workbench+cfx单向流固耦合简介及实例

合集下载

ANSYS Workbench轴流叶轮机械流固耦合分析实例

ANSYS Workbench轴流叶轮机械流固耦合分析实例

ANSYS 14.0中Workbench提供了进行流固耦合(FSI)分析的模块,可以十分方便的对轴流叶轮机械进行气动载荷分析,包括最大变形量和等效应力分布。

1.进入ANSYS14.0 Workbench界面。

2.在左下角中的custom system模块中选择第一个流固耦合模块FSI:Fluid Flow(CFX)-staticstructural,双击。

3.屏幕中出现了FSI模块。

4.右击A5(solution)选择import solution,导入已经计算完毕的CFX结果.res文件。

5.导入结果后的界面如下图所示。

CFX部分已经完成了计算,所以不需要额外的设置。

6.双击B3(Geometry)进入结构分析的几何单元,初始单位选择meter。

7.导入一个叶片的几何实体,可以选择的几何文件类型很多,x_t、iges等等都可以。

在CFX中,我们通常计算的都是多个转子,多个叶片,但是在分析流固耦合时,只需导入自己关心的那个叶片就可以了。

8.然后点击Generate,就可以看到生成的叶片实体了。

8.关闭Geometry窗口回到Workbench截面,可以看到此时B3(Geometry)后已经变成了绿色的√,说明生成正确。

9.双击B4(model)进入。

可以看到Geometry、coordinate system、connections等项目前面已经是绿色的对号,不需要再进行设置。

10.单击mesh,在左下角的Details of mesh,如图进行设置。

10.右击mesh,选择generate mesh生成网格。

11.生成的叶片网格如图所示。

12.点击static structural ,选择工具栏中的support 下的fixed support,为叶片根部添加约束。

13.选中叶根面,点击左下角中的Apply,完成约束添加。

14.点击上工具栏中units,选择转速单位为RPM.15.如图所示添加转速16.按自己的算例输入转速。

ANSYS Workbench 19.0基础入门与工程实践 第24章 流固耦合分析

ANSYS Workbench 19.0基础入门与工程实践 第24章 流固耦合分析
?2431问题描述?2432几何建模?2433流体网格划分?2434流体求解设置?2435流体结果后处理?2436结构场求解设置?2437结构场结果后处理244本章小结?本章主要介绍了流固耦合分析的基本理论和方法同时针对如何在wb190中实现流固耦合进行了详细的介绍并通过两个具体实例对该方法进行逐一讲解为读者提供较为全面的操作指南
24.2 流固耦合分析实例—收缩喷管流固耦合分析
• 本例以收缩喷管为研究对象,利用CFX模块对流固耦合情 况下的结构受力进行仿真模拟,通过详细的操作和仿真说 明,为读者学习和掌握流固耦合方法提供指导和实践案例。
• 24.2.1 问题描述 • 24.2.2 几何建模 • 24.2.3 流体网格划分 • 24.2.4 流体求解设置 • 24.2.5 流体结果后处理 • 24.2.6 结构场求解设置 • 24.2.7 结构场结果后处理
24.1.1 流体控制方程
• 流固耦合问题应该遵循流体力学的三大定律,对于不可压 缩的牛顿流体,守恒定律通过式至式所示的控制方程进行 描述。
• 质量守恒方程:
• 动守恒方程:
• 能量守恒方程:
24.1.2 固体控制方程
• 固体控制方程根据牛顿第二定律导出,如式所示。
24.1.3 流固耦合方程
• 流固耦合方程遵循最基本的守恒原则,在流固耦 合交界面位置,应该满足流体与固体应力、位移 的相等或者守恒,如式所示。
24.1.4 流固耦合仿真流程
• 本章主要介绍单向流固耦合的分析过程,通常在WB 19.0 中实现流固耦合的流程如图左所示,其中流体的计算可以 采用CFD或者CFX两种求解器。在WB 19.0中创建分析项目, 如图右所示。
24.4 本章小结
• 本章主要介绍了流固耦合分析的基本理论和方法,同时针 对如何在WB 19.0中实现流固耦合进行了详细的介绍,并 通过两个具体实例对该方法进行逐一讲解,为读者提供较 为全面的操作指南。

