《化学反应动力学》PPT课件
合集下载
化学反应动力学 教学课件 第六章 势能面和反应途径
ZZe2 Ze2 e2
R
,i ri
r ij ij
35
37
§6. 6 化学反响守恒规那么 一、分子的对称性
分子对称性是通过对称操作和对称元素描 述的。 对称操作:每一次操作都能够产生一个与 原来图形等价的图形,经过一次或连续几 次操作都能够使图形完全复原。 对称元素:对分子几何图形施行操作时所 依赖的几何要素(点、线、面及其集合)。
T : 分子的总状态函数,或分子波函数。
T T(r,R) r:n 个电子的坐标。
R:m 个原子核的坐标。
34
TH ˆNˆT : 核T ˆN 动 能T ˆe 算 符V ,(rT,ˆR N)22 m12
Tˆe
:电子动能算符,Tˆe
2
2
i
m1ei2
其中:i2 x2i2 y2i2 z2i2
V (r,R )V N N V N eV ee
FuncLtEiPon(sL〕ondon-Eyring-Polanyi ) 法 1、London方程
V Q A B Q B C Q C A
1 2JA BJBC 2JB C JC2 A JC A JAB 2 1 /2
QAB、QBC、QCA为相应粒子对之间的库仑积分。 JAB、JBC、JCA为相应粒子对之间的交换积分。
能的绝对值。 10
分子间作用势通常用 Lennard-Jone 12-6 关系 式表达:
V(r)4126 (1)
r r V(r) r 图: V(r)
0 rm
r
11
据
dV (r) 0
dr
可得: rm = 21/6
(2)
将〔2〕代入〔1〕,得:
V(r)4126 (1)
化学反应工程第二讲(化学反应动力学)
国家精品课程
SO2 浓度(%)
5
6
7
8
9
O2 浓度 (%)
温度/ ℃
Kp
13.9 12.4 11.0 10.5 8.1 p=0.1Mpa 时的平衡转化率
400 446 99.3 99.3 99.2 99.1 98.8
440 177 98.3 98.2 97.9 97.8 97.1
480 72.8 96.2 95.8 95.4 95.2 93.7
520 34.2 92.2 91.5 90.7 90.3 87.7
560 17.6 85.7 84.7 83.4 82.8 79.0
600 9.4 76.6 75.1 73.4 72.6 68.1
二氧化硫催化氧化:不同二氧化硫浓度的 炉气在不同温度下的平衡转化率
国家精品课程
一转一吸流程:SO2的转化率只能达到96~97%
H R RgT 2
dT
22.06 1.987
[
1 T
]T 298
ln K PT
10.183 22.6 ( 1 1 ) 5.84 1.987 298 298 250
K p 0.0029
国家精品课程
CO+
2H2==
CH3OH
1/3
2/3
0
1
1/3-x
2/3-2x
x
1-2x
y
* m
1
x 2
反应精馏提高可逆反应转化率的原理
对可逆反应过程
AB PS
若 P 和 S 分别为系统中沸点最低和沸点最高的组
分,即 TbP TbA TbB TbS ,在反应精馏塔内反应生成
的 P 和 S 将分别向塔顶和塔釜富集而脱离接触,若进料 中 A 和 B 的配比符合化学计量关系,在反应精馏塔内这 两种组分可克服化学平衡的限制而全部转化为 P 和 S。
化学反应动力学(全套课件582P)
§1-1 绪论
一、化学反应动力学的地位和作用 1 物理化学八个主要分支: 量子化学 催化化学 结构化学 胶体与界面化学 化学动力学 电化学 化学热力学( 统计热力学) 光化学 化学动力学是物理化学的主要分支之一。它与量 子化学、结构化学、化学热力学( 统计热力学 ) 构成了物理化学的主要理论基础,为化学这一中 心科学提供了一系列的原理和方法。
二、化学反应动力学的特点 与平衡态热力学比较,化学反应动力学的特点:
