弹簧阻尼系统动力学模型adams仿真
基于Adamscar板簧工具箱的钢板弹簧建模及仿真
10.16638/ki.1671-7988.2021.04.029基于Adams/car板簧工具箱的钢板弹簧建模及仿真刘君程1,姜家如2,宋绍文2,罗传东2,王涛2(1.安徽江淮汽车股份有限公司国际公司,安徽合肥230601;2.安徽江淮汽车股份有限公司技术中心,安徽合肥230601)摘要:文章主要基于某车后悬架结构模型,提取建立悬架模型所需参数,利用美国MDI公司开发的Adams/car软件所嵌入的leafspring子模块进行钢板弹簧悬架模型建立,并且详细描述了板簧模型建立过程,进而完成板簧垂向刚度变化对比,形成与该车相对应的板簧悬架动力学模型。
在文章最后,对后悬架板簧模型与该车后悬架同向轮跳试验测得各参数变化趋势进行对比,吻合度达到95%以上。
关键词:钢板弹簧;垂向刚度;同向轮跳中图分类号:U461.99 文献标识码:A 文章编号:1671-7988(2021)04-95-03The foundation and simulation of leafspring by Adams/carLiu Juncheng1, Jiang Jiaru2, Song Shaowen2, Luo Chuandong2, Wang Tao2(1.Anhui Jianghuai Automobile Group Corp., Ltd. International Company, Anhui Hefei 230601;2.Technology Center of Anhui Jianghuai Automobile Group Corp., Ltd, Anhui Hefei 230601)Abstract:This text mainly according to the back of the some car hang a structure pattern, withdraw to create to hang the parameter that a pattern needs, make use of the leafspring son mold mass progress steel plate spring imbeding in the Adams/car software that the United States' MDI company develops to hang a pattern establishment; And vs board Huang pattern create the process carry on detailed present, complete board Huang just the degree changed contrast and forminged the car's contra thus should of the board Huang hangs a kinetics pattern. In this text end, vs behind hang a board Huang pattern and the car behind hang a stand to together jump toward the wheel test to measure each parameter change the trend carry on contrast and fit together a degree to hit above 95%.Keywords: Leaf spring; Vertical stiffness; Same direction wheel jumpCLC NO.: U461.99 Document Code: A Article ID: 1671-7988(2021)04-95-03引言随着市场对车辆产品设计制造快速多变,同时又要保证性能要求,基于多体动力学的虚拟样机仿真技术在汽车行业得到广泛的应用。
汽车钢板弹簧柔性体建模与仿真研究
汽车钢板弹簧柔性体建模与仿真研究宋桂霞【摘要】为了建立钢板弹簧的动力学分析模型,研究其在整车动力学分析方面的应用,利用HyperWorks建立板簧的有限元模型,并计算板簧的刚度.刚度模拟值与试验值能较好地吻合,验证了生成的板簧有限元模型和计算方法的正确性.在HyperWorks中通过定义模态综合法卡片CMSMETH和超单元边界自由度卡片的方法,生成板簧的模态中性文件.在ADAMS/CAR中导入板簧模态中性文件,并建立刚柔耦合的整车多体动力学模型.通过对整车模型进行平顺性脉冲输入仿真,并与试验结果对比,分析利用此方法建立的柔性体板簧在动力学方面的应用.由结果可知,建立的板簧能很好地反映动态特性,可用于整车仿真分析.【期刊名称】《农业装备与车辆工程》【年(卷),期】2011(000)006【总页数】4页(P18-21)【关键词】钢板弹簧;HyperWorks;模态中性文件法;ADAMS【作者】宋桂霞【作者单位】上海汽车商用车技术中心,上海,200438【正文语种】中文【中图分类】U463.330 引言钢板弹簧是汽车悬架系统中常用的弹性元件,尤其是在当前商用车悬架系统中,板簧承载式的悬架是商用车悬架系统中的典型代表。