ansysworkbench流固耦合计算实例

ansysworkbench流固耦合计算实例

Oscillating Plate with Two-Way Fluid-Structure InteractionIntroductionThis tutorial includes:•Features•Overview of the Problem to Solve•Setting up the Solid Physics in Simulation (ANSYS Workbench)•Setting up the Fluid Physics and ANSYS Multi-field Settings in ANSYS CFX-Pre•Obtaining a Solution using ANSYS CFX-Solver Manager•Viewing Results in ANSYS CFX-PostIf this is the first tutorial you are working with, it is important to review the following topics before beginning:•Setting the Working Directory•Changing the Display ColorsUnless you plan on running a session file, you should copy the sample files used in this tutorial from the installation folder for your software (<CFXROOT>/examples/) to your working directory. This prevents you from overwriting source files provided with your installation. If you plan to use a session file, please refer to Playing a Session File.Sample files referenced by this tutorial include:••••1.FeaturesThis tutorial addresses the following features of ANSYS CFX.In this tutorial you will learn about:•Moving mesh•Fluid-solid interaction (including modeling solid deformation using ANSYS)•Running an ANSYS Multi-field (MFX) simulation•Post-processing two results files simultaneously.2.Overview of the Problem to SolveThis tutorial uses a simple oscillating plate example to demonstrate how to set up and run a simulation involving two-way Fluid-Structure Interaction, where the fluid physics is solved in ANSYS CFX and the solid physics is solved in the FEA package ANSYS. Coupling between the two solvers is required throughout the solution to model the interaction between fluid and solid as time progresses, and the framework for the coupling is provided by the ANSYS Multi-field solver, using the MFX setup.The geometry consists of a 2D closed cavity. A thin plate is anchored to the bottom of the cavity as shown below:An initial pressure of 100 Pa is applied to one side of the thin plate for seconds in order to distort it. Once this pressure is released, the plate oscillates backwards and forwards as it attempts to regain its equilibrium (vertical) position. The surrounding fluid damps the oscillations, which therefore have an amplitude that decreases in time. The CFX Solver calculates how the fluid responds to the motion of the plate, and the ANSYS Solver calculates how the plate deforms as a result of both the initial applied pressure and the pressure resulting from the presence of the fluid. Coupling between the two solvers is required since the solid deformation affects the fluid solution, and the fluid solution affects the solid deformation.The tutorial describes the setup and execution of the calculation including the setup of the solid physics in Simulation (within ANSYS Workbench) and the setup of the fluid physics and ANSYS Multi-field settings in ANSYS CFX-Pre. If you do not have ANSYS Workbench, then you can use the provided ANSYS input file to avoid the need for Simulation.3.Setting up the Solid Physics in Simulation (ANSYS Workbench)This section describes the step-by-step definition of the solid physics in Simulation within ANSYS Workbench that will result in the creation of an ANSYS input file . If you prefer, you can instead use the provided file and continue from Setting up the Fluid Physics and ANSYS Multi-field Settings in ANSYS CFX-Pre.Creating a New Simulation1.If required, launch ANSYS Workbench.2.Click Empty Project. The Project page appears displaying an unsaved project.3.Select File > Save or click Save button.4.If required, set the path location to a different folder. The default location is your workingdirectory. However, if you have a specific folder that you want to use to store files created during this tutorial, change the path.5.Under File name, type OscillatingPlate.6.Click Save.7.Under Link to Geometry File on the left hand task bar click Browse. Select the providedfile and click Open.8.Make sure that is highlighted and click New simulation from the left-hand taskbar. Creating the Solid Material1.When Simulation opens, expand Geometry in the project tree at the left hand side of theSimulation window.2.Select Solid, and in the Details view below, select Material.e the arrow that appears next to the material name Structural Steel to select NewMaterial.4.When the Engineering Data window opens, right-click New Material from the tree viewand rename it to Plate.5.Enter for Young's Modulus, for Poisson's Ratio and 2550 for Density.Note that the other properties are not used for this simulation, and that the units for these values are implied by the global units in Simulation.6.Click the Simulation tab near the top of the Workbench window to return to thesimulation.Basic Analysis SettingsThe ANSYS Multi-field simulation is a transient mechanical analysis, with a timestep of s and a time duration of 5 s.1.Select New Analysis > Flexible Dynamic from the toolbar.2.Select Analysis Settings from the tree view and in the Details view below, set Auto TimeStepping to Off.3.Set Time Step to .4.Under Tabular Data at the bottom right of the window, set End Time to for the Steps= 1 setting.Inserting LoadsLoads are applied to an FEA analysis as the equivalent of boundary conditions in ANSYS CFX. In this section, you will set a fixed support, a fluid-solid interface, and a pressure load. Fixed SupportThe fixed support is required to hold the bottom of the thin plate in place.1.Right-click Flexible Dynamic in the tree and select Insert> Fixed Support from theshortcut menu.2.Rotate the geometry using the Rotate button so that the bottom (low-y) face of thesolid is visible, then select Face and click the low-y face.That face should be highlighted to indicate selection.3.Ensure Fixed Support is selected in the Outline view, then, in the Details view, selectGeometry and click 1 Face to make the Apply button appear (if necessary). Click Apply to set the fixed support.Fluid-Solid InterfaceIt is necessary to define the region in the solid that defines the interface between the fluid in CFX and the solid in ANSYS. Data is exchanged across this interface during the execution of the simulation.1.Right-click Flexible Dynamic in the tree and select Insert > Fluid Solid Interface fromthe shortcut menu.ing the same face-selection procedure described earlier, select the three faces of thegeometry that form the interface between the solid and the fluid (low-x, high-y and high-x faces) by holding down <Ctrl> to select multiple faces. Note that this load is automatically given an interface number of 1.Pressure LoadThe pressure load provides the initial additional pressure of 100 [Pa] for the first seconds of the simulation. It is defined using a step function.1.Right-click Flexible Dynamic in the tree and select Insert > Pressure from the shortcutmenu.2.Select the low-x face for Geometry.3.In the Details view, select Magnitude, and using the arrow that appears, select Tabular(Time).4.Under Tabular Data, set a pressure of 100 in the table row corresponding to a time of 0.Note: The units for time and pressure in this table are the global units of [s]and [Pa], respectively.5.You now need to add two new rows to the table. This can be done by typing the new timeand pressure data into the empty row at the bottom of the table, and Simulation will automatically re-order the table in order of time value. Enter a pressure of 100 for a time value of , and a pressure of 0 for a time value of .This gives a step function for pressure that can be seen in the chart to the left of the table. Writing the ANSYS Input FileThe Simulation settings are now complete. An ANSYS Multi-field run cannot be launched from within Simulation, so the Solve buttons cannot be used to obtain a solution.1.Instead, highlight Solution in the tree, select Tools> Write ANSYS Input File andchoose to write the solution setup to the file .2.The mesh is automatically generated as part of this process. If you want to examine it,select Mesh from the tree.3.Save the Simulation database, use the tab near the top of the Workbench window to returnto the Oscillating Plate [Project] tab, and save the project itself.4.Setting up the Fluid Physics and ANSYS Multi-field Settings in ANSYS CFX-PreThis section describes the step-by-step definition of the flow physics and ANSYS Multi-field settings in ANSYS CFX-Pre.Playing a Session FileIf you want to skip past these instructions and to have ANSYS CFX-Pre set up the simulation automatically, you can select Session > Play Tutorial from the menu in ANSYS CFX-Pre, then run the session file: . After you have played the session file as described in earlier tutorials under Playing the Session File and Starting ANSYS CFX-Solver Manager, proceed to Obtaining a Solution using ANSYS CFX-Solver Manager.Creating a New Simulation1.Start ANSYS CFX-Pre.2.Select File > New Simulation.3.Select General and click OK.4.Select File > Save Simulation As.5.Under File name, type OscillatingPlate.6.Click Save.Importing the Mesh1.Right-click Mesh and select Import Mesh.2.Select the provided mesh file, and click Open.Note:The file that was just created in Simulation, , will be used as an input file for the ANSYS Solver.Setting the Simulation TypeA transient ANSYS Multi-field run executes as a series of timesteps. The Simulation Type tab is used both to enable an ANSYS Multi-field run and to specify the time-related settings for it (in the External Solver Coupling settings). The ANSYS input file is read by ANSYS CFX-Pre so that it knows which Fluid Solid Interfaces are available.Once the timesteps and time duration are specified for the ANSYS Multi-field run (coupling run), ANSYS CFX automatically picks up these settings and it is not possible to set the timestep and time duration independently. Hence the only option available for Time Duration is Coupling Time Duration, and similarly for the related settings Time Step and Initial Time.1.Click Simulation Type .2.Apply the following settingsTab Setting ValueBasic Settings External Solver Coupling > Option ANSYS MultiFieldExternal Solver Coupling > ANSYS Input File[]Coupling Time Control > Coupling Time Duration > TotalTime5 [s]Coupling Time Control > Coupling Time Steps > Option TimestepsCoupling Time Control > Coupling Time Steps > Timesteps [s]Simulation Type > Option TransientSimulation Type > Time Duration > Option Coupling Time Duration Simulation Type > Time Steps > Option Coupling Time Steps Simulation Type > Initial Time > Option Coupling Initial Time[] This file is located in your working directory.3.Click OK.Note:You may see a physics validation message related to the difference in the units used in ANSYS CFX-Pre and the units contained within the ANSYS input file. While it is important to review the units used in any simulation, you should be aware that, in this specific case, the message is not crucial as it is related to temperature units and there is no heat transfer in this case. Therefore, this specific tutorial will not be affected by the physics message.Creating the FluidA custom fluid is created with user-specified properties.1.Click Material .2.Set the name of the new material to Fluid.3.Apply the following settingsTab Setting ValueBasic Settings Option Pure Substance Thermodynamic State (Selected) Thermodynamic State > Thermodynamic State LiquidMaterial Properties Equation of State > Molar Mass 1 [kg kmol^-1]4.Click OK.Creating the DomainIn order to allow the ANSYS Solver to communicate mesh displacements to the CFX Solver, mesh motion must be activated in CFX.1.Right click Simulation in the Outline tree view and ensure that Automatic DefaultDomain is selected. A domain named Default Domain should now appear under the Simulation branch.2.Double click Default Domain and apply the following settings3.Click OK.Creating the Boundary ConditionsIn addition to the symmetry conditions, another type of boundary condition corresponding with the interaction between the solid and the fluid is required in this tutorial.Fluid Solid External BoundaryThe interface between ANSYS and CFX is defined as an external boundary in CFX that has its mesh displacement being defined by the ANSYS Multi-field coupling process.When an ANSYS Multi-field specification is being made in ANSYS CFX-Pre, it is necessary to provide the name and number of the matching Fluid Solid Interface that was created in Simulation. Since the interface number in Simulation was 1, the name in question is FSIN_1. (If the interface number had been 2, then the name would have been FSIN_2, and so on.)On this boundary, CFX will send ANSYS the forces on the interface, and ANSYS will send back the total mesh displacement it calculates given the forces passed from CFX and the other defined loads.1.Create a new boundary condition named Interface.2.Apply the following settings3.Click OK.Symmetry BoundariesSince a 2D representation of the flow field is being modeled (using a 3D mesh with one element thickness in the Z direction) symmetry boundaries will be created on the low and high Z 2D regions of the mesh.1.Create a new boundary condition named Sym1.2.Apply the following settings3.Click OK.4.Create a new boundary condition named Sym2.5.Apply the following settings6.Click OK.Setting Initial ValuesSince a transient simulation is being modeled, initial values are required for all variables.1.Click Global Initialization .2.Apply the following settings:Tab Setting ValueGlobal Settings Initial Conditions > Cartesian Velocity Components > U0 [m s^-1] Initial Conditions > Cartesian Velocity Components > V0 [m s^-1] Initial Conditions > Cartesian Velocity Components > W0 [m s^-1] Initial Conditions > Static Pressure > RelativePressure0 [Pa]3.Click OK.Setting Solver ControlVarious ANSYS Multi-field settings are contained under Solver Control under the External Coupling tab. Most of these settings do not need to be changed for this simulation.Within each timestep, a series of “coupling” or “stagger” iterations are performed to ensure that CFX, ANSYS and the data exchanged between the two solvers are all consistent. Within each stagger iteration, ANSYS and CFX both run once each, but which one runs first is a user-specifiable setting. In general, it is slightly more efficient to choose the solver that drives the simulation to run first. In this case, the simulation is being driven by the initial pressure applied in ANSYS, so ANSYS is set to solve before CFX within each stagger iteration.1.Click Solver Control .2.Apply the following settings:Tab Setting ValueBasic Settings Transient Scheme > OptionSecond OrderBackward Euler Convergence Control > Minimum Number ofCoefficient Loops(Selected) Convergence Control > Minimum Number ofCoefficient Loops > Min. Coeff. Loops2[]Convergence Control > Max. Coeff. Loops 3External Coupling Coupling Step Control > Solution SequenceControl > Solve ANSYS FieldsBefore CFX FieldsTab Setting Value [] This setting is optional. The default value of 1 is also acceptable.3.Click OK.Setting Output ControlThis step sets up transient results files to be written at set intervals.1.Click Output Control .2.On the Trn Results tab, create a new transient result with the default name.3.Apply the following settings to Transient Results 1:Setting ValueOption Selected VariablesOutput Variable List Pressure, Total Mesh Displacement, VelocityOutput Frequency > Option Every Coupling Step[][] This setting writes a transient results file every multi-field timestep.4.Click the Monitor tab.5.Select Monitor Options.6.Under Monitor Points and Expressions:7.Click Add new item and accept the default name.8.Set Option to Cartesian Coordinates.9.Set Output Variables List to Total Mesh Displacement X.10.Set Cartesian Coordinates to [0, 1, 0].11.Click OK.Writing the Solver (.def) File1.Click Write Solver File .2.If the Physics Validation Summary dialog box appears, click Yes to proceed.3.Apply the following settingsSetting ValueFile nameQuit CFX–Pre[](Selected)[] If using ANSYS CFX-Pre in Standalone Mode.4.Ensure Start Solver Manager is selected and click Save.5.If you are notified the file already exists, click Overwrite.6.This file is provided in the tutorial directory and will exist in your working folder if youhave copied it there.7.Quit ANSYS CFX-Pre, saving the simulation (.cfx) file at your discretion.5.Obtaining a Solution using ANSYS CFX-Solver ManagerThe execution of an ANSYS Multi-field simulation requires both the CFX and ANSYS solvers to be running and communicating with each other. ANSYS CFX-Solver Manager can be used to launch both solvers and to monitor the output from both.1.Ensure the Define Run dialog box is displayed.There is a new MultiField tab which contains settings specific for an ANSYS Multi-field simulation.2.On the MultiField tab, check that the ANSYS input file location is correct (the location isrecorded in the definition file but may need to be changed if you have moved files around).3.On UNIX systems, you may need to manually specify where the ANSYS installation is ifit is not in the default location. In this case, you must provide the path to the v110/ansys directory.4.Click Start Run.The run begins by some initial processing of the ANSYS Multi-field input which results in the creation of a file containing the necessary multi-field commands for ANSYS, and then the ANSYS Solver is started. The CFX Solver is then started in such a way that it knows how to communicate with the ANSYS Solver.After the run is under way, two new plots appear in ANSYS CFX-Solver Manager:ANSYS Field Solver (Structural) This plot is produced only when the solid physics is set to use large displacements or when other non-linear analyses are performed. It shows convergence of the ANSYS Solver. Full details of the quantities are described in the ANSYS user documentation. In general, the CRIT quantities are the convergence criteria for each relevant variable, and the L2 quantities represent the L2 Norm of the relevant variable. For convergence, the L2 Norm should be below the criteria. The x-axis of the plot is the cumulative iteration number for ANSYS, which does not correspond to either timesteps or stagger iterations. Several ANSYS iterations will beperformed for each timestep, depending on how quickly ANSYS converges. You will usually see a somewhat “spiky” plot, as each quantity will be unconverged at the start of each timestep, and then convergence will improve.ANSYS Interface Loads (Structural)This plot shows the convergence for each quantity that is part of the data exchanged between the CFX and ANSYS Solvers. In this case, four lines appear, corresponding to two force components (FX and FY) and two displacement components (UX and UY). Since the analysis is 2D, FZ and UZ are not exchanged. Each quantity is converged when the plot shows a negative value. The x-axis of the plot corresponds to the cumulative number of stagger iterations (coupling iterations) and there are several of these for every timestep. Again, a spiky plot is expected as the quantities will not be converged at the start of a timestep.The ANSYS out file is displayed in ANSYS CFX-Solver Manager as an extra tab. Similar to the CFX out file, this is a text file recording output from ANSYS as the solution progresses.1.Click the User Points tab and watch how the top of the plate displaces as the solutiondevelops.2.When the solvers have finished and ANSYS CFX-Solver Manager puts up a dialog boxto tell you this, click Yes to post-process the results.3.If using Standalone Mode, quit ANSYS CFX-Solver Manager.6.Viewing Results in ANSYS CFX-PostFor an ANSYS Multi-field run, both the CFX and ANSYS results files will be opened up in ANSYS CFX-Post by default if ANSYS CFX-Post is started from a finished run in ANSYS CFX-Solver Manager.Plotting Results on the SolidWhen ANSYS CFX-Post reads an ANSYS results file, all the ANSYS variables are available to plot on the solid, including stresses and strains. The mesh regions available for plots by default are limited to the full boundary of the solid, plus certain named regions which are automatically created when particular types of load are added in Simulation. For example, any Fluid Solid Interface will have a corresponding mesh region with a name such as FSIN 1. In this case, there is also a named region corresponding to the location of the fixed support, but in general pressure loads do not result in a named region.You can add extra mesh regions for plotting by creating named selections in Simulation - see the Simulation product documentation for more details. Note that the named selection must have a name which contains only English letters, numbers and underscores for the named mesh region to be successfully created.Note that when ANSYS CFX-Post loads an ANSYS results file, the true global range for each variable is not automatically calculated, as this would add a substantial amount of time onto how long it takes to load such a file (you can turn on this calculation using Edit > Options and using the Pre-calculate variable global ranges setting under CFX-Post> Files). When the global range is first used for plotting a variable, it is calculated as the range within the current timestep. As subsequent timesteps are loaded into ANSYS CFX-Post, the Global Range is extended each time variable values are found outside the previous Global Range.1.Turn on the visibility of Boundary ANSYS (under ANSYS > Domain ANSYS).2.Right-click a blank area in the viewer and select Predefined Camera > View Towards-Z. Zoom into the plate to see it clearly.3.Apply the following settings to Boundary ANSYS:4.Click Apply.5.Select Tools> Timestep Selector from the task bar to open the Timestep Selectordialog box. Notice that a separate list of timesteps is available for each results file loaded, although for this case the lists are the same. By default, Sync Cases is set to By Time Value which means that each time you change the timestep for one results file, ANSYS CFX-Post will automatically load the results corresponding to the same time value for all other results files.6.Set Match to Nearest Available.7.Change to a time value of 1 [s] and click Apply.The corresponding transient results are loaded and you can see the mesh move in both the CFX and ANSYS regions.1.Clear the visibility check box of Boundary ANSYS.2.Create a contour plot, set Locations to Boundary ANSYS and Sym2, and set Variable toTotal Mesh Displacement. Click Apply.ing the timestep selector, load time value [s] (which is where the maximum totalmesh displacement occurs).This verifies that the contours of Total Mesh Displacement are continuous through both the ANSYS and CFX regions.Many FSI cases will have only relatively small mesh displacements, which can make visualization of the mesh displacement difficult. ANSYS CFX-Post allows you to visually magnify the mesh deformation for ease of viewing such displacements. Although it is not strictly necessary for this case, which has mesh displacements which are easily visible unmagnified, this is illustrated by the next few instructions.ing the timestep selector, load time value [s] (which has a much smaller meshdisplacement than the currently loaded timestep).2.Place the mouse over somewhere in the viewer where the background color is showing.Right-click and select Deformation > Auto. Notice that the mesh displacements are now exaggerated. The Auto setting is calculated to make the largest mesh displacement a fixed percentage of the domain size.3.To return the deformations to their true scale, right-click and select Deformation > TrueScale.Creating an Animationing the Timestep Selector dialog box, ensure the time value of [s] is loaded.2.Clear the visibility check box of Contour 1.3.Turn on the visibility of Sym2.4.Apply the following settings to Sym2.5.Click Apply.6.Create a vector plot, set Locations to Sym1 and leave Variable set to Velocity. SetColor to be Constant and choose black. Click Apply.7.Select the visibility check box of Boundary ANSYS, and set Color to a constant blue.8.Click Animation .The Animation dialog box appears.9.Select Keyframe Animation.10.In the Animation dialog box:a.Click New to create KeyframeNo1.b.Highlight KeyframeNo1, then change # of Frames to 48.c.Load the last timestep (50) using the timestep selector.d.Click New to create KeyframeNo2.The # of Frames parameter has no effect for the last keyframe, so leave it at thedefault value.e.Select Save MPEG.f.Click Browse next to the MPEG file data box to set a path and file name forthe MPEG file.If the file path is not given, the file will be saved in the directory from whichANSYS CFX-Post was launched.g.Click Save.The MPEG file name (including path) will be set, but the MPEG will not becreated yet.h.Frame 1 is not loaded (The loaded frame is shown in the middle of theAnimation dialog box, beside F:). Click To Beginning to load it then waita few seconds for the frame to load.i.Click Play the animation .The MPEG will be created as the animation proceeds. This will be slow, since atimestep must be loaded and objects must be created for each frame. To view theMPEG file, you need to use a viewer that supports the MPEG format.11.When you have finished, exit ANSYS CFX-Post.。