1、考虑时间这个因素(反应速率) 2、涉及化学变化所经由的中间步骤(反应机理)
例如: 在298K及101.3kP下, H2 (g) +1/2O2(g) = H2O(l) Δ rGθ m = -287.19 kJ mol-1
根据热力学第二定律,该反应发生的可能性非常大。
3、态态反应 关于“态” 平动状态: 平动能或平动速度。 转动状态: 转动量子数 J。 振动状态: 振动量子数 V。 电子状态: 如 O2 :X3∑g-,1Δ g, 1∑g+
X3∑g-:
*+1
*-1
*+1
*-11Δg:源自*+1*-1
*+1
*-1
*+1
*-1
1∑ +, g
*+1
但在上述条件下,实际观察不到H2和O2的任何变化。 如果在反应混合物里加入火化或催化剂(如铂黑),或 者把它们加热到800℃以上,则上述反应能在瞬时完成, 以致于发生爆炸。
三、化学反应动力学的基本任务
1、 研究反应进行的条件——温度、压力、浓 度、介质以及催化剂等对化学反应速率的 影响。 2、揭示化学反应的历程(也叫作机理)。 3、研究物质的结构和反应能力之间的关系。
第五讲-化学动力学——化学反应速率、反应机理PPT课件
在化学反应中,某物质的浓度(物质的量浓度)
随时间的变化率称反应速率。反应速率只能为正 值,且并非矢量。
1、平均速率
用单位时间内,反应物浓度的减少或生成物浓度
的增加来表示。
=
c
t
当△c为反应物浓度的变化时,取负号;△c为生
成物浓度的变化时,取正号
只能描述在一定时间间隔内反应速率的大致情况
-
在活着的有机物体内,有一部分碳元素为稳定同 位素碳-12,还有一小部分是放射性同位素碳-14。 生物活着时通过呼吸来补充碳-14,而当某种植 物或动物死亡后,其体内的碳-14就开始衰变 (一级反应),但稳定同位素碳-12的含量不会 变。在已知碳-14衰变速度的前提下(碳-14的半 衰期为5730年),可以通过测量样品中的碳-14 衰变的程度来计算出样品的年代。
-
25
一、化学反应速率
1、浓度对反应速率的影响
(5)一级反应及其特点
凡反应速率与反应物浓度一次方成正比的反应, 称为一级反应,其速率方程可表示为:
积分上式可得:
当上式t =可0表时示,为c =:c0(起始浓度),则B = lnc0。故
或
或
-
26
一、化学反应速率
1、浓度对反应速率的影响
4
一、化学反应速率
(一)反应速率及其表示方法
2、瞬时速率
若将观察的时间间隔△t缩短,它的极限是△t 0 , 此时的速率即为某一时刻的真实速率—— 瞬时速 率:
对于下面的反应来说,a A+ b B = g G+ h H 其反应速率可用下列任一表示方法表示:
-
5
一、化学反应速率
(一)反应速率及其表示方法
在基元步骤中,发生反应所需的最少分子数目称 为反应分子数。根据反应分子数可将反应区分为 单分子反应、双分子反应和三分子反应三种,如:
化学反应动力学-9-第九章-过渡态理论-PPT
Arrhenius活化能定义式:
Ea
RT
2
d ln k dT
据过渡态理论: k kBT K h
故有: ln k ln kB ln T ln K h
Ea
RT 2
1
T
ln K T
(4)
20
1. 恒压过程
ln K T
P
H RT 2
Ea
RT 2
1
T
ln K T
7
大家应该也有点累了,稍作休息 大家有疑问的,可以询
8
dN * eH / kBT dP1 dP3ndq1 dq3n / h3n
N
eH / kBT dP1 dP3ndq1 dq3n / h3n
分母:与反应物相联系的包含所有动量与坐标 值的积分,这个积分为反应物的配分函 数。
若反应物为A 和 B, 分母 QA V QB V ( QA、QB为单位体积配分函数,V为容器体积 )
一、过渡态理论热力学公式
k kBT QAB eE0 / RT (Eyring公式) h QAQB
定义: K QAB eE0 / RT QAQB
K :活化平衡常数。
( 作为不严格的考虑,K近似具有一般
