的弹簧,从而减少弹簧片数,并且簧片厚的弹簧对提高主片卷耳强度有利。 3)悬架静挠度 汽车簧载质量与其质量组成的振动系统固有频率是评价汽车行驶平顺性的重要参数。悬架设计时根据汽车平顺性要求,应给出汽车空、满载时前、后悬架频率范围。如果知道频率,就可以求出悬架静挠度值c δ。选取悬架静挠度值时,希望后悬架静挠度值2c δ小于前悬架静挠度值1c δ,并且两值最好接近,一般推荐:

弹簧有限元分析

1 前言 气门弹簧作用是使气门自动回位关闭,并保证气门与气门座的紧密结合。另外,还用于吸收气门在开闭过程中各传动零件所产生的惯性力,以防止各传动件彼此分离而破坏配气机构正常工作。气门弹簧承受着频繁的交变载荷。为保证可靠地工作,气门弹簧应有合适的弹力、足够的强度和抗疲劳强度。所以对气门弹簧的刚-强度进行分析具有重要意义。 为提高气门弹簧的强度和抗疲劳强度以及防止共振和颤振现象,气门弹簧越来越多地选用非线性变刚度螺旋弹簧,能有效的防止气门弹簧共振的发生。与普通圆柱螺旋弹簧不同的是,变刚度圆柱螺旋弹簧的刚度随载荷的增加而增加。目前,可以通过变节距、变中径和变簧丝直径三种方式来获得变刚度圆柱螺旋弹簧。本文对某型号的变节距螺旋弹簧进行了有限元分析。 2 模型建立 某型号的气门弹簧的CAD图,如图1所示。

在Pro-E中建立起弹簧的几何模型,同时,为了更真实的模拟实际情况,还建立了弹簧底座的实体模型。根据CAD-CAE之间接口无缝导入ANSYSWorkbench。用SOLID186单元剖分网格,进气门弹簧的模型见图2。

3 边界条件 由于排气行程较进气行程小,所以这里只对进气门弹簧的刚度和强度进行分析。在下弹簧座底面上约束所有线位移,在上弹簧座顶面上沿纵向施加强迫位移,对进气门弹簧的刚-强度进行分析。 4 有限元分析结果 4.1 刚度分析

通过图4可以看出,随着进气门弹簧压缩量的增加,弹簧的支反力是以非线性的形式逐渐增加的。这主要是考虑了弹簧的自接触的因素,弹簧的刚度不是以线性的形式变化,而是以非线性的形式增加。 4.2 强度分析

通过对应力云图5和6以及曲线图7分析,可以看出气门弹簧在轴向位移载荷的作用下,弹簧内圈的应力明显大于外圈,两端受到的应力较小,且随着时间的推移,也就是轴向载荷的增加,气门弹簧受到的应力是逐渐增加的。