【2019年整理】ansys14workbench血管流固耦合分析实例

【2019年整理】ansys14workbench血管流固耦合分析实例

Ansys14 workbench血管流固耦合实例根据收集的一些资料,进行学习后,试着做了这个ansys14workbench的血管流固耦合模拟,感觉能够耦合上,仅是熟悉流固耦合分析过程,不一定正确,仅供参考,希望大家多讨论。

谢谢!1、先在proe5中建立血管与血液流体区的模型(两者装配起来),或者直接在workbench中建模。

图1 模型图2、新建工程。

在workbench中toolbox中选custom system,双击FSI: FluidFlow(fluent)->static structure.图2 计算工程3、修改engineering data,因为系统缺省材料是钢,需要构建血管材料,如图3所示。

先复制steel,而后修改密度1150kg/m3,杨氏模量4.5e8Pa,泊松比0.3,重新命名,最后在主菜单中点击“update project”保存.图3 修改工程材料4、模型导入,进入gemetry模块,import外部模型文件。

图4 模型导入图5、进入FLUENT网格划分。

在workbench工程视图中的Mesh上点击右键,选择Edit…,如图5所示,进入网格划分meshing界面,如图6所示。

我们这里需要去掉血管部分,只保留血液几何。

图5 进入网格划分图6 禁用血管模型6、设置网格方法。

默认是采用ICEM CFD进行网格划分,设置方式如图7所示,截面圆弧边分为12份,纵截面的边均分为10份,网格结果如图8所示。

另外在这个界面中要设置边界的几何面,如inlet、outlet、symmetry图7 设置网格划分方式图8 最终出网格图9 边界几何7、进入fluent图10 进入fluent关闭mesh,回到fluent工程窗口,右键点击setup,选择edit…,进入fluent。

这里设置瞬态计算,流体为血液(密度1060,动力粘度0.004pas),入口压力波动(用profile输入),出口压力0Pa,采用k-e湍流模型。

单向流固耦合

单向流固耦合

单向流固耦合1 问题描述计算如下图所示位于高速流体中的探头在流场作用下的应力分布。

流体流速100 m/s。

2 计算流程考虑到探头的变形量很小,忽略探头变形对流场的影响,采用单向流固耦合计算。

计算流程如下图所示。

注:单向流固耦合常用于固体小变形对于流场影响可以忽略的情况下。

3 几何模型流固耦合计算中的几何模型需要创建两套几何:流体几何与固体几何。

应用上面的计算流程,在A2单元格中同时创建流体几何与固体几何,然后在流体和固体各自的Mesh模块中抑制相应的几何模型。

探头实体模型如下图所示。

考虑模型对称性,采用一半模型计算。

流体域计算模型如下图所示。

4 流体计算设置4.1 流体网格生成•双击A3单元格进入Mesh模块•右键点击模型树节点Geometry > FFF\solid,点击弹出菜单项Suppress Body去除固体部分•鼠标选中模型树节点Mesh,图形窗口中选择如下图所示的几何面,点击右键选择弹出菜单项Insert → Sizing插入网格尺寸•属性窗口中设置Element Size为0.5 mm•鼠标选中模型树节点Mesh,图形窗口中选择如下图所示的几何体,点击右键选择弹出菜单项Insert → Sizing插入网格尺寸•属性窗口中设置Element Size为1 mm注:面尺寸优先级高于体尺寸,所以前面指定的面依然以0.5mm作为网格尺寸•右键选择模型树节点Mesh,点击弹出菜单项Insert → Inflation 插入膨胀层•选择流固交界面作为边界层网格生成表面生成计算网格如下图所示。