平衡常数的特征。)
则 Eyring公式可写为: k kBT K (1)
h
18
据热力学公式:G RT ln K k kBT K (1)
dt
dt
QA QB
(1)
10
要获得反应的总速率,应对穿越分隔面的所有
空间积分,这个积分应是 P1 的所有正值。
对(1)式积分。得反应的总速率:
dN [A][B]
dt QA QB
{dq1 dt
化学动力学-- 化学反应的反应速率及速率方程.ppt
2019-10-13
反应进度(extent of reaction)
设反应为: R P
t 0 nR (0) nP (0)
t t nR (t) np (t)
nR (t) nR (0) np (t) nP (0)
d dnB B
2019-10-13
2019-10-13
平均速率
2019-10-13
瞬时速率
R P
vR
d[R ] dt
vp
d[P] dt
在浓度随时间变化的图上,在时间t 时,作交点的切线,
就得到 t 时刻的瞬时速率。显然,反应刚开始,速率大,然后 不断减小,体现了反应速率变化的实际情况。
2019-10-13
瞬时速率
第十一章 化学动力学
2019-10-13
化学热力学的研究对象和局限性
研究化学变化的方向、能达到的最大限度以及
外界条件对平衡的影响。化学热力学只能预测反应
的可能性,但无法预料反应能否发生?反应的速率
如何?反应的机理如何?例如:
rGm$ / kJ mol1
1 2
N2
3 2
H2
NH3 (g)
16.63
H2
1 2
O2
H2O(l)
237.19
热力学只能判断这两个反应都能发生,但如何使它发
生,热力学无法回答。
2019-10-13
化学动力学的研究对象
化学动力学研究化学反应的速率和反应的机理以及 温度、压力、催化剂、溶剂和光照等外界因素对反应 速率的影响,把热力学的反应可能性变为现实性。
反应速率方程中,反应物浓度项不出现, 即反应速率与反应物浓度无关,这种反应称为 零级反应。常见的零级反应有表面催化反应和 酶催化反应,这时反应物总是过量的,反应速 率决定于固体催化剂的有效表面活性位或酶的 浓度。
反应进度(extent of reaction)
设反应为: R P
t 0 nR (0) nP (0)
t t nR (t) np (t)
nR (t) nR (0) np (t) nP (0)
d dnB B
2019-10-13
2019-10-13
平均速率
2019-10-13
瞬时速率
R P
vR
d[R ] dt
vp
d[P] dt
在浓度随时间变化的图上,在时间t 时,作交点的切线,
就得到 t 时刻的瞬时速率。显然,反应刚开始,速率大,然后 不断减小,体现了反应速率变化的实际情况。
2019-10-13
瞬时速率
第十一章 化学动力学
2019-10-13
化学热力学的研究对象和局限性
研究化学变化的方向、能达到的最大限度以及
外界条件对平衡的影响。化学热力学只能预测反应
的可能性,但无法预料反应能否发生?反应的速率
如何?反应的机理如何?例如:
rGm$ / kJ mol1
1 2
N2
3 2
H2
NH3 (g)
16.63
H2
1 2
O2
H2O(l)
237.19
热力学只能判断这两个反应都能发生,但如何使它发
生,热力学无法回答。
2019-10-13
化学动力学的研究对象
化学动力学研究化学反应的速率和反应的机理以及 温度、压力、催化剂、溶剂和光照等外界因素对反应 速率的影响,把热力学的反应可能性变为现实性。
反应速率方程中,反应物浓度项不出现, 即反应速率与反应物浓度无关,这种反应称为 零级反应。常见的零级反应有表面催化反应和 酶催化反应,这时反应物总是过量的,反应速 率决定于固体催化剂的有效表面活性位或酶的 浓度。
化学反应动力学1PPT
与实验结果一致。 3、研究物质的结构和反应能力之间的关系。 研究化学反应动力学的最终目的是为了控 制化学反应过程, 以满足生产和科学技术的 要求。