空气弹簧动力学特性分析

空气弹簧是一种在柔性密闭橡胶气囊中冲入压缩空气,利用空气的压缩弹性进行工作的非金属弹性元件,它的的振动固有频率较低,且不同载荷下几乎保持不变,是一种隔振性能优良的隔振器。担架支架是伤员运送车辆在行驶途中承载、固定卧姿伤病员担架的主要设备。担架支架的隔振系统设计在很大程度上决定了伤病员在运送途中的乘卧舒适性。性能优异的担架支架隔振系统能有效提高伤员运送车辆的运送能力。空气弹簧是较为合适的可用于担架支架系统的隔振器,它是利用空气的压缩弹性进行工作的非金属弹性元件。作为隔振元件,空气弹簧具有非线性变刚度特性,通过内压的调整,可以得到不同的承载能力;承受轴向载荷和径向载荷,可产生相对较好的缓冲隔振效果;还具有结构简单、安装高度低、更换方便、工作可靠、质量轻、单位质量储能量高等优点。将空气弹簧增加附加气室能显著降低空气弹簧的刚度及固有频率。本文对应用于急救车担架支架装置的空气弹簧隔振器的动态特性进行了理论分析、实验测试、实验建模等方面的研究,为今后进一步研究半主动控制的空气弹簧隔振系统提供了参考依据。本文首先介绍了空气弹簧的研究与发展现状,对空气弹簧的性能和优缺点进行了比较。并对空气弹簧的动力学特性进行研究,推导了空气弹簧动刚度计算公式,分析了其动力学特性的影响因素,建立了带附加气室与不带附加气室空气弹簧的力学模型。其次做了空气弹簧的动力学特性实验,得到如下结论:不带附加气室时,当初始气压、激振振幅增加时,空气弹簧动刚度随之增加;当激振频率增加时,空气弹簧的动刚度随之减小。空气弹簧的固有频率几乎保持不变。而带附加气室空气弹簧在节流孔孔径4-7mm范围内,当孔径增大时,空气弹簧动刚度随之减小;当初始气压、激振频率、激振振幅增加时,空气弹簧动刚度随之增加。在高频(8Hz)左右时,振幅、频率的变化对动刚度的改变已不明显。在低频率时,带附加气室能显著降低空气弹簧的动刚度,而在较高频率时,带附加气室会使空气弹簧的动刚度增加。最后对带附加气室空气弹簧力学模型进行了简化,通过实验数据运用最小二乘法对模型参数进行了识别,并用四个指标对模型拟合精度进行了评价。分析结果表明误差较小,模型能够比较准确的反映出应用空气弹簧隔振器的力学特性。

2001—2010年济南市空气质量特征分析

龙源期刊网 https://www.360docs.net/doc/7d14247663.html, 2001—2010年济南市空气质量特征分析 作者:尹承美于丽娟高帆 来源:《现代农业科技》2012年第03期 摘要利用济南市环境空气监测资料,使用国内普遍采用的API空气污染指数,分析了济南市2001—2010年空气质量的变化特征。结果表明:2001—2010年济南市环境空气质量为良或优的天数总体呈上升趋势;冬、春季空气质量比夏、秋季差,污染最轻的是8月,污染最重的是12月或1月;近10年主要污染物为可吸入颗粒物PM10,可吸入颗粒物的来源呈多样性,近年来,汽车尾气污染和建筑尘逐渐成为济南市环境空气污染的主要因素;空气污染较重时一般伴随冷空气影响,近低层存在逆温,不利于污染物的扩散。 关键词空气质量;变化特征;重度污染;天气形势;山东济南;2001—2010年 中图分类号 X823 文献标识码 A 文章编号 1007-5739(2012)03-0027-02 大气是人类赖以生存的基本环境要素。但随着工业的发展、城市人口的增加、煤炭和石油燃料的迅猛增长,大气环境质量日趋恶化,大气污染已成为影响环境和危害人类身体健康的主要因素之一。济南市位于北纬36°40′,东经117°0′,南依泰山,北跨黄河,地处鲁中南低山丘陵与鲁西北冲积平原的交接带上,地势南高北低。地形复杂多样,大体可分为3带:北部临黄带,中部山前平原带,南部丘陵山区带。济南地处中纬度,属暖温带大陆性季风气候区,四季分明:春季干燥少雨,夏季炎热多雨,秋季天高气爽,冬季严寒干燥。近年来,随着国民经济的飞速发展,城市环境污染问题已经成为最严重的环境问题之一,如可吸入颗粒物常会形成大范围灰霾天气[1-2]。因此,分析和研究环境空气质量,对于改善济南市环境空气质量具有极为重要的意义。 1 数据来源 环境空气质量API指数(Air Pollution Index,简称API)是一种反映和评价环境空气质量的数量尺度方法,就是将常规监测的几种环境空气污染物浓度简化成为单一的概念性指数数值形式,并分级表征环境空气污染程度和环境空气质量状况(表1、表2)[1]。 2 2001—2010年空气质量变化特征 利用环境保护部数据中心2001—2010年济南市空气质量数据,使用国内普遍采用的API 空气污染指数来分析不同年份、不同季节环境空气质量变化特征。 2.1 2001—2010年空气质量年变化规律