•边界命名如下图所示注:切记为流固耦合面命名,这里将其命名为walls•选择模型树节点Mesh,点击工具栏按钮Update更新网格•关闭Mesh模块返回至Workbench窗口中4.2 Fluent设置•双击模型树节点A4启动Fluent•激活选项Double Precision开启双精度模式注:Fluent的设置较为简单,这里只描述重要节点内容•General节点保持默认设置•Models节点选择Realizable k-epsilon湍流模型•Materials材料选择材料库中的Water-liquid,材料属性采用默认值•Cell Zone Conditions设置计算区域材料介质为water-liquid•Boundary Conditions设置边界inlet入口速度为100 m/s,其他参数保持默认设置•Initialization:如下图所示进行初始化•Run Calculation:设置Number of Iterations为300,开始计算计算完毕后查看流固交界面上压力分布,如下图所示。

ANSYS流固耦合分析实例

ANSYS流固耦合分析实例
(Time) 4. 在整个视窗的右底边Tabular Data面板,在表中相对应于时间
为0 [s]设置压力为100 [pa] 5. 表中需要继续输入两排参数,100 [pa]对应于0.499 [s], 0 [pa]
对应于0.5 [s]
模拟中固体问题的描述—记录ANSYS输入文件
现在,模拟设置已经完成。在Simulation中ANSYS MultiField 并不运行,因此用求解器按钮并不能得到结果 1. 然 而 , 在 目 录 树 中 的 高 亮 Solution 中 , 选 择 Tools > Write ANSYS Input File,把结果写进文件OscillatingPlate.inp 2. 网格是自动生成的,如果想检查,可以在目录树中选择Mesh 3. 保存Simulation数据,返回Oscillating Plate [Project]面板, 存储Project
固定支撑:为确保薄板的底部固定于平板,需要设置固定支撑 条件。
1. 右击目录树中Transient Stress,在快捷菜单中选择Insert > Fixed Support
2. 用旋转键 旋转几何模型,以便可以看见模型底面(low-y), 然后选择 并点击底面(low-y)
3. 在Details窗口,选择Geometry,然后点击No Selection使Apply 按钮出现(如果需要)。点击Apply以设置固支。
设置仿真类型: 1. 选择 Insert > Simulation Type. 2. 应用以下设置: 3. 点击OK
设置流体问题、在ANSYS CFX-Pre中设置ANSYS MultiField
建立流体物质 1. 选择 Insert > Material. 2. 把新物质名定义为 Fluid. 3. 应用以下设置

Ansys CFX 流固耦合分析

Ansys CFX 流固耦合分析

流固耦合FSI分析分析原理:流场采用CFX12,固体采用ANSYS12分别计算,通过界面耦合。

流体网格:流体部分采用HyperMesh9.0分网,按照流体分网步骤即可,没有特殊要求。

网格导出:CFX可以很好的支持Fluent的.cas格式。

直接导出这个格式即可。

流体的其余设置都在CFX-PRE中设置。

固体网格即设置:HyperMesh9.0划分固体网格。

设置边界条件,载荷选项,求解控制,导出.cdb文件。

实例练习:以CFX12实例CFX tutorial 23作为练习。

为节省时间,将计算时间缩短为2s。

网格划分:提取CFX tutorial 23中的实体模型到hm中,分别划分流体,固体网格。

分别导出为fluent的.cas格式和ansys的cdb格式。

流体网格如下:网格文件见:fluid.cas固体网格为:特别注意:做FSI分析时,ANSYS固体部分必须在BATCH下运行(即将.cdb文件导入ansys不需要任何操作就能直接计算出结果),所以导出的.CDB文件需要添加一个命令,在hm建立FSIN_1的set,以方便在.cdb中手动添加命令SF,FSIN_1,FSIN,1,具体位置在定义了节点集合FSIN_1之后。

另一个set:pressure用于施加压强。

这里还设置了一些控制卡片用于分析,当然也可以直接修改.cdb文件详细.cdb文件请参看plate.cdb将固体部分在ansys中计算一下,以确定没有问题。

通过ansys计算检查最大位移:最上面的点x向变形曲线至此,固体部分的计算文件已经准备好,流体网格需要导入CFX以进一步设置求解选项和耦合选项。

以下在CFX-PRE中进行设置由于固体模型已经生成,故不需要利用workbench,所以不必按照指南的做法。

启动workbench,拖动fluid flow(CFX)到工作区直接双击setup进入CFX-PRE 导入流体网格然后设置分析选项:注意:mechanical input file即是固体部分网格。

ANSYS-CFX单向流固耦合分析的方法[J].pdf

ANSYS-CFX单向流固耦合分析的方法[J].pdf

ANSY S -CFX 单向流固耦合分析的方法刘志远 郑 源 张文佳 司佳钧摘 要 在用Ansys 软件对风轮进行结构静力分析的过程中,无法从流体计算软件F LUE NT 中直接获取叶片在流场中所受的压力,即风施加在叶片上的瞬态压强值。

此类问题的研究属于流固耦合的范畴,也是目前流、固体力学研究领域比较前沿的课题。

通过研究ANSY S -CFX 组合软件,发现了分析单向流固耦合问题的方法,从而在3D 软件Ansys W orkbench 中实现了对风轮受力变形更合理、更精确的数值模拟。

关键词 ANSY S -CFX 流固耦合 垂直轴风力机 静力分析中图分类号 T V73411 文献标识码 A 文章编号 100726980(2009)022******* 耦合场分析是考虑两个或两个以上工程学科(物理场)间相互作用的分析。

例如流体与结构的耦合分析,即流固耦合(Fluid S tructure Interaction ),流体流动的压力作用于结构,结构将产生变形,而结构的变形又影响了流体的流道,因此是相互作用的问题。

目前,在工程学科中,特别是流体动力学领域中,越来越多的实际问题需要进行耦合场的模拟分析,例如水轮机的叶片在水流中的变形情况,风机的叶片在风场中的变形情况等。

因为受软件开发水平的限制,很多软件只能完成单一物理场的模拟,而不能够实现多物理场的耦合。

为了能够实现对某一物理模型的多场耦合分析,国内的一些高校和研究机构通常对相关软件进行二次开发,例如对Ansys [1]和F LUE NT 进行程序接口的二次开发,来解决不同软件之间的数据交换问题,但这种方法不仅要求开发者具有相当高的编程水平,同时也需要耗费大量的时间,而且这些机构开发出来的程序也往往只适用于他们自己所研究的领域,所以在推广上具有很大的局限性。

虽然实现流固耦合分析的软件很多,方法也不少,但由于受方方面面因素的制约,国内在这方面的资料却很稀缺,本文以一螺旋S 型风力机的叶片在风场中旋转时的某一瞬时状态为例,来介绍如何通过Ansys W orkbench [2](ANSY S -CFX )来实现单向流固耦合(FSI )分析的方法。

CFX+WORKBENCH实现流固耦合

CFX+WORKBENCH实现流固耦合

[CFX/ICEMCFD] CFX+WORKBENCH实现流固耦合WORKBENCH, CFX, 耦合近日研究流固耦合得一点经验,应k版要求,出一个简单教程。

有不对之处请大家批评指正。

小弟也是刚刚研究CFX等软件。

流固耦合的流程我在另外一个帖子有贴过,那是在ansys10.0中的流程,目前我采用了ansys11.0,可以说,操作上较10.0又有了很大的进步。

我的固体部分是在workbench里面定义,而流体部分网格划分是在icem做,定义边界条件等是在CFX里面完成。

耦合需要的是workbench所提供的.inp文件和CFX提供的.def文件下面我配合图片简单讲一下:固体部分:1.建立固体模型。

如图所示:固体模型就是一段直管,取了一个对称面。

2.对固体模型定义材料属性,这个是很简单的;(用过workbench的可能都没有问题)3.对固体模型网格划分,由于是直管,划分比较容易4.划分完毕,点击mesh,选择new analysis中的flexible dynamic进行瞬态分析。

在flexible dynamic中定义边界条件为:直管两端约束全部自由度,对对称面加对称边界,对直管内壁插入fluid solid interface的边界(选择内壁面,右键……)5.左键点击solution,右键插入deformation--total deformation,插入strain---equivalent elastic strain6.左键点击solution,tools----write ansys input files to你指定的文件夹。

以上就定义好了固体部分的输入文件:ansys.inp流体部分:1.模型。

模型可以用icem读取创建的直管,取其内表面,同时删除其余部分,并重新repaire 内表面,补上对称面,补上inlet和outlet2.网格划分(具体过程忽略)3.选择output,用ansys cfx作为求解器,输出能够被cfx读取的文件格式:.CFX54.用CFX的mesh中import读取网格文件.cfx5 ,并定义分析类型.basic settings ----external solver coupling选择ansys mutifield并将ansys input file指向刚刚存储的文件。

ansys14workbench血管流固耦合分析实例

ansys14workbench血管流固耦合分析实例

Ansys14 workbench血管流固耦合实例根据收集的一些资料,进行学习后,试着做了这个ansys14workbench的血管流固耦合模拟,感觉能够耦合上,仅是熟悉流固耦合分析过程,不一定正确,仅供参考,希望大家多讨论。

谢谢!1、先在proe5中建立血管与血液流体区的模型(两者装配起来),或者直接在workbench中建模。

图1 模型图2、新建工程。

在workbench中toolbox中选custom system,双击FSI: FluidFlow(fluent)->static structure.图2 计算工程3、修改engineering data,因为系统缺省材料是钢,需要构建血管材料,如图3所示。

先复制steel,而后修改密度1150kg/m3,杨氏模量4.5e8Pa,泊松比0.3,重新命名,最后在主菜单中点击“update project”保存.图3 修改工程材料4、模型导入,进入gemetry模块,import外部模型文件。