9
四、动力学与热力学的关系
1. 对于一个实际应用的物( R P ) 则反应可实用 则反应不实用 • 若热力学√(rG 0),而且:
17
同一基元反应中的不同态态反应具有不同的热 力学和动力学性质。 例如, 0 K时: O(3P1) + H2(1Σ +g) OH(2Σ +) + H(2S1/2) Δ H = 380 kJ/mol O (3P1) + H2 ( 1Σ +g) OH (2П ) + H (2S1/2) Δ H = -5 kJ/mol O (1D2) + H2 ( 1Σ +g) OH ( 2Σ +) + H ( 2S1/2 ) Δ H = 200 kJ/mol O (1D2) + H2 (1Σ +g) OH (2П ) + H ( 2S1/2 ) Δ H = 185 kJ/mol
以溴化氢合成反应为例: 总反应 H2 + Br2 = 2 HBr 由以下基元反应所组成: Br2 2 Br Br + H2 HBr + H H + Br2 HBr + Br H + HBr H2 + Br 2 Br Br2
上述5个基元反应构成了溴化氢合成的反应 机理。
8
根据这一反应机理,可以得出其反应速率与 反应物浓度的关系为: (反应速率)∝[H2][Br2]1/2╱{1+A[HBr]/[Br2]}
3
第一章 动力学基本概念 ( Basic Concepts of Kinetics )
9
四、动力学与热力学的关系
1. 对于一个实际应用的物( R P ) 则反应可实用 则反应不实用 • 若热力学√(rG 0),而且:
17
同一基元反应中的不同态态反应具有不同的热 力学和动力学性质。 例如, 0 K时: O(3P1) + H2(1Σ +g) OH(2Σ +) + H(2S1/2) Δ H = 380 kJ/mol O (3P1) + H2 ( 1Σ +g) OH (2П ) + H (2S1/2) Δ H = -5 kJ/mol O (1D2) + H2 ( 1Σ +g) OH ( 2Σ +) + H ( 2S1/2 ) Δ H = 200 kJ/mol O (1D2) + H2 (1Σ +g) OH (2П ) + H ( 2S1/2 ) Δ H = 185 kJ/mol
以溴化氢合成反应为例: 总反应 H2 + Br2 = 2 HBr 由以下基元反应所组成: Br2 2 Br Br + H2 HBr + H H + Br2 HBr + Br H + HBr H2 + Br 2 Br Br2
上述5个基元反应构成了溴化氢合成的反应 机理。
8
根据这一反应机理,可以得出其反应速率与 反应物浓度的关系为: (反应速率)∝[H2][Br2]1/2╱{1+A[HBr]/[Br2]}
3
第一章 动力学基本概念 ( Basic Concepts of Kinetics )
化学动力学-反应机理与速率方程PPT课件
解:
dcO3 dt
k1cO3 cM k1cO2 cOcM k2cO3 cO
2k2cO3 cO
dcO dt
k1cO3 cM
k1cO2 cOcM
k2cO3 cO
0
k2cO3 cO k1cO3 cM k1cO2 cOcM
2O3 3O2
k1
O3 M k1
O + O3
O2 + O + M k2 2O 2
例:
CO Cl2 COCl2
Cl 2
k1 k1
2Cl
(快)
Cl CO M k2 COCl M (快) k2
COCl Cl2 k3 COCl2 Cl (慢)
例:
CO Cl2 COCl2
Cl
Cl 2
CO
k1 2Cl
M k1 k2 COCl
(快) M
(快)
k2
COCl Cl2 k3 COCl2 Cl (慢)
c N2O2
k1 k1
cN2 O
K ccN2 O
v k2KccN2OcO2 kcN2OcO2
k
k2 K c
d lnk
dT
d lnk2
dT
d lnKc