与其他弹性元件相比,其结构简单,维修方便。
当纵向布置在汽车上时,除了作为弹性元件之外,还可以兼起导向和传递侧向、纵向力和力矩的作用。
由于钢板弹簧存在着大变形、接触、摩擦等诸多非线性因素的影响,其建模难度较大。
以往在研究其动特性时,多忽略其非线性因素,采用简化的线性化模型进行分析,一般将其简化成一个普通的弹簧,认为其变形与外力是线性关系。
根据钢板弹簧的结构和受载特点可知,这种简化是近似的,不精确的。
而且采用这种简化方法建立的整车多体动力学模型,只能反映真实汽车的模型特征,而不是全部[1]。
如何建立钢板弹簧的多体动力学仿真模型,准确反映板簧在运动状态下的受力和变形,以及对车辆性能的影响,一直是板簧特性研究的难点。
基于ADAMS的悬架系统动力学仿真分析与优化设计
基于ADAMS的悬架系统动力学仿真分析与优化设计摘要:本文基于ADAMS软件,对悬架系统进行了动力学仿真分析与优化设计。
通过建立悬架系统的模型,应用动力学仿真技术,研究了悬架系统在不同工况下的动力学性能,并进行了相应的优化设计。
仿真结果表明,通过优化设计,悬架系统的动力学性能得到了明显的提升,进而提高了整车的操纵稳定性和行驶舒适性。
1. 引言随着汽车工业的发展,悬架系统的性能对于整车的操纵稳定性和行驶舒适性起着至关重要的作用。
因此,对悬架系统进行动力学仿真分析和优化设计具有重要的理论意义和工程应用价值。
2. 悬架系统模型建立首先,根据悬架系统的实际结构和工作原理,建立了悬架系统的运动学和动力学模型。
模型包括弹簧、减振器、转向杆等各个部件,并考虑了车轮与地面之间的接触力和摩擦力。
通过ADAMS软件的建模工具和功能,对悬架系统进行了准确地建模。
3. 悬架系统动力学仿真基于悬架系统的模型,进行了不同工况下的动力学仿真分析。
通过设定不同的工况参数,如路面不平度、悬架系统参数等,研究了悬架系统在不同路况下的动力学性能。
仿真结果显示了悬架系统的悬架行程、车体加速度、横向加速度、滚动转矩等关键参数的变化规律。
4. 悬架系统优化设计根据悬架系统动力学仿真的结果,对悬架系统进行了优化设计。
通过改变悬架系统的参数和结构,优化了悬架系统的动力学性能。
具体而言,通过增加弹簧刚度、调整减振器阻尼等方式改善了悬架系统的行程和刚度特性。
通过优化悬架系统的参数,达到了提高整车操纵稳定性和行驶舒适性的目的。
5. 结果与分析通过悬架系统动力学仿真和优化设计,得到了悬架系统在不同工况下的性能变化趋势。
仿真结果表明,通过合理的优化设计,悬架系统的行程和刚度均得到了明显的改善。
同时,整车的操纵稳定性和行驶舒适性也得到了显著提升。
6. 结论本文基于ADAMS软件,对悬架系统进行了动力学仿真分析与优化设计。
通过建立悬架系统的模型,进行了不同工况下的仿真分析,并进行了相应的优化设计。
弹簧阻尼系统动力学模型adams仿真
弹簧阻尼系统动力学模型adams仿真震源车系统动力学模型分析报告一、项目要求1)独立完成1个应用Adams软件进行机械系统静力、运动、动力学分析问题,并完成一份分析报告。
分析报告中要对所计算的问题与建模过程做简要分析,以图表形式分析计算结果。
2)上交分析报告与Adams的命令文件,命令文件要求清楚、简洁。
二、建立模型1)启动admas,新建模型,设置工作环境。
对于这个模型,网格间距需要设置成更高的精度以满足要求。
在ADAMS/View菜单栏中,选择设置(Setting)下拉菜单中的工作网格(Working Grid)命令。
系统弹出设置工作网格对话框,将网格的尺寸(Size)中的X与Y分别设置成750mm与500mm,间距(Spacing)中的X与Y都设置成50mm。
然后点击“OK”确定。
如图2-1所表示。
图2-1 设置工作网格对话框2)在ADAMS/View零件库中选择矩形图标,参数选择为“on Ground”,长度(Length)选择40cm高度Height为1、0cm,宽度Depth为30、0cm,建立系统的平台,如图2-2所示。
以同样的方法,选择参数“New Part”建立part-2、part-3、part-4,得到图形如2-3所示,图2-2 图2-3创建模型平台3)施加弹簧拉力阻尼器,选择图标,根据需要输入弹簧的刚度系数K 与粘滞阻尼系数C,选择弹簧作用的两个构件即可,施加后的结果如图2-4图2-4 创建弹簧阻尼器4)添加约束,选择棱柱副图标,根据需要选择要添加约束的构件,添加约束后的模型如2-5所示。
图2-5 添加约束至此模型创建完成三、模型仿真1)、在无阻尼状态下,系统仅受重力作用自由振动,将最下层弹簧的刚度系数K设置为10,上层两个弹簧刚度系数均设置为3,小物块的支撑弹簧的刚度系数为4,阻尼均为0,进行仿真,点击图标,设置End Time为5、0,Step Size为0、01,Steps为50,点击图标,开始仿真对所得数据进行分析。