图4 模型导入图5、进入FLUENT网格划分。

在workbench工程视图中的Mesh上点击右键,选择Edit…,如图5所示,进入网格划分meshing界面,如图6所示。

我们这里需要去掉血管部分,只保留血液几何。

图5 进入网格划分图6 禁用血管模型6、设置网格方法。

默认是采用ICEM CFD进行网格划分,设置方式如图7所示,截面圆弧边分为12份,纵截面的边均分为10份,网格结果如图8所示。

另外在这个界面中要设置边界的几何面,如inlet、outlet、symmetry图7 设置网格划分方式图8 最终出网格图9 边界几何7、进入fluent图10 进入fluent关闭mesh,回到fluent工程窗口,右键点击setup,选择edit…,进入fluent。

这里设置瞬态计算,流体为血液(密度1060,动力粘度0.004pas),入口压力波动(用profile输入),出口压力0Pa,采用k-e湍流模型。

ANSYS流固耦合

ANSYS流固耦合
5. 点击 Monitor 键 6. 选择Monitor Options
设置流体问题、在ANSYS CFX-Pre中设置ANSYS MultiField
7. 在Monitor Points and Expressions下 a. 点击Add new item ,采用默认的名字
b. 设置 Option 为 Cartesian Coordinates c. 设置 Output Variables List 为Total Mesh Displacement
通过 ANSYS CFX-Solver Manager 获得结果
ANSYS输出文件 1. 点击User Points 键,观察薄板上部随着求解怎样变形 2. 当求解完成, ANSYS CFX-Solver Manager 会弹出一个
对话框通知你,点击Yes 以继续 3. 如果在standalone模式下运行 ANSYS CFX-Solver ,关
接下来 1. 打开Timestep Selector 对话框,
选择 value 值为1.1 [s] 2. 置鼠标于浏览器中背景颜色显示的
地方,右击,选择Deformation > Auto 3. 为真实的反映变形,右击, 选择 Deformation >True Scale
通过 ANSYS CFX-Post 观察结 果
置 Variable为Total Mesh Displacement,点击Apply 3. 打开Timestep Selector 对话框,选择 value 值为1.1 [s]
这样可以验证Total Mesh Displacement在CFX和ANSYS区域中 是连续变化的
通过 ANSYS CFX-Post 观察结 果
以继续 3. 应用以下设置

workbench transient structural 单向瞬态流固耦合

workbench transient structural 单向瞬态流固耦合

workbench transient structural 单向瞬态流固耦合在Workbench中实现单向瞬态流固耦合分析,需要遵循以下步骤:1.创建模型:在ANSYS Workbench中创建流固耦合分析的模型,包括流体模型和固体模型。

流体模型和固体模型应该是相互耦合的,以便在分析中考虑相互作用。

2.设置材料属性:为流体和固体部分设置适当的材料属性,包括密度、弹性模量、泊松比等。

这些属性将影响分析的结果。

3.定义界面:在流体和固体模型之间定义耦合界面,该界面将用于传递压力、温度等物理量。

4.设置边界条件和载荷:根据分析的具体情况,为流体和固体模型设置适当的边界条件和载荷。

这些条件和载荷将影响模型的响应。

5.设置时间步长和求解器:设置适当的时间步长和求解器,以便进行瞬态分析。

时间步长应该足够小,以便捕获所有重要的动态行为。

6.运行分析:运行分析,并监视求解过程,确保其正常进行。

7.后处理:在分析完成后,进行后处理以查看结果。

这可能包括查看压力、速度、温度等变量的分布和变化,以及结构的变形和应力分布。

请注意,具体的步骤可能会根据您的具体问题和使用的ANSYS 版本而有所不同。

在进行流固耦合分析时,建议参考ANSYS的官方文档和教程,以确保正确理解和应用该技术。

ANSYS Workbench支持多种流体模型和固体模型,具体如下:对于流体模型,ANSYS Workbench提供了多种流体动力学(CFD)和热流体动力学(CTFD)模型,包括层流模型、湍流模型、多相流模型等。

这些模型可用于模拟流体流动、传热、化学反应等现象。

此外,ANSYS还提供了流体体积模型(Fluid Volume Model),用于模拟封闭容器内的流体行为。

对于固体模型,ANSYS Workbench提供了多种固体动力学和结构分析模型,包括线性静态分析、非线性静态分析、动态分析、热分析等。

这些模型可用于模拟结构的应力、应变、振动等行为。

workbench+cfx单向流固耦合简介及实例

workbench+cfx单向流固耦合简介及实例
structure
• Mesh does not need to match 1-to-1
– But similar mesh resolution will improve interpolation accuracy – Can write an ANSYS Input File and load into CFD-Post, along with
1-way FSI
Using Custom Systems
Training Manual
• In the Customs Systems toolbox the FSI: Fluid Flow (CFX) > Static Structural system can be added to the Project Schematic
– Launched in background
• Only surface loads can be transferred automatically in Workbench
– Temperature transfer as a body load is a manual process (beta)
• Used when inputs and outputs of two connected cells are identical • Can only be created between two cells of same type
– Connections that transfer data
Transfer data with new
system
• Connections are automatically created between both systems

workbench流固耦合计算流程

workbench流固耦合计算流程

workbench流固耦合计算流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!Workbench流固耦合计算流程详解在工程模拟和科学研究中,流固耦合问题是一个重要的研究领域,它涉及到流体与固体之间的相互作用。

基于ANSYSWorkbench的流固耦合计算研究及工程应用

基于ANSYSWorkbench的流固耦合计算研究及工程应用

基于ANSYSWorkbench的流固耦合计算研究及工程应用基于ANSYS Workbench的流固耦合计算研究及工程应用引言:随着工程技术的不断发展,流固耦合计算在众多领域得到了广泛的应用。

流固耦合计算是指流体力学和固体力学的耦合分析,用于研究流体与固体之间的相互作用和影响。

ANSYS Workbench是一款广泛使用的工程仿真软件,它提供了强大的流固耦合计算功能,被广泛应用于多个领域,如汽车工程、航空航天工程、能源领域等。

流固耦合计算的基本原理:流固耦合计算是根据连续介质力学原理进行的,可以将流体和固体看作连续介质,通过数值模拟方法求解它们之间的相互作用。

在ANSYS Workbench中,流固耦合计算通常包括以下三个步骤:网格划分、物理模型设定和求解。

第一步是网格划分,即将流体和固体分别划分成离散的网格,其中流体部分的网格通常采用流体网格生成软件生成,固体部分则使用固体网格生成软件生成。

网格划分的质量对计算结果的准确性和稳定性起着至关重要的作用。

第二步是物理模型设定,根据具体的工程问题,设定相应的流体和固体模型。

在ANSYS Workbench中,流体模型通常包括流体的黏性、密度、速度分布等参数,固体模型则包括材料的弹性模量、泊松比等参数。

在设定模型时,还需要考虑流体和固体之间的边界条件,如流体入口和出口的速度、固体边界的约束条件等。

第三步是求解,通过建立数学模型和设置计算参数,利用数值方法求解流体和固体的相互作用。

用户可以根据需要选择求解器和求解方法,ANSYS Workbench提供了多个求解器选项,例如基于有限元的求解器和基于有限体积的求解器。

求解过程中,可以监控计算结果的收敛情况,将其与实际情况进行比较,以验证模拟结果的准确性和可靠性。

工程应用实例:基于ANSYS Workbench的流固耦合计算在许多工程领域都有广泛的应用。

以下以汽车空气动力学为例进行说明。

在汽车设计中,空气动力学是一个非常重要的研究方向。

ansys workbench的管道热流固耦合案例

ansys workbench的管道热流固耦合案例

图 3 fill 命令选取内部面
图 4 入口出口命名
选定所有外部壁面定义为 wall。最后定义耦合面,定义流固交界面流体一侧的三个面为 interfacef2s,定义流固交界面固体一侧的三个面为 interfaces2f,面的选取如图 5 所示。
图 5 流体域和固体域边界图示
四、网格划分
双击 A3 打开 Meshing 模块,网格划分主要有三部分,选定固体域定义网格方法为 Automatic Method,选定流体域定义网格方法同样为 Automatic Method,最后,在流体域中 选择与固体域相交的三个面定义膨胀层 Inflation。为了使网格更合适质量更好,在 detail of ‘mesh’面板中定义相应参数,其中定义 Relevance 为 100,Relevance Center 为 fine,Smoothing 为 High,Span Angle Center 为 Fine,其余选项均保持默认即可。单击 Generate Mesh 生成网 格,得到节点数为 64628,网格数量为 190857。观察网格质量,网格质量总体均在 0.5 以上, 基本可以认为网格质量良好。
七、变形及热应力分析
双击 C5 进入静态结构计算模块右键单击 Imported Load 打开右键菜单后单击 Imported Load 导入固体域的温度。右键单击 Static Structural—Insert—Fixed Support 给三个入口端面
施加固定约束。完成边界条件的加载。右键单击 Solution 插入总变形和应力。单击 solve 进 行求解。
图 2 数据传送关系
在 SolidWorks 中 建 立 相 应 模 型 , 并 转 化 成 ansys 适 用 的 x_t 格 式 。 双 击 A2 打 开 DesignModeler,导入相应模型。

三通管热流固单向耦合

三通管热流固单向耦合

首先建立三通管与流体的模型,建立三通管时多次采用布尔运算并利用freeze功能,即可实现三通管的建模。

内部流体则有两个正交的圆柱布尔加成。

流体六面体网格划分。

流体四面体网格划分。

在cfx中给予边界条件:冷水入口300K冷水流入,流量为0.5千克每秒,湍流因子为百分之五;热水入口373K热水流入,流量为0.2千克每秒,湍流因子为百分之五。

注意:与fluent不同,cfx的边界条件采用的是insert的方式定义的,但是基本思想大同小异。

模型较小,在此采用串行单核计算。

之后再workbench的CFX模块中右键solution选择edit,即可弹出define run对话框。

在迭代了大约65步之后,所有的残差都达到了0.0001以下,这次计算的前提是使用了四面体网格;之后可以尝试改用同等尺寸约束的六面体网格来进行计算。

进入CFD-POST后处理阶段。

管的中截面上的温度场分布。

温度平面的创建与fluent与flotherm及icepak中的创建方法基本相同。

在user locations and plots 中右键选择insert—>location—>plane即可创建场平面。

流线图。

通过单击软件上方的即可以很方便的创建流线图了。

流固耦合热应力整体分析流程:先进行建模,然后划分网格并分析流场,之后将流场结果导入ansys的热分析模块之中,得到结构的温度场,然后再在静力结构模块中分析热应力。