dT
Ea RT 2
E2 RT 2
U RT 2
Ea E2 U
反应机理中至少存在一个能快速达到 平衡的对峙反应;
由“慢反应”建立复合反应的速率方 程表达式(复合反应速率由慢速步骤 的速率决定) ;
由“对峙反应”解出活泼中间物的浓 度表达式;
求出复合反应速率系数和活化能。
平衡态处理法辨析 2O3 3O2
O3
M
k1 k1
化学反应动力学
4
(2)流---固相反应
ri 1 dni W dt
W--固体质量
a. 对流固相非催化反应,W为固体反应物质量 b. 对流固相催化反应,W为固体催化剂质量
5
二、连续流动系统反应速率表示方式 6
流动系统:
反应物料处于连续稳定流动状态,物料在反应器
内没有积累,物系参数随空间位置变化
表示方式:
ri
d Ni d VR
S r
d Ni dS
ρb
d Ni dW
Sr
式中:b ---单位堆体积固体或催化剂中反应的
表 Kg面/m积3 ,--m-2固/m体3 反应物或固体催化Ri剂R的i堆密r度i,
8
2.复合反应
例
入Ri
对Q、P有rQ、rP 对 A、S 用 ri 无 法 描 述 , 引
对献复,合某反一应组需分R考i的虑 每m一组ij 分r_j 在整体反应中的贡 j 1
Ri的应代等数_于ij和按该组分计算的各个反应的反应速率
rj
即R:i
§2 化学反应速率方程(幂函数型)
ri f T、C、P、催化剂或溶剂
对特定反应,且
P P
10%
时可忽略P对ri的影响
ri f T、C
则:
(反应动力学模型)
32
33
2. 控制阶段 外扩散控制:第1或7步速率最慢
内扩散控制:第2或6步速率最慢
化学动力学控制:第3、4、5步其中一步速率最慢
(1) 有控制步骤的反应:
r总 r控 r非控 (r1)控 (r1)控 (r1)非控 (r1)非控
(2) 无控制步骤的反应:各反应步骤速率接近
34
二、化学吸附与平衡
型式: a. 幂函数型----经验模型
(2)流---固相反应
ri 1 dni W dt
W--固体质量
a. 对流固相非催化反应,W为固体反应物质量 b. 对流固相催化反应,W为固体催化剂质量
5
二、连续流动系统反应速率表示方式 6
流动系统:
反应物料处于连续稳定流动状态,物料在反应器
内没有积累,物系参数随空间位置变化
表示方式:
ri
d Ni d VR
S r
d Ni dS
ρb
d Ni dW
Sr
式中:b ---单位堆体积固体或催化剂中反应的
表 Kg面/m积3 ,--m-2固/m体3 反应物或固体催化Ri剂R的i堆密r度i,
8
2.复合反应
例
入Ri
对Q、P有rQ、rP 对 A、S 用 ri 无 法 描 述 , 引
对献复,合某反一应组需分R考i的虑 每m一组ij 分r_j 在整体反应中的贡 j 1
Ri的应代等数_于ij和按该组分计算的各个反应的反应速率
rj
即R:i
§2 化学反应速率方程(幂函数型)
ri f T、C、P、催化剂或溶剂
对特定反应,且
P P
10%
时可忽略P对ri的影响
ri f T、C
则:
(反应动力学模型)
32
33
2. 控制阶段 外扩散控制:第1或7步速率最慢
内扩散控制:第2或6步速率最慢
化学动力学控制:第3、4、5步其中一步速率最慢
(1) 有控制步骤的反应:
r总 r控 r非控 (r1)控 (r1)控 (r1)非控 (r1)非控
(2) 无控制步骤的反应:各反应步骤速率接近
34
二、化学吸附与平衡
型式: a. 幂函数型----经验模型
反应动力学基础PPT课件
式为:
r dFA dW
8
第八页,课件共140页。
空速与接触时间
空速:单位反应体积所处理的混合物的体积流量。因 次为时间的倒数(1/h)。
VSP
VS 0 VR
计算空速时的体积流量一般使用标态体积,特殊说明时可 使用操作状态流量。也有使用摩尔流量的,称为摩尔空速。