基于UG和ADAMS的高压开关弹簧机构动力学仿真和优化
在整个过程中受力幅值存在较大的波动, 这对凸轮
GRAVITY 机构的抗疲劳强度会有很高的要求, 也直接导致轴 承使用寿命的降低。
图 3 UG 装配环境及弹簧 操作机构总装模型
( a) 合闸运动状态 ( b) 分闸运动状态
图 4 ADAMS 中弹簧机构分、合闸 运动状态虚拟样机模型
表 1 合闸、分闸工作状态初始位置与姿态
1
2
6 8
5 7
9
10
11
3 12 4
13
14 15 17 16 19 18
20
图 1 弹簧操作机构工作原理
出动力特性与断路器的负载特性相匹配, 如何合理 设计和改进断路器的弹簧操作机构、缓解各机构所 受的冲击, 已成了解决高电压等级大开断电流的断 路器中重要问题之一。这些问题成为影响产品质量 的关键问题, 也是设计中急待解决的问题[ 2] 。
Kinematic Simulation and Optimization for Spr ing Oper ating Mechanism of Cir cuit Switch Based on UG and ADAMS
LI Shi-yun, TANG Fu-yang
( Kunming University of Science and Technology, Kunming 650093, China)
1 弹簧操作机构动力学模型的建立
收稿日期: 2007 - 12 - 17; 修回日期: 2008 - 02 - 18
笔者利用多体系动力学的拉格朗日乘子法, 建
基金项目: 云南省中青年学术技术带头人基金资助( 2006PY01- 03) 。
作者简介: 李世芸( 1965- ) , 女, 教授, 主要从事 CAD/CAE 研究。
MSC.Adams振动阻尼模拟
WS14-3
• Problem Description
– Build the model to have the specifications of the model below.
ADM701, Workshop 14, June 2011 Copyright 2011 MSC.Software Corporation
• Software Version
– ADAMS 2011
• Files Required
– New model saved to exercise_dir/mod_14_spring_damper
ADM701, Workshop 14, June 2011 Copyright 2011 MSC.Software Corporation
ADM701, Workshop 14, June 2011 Copyright 2011 MSC.Software Corporation
WS14-5
Step 1. Create, Build and Constrain New Model
To create a model: •Start Adams/View from the directory exercise_dir/mod_14_spring_da mper. •Create a new model named spring_mass. To build and constrain the model: a.Build the block with the given mass. (slide 4) Tip: Right-click the part and select Modify. Set Define Mass By to User Input. b.Constrain the block with a translational joint to move only in the ŷg direction. c.To verify the expected behavior, simulate the model.
弹簧阻尼系统动力学模型adams仿真
震源车系统动力学模型分析报告一、项目要求1)独立完成1个应用Adams软件进行机械系统静力、运动、动力学分析问题,并完成一份分析报告。
分析报告中要对所计算的问题和建模过程做简要分析,以图表形式分析计算结果。
2)上交分析报告和Adams的命令文件,命令文件要求清楚、简洁。
二、建立模型1)启动admas,新建模型,设置工作环境。
对于这个模型,网格间距需要设置成更高的精度以满足要求。
在ADAMS/View菜单栏中,选择设置(Setting)下拉菜单中的工作网格(WorkingGrid)命令。
系统弹出设置工作网格对话框,将网格的尺寸(Size)中的X和Y分别设置成750mm和500mm,间距(Spacing)中的X和Y都设置成50mm。
然后点击“OK”确定。
如图2-1所表示。