空气弹簧刚度计算公式

空气弹簧刚度计算公式 1. 载荷与气压关系式: )A p (p P a -= ----(1) 式中: P 载荷 p 气囊内绝对气压 A 气囊有效承压面积 a p 标准大气压,其值与运算单位有关: 采用N 、mm 时,a p =0.0981≈0.1N/mm 2 采用kgf 、cm 时,a p =1 kgf/cm 2 采用1b 、in 时,a p =14.223 lb/in 2(psi) 2. 气压与容积变化关系式―――气体状态方程式 m )V V (p p 00= 式中: p 任一位置气囊内气体的绝对气压 V 任一位置气囊内气体容积 0p 静平衡位置气囊内气体的绝对气压 0V 静平衡位置气囊内气体容积 m 多变指数,静态即等温过程 m =1; 动态即绝热过程 m =1.4; 一般状态,可取 m =1.33。 3. 刚度:弹性特性为弱非线性,取其导数,即 dx dP K = 式中: K 任一位置的刚度 P 载荷 x 气囊变形量即行程 即: dx )A]p d[(p K a -= dx )A]p V V d[(p a m m 00-= dx dV V V Amp dx dA )p V V (p 1m m 00a m m 00?--=+ ----(2)

当气囊处在平衡位置时, V =0V , p =0p , dx dV =-A , 即: 020a 00V A mp dx dA )p (p K +-= ----(3) 在平衡位置时之偏频: 0a 000)V p (p mgA p dx dA A g 2π1n -+?= (Hz) ----(4) 式中: dx dA 称为有效面积变化率; g 重力加速度。 可见,降低dx dA 、增大0V ,可降低0n ,提高平顺性。 P.S.有时采用相对气压p 1来运算更为方便: p 1 =p -a p ----(5) 代入式(1)即P = p 1 A 或:0p = a 10p p + 代入式(3) 即:02a 10100V A )p m(p dx dA p K ++= ----(6) 0 10a 100V mgA p p p dx dA A g 2π1n ?++?= (Hz) ----(7) 又∵2 D 4πA = D 为有效直径, ∴dx dD 2πD dx dA ?= 代入式(6) 0 2 a 10100V A )p m(p dx dD 2πDp K ++?= ----(8) 式中: dx dD 称为有效直径变化率。 dx dD 或dx dA 由空气弹簧制造商提供数据或曲线, 对囊式空气弹簧,一般dx dD =0.2--0.3, 对膜式空气弹簧,一般dx dD =0--0.2, 甚至有dx dD =-0.1,取决于活塞形状。

钢板弹簧悬架系统设计规范--完整版

钢板弹簧悬架系统设计规范 1 范围 本规范适用于传统结构的非独立悬架系统,主要针对钢板弹簧和液力筒式减振器等主要部件设计参数的选取、计算、验证等作出较详细的工作模板。 2 规范性引用文件 下列文件中的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本规范。 QC/T 491-1999 汽车筒式减振器尺寸系列及技术条件 QCn 29035-1991 汽车钢板弹簧技术条件 QC/T 517-1999 汽车钢板弹簧用U形螺栓及螺母技术条件 GB/T 4783-1984 汽车悬挂系统的固有频率和阻尼比测定方法 3 符号、代号、术语及其定义 GB 3730.1-2001 汽车和挂车类型的术语和定义 GB/T 3730.2-1996 道路车辆质量词汇和代码 GB/T 3730.3-1992 汽车和挂车的术语及其定义车辆尺寸 QC/T 491-1999 汽车筒式减振器尺寸系列及技术条件 GB/T 12549-2013 汽车操纵稳定性术语及其定义 GB 7258-2017 机动车运行安全技术条件 GB 13094-2017 客车结构安全要求 QC/T 480-1999 汽车操纵稳定性指标限值与评价方法 QC/T 474-2011 客车平顺性评价指标及限值 GB/T 12428-2005 客车装载质量计算方法 GB 1589-2016 道路车辆外廓尺寸、轴荷及质量限值 GB/T 918.1-1989 道路车辆分类与代码机动车 JTT 325-2013 营运客车类型划分及等级评定 凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,凡是不注日期的引用文件,其最新版本适用于本规范。 4 悬架系统设计对整车性能的影响 悬架是构成汽车的总成之一,一般由弹性元件(弹簧)、导向机构(杆系或钢板弹簧)、减振装置(减振器)等组成,把车架(或车身)与车桥(或车轮)弹性地连接起来。主要任务是传递作用在车轮与车架之间的一切力与力矩,缓和由不平路面传给车架的冲击载荷,衰减由冲击载荷引起的承载系统的