是衡量反应器生产强度的重要操作参数。例如:氨合成反应, 压力为10Mpa时,空速为10000(1/h);而当压力为30Mpa时, 空速则为28000-30000(1/h)。
19
第十九页,课件共140页。
一氧化氮氧化动力学方程建立
由于第二步为速率的控制步骤因此有:
r k2C( NO)2Co2
第一步达到平衡,则 有: C( NO)2 K1CN2O
代入上式得
r k2 K1CN2OCo2 k2CN2OCo2
因此,当得到的速率方程与由质量作用定律得到的形式 相同,不能说明该反应一定是基元反应。但基元反应 的速率方程可用质量作用定律来表示。
20
第二十页,课件共140页。
例:反应机理分析
如果所得动力学实验结果与由所设的反应机理推导得到 的速率方程相符合,绝对不能肯定说所设的反应机理是 正确的。只能说明是一个可能的反应机理,因为不同的反应 机理完全可能推导出形式相同的速率方程 。
例如NO的氧化反应,如果机理为:
NO O2 NO3
例2.2
28
第二十八页,课件共140页。
例题计算结果
29
第二十九页,课件共140页。
2.3 温度对反应速率的影响
在幂函数型速度方程中,以反应速率常数k来体现 温度对反应速率的影响。对于一定的温度,反应 速率k为定值。通常用阿累尼乌斯方程表示反应速率 常数与温度的关系。即:
《化学反应动力学》课件
反应活化能
反应活化能是使反应物通过反应过渡态的能垒。 它的高低决定了反应的速率和温度对反应速率 的影响程度。
反应级数与反应机理
反应级数指的是反应速率对各反应物浓度的指数。通过实验测定速率随浓度的变化规律,可以确 定反应级数并推断反应机理。
化学平衡和动力学的关系
化学平衡是指在闭合系统中,反应物与生成物浓度达到一定比例,反应速率 相等的状态。动力学研究反应速率,而平衡研究反应终点。两者密切相关, 但研究的角度不同。
反应程是描述反应速率与反应物
浓度之间关系的数学表达式。它的
形式由实验数据决定,允许我们推
断反应的机理和确定反应物底数。
3
反应速率
反应速率是单位时间内反应物消失 或生成的物质的数量的变化量。它 可以通过实验测量,并用数学模型 表示。
反应级数
反应级数是描述反应速率与反应物 浓度之间关系的指数。通过测定速 率对浓度的实验数据,可以确定反 应级数并推断反应机理。
应用和实例
化学反应动力学的研究对于了解和优化化学过程具有重要意义。它被广泛应 用于药物合成、环境保护、能源开发等领域。实例包括酶催化反应、催化剂 设计和反应动力学模拟等。
影响化学反应速率的因素
反应物浓度
反应物浓度的增加会增加 碰撞频率,从而提高反应 速率。
温度
提高温度会增加分子的平 均动能,促使反应物分子 更容易发生有效碰撞,从 而加快反应速率。
催化剂
催化剂通过提供新的反应 路径,降低反应活化能, 从而加速反应速率。
动力学常数与反应活化能
动力学常数
动力学常数是速率方程中的常数,代表了反应 速率与反应物浓度之间的比例关系。它的值由 实验测定。
《化学反应动力学》PPT 课件
《反应动力学基础》课件
实验结果。
B
C
D
结果应用与展望
探讨实验结果在实际生产和科研中的应用 前景和价值,同时提出进一步的研究方向 和展望。
结果比较与验证
将实验结果与已有的研究结果进行比较和 分析,验证实验结果的可靠性和准确性。
06
反应动力学的应用
在化学工业中的应用
化学反应过程优化
反应动力学基础能够帮助我们理解化学反应过程,从而优化反应 条件,提高产物的收率和选择性。
动力学的微分方程。
质量作用定律
02 根据质量作用定律,推导出反应速率与反应物质浓度
的关系式,进而得到微分方程。
平衡常数的影响
03
考虑平衡常数对反应速率的影响,将平衡常数纳入微
分方程的推导过程中。
微分方程的解法
分离变量法
通过分离变量法,将微分方程转化为多个常微分方程,简化求解 过程。
积分因子法
利用积分因子法,消除微分方程中的积分项,从而得到方程的解。
反应速率常数
总结词
反应速率常数是反应速率方程中的比例系数,表示反应速率 的大小。
