生活中的优化问题举例(教学设计)

合集下载

人教版数学四年级上册《沏茶问题》教案

人教版数学四年级上册《沏茶问题》教案

《沏茶问题》教学设计教材分析:《沏茶问题》是人教版数学四年级上册第八单元数学广角——优化中的例1,优化问题是我们生活中经常要遇到的问题,本节课从学生身边的简单事例出发,通过同学之间的讨论、交流、启示,唤起学生生活中的经验,让学生尝试从优化的角度在解决问题的多种方案中寻找最优方案,提高学生解决问题的能力。

教学目标及教学重难点教学目标:1、知识与技能:通过解决实际生活中的问题,使学生明确做事要考虑先后顺序,能同时做的事情要同时做,并能结合具体事例安排做事的过程。

2、过程与方法:经历安排做事的过程,通过比较,探究最优方案,培养学生的择优意识与解决问题的能力。

3、情感态度和价值观:感受数学在日常生活中的广泛应用,逐步养成公道安排时间的良好习惯。

教学重点:使学生认识到解决问题策略的多样性,形成寻找解决问题最优方案的意识。

教学难点:引导学生从优化的角度在解决问题的多种方案中寻找最优方案。

教学过程:一、创设情境,激情导入1、(学生欣赏)师:同学们,中国是茶的故乡,茶有非常悠久的历史,已经形成了中国的茶文化。

中国还是礼仪之邦,接待客人时常常会泡上一杯热茶。

“有朋自远方来,不亦乐乎?”2、真巧!周末,老师家也来客人了,我就让女儿去给客人沏茶。

(出示主题图)3、师:这节课,我们就来研究数学中的《沏茶问题》。

板书课题数学来源于生活,并应用于生活,这一环节让学生感受到数学与生活的联系,激发学生了解中国文化的愿望,渗透了中国传统文化教育,培养学生礼貌待人的良好品行。

二、层层递进,探索新知第一层:无序这一环节,我第一让学生观看沏茶视频1(无序的),并提出要求。

学生看完视频后,回答问题。

师:同学们,小主人沏茶时都做了哪些事情?分别用了多长时间?(课件展示沏茶要做的事情和所需要的时间。

)小主人沏茶的过程公道吗?为什么?师:你觉得怎样才安排才公道?和同位说一说。

这一环节通过视频激发起学生的学习兴趣,学生在观看、思考、交流这一过程中,明确安排事情时顺序的重要性。

生活中的优化问题举例

生活中的优化问题举例

利用导数解决优化问题的基本思路:
建立数学模型
优化问题
用函数表示的数学问题
解决数学模型
作答
优化问题解决方案
用导数解决数学问题
这是一个典型的数学建模过程
解决优化问题的一般步骤:
(1)审题 (2)建模
(3)解模
(4)回归
温馨提示:用导数解决实际问题,要特
别注意在实际问题中变量的取值范围.
课堂小结
解决优化问题的步骤:
' 当x∈(0,16)时, S x > 0; 当x∈(16,+∞) 时, S' x < 0; .因此,x=16是函数S(x)的 极小值点,也是最小值点.所以,当版心 高为16dm,宽为8dm时,能使四周空白 面积最小.
例2.饮料瓶大小对饮料公司利润的影响
某制造商制造并出售球形瓶装的某种饮料.瓶子的 制造成本是 0.8πr 2 分,其中r(单位:cm)是瓶子的半 径.已知每售出1 mL的饮料,制造商可获利0.2分,且制 造商能制作的瓶子的最大半径为6 cm.那么瓶子半径多 大时,能使每瓶饮料的利润最大和最小?
解:由于瓶子的半径为r,所以每瓶饮料的利润是
y =f
r = 0.2
4 πr 3 - 0.8πr 2 3
r3 2 = 0.8π - r , 0 < r ≤ 6. 3

f'
r
= 0.8π r 2 - 2r = 0
r 0.当r 0,2时, 当r 2,6时, f ' r 0.
0 < x < 2.5
令 V ' = 12x 2 - 52x + 40 = 0
4 x - 1 3x - 10 = 0 10 得: x1 = 1, x 2 = (舍去) 3 '