空气弹簧动力学特性分析

空气弹簧动力学特性分析 担架支架是伤员运送车辆在行驶途中承载、固定卧姿伤病员 担架的主要设备。担架支架的隔振系统设计在很大程度上决定了 伤病员在运送途中的乘卧舒适性。性能优异的担架支架隔振系统 能有效提高伤员运送车辆的运送能力。空气弹簧是较为合适的可 用于担架支架系统的隔振器,它是利用空气的压缩弹性进行工作的非金属弹性元件。作为隔振元件,空气弹簧具有非线性变刚度特性,通过内压的调整,可以得到不同的承载能力;承受轴向载荷和径向 载荷,可产生相对较好的缓冲隔振效果;还具有结构简单、安装高 度低、更换方便、工作可靠、质量轻、单位质量储能量高等优 点。将空气弹簧增加附加气室能显著降低空气弹簧的刚度及固有 频率。本文对应用于急救车担架支架装置的空气弹簧隔振器的动 态特性进行了理论分析、实验测试、实验建模等方面的研究,为今后进一步研究半主动控制的空气弹簧隔振系统提供了参考依据。 本文首先介绍了空气弹簧的研究与发展现状,对空气弹簧的性能和优缺点进行了比较。并对空气弹簧的动力学特性进行研究,推导了空气弹簧动刚度计算公式,分析了其动力学特性的影响因素, 建立了带附加气室与不带附加气室空气弹簧的力学模型。 其次做了空气弹簧的动力学特性实验,得到如下结论:不带附 加气室时,当初始气压、激振振幅增加时,空气弹簧动刚度随之增加;当激振频率增加时,空气弹簧的动刚度随之减小。空气弹簧的

固有频率几乎保持不变。而带附加气室空气弹簧在节流孔孔径4-7mm范围内,当孔径增大时,空气弹簧动刚度随之减小;当初始气压、激振频率、激振振幅增加时,空气弹簧动刚度随之增加。在高频(8Hz)左右时,振幅、频率的变化对动刚度的改变已不明显。在低频率时,带附加气室能显著降低空气弹簧的动刚度,而在较高频率时,带附加气室会使空气弹簧的动刚度增加。 最后对带附加气室空气弹簧力学模型进行了简化,通过实验数据运用最小二乘法对模型参数进行了识别,并用四个指标对模型拟合精度进行了评价。分析结果表明误差较小,模型能够比较准确的反映出应用空气弹簧隔振器的力学特性。