导入流场结果可以选择导入温度或者对流换热系数,此处导入的是温度条件,但是根据传热学原理,个人认为导入对流换热系数可能会更接近于真实情况。

导入结果的纵剖面图。

在稳态热问题求解模块中求解的整个结构的温度场。

PS:再次注意,之前从流场中导过来的仅仅是内壁的温度边界条件(第一类边界条件),而非整个结构的温度场分布。

然后需要添加其他各个面的边界条件,原来书中的实例中并没有给出这些,我认为这是不对的。

在这里,我添加了外表面的对流换热系数为15,表面的辐射发射率为0.35.入水口的管的横截环面的边界条件我定义成恒温,分别为300K与373K。

ansysworkbench流固耦合计算实例

ansysworkbench流固耦合计算实例

ansysworkbench流固耦合计算实例Oscillating Plate with Two-Way Fluid-Structure InteractionIntroductionThis tutorial includes:FeaturesOverview of the Problem to SolveSetting up the Solid Physics in Simulation (ANSYS Workbench)Setting up the Fluid Physics and ANSYS Multi-field Settings in ANSYS CFX-PreObtaining a Solution using ANSYS CFX-Solver ManagerViewing Results in ANSYS CFX-PostIf this is the first tutorial you are working with, it is important to review the following topics before beginning:Setting the Working DirectoryChanging the Display ColorsUnless you plan on running a session file, you should copy the sample files used in this tutorial from the installation folder for your software (/examples/) to your working directory. This prevents you from overwriting source files provided with your installation. If you plan to use a session file, please refer to Playing a Session File.Sample files referenced by this tutorial include:1.FeaturesThis tutorial addresses the following features of ANSYS CFX.In this tutorial you will learn about:Moving meshFluid-solid interaction (including modeling solid deformation using ANSYS)Running an ANSYS Multi-field (MFX) simulationPost-processing two results files simultaneously.2.Overview of the Problem to SolveThis tutorial uses a simple oscillating plate example to demonstrate how to set up and run a simulation involving two-way Fluid-Structure Interaction, where the fluid physics is solved in ANSYS CFX and the solid physics is solved in the FEA package ANSYS. Coupling between the two solvers is required throughout the solution to model the interaction between fluid and solid as time progresses, and the framework for the coupling is provided by the ANSYS Multi-field solver, using the MFX setup.The geometry consists of a 2D closed cavity. A thin plate is anchored to the bottom of the cavity as shown below:An initial pressure of 100 Pa is applied to one side of the thin plate for seconds in order to distort it. Once this pressure is released, the plate oscillates backwards and forwards as it attempts to regain its equilibrium (vertical) position. The surrounding fluid damps the oscillations, which therefore have an amplitude that decreases in time. The CFX Solver calculates how the fluid responds to the motion of the plate, and the ANSYS Solver calculates how the plate deforms as a result of both the initial applied pressure and the pressure resulting from the presence of the fluid. Coupling between the two solvers is required since the solid deformation affects the fluid solution, and the fluid solution affects the solid deformation. The tutorial describes the setup and execution of the calculation including the setup of the solid physics in Simulation (within ANSYS Workbench) and the setup of the fluid physics and ANSYS Multi-field settings in ANSYS CFX-Pre. If you do not have ANSYS Workbench, then you can use the provided ANSYS input file to avoid the need for Simulation.3.Setting up the Solid Physics in Simulation (ANSYS Workbench)This section describes the step-by-step definition of the solid physics in Simulation within ANSYS Workbench that will result in the creation of an ANSYS input file . If you prefer, you can instead use the provided file and continue from Setting up theFluid Physics and ANSYS Multi-field Settings in ANSYS CFX-Pre.Creating a New Simulation1.If required, launch ANSYS Workbench.2.Click Empty Project. The Project page appears displaying an unsaved project.3.Select File > Save or click Save button.4.If required, set the path location to a different folder. The default location is your workingdirectory. However, if you have a specific folder that you want to use to store files created during this tutorial, change the path.5.Under File name, type OscillatingPlate.6.Click Save.7.Under Link to Geometry File on the left hand task bar click Browse. Select the providedfile and click Open.8.Make sure that is highlighted and click New simulation from the left-hand taskbar. Creating the Solid Material1.When Simulation opens, expand Geometry in the project tree at the left hand side of theSimulation window.2.Select Solid, and in the Details view below, select Material./doc/1a35ad57a1116c175f0e7cd184254b35effd1a98.html e the arrow that appears next to the material name Structural Steel to select NewMaterial.4.When the Engineering Data window opens, right-click New Material from the tree viewand rename it to Plate.5.Enter for Young's Modulus, for Poisson's Ratio and 2550 for Density.Note that the other properties are not used for this simulation, and that the units for these values are implied by the global units in Simulation.6.Click the Simulation tab near the top of the Workbench window to return to thesimulation.Basic Analysis SettingsThe ANSYS Multi-field simulation is a transient mechanical analysis, with a timestep of s and a time duration of 5 s.1.Select New Analysis > Flexible Dynamic from the toolbar.2.Select Analysis Settings from the tree view and in the Details view below, set Auto TimeStepping to Off.3.Set Time Step to .4.Under Tabular Data at the bottom right of the window, set End Time to for the Steps= 1 setting.Inserting LoadsLoads are applied to an FEA analysis as the equivalent of boundary conditions in ANSYS CFX. In this section, you will set a fixed support, a fluid-solid interface, and a pressure load. Fixed SupportThe fixed support is required to hold the bottom of the thin plate in place.1.Right-click Flexible Dynamic in the tree and select Insert> Fixed Support from theshortcut menu.2.Rotate the geometry using the Rotate button so that the bottom (low-y) face of thesolid is visible, then select Face and click the low-y face.That face should be highlighted to indicate selection.3.Ensure Fixed Support is selected in the Outline view, then, in the Details view, selectGeometry and click 1 Face to make the Apply button appear (if necessary). Click Apply to set the fixed support.Fluid-Solid InterfaceIt is necessary to define the region in the solid that defines the interface between the fluid in CFX and the solid in ANSYS. Data is exchanged across this interface during the execution of the simulation.1.Right-click Flexible Dynamic in the tree and select Insert > Fluid Solid Interface fromthe shortcut menu./doc/1a35ad57a1116c175f0e7cd184254b35effd1a98.html ing the same face-selection procedure described earlier, select the three faces of thegeometry that form the interface between the solid and the fluid (low-x, high-y and high-x faces) by holding down to select multiple faces. Note that this load is automatically given an interface number of 1.Pressure LoadThe pressure load provides the initial additional pressure of 100 [Pa] for the first seconds of the simulation. It is defined usinga step function.1.Right-click Flexible Dynamic in the tree and select Insert > Pressure from the shortcutmenu.2.Select the low-x face for Geometry.3.In the Details view, select Magnitude, and using the arrow that appears, select Tabular(Time).4.Under Tabular Data, set a pressure of 100 in the table row corresponding to a time of 0.Note: The units for time and pressure in this table are the global units of [s]and [Pa], respectively.5.You now need to add two new rows to the table. This can be done by typing the new timeand pressure data into the empty row at the bottom of the table, and Simulation will automatically re-order the table in order of time value. Enter a pressure of 100 for a time value of , and a pressure of 0 for a time value of .This gives a step function for pressure that can be seen in the chart to the left of the table. Writing the ANSYS Input File The Simulation settings are now complete. An ANSYS Multi-field run cannot be launched from within Simulation, so the Solve buttons cannot be used to obtain a solution.1.Instead, highlight Solution in the tree, select Tools> Write ANSYS Input File andchoose to write the solution setup to the file .2.The mesh is automatically generated as part of this process. If you want to examine it,select Mesh from the tree.3.Save the Simulation database, use the tab near the top of the Workbench window to returnto the Oscillating Plate [Project] tab, and save the project itself.4.Setting up the Fluid Physics and ANSYS Multi-field Settings in ANSYS CFX-PreThis section describes the step-by-step definition of the flow physics and ANSYS Multi-field settings in ANSYS CFX-Pre. Playing a Session FileIf you want to skip past these instructions and to have ANSYS CFX-Pre set up the simulation automatically, you can select Session > Play Tutorial from the menu in ANSYS CFX-Pre, then run the session file: . After you have played the session file as described in earlier tutorials under Playing the Session File and Starting ANSYS CFX-Solver Manager, proceed to Obtaining a Solution using ANSYS CFX-Solver Manager.Creating a New Simulation1.Start ANSYS CFX-Pre.2.Select File > New Simulation.3.Select General and click OK.4.Select File > Save Simulation As.5.Under File name, type OscillatingPlate.6.Click Save.Importing the Mesh1.Right-click Mesh and select Import Mesh.2.Select the provided mesh file, and click Open.Note:The file that was just created in Simulation, , will be used as an input file for the ANSYS Solver.Setting the Simulation TypeA transient ANSYS Multi-field run executes as a series of timesteps. The Simulation Type tab is used both to enable an ANSYS Multi-field run and to specify the time-related settings for it (in the External Solver Coupling settings). The ANSYS input file is read by ANSYS CFX-Pre so that it knows which Fluid Solid Interfaces are available.Once the timesteps and time duration are specified for the ANSYS Multi-field run (coupling run), ANSYS CFX automatically picks up these settings and it is not possible to set the timestep and time duration independently. Hence the only option available for Time Duration is Coupling Time Duration, and similarly for the related settings Time Step and Initial Time.1.Click Simulation Type .2.Apply the following settingsTab Setting ValueBasic Settings External Solver Coupling > Option ANSYS MultiFieldExternal Solver Coupling > ANSYS Input File[]Coupling Time Control > Coupling Time Duration > TotalTime5 [s]Coupling Time Control > Coupling Time Steps > Option TimestepsCoupling Time Control > Coupling Time Steps > Timesteps [s]Simulation Type > Option TransientSimulation Type > Time Duration > Option Coupling Time Duration Simulation Type > Time Steps > Option Coupling Time Steps Simulation Type > Initial Time > Option Coupling Initial Time[] This file is located in your working directory.3.Click OK.Note:You may see a physics validation message related to the difference in the units used in ANSYS CFX-Pre and the units contained within the ANSYS input file. While it is important to review the units used in any simulation, you should be aware that, in this specific case, the message is not crucial as it is related to temperature units and there is no heat transfer in this case. Therefore, this specific tutorial will not be affected by the physics message.Creating the FluidA custom fluid is created with user-specified properties.1.Click Material .2.Set the name of the new material to Fluid.3.Apply the following settingsTab Setting ValueBasic Settings Option Pure Substance Thermodynamic State (Selected) Thermodynamic State > Thermodynamic State LiquidMaterial Properties Equation of State > Molar Mass 1 [kg kmol^-1]4.Click OK.Creating the DomainIn order to allow the ANSYS Solver to communicate mesh displacements to the CFX Solver, mesh motion must be activated in CFX.1.Right click Simulation in the Outline tree view and ensure that Automatic DefaultDomain is selected. A domain named Default Domain should now appear under the Simulation branch.2.Double click Default Domain and apply the following settings3.Click OK.Creating the Boundary ConditionsIn addition to the symmetry conditions, another type of boundary condition corresponding with the interaction between the solid and the fluid is required in this tutorial.Fluid Solid External BoundaryThe interface between ANSYS and CFX is defined as an external boundary in CFX that has its mesh displacement being defined by the ANSYS Multi-field coupling process.When an ANSYS Multi-field specification is being made in ANSYS CFX-Pre, it is necessary to provide the name and number of the matching Fluid Solid Interface that was created in Simulation. Since the interface number in Simulation was 1, the name in question is FSIN_1. (If the interface number had