生活中的优化问题举例(27)

生活中的优化问题举例(27)
解决生活中优化问题的四个步骤 (1)分析实际问题中各量之间的关系,建立实际问题的数学模 型,写出实际问题中变量之间的函数关系y=f(x); (2)求函数的导数f′(x),解方程f′(x)=0; (3)比较函数在区间端点和使f′(x)=0的点的数值的大小,最 大(小)者为最大(小)值; (4)写出答案.
整理课件
【解析】设圆锥的高为x cm,则底面半径为 202 xc2m,
其体积为V=1 πx(202-x2)(0<x<20),
3
V′= 1π(400-3x2),令V′=0,
3
解得x1=2 0
3
3 ,x2=
2(0舍去3 ).
3
当0<x<2 0 3 时,V′>0;当 2 0<x3 <20时,V′<0,
整理课件
2.解应用题的思路和方法
解应用题首先要在阅读材料、理解题意的基础上把实际问题抽
象成数学问题,就是从实际问题出发,抽象概括,利用数学知
识建立相应的数学模型,再利用数学知识对数学模型进行分析、
研究,得到数学结论,然后再把数学结论返回到实际问题中去.
其思路如下:
实际问题
数学化 转化成数学问题
问 决题
整理课件
2.在边长为60 cm的正方形铁片的四角切去相等的正方形,再 把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底 的边长是多少时,箱子的容积最大?最大容积是多少?
整理课件
【解析】1.由题意,设矩形边长AD=2x,则AB=4-x2,
∴矩形面积为S=2x(4-x2)=8x-2x3(0<x<2).∴S′=8-6x2.
整理课件
【归纳】解答题1,2时的注意点与解答本题2时的关键点. 提示:(1)解答题1,2时,注意函数的定义域应该是实际问题 情境中符合实际情况的自变量的取值范围. (2)解答题2时,关键是正确地得到函数解析式后对函数极值点 的判断,当函数在给定的区间上只有一个极值点时,该极值点 为最值点.

1.4生活中的优化问题举例(三).ppt1

1.4生活中的优化问题举例(三).ppt1

半径为 6cm时,利润最大 .
y 换一个角度: 如果 我 们不用导 数工具 ,直接 从函数的图象 (图 r3 2 1.4 4)上观察,你有什么发现? f r 0.8π 3 r 从图象上容 易看出,当 r 3 时,
f 3 0,即瓶子半径是 3cm 时, 饮料的利润与饮料瓶的成本恰
解:⑴P(x) = R(x) – C(x) = – 10x3 + 45x2 + 3240x – 5000 MP (x) = P ( x + 1 ) – P (x) = – 30x2 + 60x +3275 (其中 xN 且 x[1, 20]). ⑵∵ P( x ) = – 30x2 + 90x + 3240 = – 30( x +9 )(x – 12) ∴当 1< x < 12 时, P( x ) > 0, P(x)单调递增, 当 12 <x < 20 时, P( x ) < 0 , P ( x ) 单调递减. ∴ x = 12 时, P(x)取最大值,即年建造 12 艘船时, 公司 造船的年利润最大. ⑶由 MP(x ) = – 30( x – 1) 2 + 3305 (xN 且 x[1, 20]). ∴当 1< x ≤ 20 时,MP (x)单调递减. MP (x)是减函数说明:随着产量的增加,每艘利润与前一 台比较,利润在减少.
4 3 S 3 S S 3 h h 3h 由①得 b= h,代入②,∴l= 3 h 3 h h 3
l′ = 3
S S S S =0, ∴ h = , 当 h < 时, l ′ <0, h > 时,l′>0. 2 4 4 4 h 3 3 3