图2-1设置工作网格对话框2)在ADAMS/View零件库中选择矩形图标,参数选择为“onGround”,长度(Length)选择40cm高度Height为1.0cm,宽度Depth为30.0cm,建立系统的平台,如图2-2所示。
以同样的方法,选择参数“NewPart”建立part-2、part-3、part-4,得到图形如2-3所示,图2-2图2-3创建模型平台3)施加弹簧拉力阻尼器,选择图标,根据需要输入弹簧的刚度系数K和粘滞阻尼系数C,选择弹簧作用的两个构件即可,施加后的结果如图2-4图2-4创建弹簧阻尼器4)添加约束,选择棱柱副图标,根据需要选择要添加约束的构件,添加约束后的模型如2-5所示。
图2-5添加约束至此模型创建完成三、模型仿真1)、在无阻尼状态下,系统仅受重力作用自由振动,将最下层弹簧的刚度系数K设置为10,上层两个弹簧刚度系数均设置为3,小物块的支撑弹簧的刚度系数为4,阻尼均为0,进行仿真,点击图标,设置EndTime为5.0,StepSize为0.01,Steps为50,点击图标,开始仿真对所得数据进行分析。
选择物块的位移、速度、加速度与时间的图像如图3-1、3-2、3-3所示,经过傅里叶变换之后我们可以清楚地看到系统的各阶固有频率。
基于AdamsCar的钢板弹簧建模及仿真应用研究
基于Adams/Car的钢板弹簧建模及仿真应用研究马天飞,佐安康吉林大学汽车动态模拟国家重点实验室,长春 130022【摘要】:简单介绍了利用铁木辛柯梁模拟钢板弹簧的基本理论,使用MSC Adams/Car软件建立了不考虑片间摩擦作用的钢板弹簧参数化模型。
进行平行轮跳试验仿真。
将所建立的钢板弹簧悬架系统应用于某商用车整车模型,进行平顺性仿真分析并利用道路试验验证了钢板弹簧模型的正确性。
通过修改关键参数迅速重新构建钢板弹簧模型以改善整车平顺性,为改进钢板弹簧设计方案提供了依据。
【关键词】汽车,钢板弹簧,参数化建模,仿真,MSC Adams/CarThe Model And Application Research 0f Leaf-spring With MSC Adams/CarMa Tianfei, Zuo AnkangState Key Laboratory of Automobile Dynamic Simulation, Changchun 130022 Abstract: The common theory of building leaf-spring model with beam method is introduced simply. The leaf-spring model with various stiffness values is built by using MSC Adams/Car without considering the friction between the leaves. The simulation of parallel wheel travel is carried out. The full vehiclemulti-body dynamics model is created in Adams/Car. The simulation of ride performance is carried out, and its results are conformable to that of vehicle test on proving ground. Therefore, it proves that virtual prototype model is correct and believable. The stiffness value used in the simulation of ride performance can be got through adjusting the key parameters of the beam, the analysis can provide evidence in designing leaf-spring.Key words: vehicle,leaf-spring model,parametric_modeling,simulation,MSC Adams/Car1 引言随着计算机技术的发展,多体动力学方法在汽车仿真领域应用的越来越广泛。
基于ADAMS的皮卡板簧动力学建模方法及性能仿真
基于ADAMS的皮卡板簧动力学建模方法及性能仿真孔德琨【摘要】文章根据钢板弹簧模型建立所需要的参数,基于ADAMS/view中的板簧工具箱,完成某皮卡后钢板弹簧的动力学建模,并在ADAMS/view下实现性能仿真,求解出钢板弹簧的刚度曲线,为下一步钢板弹簧悬架的优化设计提供理论依据.【期刊名称】《汽车实用技术》【年(卷),期】2015(000)011【总页数】3页(P76-77,102)【关键词】ADAMS/view;皮卡;钢板弹簧;性能仿真【作者】孔德琨【作者单位】安徽江淮汽车股份有限公司,安徽合肥230601【正文语种】中文【中图分类】U467.2前言钢板弹簧是现代汽车悬架结构中应用很广泛的弹性元件之一,主体是由若干金属叶片叠加而成.其近似一根等强度的弹性梁,主要承受来自各个方向上的力和力矩,同时还承担汽车在启动和制动时的扭矩。