汽车设计(课程设计)钢板弹簧

汽车设计——钢板弹簧课程设计 专业:车辆工程 教师:R老师 姓名:XXXXXX 学号:200XYYYY 2012 年7 月3 日

课程设计任务书 一、课程设计的性质、目的、题目和任务 本课程设计是我们在完成基础课、技术基础课和大部分专业课学习后的一个教学环节,是培养我们应用已学到的理论知识来解决实际工程问题的一次训练,并为毕业设计奠定基础。 1、课程设计的目的是: (1)进一步熟悉汽车设计理论教学内容; (2)培养我们理论联系实际的能力; (3)训练我们综合运用知识的能力以及分析问题、解决问题的能力。 2、设计题目: 设计载货汽车的纵置钢板弹簧 (1) 纵置钢板弹簧的已知参数 序号弹簧满载载荷静挠度伸直长度U型螺栓中心距有效长度 1 19800N 9.4cm 118cm 6cm 112cm 材料选用60Si2MnA ,弹性模量取E=2.1×105MPa 3、课程设计的任务: (1)由已知参数确定汽车悬架的其他主要参数; (2)计算悬架总成中主要零件的参数; (3)绘制悬架总成装配图。 二、课程设计的内容及工作量 根据所学的机械设计、汽车构造、汽车理论、汽车设计以及金属力学性能等课程,完成下述涉及内容: 1.学习汽车悬架设计的基本内容 2.选择、确定汽车悬架的主要参数 3.确定汽车悬架的结构 4.计算悬架总成中主要零件的参数 5.撰写设计说明书 6.绘制悬架总成装配图、零部件图共计1张A0。 设计要求: 1. 设计说明书 设计说明书是存档文件,是设计的理论计算依据。说明书的格式如下: (1)统一稿纸,正规书写; (2) 竖订横写,每页右侧画一竖线,留出25mm空白,在此空白内标出该页中所计算的主要数据; (3) 附图要清晰注上必要的符号和文字说明,不得潦草; 2. 说明书的内容及计算说明项目 (1)封面;(2)目录;(3)原始数据及资料;(4)对设计课题的分析;(5)汽车纵置钢板弹簧简图;(6)设计计算;(7)设计小结(设计特点及补充说明,鉴别比较分析,个人体会等);(8)参考文献。 3. 设计图纸 1)装配总图、零件图一张(0#);

最新钢板弹簧是什么-刚度分析

钢板弹簧是什么?刚度和分析 前言 钢板弹簧是汽车中广泛应用的弹性元件,刚度是其重要的物理参量。因此,在产品试制出来之前,如何更准确的计算其实际刚度就成为大家共同关心的问题。传统的计算方法,如“共同曲率法”和“集中载荷法”等均存在一定的局限性,在计算中往往需要加入经验修正系数来调整计算结果。随着计算机的发展,有限元法因其精度高、收敛性好、使用方便等优点逐渐被应用到板簧的设计中。邹海荣等应用有限元法分析了某渐变刚度钢板弹簧的异常断裂问题,提出了避免此种断裂的改进措施。胡玉梅等针对某汽车后悬架的钢板弹簧应用Ansys软件分析了其静态强度特性,给出了钢板弹簧在不同载荷作用下的应力分布,计算结果与试验符合的较好。谷安涛则讨论了应用有限元法设计钢板弹簧的一般流程,给出了设计的示例。 有限元法的最大优点之一就是可以仿真设计对象的实际工作状态,因而可以部分代替试验,指导精确设计。汽车钢板弹簧存在非线性和迟滞特性。应用有限元法进行分析时需要考虑大变形及接触,即需要同时考虑几何非线性和状态非线性,这将使得计算不容易收敛,因而需要较高的求解技巧及分析策略。 本文采用Nastran的非线性分析模块分析了某钢板弹簧的刚度特性,讨论了摩擦对其性能的影响,其分析流程及结果可以为同类型产品的设计提供参考。 2 钢板弹簧刚度的计算方法 传统的计算方法有“共同曲率法”和“集中载荷法”。此外,国内学者郭孔辉针对共同曲率法中存在的固有缺陷,提出了一种称为主片分析法的计算方法,田光宇等则针对集中载荷法的固有缺陷,提出了改进的集中载荷法。这些方法的出发点都是把板簧各片看成是等截面的悬臂梁,不考虑板簧各片之间的摩擦和板簧变形过程中的大变形特性,采用经典梁公式计算第1叶片的端点挠度,进而求得板簧的刚度。 2.1共同曲率法 共同曲率法由前苏联的帕尔希洛夫斯基提出,其基本假设为板簧受载后各叶片在任一截面上都有相同的曲率,即把整个板簧看成是一变截面梁,由此推出对称板簧的刚度计算公式如下: 2.2集中载荷法 集中载荷法的基本假设为板簧各叶片仅在端部相互接触,即假定第i片与第i-1片之间仅有端部的一个接触点,接触力为Pi,并且在接触点处两相邻叶片的挠度相等。其中P1为第1片所受外载荷。因此,系统中的未知力为P2,P3,?,Pn共n-1个,由接触点处挠度相等可得到n-1个方程,求解此方程组可得到未知作用力P2,P3,?,Pn,再根据第1片所受