四年级生活中的优化问题举例教案

四年级生活中的优化问题举例教案

四年级生活中的优化问题举例教案教案标题:四年级生活中的优化问题举例教案教学目标:1. 了解和理解优化问题的概念。

2. 能够应用优化问题的解决方法,解决生活中的实际问题。

3. 培养学生的问题解决能力和创新思维。

教学重点:1. 理解优化问题的定义和特点。

2. 学会将生活中的实际问题转化为数学模型。

3. 运用数学方法解决优化问题。

教学准备:1. 教师准备:白板、黑板笔、教学课件。

2. 学生准备:课本、练习册、铅笔、尺子。

教学过程:Step 1: 导入(5分钟)教师通过提问和讨论引导学生思考,激发学生对优化问题的兴趣和好奇心。

例如:“你们有没有遇到过需要在一定条件下寻找最佳解决方案的问题呢?可以举个例子。

”Step 2: 概念讲解(10分钟)教师通过课件或黑板笔画出一个图形,如一个长方形花坛,解释什么是优化问题。

然后,教师向学生解释优化问题的定义和特点,即在给定的条件下,寻找最佳解决方案。

Step 3: 举例说明(15分钟)教师给出几个与学生生活相关的优化问题的例子,如:1. 一个学生要从家里走到学校,他应该选择哪条路线才能用最短的时间到达?2. 一个学生想买一本书,他应该选择哪家书店才能以最低的价格购买到?3. 一个学生想要制作一个最大的正方形海报,他应该如何剪裁纸张才能使得剩余的废纸最少?教师与学生一起分析这些问题,引导学生思考如何将这些问题转化为数学模型,并解决这些问题的最佳策略。

Step 4: 解决问题(20分钟)教师指导学生运用数学方法解决上述的优化问题。

教师可以提供一些解题思路和方法,如列出方程、绘制图形等。

学生根据教师的指导,独立或小组合作解决问题。

Step 5: 总结(5分钟)教师与学生一起总结本节课所学内容,强调优化问题的重要性和实际应用。

鼓励学生将所学知识应用到更多生活场景中。

Step 6: 作业布置(5分钟)教师布置相关的练习作业,要求学生运用所学知识解决更多的优化问题。

鼓励学生在实际生活中积极思考并解决优化问题。

生活中的优化问题举例

生活中的优化问题举例

生活中的优化问题举例引言生活中,我们经常面临各种各样的问题和挑战。

为了提高效率、提升生活质量,我们需要不断寻找解决问题的方法和策略。

在这篇文章中,我们将探讨生活中的优化问题,并给出一些实际的例子来说明如何应对这些问题。

什么是优化问题?优化问题是指在给定的限制条件下,寻找一个最优解的问题。

通过优化,我们可以最大限度地提高效率、降低成本、提升满意度等。

在生活中,我们可以将优化问题应用于各个领域,如时间管理、健康管理、金融规划等。

生活中的优化问题举例1. 时间管理时间管理是一个常见的生活优化问题。

我们每天都面临着有限的时间资源,如何合理分配时间成为了一个重要的课题。

以下是一些可以帮助我们优化时间管理的方法和技巧:1.制定优先级:将任务按照重要性和紧急性进行排序,优先处理重要且紧急的任务,避免因琐碎的事务耗费过多时间。

2.打破大目标:学会将大目标分解成小目标,逐步推进。

这样可以减少任务的压力,并更好地管理时间。

3.制定时间表:制定一个明确的时间表,为每项任务规定固定的时间段。

这样可以提高效率,并避免时间的浪费。

4.利用时间碎片:充分利用日常生活中的碎片化时间,比如排队等待、交通工具上的时间,可以用来读书、听课等。

2. 健康管理健康是幸福生活的基石,因此健康管理也成为了一个重要的优化问题。

以下是一些可以帮助我们优化健康管理的方法和策略:1.合理饮食:均衡饮食是健康的基础。

合理控制饮食,摄入适量的营养物质,避免过量或偏食,有助于维持身体的健康状态。

2.积极运动:适量的运动可以帮助我们保持身体健康和心理平衡。

根据个人情况选择合适的运动方式和时间,如慢跑、游泳、瑜伽等。

3.规律作息:良好的作息习惯对于身体和心理健康至关重要。

合理安排睡眠时间,确保充足的休息,有助于保持精力充沛和情绪稳定。

4.健康检查:定期进行身体检查,及时发现和处理潜在的健康问题,有助于预防和治疗疾病。

3. 金融规划金融规划是一个经济优化的问题。

生活中的优化问题举例 教案

生活中的优化问题举例 教案

生活中的优化问题举例一、教学目标1.知识和技能目标(1)使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用;(2)提高将实际问题转化为数学问题的能力.2.过程和方法目标(1)培养学生主动发现问题、分析问题、解决问题的能力;3.情感态度和价值观目标(1)进一步培养学生应用数学的意识。