本文基于Adams/view中的板簧工具箱,根据实际参数,建立某皮卡的钢板弹簧动力学模型,并初步实现其性能仿真。
1、Adams简介Adams(Automated Dynamic Analysis of Mechanical Systems)是由美国MDI公司开发的一款虚拟样机分析软件,主要用于仿真机械系统的性能、运行轨迹、碰撞、峰值载荷模拟以及计算有限元的输入载荷等等。
在接近于现实的工作条件下逼真地模拟所有运动情况,并且可以快速对比分析多种设计方案,直至确定最优的设计方案。
2、ADAMS板簧建模方法2.1 板簧建模方法在Adams中,有着多种钢板弹簧的建模方法,主要包括等效中性面法、三段梁法和离散单元梁法等:等效中性面法:主要将所有的主簧片看成一整片,然后分成若干刚体,刚体之间用柔性梁连接,刚体质量和转动惯量按照所有主簧片整体的实际质量参数;副簧建模方法同样。
主、副簧片之间的接触通过Adams中接触函数模拟。
三段梁法:这是一种简化的钢板弹簧模型,将钢板弹簧看成中间刚性衬套或者球铰连接起来,前、后梁与车架用弹性衬套或者铰链副连接,并通过选择合适的衬套参数,使之达到实际钢板弹簧的刚度。
adams弹簧仿真模拟
Adams作业题目: 弹簧模拟仿真分析院系: XXXXXXXXXXXXXX 专业年级: XXXXXXXXXXXXXXXXX 姓名: XXXXXX学号: XXXXXXXXXXXX 指导教师: XXXXXXXXXX年XX月XX日ADAMS的弹簧振子模拟仿真1.ADAMS仿真模拟建立弹簧双物块模型是基于汽车在不同的路面上行驶,车身震动引起的驾驶座震动的简化模型。
我们所简化的模型中,大致仿真汽车在频率高、中、低三种情况下的驾驶座的震动情况,即仿真中下面物块的频率分别大于、等于、小于弹簧和上面物块的频率。
建立仿真模型如下图1所示:图1弹簧仿真模拟模型1)对模型建立的说明:建立两个物快分别调整质量大小,将两个物快用弹簧连接,分别在弹簧与物快接触处加移动副,再加上变化趋势将函数改为正弦函数即10sin()time⋅ω⋅2)对弹簧模型数据的说明:上边的物快质量150m kg=,下边的物快质量250m kg=,弹簧的刚度20/20/k n mm kn m==,弹簧的阻尼0.15/150/c n s mm n s m=⋅=⋅3)对模型的计算:弹簧的固有频率020Hzω==(对固有频率的估算是以物快2为静止的情况下)2.部分操控特性仿真汽车仿真模拟分三种情况分别是000ω>>ω ω=ω ω<<ω1)进行ω>>ω时的模拟分析通过计算我们知道020Hzω=,进行仿真时我们将正弦变化函数的100Hzω=,分别仿真出曲线,分别为物体1对地面,物体2对地面,物体1对物体2的曲线分别如下图:图2 物快1对地面的相对运动曲线图3 物快2对地面的相对运动曲线图4物快1对物快2的相对运动曲线分析说明:曲线为仿真5秒800步的图像,图2为物快1对地面的变化,图3为物快2对地面的变化,图4为物快1对物快2相对运动的变化。
结论:图2曲线大致是图3和图4曲线的叠加,图3曲线是正弦变化曲线即我们外加的曲线变化,图2曲线震动趋于静止,可见在高频运动下下边物快对上面影响不大。
Adams动力学仿真分析步骤
Adams动力学仿真分析的详细步骤
1、将三维模型导出成parasolid格式,在adams中导入parasolid格式的模型,
并进行保存。
2、检查并修改系统的设置,主要检查单位制和重力加速度。
3、修改零件名称(能极大地方便后续操作)、材料和颜色。
首先在模型界面,使用线框图来修改零件名称和材料。
然后,使用view part only来修改零件的颜色。
4、添加运动副和驱动。
注意:
1)添加运动副时,要留意构件的选择顺序,是第一个构件相对于第二个构件运动。
2)对于要添加驱动的运动副,当使用垂直于网格来确定运动副的方向时,一定要注意视图定向是否对,使用右手法则进行判断。
若视图定向错了,运动方向就错了,驱动函数要取负。
3)添加运动副时,应尽量使用零件的质心点,此时也应检查零件的质心点是否在其中心。
4)因为在仿真中经常要修改驱动函数,所以应为驱动取一个有意义的名称,一般旋转驱动取为:零件名称_MR1,平移驱动取为:零件名称_MT1。
5)运动副数目很多,且后面用的比较少,所以运动副的名称可以不做修改。
对于要添加驱动的运动副,在添加运动副后,应马上添加驱动,以免搞错。
基于ADAMS的环形弹簧后坐缓冲运动仿真