详细描述
反应速率常数是化学动力学中的一个重要参数,它是反应速 率方程中的比例系数。它表示了在一定条件下,反应速率的 大小。反应速率常数越大,反应速率越快;反之,则越慢。
反应机理
总结词
反应机理是描述化学反应过程中各步骤的详细过程的模型。
详细描述
反应速率描述了化学反应的快慢程度,通常用单位时间内反应物或生成物的浓 度变化来表示。在单位时间内,反应物浓度的减少或生成物浓度的增加量即为 该反应的反应速率。
反应速率方程
总结词
反应速率方程是用来描述反应速率与反应物浓度的关系的数学表达式。
详细描述
B
C
D
结果应用与展望
探讨实验结果在实际生产和科研中的应用 前景和价值,同时提出进一步的研究方向 和展望。
结果比较与验证
将实验结果与已有的研究结果进行比较和 分析,验证实验结果的可靠性和准确性。
06
反应动力学的应用
在化学工业中的应用
化学反应过程优化
反应动力学基础能够帮助我们理解化学反应过程,从而优化反应 条件,提高产物的收率和选择性。
动力学的微分方程。
质量作用定律
02 根据质量作用定律,推导出反应速率与反应物质浓度
的关系式,进而得到微分方程。
平衡常数的影响
03
考虑平衡常数对反应速率的影响,将平衡常数纳入微
分方程的推导过程中。
微分方程的解法
分离变量法
通过分离变量法,将微分方程转化为多个常微分方程,简化求解 过程。
积分因子法
利用积分因子法,消除微分方程中的积分项,从而得到方程的解。
反应速率常数
总结词
反应速率常数是反应速率方程中的比例系数,表示反应速率 的大小。
详细描述
反应速率常数是化学动力学中的一个重要参数,它是反应速 率方程中的比例系数。它表示了在一定条件下,反应速率的 大小。反应速率常数越大,反应速率越快;反之,则越慢。
反应机理
总结词
反应机理是描述化学反应过程中各步骤的详细过程的模型。
详细描述
反应速率描述了化学反应的快慢程度,通常用单位时间内反应物或生成物的浓 度变化来表示。在单位时间内,反应物浓度的减少或生成物浓度的增加量即为 该反应的反应速率。
反应速率方程
总结词
反应速率方程是用来描述反应速率与反应物浓度的关系的数学表达式。
详细描述
第十一章 化学反应动力学:速率及速率方程(物理化学课件)
2020/11/1
3
化学动力学与化学热力学的关系
化学热力学 — 研究物质变化过程的能量效 应及过程的方向与限度, 即有关平衡的规律; 解决物质变化过程的可能性.
化学动力学 —研究完成该过程所需要的时间 以及实现这一过程的具体步骤, 即有关速率 的规律; 解决物质变化的现实性.
可能性的趋势强弱与现实性的速率快慢之间 没有必然的联系.
为是基元反应的一个原因.
由假设的机理导出的速率方程与实验结果一致, 是证实该 机理的一个必要条件.
2020/11/1
23
201111303通过化学动力学的研究可以了解如何控制反应条件提高主反应的速率如何抑制或减慢副反应的速率如何避免危险品的爆炸材料的腐蚀或产品的老化变质还可以为科研成果的工业化进行最优设计和最优控制为现有生产选择最适宜的操作条件
化学动力学
2020/11/1
1
引言
化学动力学研究的内容:
(i) 研究各种因素, 包括浓度, 温度, 催化剂, 光照等对化学反应速率的影响;
2020/11/1
14
4. 化学反应速率方程的一般形式 复合反应的速率方程是由实验来确定的. 实
验表明, 许多反应的速率方程具有幂函数形式:
A dcA / dt kcAcB …
2020/11/1
15
• 分级数: 式中指数 , 等, 分别称为反应组分A
和B等的反应分级数,反映浓度对速率的影响程 度; 可以是整数, 分数或负数. 负数表示该物质对 反应起阻滞作用.
2020/11/1
13
单分子反应 A→P
A = -dcA/dt = kcA
双分子反应 2A→P ; A + B→P
A = kcA2 A = kcAcB
(完整版)化学反应动力学..