二、教学重点.难点教学重点:利用导数求函数最值的方法.用导数方法求函数最值的方法步骤教学难点:对最值的理解及与极值概念的区别与联系.求一些实际问题的最大值与最小值三、学情分析生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.通过前面的学习,我们知道,导数是求函数最大(小)值的有力工具.这一节,我们利用导数,解决一些生活中的优化问题.四、教学方法师生互动探究式教学五、教学过程导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方面:1、与几何有关的最值问题;2、与物理学有关的最值问题;3、与利润及其成本有关的最值问题;4、效率最值问题。

解决优化问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是建立适当的函数关系。

再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具.利用导数解决优化问题的基本思路:知识应用,深化理解例1.海报版面尺寸的设计学校或班级举行活动,通常需要张贴海报进行宣传。

现让你设计一张如图所示的竖向张贴的海报,要求版心面积为128dm 2,上、下两边各空2dm,左、右两边各空1dm 。

如何设计海报的尺寸,才能使四周空心面积最小? 解:设版心的高为xdm ,则版心的宽为128xdm,此时四周空白面积为 128512()(4)(2)12828,0S x x x x x x=++-=++>。

求导数,得'2512()2S x x =-。

生活中的优化问题举例

生活中的优化问题举例

生活中的优化问题举例
以下是一些生活中常见的优化问题举例:
1. 路线规划:对于一次旅行或者日常通勤,如何选择最短或最快的路线,以节省时间和资源。

2. 日程安排:如何合理分配时间,使得工作效率最大化,同时留出时间进行休息和娱乐。

3. 购物决策:在购买商品时,如何选择最佳的品牌、型号或价格,以满足需求并节约开支。

4. 饮食计划:如何合理安排饮食,以保证营养均衡,同时避免浪费和过量摄入。

5. 能源使用:如何优化能源的使用,例如合理设置空调温度、减少电器待机时间等,以节约能源成本并保护环境。

6. 个人理财:如何合理规划个人财务,包括投资、储蓄和债务,以实现财务增长并达到目标。

7. 旅游安排:在进行旅游计划时,如何选择最佳的目的地、交通方式、住宿和活动,以满足旅行的需求。

8. 学习方法:如何优化学习方法,例如选择适合个人的学习时间、学习环境和学习资源,以提高学习效率。

9. 生活习惯:如何培养健康的生活习惯,例如规律作息、科学饮食和适度运动,以改善身体健康。

10. 时间管理:如何合理分配时间,设置优先级和避免拖延,以提高工作和生活的效率。

1.4生活中的优化问题举例课件人教新课标

1.4生活中的优化问题举例课件人教新课标
2.利用导数解决生活中优化问题的一般步骤是什么? 剖析:利用导数解决生活中优化问题的一般步骤如下:
重难聚焦
名师点拨1.在求实际问题的最大(小)值时,一定要考虑实际问题的 意义,不符合实际意义的值应舍去. 2.在实际问题中,有时会遇到函数在区间内只有一个点使f'(x)=0的 情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知 道这就是最大(小)值. 3.在解决实际优化问题时,不仅要注意将问题中涉及的变量关系用 函数关系表示,还应确定出函数关系中自变量的定义区间.
题型一
题型二
题型三
题型四
典例透析
利润最大问题 【例3】 某分公司经销某品牌产品,每件产品的成本为3元,并且每 件产品需向总公司交a(3≤a≤5)元的管理费,估计当每件产品的售 价为x(9≤x≤11)元时,一年的销售量为(12-x)2万件. (1)求分公司一年的利润L(单位:万元)与每件产品的售价x的函数关 系式; (2)当每件产品的售价为多少元时,分公司一年的利润L最大?并求出 L的最大值Q(a). 分析:(1)利用题中等量关系找出L与x的函数关系式;(2)求出(1)中函 数关系式的导函数,再利用导数求最值.
当x=140时,y=175,即当x=140,y=175时,S取得最小值24 500. 故当广告的高为140 cm,宽为175 cm时,可使矩形广告的面积最小.
题型一
题型二
题型三
题型四
典例透析
典例透析
题型一
题型二
题型三
题型四
解:(1)隔热层厚度为 x cm,
由题意知每年能源消耗费用为 C(x)= 3xk+5, 再由 C(0)=8,得 k=40,因此 C(x)= 3x4+05. 而建造费用为 C1(x)=6x.