基于ADAMS的环形弹簧后坐缓冲运动仿真魏立新;陈延伟;刘明敏【摘要】In this paper,introduce the method of simulation the annular spring with runtime function in ADAMS,and simulating the recoiling displacement of one gun. The result showed that the method is correct,and it can also be used in sim-ulation analysis of other special spring.%本文通过运行函数表达式形式,在ADAMS软件环境下实现了不同刚度环形弹簧工作特性仿真,并利用该方法对某小口径火炮的后坐复进过程进行仿真计算,其结果与试验数据吻合较好,该仿真方法方便、准确,针对生产过程中出现环形弹簧刚度降低对后座规律影响有理论指导意义,也可应用于其他特殊弹簧的仿真,提高火炮后座复进过程仿真计算效率.【期刊名称】《舰船科学技术》【年(卷),期】2018(040)003【总页数】4页(P154-157)【关键词】环形弹簧;ADAMS;后坐缓冲;动力学仿真【作者】魏立新;陈延伟;刘明敏【作者单位】中国船舶重工集团公司第七一三研究所,河南郑州 450015;中国船舶重工集团公司第七一三研究所,河南郑州 450015;中国船舶重工集团公司第七一三研究所,河南郑州 450015【正文语种】中文【中图分类】U4630 引言环形弹簧由多个带有内锥面的外圆环和带有外锥面的内圆环配合组成,由于接触表面具有很大的摩擦力,加载时增大弹簧作用力,卸载时减小弹簧作用力。
环形弹簧再加载和卸载循环中,由摩擦力转化为热能所消耗的功,其大小几乎可以达到加载过程所作功的60%~70%[1],其常应用在空间尺寸受限而又需要强力缓冲的场合。
基于ADAMS和MATLAB的空气弹簧虚拟样机运动仿真
基于ADAMS和MATLAB的空气弹簧虚拟样机运动仿真李纯;丁旺才
【期刊名称】《机械工程师》
【年(卷),期】2011(000)010
【摘要】文中在分析空气弹簧工作原理的基础上,建立了ADAMS虚拟样机模型,并采用PID控制系统模拟高度控制阀,得到了空气弹簧高度响应曲线.结果表明,通过ADAMS与MATLAB/Simulink联合仿真,实现了对空气弹簧不同工况下运动状态的模拟,体现了高度控制阀延时性与无感区的特性.
【总页数】3页(P34-36)
【作者】李纯;丁旺才
【作者单位】兰州交通大学机电工程学院,兰州730070;兰州交通大学机电工程学院,兰州730070
【正文语种】中文
【中图分类】TP391.7
【相关文献】
1.基于ADAMS的环形弹簧后坐缓冲运动仿真 [J], 魏立新;陈延伟;刘明敏
2.基于CATIA和ADAMS的曲柄机构虚拟样机运动仿真 [J], 董江华;姜大成
3.基于ADAMS的转轨堆垛机虚拟样机建模及运动仿真 [J], 李伟;甘仲平;张大勇;郑和平;鲜春桥
4.基于UG和ADAMS的装载机工作装置虚拟样机的运动仿真 [J], 温效朔
5.基于Adams和Matlab的发射设备随动系统虚拟样机建模与联合仿真 [J], 韦正超
因版权原因,仅展示原文概要,查看原文内容请购买。
基于Adams Chassis的钢板弹簧建模案例(初稿)
Front Leaf Eye Bushing (前钢板眼管套) Shackle to Frame(束缚框架)
2.钢板弹簧建模案例
c.钢板弹簧建模界面参数设置:钢板环首钩信息(Leaf Eyehook)
Front and Rear Eyehook Inner Diameter(前后 环首钩内径):30.00mm Front and Rear Eyehook Shape(前后环首钩形 状):upturned
2.钢板弹簧建模案例
打开 XG_spring.ltf,可 以看到,现在有九 片钢板弹簧参数设 置选项了。
2.钢板弹簧建模案例
c.钢板弹簧建模界面参数设置:一般信息设置(General)
Number of leaves(钢板数目): 9 Frictional Coefficient(摩擦系 数):默认(0.0) Impact exponent(影响指数): 默认(2.1) Fitting Algorithm(配件算法): 默认(二阶多项式拟合)
缺点: 此方法有限元节点多,若进行整车仿真则计算量大,特别 是在设计阶段, 当钢板弹簧弧高或是坐标改变时,还要重新 建立钢板弹簧模型,特别费时[1]。
1.ADAMS中的钢板弹簧建模方法
b. SAE 3 段梁法 这是一种简化的钢板弹簧模型, 即将钢板弹簧看成中 间刚性杆(U 型螺栓固定) 与两侧简支梁构成。此3 段梁 用弹性衬套或者球铰连接起来,前、后梁与车架用弹性衬套 或者铰链副连接, 并通过选择合适的衬套参数使之达到实 际钢板弹簧刚度[2]。
1.ADAMS中的钢板弹簧建模方法
c. 离散梁法 将各片钢板弹簧离散化,每段视为一个刚体,每段之间 用BEAM 梁来连接,BEAM 梁参数根据钢板弹簧截面形状与材 质得出。各片之间的接触利用ADAMS 中的接触力来定义。中 性面法也可视为是离散梁法, 它是将各片等效成一片。离 散梁法可建立与实际钢板弹簧性能和形状接近x/LeafsPring 建立钢板弹簧。