空气弹簧的工作原理及性能

空气弹簧 空气弹簧的基本结构 空气弹簧是一种由橡胶、网线贴合成的曲形胶囊,俗称气胎、波纹气胎、气囊、皮老虎等。胶囊两端部需用两块钢板相连接,形成一个压缩空气室。橡胶与网线本身不提供对负荷的承载力,而是由充入胶囊内的压缩空气来完成。其曲囊数通常为1~3 曲囊,但根据需要也可以设计制造成4 曲或5 曲以上,还可以在一定条件下将两个空气弹簧叠加使用。 空气弹簧按照性能与特点又称为橡胶空气冲程调节器和橡胶空气隔振体。 现有的曲囊式空气弹簧的端部结构,根据联接方式可以分为三大类:一类为固定式法兰联接型,空气弹簧的两端边缘尺寸和曲囊最大外径相等或略小一些,钻若干个孔后用法兰环和端板紧固联接;另一类为活套式法兰联接型,空气弹簧的两端边缘尺寸比曲囊最大外径小得多,无须钻孔,用一个特制的法兰环和一个普通端板紧固联接;第三类为自密封型,不用法兰联接,压入端板,充入压缩空气则自行密封。空气弹簧端部与连接板的法兰密封形式有:LHF 型、JBF 型、GF 型、

HF 型、ZF 型五种结构形式。 参考网址:https://www.360docs.net/doc/7d14247663.html, (详见空气弹簧端封形式选择及装配结构) 空气弹簧端封形式选择及总装配结构 1、弹簧高度、承载能力和弹簧刚度的选择: 设计时,可彼此独立地,范围相当广泛地选择弹簧高度,承载能力和弹簧刚度,可获得极其柔软的弹簧特性。 弹簧高度:使用高度控制阀,可根据使用要求适当控制空气弹簧的高度,在簧上载荷变化的情况下保持一定高度。 承载能力:对于相同尺寸的空气弹簧,改变内压,可得到不同的承载能力,承载能力大致与内压成正比。这便达到了同一种空气弹簧可适应多种载荷要求。 弹簧刚度:在设计空气弹簧的刚度时,可以依靠改变弹簧内压而加以选择,刚度与内压大致成正比,因此,可以根据需要将刚度选得很低,对于一个尺寸既定的空气弹簧,刚度是可变的,它随载荷的改变而变化,因而在任何载荷下自振频率几乎不变,所以它能使被支承系统具有几乎不变的性能。 2、固有的振动频率较低 空气弹簧与附加空气室相连,可是空气弹簧装置的固有振动频率降低到0.5∽ 3Hz。在任何载荷的作用下,空气弹簧都可以保持较低而近乎相等的振动频率。 3、能隔绝高频振动及隔音效果好 空气弹簧是由空气和橡胶构成的,内部摩擦小,不会因弹簧本身的固有振动而影响隔离高频振动的能力。此外,空气弹簧没有金属间的接触,因此能隔音,防音效果也很好。

相关文档
最新文档