been 2, then the name would have been FSIN_2, and so on.)On this boundary, CFX will send ANSYS the forces on the interface, and ANSYS will send back the total mesh displacement it calculates given the forces passed from CFX and the other defined loads.1.Create a new boundary condition named Interface.2.Apply the following settings3.Click OK.Symmetry BoundariesSince a 2D representation of the flow field is being modeled (using a 3D mesh with one element thickness in the Z direction) symmetry boundaries will be created on the low and high Z 2D regions of the mesh.1.Create a new boundary condition named Sym1.2.Apply the following settings3.Click OK.4.Create a new boundary condition named Sym2.5.Apply the following settings6.Click OK.Setting Initial ValuesSince a transient simulation is being modeled, initial values are required for all variables.1.Click Global Initialization .2.Apply the following settings:Tab Setting ValueGlobal Settings Initial Conditions > Cartesian Velocity Components > U0 [m s^-1] Initial Conditions > Cartesian Velocity Components > V0 [m s^-1] Initial Conditions > Cartesian Velocity Components > W0 [m s^-1] Initial Conditions > Static Pressure > RelativePressure0 [Pa]3.Click OK.Setting Solver ControlVarious ANSYS Multi-field settings are contained under Solver Control under the External Coupling tab. Most of these settings do not need to be changed for this simulation.Within each timestep, a series of “coupling” or “stagger” iterations are performed to ensure that CFX, ANSYS and the data exchanged between the two solvers are all consistent. Within each stagger iteration, ANSYS and CFX both run once each, but which one runs first is a user-specifiable setting. In general, it is slightly more efficient to choose the solver that drives the simulation to run first. In this case, the simulation is being driven by the initial pressure applied in ANSYS, so ANSYS is set to solve before CFX within each stagger iteration.1.Click Solver Control .2.Apply the following settings:Tab Setting ValueBasic Settings Transient Scheme > OptionSecond OrderBackward Euler Convergence Control > Minimum Number ofCoefficient Loops(Selected) Convergence Control > Minimum Number ofCoefficient Loops > Min. Coeff. Loops2[]Convergence Control > Max. Coeff. Loops 3External Coupling Coupling Step Control > Solution SequenceControl > Solve ANSYS FieldsBefore CFX FieldsTab Setting Value [] This setting is optional. The default value of 1 is also acceptable.3.Click OK.Setting Output ControlThis step sets up transient results files to be written at set intervals.1.Click Output Control .2.On the Trn Results tab, create a new transient result with the default name.3.Apply the following settings to Transient Results 1:Setting ValueOption Selected VariablesOutput Variable List Pressure, Total Mesh Displacement, VelocityOutput Frequency > Option Every Coupling Step[][] This setting writes a transient results file every multi-field timestep.4.Click the Monitor tab.5.Select Monitor Options.6.Under Monitor Points and Expressions:7.Click Add new item and accept the default name.8.Set Option to Cartesian Coordinates.9.Set Output Variables List to Total Mesh Displacement X.10.Set Cartesian Coordinates to [0, 1, 0].11.Click OK.Writing the Solver (.def) File1.Click Write Solver File .2.If the Physics Validation Summary dialog box appears, click Yes to proceed.3.Apply the following settingsSetting ValueFile nameQuit CFX–Pre[](Selected)[] If using ANSYS CFX-Pre in Standalone Mode.4.Ensure Start Solver Manager is selected and click Save.5.If you are notified the file already exists, click Overwrite.6.This file is provided in the tutorial directory and will exist in your working folder if youhave copied it there.7.Quit ANSYS CFX-Pre, saving the simulation (.cfx) file at your discretion.5.Obtaining a Solution using ANSYS CFX-Solver ManagerThe execution of an ANSYS Multi-field simulation requires both the CFX and ANSYS solvers to be running and communicating with each other. ANSYS CFX-Solver Manager can be used to launch both solvers and to monitor the output from both.1.Ensure the Define Run dialog box is displayed.There is a new MultiField tab which contains settings specific for an ANSYS Multi-field simulation.2.On the MultiField tab, check that the ANSYS input file location is correct (the location isrecorded in the definition file but may need to be changed if you have moved files around).3.On UNIX systems, you may need to manually specify where the ANSYS installation is ifit is not in the default location. In this case, you must provide the path to the v110/ansys directory.4.Click Start Run.The run begins by some initial processing of the ANSYS Multi-field input which results in the creation of a file containing the necessary multi-field commands for ANSYS, and then the ANSYS Solver is started. The CFX Solver is then started in such away that it knows how to communicate with the ANSYS Solver.After the run is under way, two new plots appear in ANSYS CFX-Solver Manager:ANSYS Field Solver (Structural) This plot is produced only when the solid physics is set to use large displacements or when other non-linear analyses are performed. It shows convergence of the ANSYS Solver. Full details of the quantities are described in the ANSYS user documentation. In general, the CRIT quantities are the convergence criteria for each relevant variable, and the L2 quantities represent the L2 Norm of the relevant variable. For convergence, the L2 Norm should be below the criteria. The x-axis of the plot is the cumulative iteration number for ANSYS, which does not correspond to either timesteps or stagger iterations. Several ANSYS iterations will beperformed for each timestep, depending on how quickly ANSYS converges. You will usually see a somewhat “spiky” plot, as each quantity will be unconverged at the start of each timestep, and then convergence will improve.ANSYS Interface Loads (Structural)This plot shows the convergence for each quantity that is part of the data exchanged between the CFX and ANSYS Solvers. In this case, four lines appear, corresponding to two force components (FX and FY) and two displacement components (UX and UY). Since the analysis is 2D, FZ and UZ are not exchanged. Each quantity is converged when the plot shows a negative value. The x-axis of the plot corresponds to the cumulative number of stagger iterations (coupling iterations) and there are several of these for every timestep. Again, a spiky plot is expected as the quantities will not be converged at the start of a timestep.The ANSYS out file is displayed in ANSYS CFX-Solver Manager as an extra tab. Similar to the CFX out file, this is a text file recording output from ANSYS as the solution progresses.1.Click the User Points tab and watch how the top of the plate displaces as the solutiondevelops.2.When the solvers have finished and ANSYS CFX-Solver Manager puts up a dialog boxto tell you this, click Yes to post-process the results.3.If using Standalone Mode, quit ANSYS CFX-Solver Manager.6.Viewing Results in ANSYS CFX-PostFor an ANSYS Multi-field run, both the CFX and ANSYS results files will be opened up in ANSYS CFX-Post by default if ANSYS CFX-Post is started from a finished run in ANSYS CFX-Solver Manager.Plotting Results on the SolidWhen ANSYS CFX-Post reads an ANSYS results file, all the ANSYS variables are available to plot on the solid, including stresses and strains. The mesh regions available for plots by default are limited to the full boundary of the solid, plus certain named regions which are automatically created when particular types of load are added in Simulation. For example, any Fluid Solid Interface will have a corresponding mesh region with a name such as FSIN 1. In this case, there is also a named region corresponding to the location of the fixed support, but in general pressure loads do not result in a named region.You can add extra mesh regions for plotting by creating named selections in Simulation - see the Simulation product documentation for more details. Note that the named selection must have a name which contains only English letters, numbers and underscores for the named mesh region to be successfully created.Note that when ANSYS CFX-Post loads an ANSYS results file, the true global range for each variable is not automatically calculated, as this would add a substantial amount of time onto how long it takes to load such a file (you can turn on this calculation using Edit > Options and using the Pre-calculate variable global ranges setting under CFX-Post> Files). When the global range is first used for plotting a variable, it is calculated as the range within the current timestep. As subsequent timesteps are loaded into ANSYS CFX-Post, the Global Range is extended each time variable values are found outside the previous Global Range.1.Turn on the visibility of Boundary ANSYS (under ANSYS > Domain ANSYS).2.Right-click a blank area in the viewer and select Predefined Camera > View Towards-Z. Zoom into the plate to see it clearly.3.Apply the following settings to Boundary ANSYS:4.Click Apply.5.Select Tools> Timestep Selector from the task bar to open the Timestep Selectordialog box. Notice that a separate list of timesteps is available for each results file loaded, although for this case the lists are the same. By default, Sync Cases is set to By Time Value which means that each time you change the timestep for one results file, ANSYS CFX-Post will automatically load the results corresponding to the same time value for all other results files.6.Set Match to Nearest Available.7.Change to a time value of 1 [s] and click Apply.The corresponding transient results are loaded and you can see the mesh move in both the CFX and ANSYS regions.1.Clear the visibility check box of Boundary ANSYS.2.Create a contour plot, set Locations to Boundary ANSYS and Sym2, and set Variable toTotal Mesh Displacement. Click Apply./doc/1a35ad57a1116c175f0e7cd184254b35effd1a98.html ing the timestep selector, load time value [s] (which is where the maximum totalmesh displacement occurs).This verifies that the contours of Total Mesh Displacement are continuous through both the ANSYS and CFX regions.Many FSI cases will have only relatively small mesh displacements, which can make visualization of the mesh displacement difficult. ANSYS CFX-Post allows you to visually magnify the mesh deformation for ease of viewing such displacements. Although it is not strictly necessary for this case, which has mesh displacements which are easily visible unmagnified, this is illustrated by the next few instructions./doc/1a35ad57a1116c175f0e7cd184254b35effd1a98.html ing the timestep selector, load time value [s] (which has a much smaller meshdisplacement than the currently loaded timestep).2.Place the mouse over somewhere in the viewer where the background color is showing.Right-click and select Deformation > Auto. Notice that the mesh displacements are now exaggerated. The Auto setting is calculated to make the largest mesh displacement a fixed percentage of the domain size.3.To return the deformations to their true scale, right-click and select Deformation > TrueScale.Creating an Animation/doc/1a35ad57a1116c175f0e7cd184254b35effd1a98.html ing the Timestep Selector dialog box, ensure the time value of [s] is loaded.2.Clear the visibility check box of Contour 1.3.Turn on the visibility of Sym2.4.Apply the following settings to Sym2.5.Click Apply.6.Create a vector plot, set Locations to Sym1 and leave Variable set to Velocity. SetColor to be Constant and choose black. Click Apply.7.Select the visibility check box of Boundary ANSYS, and set Color to a constant blue.8.Click Animation .The Animation dialog box appears.9.Select Keyframe Animation.10.In the Animation dialog box:a.Click New to create KeyframeNo1.b.Highlight KeyframeNo1, then change # of Frames to 48.c.Load the last timestep (50) using the timestep selector.d.Click New to create KeyframeNo2.The # of Frames parameter has no effect for the last keyframe, so leave it at the default value.e.Select Save MPEG.f.Click Browse next to the MPEG file data box to set a path and file name forthe MPEG file.If the file path is not given, the file will be saved in the directory from which ANSYS CFX-Post was launched.g.Click Save.The MPEG file name (including path) will be set, but the MPEG will not be created yet.h.Frame 1 is not loaded (The loaded frame is shown in the middle of the Animation dialog box, beside F:). Click To Beginning to load it then waita few seconds for the frame to load.i.Click Play the animation .The MPEG will be created as the animation proceeds. This will be slow, since a timestep must be loaded and objects must be created for each frame. To view the MPEG file, you need to use a viewer that supports the MPEG format.11.When you have finished, exit ANSYS CFX-Post.。