保护版权,仅供参考:基于ADAMS的钢板弹簧动力学建模方法及性能仿真
基于ADAMS 的钢板弹簧动力学建模方法及性能仿真*韩翔(徐州工程学院机电学院,徐州221008)Dynamics modeling and simulation of leaf spring based on ADAMSHAN Xiang(Department of Mechanical Engineering and Electronics ,Xuzhou Institute of Technology ,Xuzhou 221008,China )文章编号:1001-3997(2009)10-0220-03【摘要】应用离散BEAM 梁法完成钢板弹簧在ADAMS/CHASSIS 中的动力学建模,并在ADAMS/VIEW 下实现性能仿真,为在VIEW 下灵活实现车辆仿真分析奠定了基础。
关键词:钢板弹簧;仿真;ADAMS/CHASSIS ;ADAMS/VIEW【Abstract 】By applying the principle of discrete beam the dynamics model of leaf spring was estab -lished under the enviroment of ADAMS/CHASSIS ,and simulation was accomplied based on ADAMS/VIEW .Thus laid foundation to carried out vehicle simulation.Key words :Leaf spring ;Simulation ;ADAMS/CHASSIS ;ADAMS/VIEW中图分类号:TH12,U463文献标识码:A*来稿日期:2008-12-01*基金项目:徐州市工业科技计划项目(X20060089)钢板弹簧是工程车辆、三轮车等农用运输车辆悬架系统中的弹性元件,同时又是传递纵向、侧向力的传力元件。
弹簧挂锁设计(ADAMS使用入门例题)
英文资料翻译:ADAMS/View使用入门欢迎浏览MDI的网址美国总部:中国办事处:目录第一章弹簧挂锁设计问题介绍 1总论 1你将学习的内容 1你将创建的模型 2设计要求 3弹簧挂锁的工作原理 3第二章建模总论 5建造曲柄和手柄 5启动ADAMS/View并建立一个新的数据文件 6熟悉ADAMS/View的界面 6设置工作环境 7创建设计点 8建造曲柄(pivot) 9重新命名曲柄(pivot) 9建造手柄(handle) 9用转动副连接各个构件 9模拟模型的运动 10观察参数化的效果 10建造钩子(Hook)和连杆(Slider) 10建造钩子和连杆 11用铰链连接各构件 12模型运动仿真 12存储你的数据文件 12第三章测试初始模型总论 13生成地块(Ground Block) 14加一个Inplane 虚约束 14加一个拉压弹簧 15加一个手柄力 16弹簧力的测试 16角度测试 17生成一个传感器 18存储模型 18模型仿真 18第四章验证测试结果总论 20输入物理样机试验数据 20用物理样机试验数据建立曲线图 21编辑曲线图 22用仿真数据建立曲线图 22存储模型 23第五章细化模型总论 24建立设计变量 24重新设置设计变量的值 25第六章深化设计总论 26人工做一次的方案研究 26运行Design Study 26检查方案研究结果 28第七章最优化设计总论 30调整设计变量 30运行最优化设计程序 31第八章设计过程自定义总论 34建立设计变量 34制作自定义的对话框 34给对话框填充内容 34给滑动条赋予命令 35测试对话框 36存储对话框 36修改手柄力值 36结束语 37第一章弹簧挂锁设计问题介绍总论本入门练习将介绍如何使用机械系统动力学分析仿真软件ADAMS/View解决一个实际工程问题。
我们建议你按本练习指导过程循序渐进地进行学习,因此在开始阶段我们会给予你较多的指导,随着你对软件的逐步熟悉,这样的指导就会逐渐减少。
Adams在传动系统及轨道车辆动力学仿真解决方案
Roller
Silent (aka Involute)
MSC Software Confidential
Adams/Machinery: Bearing
MSC Software Confidential MSC Software Confidential
Adams/Machinery: Bearing
4
Adams/Machinery 解决的问题
齿轮模块: 研究齿轮对设计及动力学行为 如齿轮传动比,齿侧间隙等对整个 系统性能的影响 带传动模块: 预测带传动系统设计及动力 学行为如传动比,张紧力和载荷预 测、柔性研究或带的动力学等对整 个系统动力学影响 链传动模块: 分析链传动系统的设计及动 力学行为如驱动比,张紧力,接触 力及链动力学响应等对整个系统的 影响. 轴承模块:研究轴承设计及动力学行为 如轴承刚度、油膜特性等对整个系 统的影响 绳索模块:研究绳索滑轮动力学行为如: 传动比,绳索动力学响应等对整个 系统的影响