(2)流---固相反应
ri 1 dni W dt
5
W--固体质量
a. 对流固相非催化反应,W为固体反应物质量 b. 对流固相催化反应,W为固体催化剂质量
二、连续流动系统反应速率表示方式 6
流动系统: 反应物料处于连续稳定流动状态,物料在反应器 内没有积累,物系参数随空间位置变化
表示方式:
ri
Ri — 为“-”时表示转化速率,为“+”时表示生成
9
§2 化学反应速率方程(幂函数型)
ri f T、C、P、催化剂或溶剂
对特定反应,且 P 10% 时可忽略P对ri的影响
P
则: ri f T、C (反应动力学模型)
型式: a. 幂函数型----经验模型 b. 双曲函数型----机理模型 c. 级数型----经验模型
r
,,, A
k C r 1
1A
1
A
rQ
2
k C 2U
,,,r2
rQ
Q
R r r r k C A转化速率:
m
A
A
Aj j
A
A
1A
j 1
A
m
R r r r k C Q生成速率:
1
第二章 化学反应动力学
§1 化学反应速率的工程表示 §2 化学反应速率方程(幂函数型) §3 动力学方程的转换 §4 多相催化反应的表面反应动力学
(双曲型动力学方程)
§1 化学反应速率的工程表示 2
一、间歇系统反应速率表示方式
间歇系统:非定态过程,反应器内物系参数随t变化
1.均相反应速率表示方式
一、单一反应动力学方程
10
简单反应、并列反应、自催化反应
最新第2章化学反应动力学ppt课件
当吸附和脱附达到动态平衡时有:rrard0
按照理想吸附层模型,净吸附速率为
r k ap A (1 rA ) rak d rA d0
上式称为Langmuir吸附(模型)速率方程, ka和kd 为吸附速 率常数和脱附速率常数。
A ka A
kd
化学吸附理论
rApAfAex p R E T kfAexpR EdT
理想吸附层模型
真实吸附层模型
r k ap A (1 A ) k dAr k r a a p A r e d x p ( gA ) k d e x p (hA )
气固相催化反应本征动力学
理想吸附层等温方程
当吸附达到平衡时
r r a r d 0 r a r d k a p A ( 1 A ) k d A
(2)双曲型动力学方程
如:氢气与溴反应生成溴化氢
(rHB)rk2k1C CH H2C B/B 1rC /22rB2r
实验得知 H2+Br2
2HBr
此反应系由以下几个基元反应组成:
实验得知H2和Br2反应生成溴化氢反应由几个基元反应组成
反应历程 (机理)
化学计量式仅表示参与反应的各物质间的量的变化关系,与实 际反应历程(反应机理无关)。
( 2 ) k 410 k 400
100000 10
e 8 .314 400 410
2 .1
( b ) E 2 150 kJ / mol
(1 ) k 310 k 300
E 21
k 0 e 310 R E2 k 0 e 300 R
E 2 300 310
e 7 R 300 310
气固相催化反应本征动力学
例如:有如下一A反应 B R
A ArA kaApAV kdAA B BrB kaBpBV kdBB A B R r kSAB kSRV R RrR kdRR kaRpRV 其中V为表面空白活性位,且 V=1-A B R
按照理想吸附层模型,净吸附速率为
r k ap A (1 rA ) rak d rA d0
上式称为Langmuir吸附(模型)速率方程, ka和kd 为吸附速 率常数和脱附速率常数。
A ka A
kd
化学吸附理论
rApAfAex p R E T kfAexpR EdT
理想吸附层模型
真实吸附层模型
r k ap A (1 A ) k dAr k r a a p A r e d x p ( gA ) k d e x p (hA )
气固相催化反应本征动力学
理想吸附层等温方程
当吸附达到平衡时
r r a r d 0 r a r d k a p A ( 1 A ) k d A
(2)双曲型动力学方程
如:氢气与溴反应生成溴化氢
(rHB)rk2k1C CH H2C B/B 1rC /22rB2r
实验得知 H2+Br2
2HBr
此反应系由以下几个基元反应组成:
实验得知H2和Br2反应生成溴化氢反应由几个基元反应组成
反应历程 (机理)
化学计量式仅表示参与反应的各物质间的量的变化关系,与实 际反应历程(反应机理无关)。
( 2 ) k 410 k 400
100000 10
e 8 .314 400 410
2 .1
( b ) E 2 150 kJ / mol
(1 ) k 310 k 300
E 21
k 0 e 310 R E2 k 0 e 300 R
E 2 300 310
e 7 R 300 310
气固相催化反应本征动力学
例如:有如下一A反应 B R
A ArA kaApAV kdAA B BrB kaBpBV kdBB A B R r kSAB kSRV R RrR kdRR kaRpRV 其中V为表面空白活性位,且 V=1-A B R