workbench_transient_structural_单向流固耦合

workbench_transient_structural_单向流固耦合

workbench transient structural 单向流固耦合1. 引言1.1 概述在工程领域中,流体与固体的相互作用是一个常见的问题。

而workbench transient structural 单向流固耦合正是一种重要的数值模拟方法,用于研究流体场和结构场之间的单向耦合效应。

该方法通过将流体传递给结构进行仿真分析,能够更准确地预测结构在各种流体环境下的响应与变形。

1.2 文章结构本文旨在介绍workbench transient structural 单向流固耦合方法论,并深入讨论其工作原理、应用领域以及求解步骤等方面的内容。

此外,我们还将通过案例研究与分析,展示该方法在实际工程问题中的应用效果,并对结果进行评估与讨论。

1.3 目的本文的目标是使读者对workbench transient structural 单向流固耦合这一方法有一个全面而清晰的了解。

通过详细介绍该方法的背景、原理及其在不同领域中的应用案例,读者可以更好地掌握该方法在实践中所具备的优势和局限性,并对其参数敏感性进行分析。

相信本文能够为相关领域的研究人员和工程师提供一定的参考和借鉴价值,促进该方法在实际应用中的发展和应用。

2. Workbench Transient Structural 单向流固耦合2.1 背景介绍Workbench Transient Structural是一种用于求解单向流固耦合问题的仿真工具。

在这种问题中,流体和结构之间存在相互作用,但是该相互作用仅以一方对另一方产生影响,而不是双向的。

例如,在液体中存在结构件时,液体会对结构产生压力,而结构的变形则不会对液体产生影响。

2.2 工作原理Workbench Transient Structural实现了通过比较求解速度来解决流固耦合问题。

在求解过程中,首先计算出流体场的状态(速度、温度、压力等),然后将这些状态信息传递给结构场模型进行求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Training Manual
• In the Customs Systems toolbox the FSI: Fluid Flow (CFX) > Static Structural system can be added to the Project Schematic
=
• Any project schematic can be saved/added to Custom Systems toolbox • To add a new workflow to Custom Systems, right-click on schematic white space and select Add to Custom from displayed pop-up menu
ANSYS, Inc. Proprietary © 2009 ANSYS, Inc. All rights reserved.
Pressure Loads
2-3
Thermal Stress Solution
July 2009 Inventory #002678
1-way FSI
Connecting Systems in Workbench
– Workbench will prompt for a custom template name to save
ANSYS, Inc. Proprietary © 2009 ANSYS, Inc. All rights reserved. July 2009 Inventory #002678
2-7
– Temperature transfer as a body load is a manual process (beta)
• CFD-Post performs interpolation process for vector and scalar quantities
– Mechanical nodal values are transferred by linear interpolation from the surrounding CFD surface nodes – If interpolation process cannot find a face to map to, then closest point is chosen – Not conservative – Interpolation process can be slow for large cases
• This includes both normal (Pressure) and tangential (Shear) loads • In fact force data that comes directly from the solution of the momentum equations is used
• Must be a .inp file written from Workbench (not Mechanical APDL) • CFD-Post recognizes .dat files as FLUENT files
– Check the Imported Load contour/vector plots in Mechanical
• All boundary condition names in CFX results file will be exposed via drop-down
ANSYS, Inc. Proprietary © 2009 ANSYS, Inc. All rights reserved.
2-9
July 2009 Inventory #002678
ANSYS, Inc. Proprietary © 2009 ANSYS, Inc. All rights reserved.
2-6
July 2009 Inventory #002678
1-way FSI
Using Custom Systems
– This transfers pressure loads from CFX to Mechanical
1-way FSI
Geometry and Mesh Considerations
Training Manual
• Fluid and Solid geometries should physically match
– Helpful for both geometries to come from a single CAD file – DM can easily extract a fluid volume from a CAD model of the structure
• Mesh does not need to match 1-to-1
– But similar mesh resolution will improve interpolation accuracy – Can write an ANSYS Input File and load into CFD-Post, along with the fluid mesh, to check interface mesh
Drag
Training Manual
ANSYS, Inc. Proprietary © 2009 ANSYS, Inc. All rights reserved.
2-5
July 2009 Inventory #002678
1-way FSI
Connecting Analysis Systems for FSI
2-2
July 2009 Inventory #002678
1-way FSI
Integrated Process in Workbench
Training Manual
Example Project Schematic
Geometry
CHT Mesh
CFD CHT Solution
Thermal Loads
Shared Data Connection
Transfer Data Connection
ANSYS, Inc. Proprietary © 2009 ANSYS, Inc. All rights reserved.
2-4
July 2009 Inventory #002678
1-way FSI
Connecting Analysis Systems for FSI
– Geometry Selection: Select faces on solid geometry to transfer CFD loads – Named Selection: Select existing named selections to transfer CFD loads
Training Manual
• These are automatically created after the import
ANSYS, Inc. Proprietary © 2009 ANSYS, Inc. All rights reserved.
2-8
July 2009 Inventory #002678
1-way FSI
Training Manual
• Alternatively, right-click on Solution cell in Fluid Flow system, select Transfer Data To New, then select the appropriate target system • Connections are automatically created between both systems
Imported Loads
• In Mechanical an Imported Load entry will automatically be added to the tree when solution data is transferred from CFX
• There are two Scoping Methods for imported loads
Chapter 2 1-way FSI
Solving FSI Applications using Workbench, ANSYS Mechanical and CFX
ANSYS, Inc. Proprietary © 2009 ANSYS, Inc. All rights reserved. July 2009 Inventory #002678
– Connections that transfer data
• Used when output of one cell is input to a connected cell • Usually created between two cells of different types
– Both connection types are used for FSI systems in Workbench
1-way FSI
Data Transfer to Mechanical Systems
– Launched in background
Training Manual
• CFX data is transferred to Mechanical Systems via CFD-Post
• Only surface loads can be transferred automatically in Workbench
Training Manual
• Workbench supports two types of connections
相关文档
最新文档