2
Adams/Machinery 概述
• 一系列功能模块打包成Adams/Machinery: • • • 通过向导的方式自动建立机械传动系统 集成在Adams/View的环境下 前提: Adams/Studio (Adams/View & Adams/Solver)
MSC Software Confidential
Adams 在传动系统及轨道车辆 动力学仿真解决方案
Presented By: 徐岷
June 20, 2013
MSC Software Confidential MSC Software Confidential
Adams 在传动系统动力学解决方案
MSC Software Confidential
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
震源车系统动力学模型分析报告
一、项目要求
1)独立完成1个应用Adams 软件进行机械系统静力、运动、动力学分析问题,并完成一份分析报告。
分析报告中要对所计算的问题和建模过程做简要分析,以图表形式分析计算结果。
2)上交分析报告和Adams 的命令文件,命令文件要求清楚、简洁。
1K 1
C 2K 2C 3
C 3
K 3
M 1
M 2M
二、建立模型
1)启动admas ,新建模型,设置工作环境。
对于这个模型,网格间距需要设置成更高的精度以满足要求。
在ADAMS/View 菜单栏中,选择设置(Setting )下拉菜单中的工作网格(Working Grid )命令。
系统弹出设置工作网格对话框,将网格的尺寸(Size)中的X 和Y 分别设置成750mm 和500mm ,间距(Spacing )中的X 和Y 都设置成50mm 。
然后点击“OK ”确定。
如图2-1所表示。
图 2-1 设置工作网格对话框
2)在ADAMS/View零件库中选择矩形图标,参数选择为“on Ground”,长度(Length)选择40cm高度Height为1.0cm,宽度Depth为30.0cm,建立系统的平台,如图2-2所示。
以同样的方法,选择参数“New Part”建立part-2、part-3、part-4,得到图形如2-3所示,
图2-2 图2-3创建模型平台
3)施加弹簧拉力阻尼器,选择图标,根据需要输入弹簧的刚度系数K和粘滞阻尼系数C,选择弹簧作用的两个构件即可,施加后的结果如图2-4
图2-4 创建弹簧阻尼器
4)添加约束,选择棱柱副图标,根据需要选择要添加约束的构件,添加约束后的模型如2-5所示。
图2-5 添加约束
至此模型创建完成
三、模型仿真
1)、在无阻尼状态下,系统仅受重力作用自由振动,将最下层弹簧的刚度系数K设置为10,上层两个弹簧刚度系数均设置为3,小物块的支撑弹簧的刚度
系数为4,阻尼均为0,进行仿真,点击图标,设置End Time为5.0,Step
Size为0.01,Steps为50,点击图标,开始仿真对所得数据进行分析。
选择物块的位移、速度、加速度与时间的图像如图3-1、3-2、3-3所示,经过傅里叶变换之后我们可以清楚地看到系统的各阶固有频率。
图3-1位移与时间图像以及FFT变换图像
图3-2速度与时间图像以及FFT变换图像
图3-3加速度与时间图像以及FFT变换图像
通过傅里叶变换,从图中可以看出系统为三阶系统,表现出三阶的固有频率,通过测量得到w1=2.72,w2=4.29,w3=6.15.。
2)为了更进一步验证系统的各阶固有频率,我们给系统施加一定频率的正弦激振力,使系统做受迫振动,观察系统的振动情况,
(a)F1=50*sin(2*3.14*w1*time)时,物块振动的速度与时间的图像如3-4所示。
图3-4 F1作用下速度与时间图像以及FFT变换图像
在F1的作用下,此时振动的幅值A1=489.6323,由于激振力的频率等于系统一阶固有频率,系统在一阶固有频率处发生共振,与无阻尼状态下自由振动时物块振动速度(3-2)相比较,振动明显加强,
(b)F2=50*sin(2*3.14*w2*time)时,物块振动的速度与时间的图像如3-5所示。
图3-5 F2作用下速度与时间图像以及FFT变换图像
在F2的作用下,此时系统在W2的幅值A2=304.0115,由于激振力的频率等于系统二阶固有频率,系统在二阶固有频率处发生共振,振动明显加强,(c)F3=50*sin(2*3.14*w3*time)时,物块振动的速度与时间的图像如3-6所示。
图3-6 F3作用下速度与时间图像以及FFT变换图像
在F3的作用下,由于激振力的频率等于系统三阶固有频率,系统在三阶固有频率处发生共振,与自由振动相比较振动明显加强,
(d)F4=50*sin(2*3.14*w3*time)时物块振动的速度与时间的图像如3-7所示
图3-7 F4作用下速度与时间图像以及FFT变换图像
当激振力的频率与系统固有频率相差很远时,系统不会发生共振现象,在系统的各阶固有频率处振动都不会加强。