高中数学《1.4生活中的优化问题举例》课件 新人教A版选修2-2

高中数学《1.4生活中的优化问题举例》课件 新人教A版选修2-2

5ax ∴y′=-3a+ 2 2.令 y′=0,解得 x=30. x +40 在(0,50)上,y 只有一个极值点,根据问题的实际意义,函数在 x =30 km 处取得最小值,此时 AC=50-x=20 (km). ∴供水站建在 A、D 之间距甲厂 20 km 处,可使水管费用最省. 用料最省问题是日常生活中常见的问题之一, 解决 这类问题要明确自变量的意义以及最值问题所研究的对象,正确 书写函数表达式,准确求导,结合实际作答.
方法技巧 转化与化归思想在生活中优化
问题的应用 生活中的利润最大、用料最省、效率最高等问题,通过认真 阅读理解关于实际问题的材料,建立相关数学模型,转化为利用 导数这一工具能够解决的一般数学问题.其解决问题的过程就体
现了转化与化归的思想,基本思路如图:
【示例】 某生产饮料的企业拟投入适当的广告费对产品进行促 销,在一年内,预计年销量 Q(万件)与广告费 x(万元)之间的 3x+1 函数关系为 Q= (x≥0),已知生产此产品的年固定投入 x+1 为 3 万元, 每生产 1 万件此产品需再投入 32 万元. 若每件产 品售价为“年平均每件成本的 150%”与“年平均每件所占 广告费的 50%”之和. (1)试将年利润 y(万元)表示为年广告费 x(万元)的函数.如果 年广告费投入 100 万元,企业是亏损还是盈利? (2)当年广告费投入多少万元时,企业年利润最大?
18 000 18 000x S=xy=x x-20 +25= +25x, x-20
18 000[x-20-x] -360 000 ∴S′= +25= +25. x-202 x-202
令 S′>0 得 x>140,令 S′<0 得 20<x<140. ∴函数在(140,+∞)上单调递增,在(20,140)上单调递减,∴S(x) 的最小值为 S(140). 当 x=140 时, y=175.即当 x=140, y=175 时, 取得最小值 24 500, S 故当广告的高为 140 cm,宽为 175 cm 时,可使广告的面积最小.

生活中的优化问题举例

生活中的优化问题举例

=v3 -5v2+6 000(0<v≤100).
48 2
(2)Q′= v2 - 16
5v,
令 Q′=0,则 v=0(舍去)或 v=80,
当 0<v<80 时,Q′<0;
当 80<v≤100 时,Q′>0,
∴v=80 千米/时时,全程运输成本取得极小值,即最小值,

Qmin= Q(80)=2
000(元). 3
栏目 导引
第一章 导数及其应用
由V′=12x2-552x+4 320=0,得x1=10,x2=36. ∵0<x<10时,V′>0,10<x<36时,V′<0,x>36时, V′>0, ∴当x=10时,V有极大值V(10)=19 600. 又∵0<x<24, ∴V(10)又是最大值. ∴当x=10时,V有最大值V(10)=19 600. 故当容器的高为10 cm时,容器的容积最大,最大容积是19 600 cm3.
栏目 导引
第一章 导数及其应用
方法归纳 注意利用导数的方法解决实际问题时,如果在定义区间内只 有一个点使f′(x)=0,且函数在这点有极大(小)值,那么不 与端点值比较,也可以知道该点的函数值就是最大(小)值.
栏目 导引
第一章 导数及其应用
2.甲、乙两地相距 400 千米,汽车从甲地匀速行驶到乙 地,速度不得超过 100 千米/时,已知该汽车每小时的运 输成本 P(元)关于速度 v(千米/时)的函数关系是 P= 1 v4- 1 v3+15v.
栏目 导引
用料(费用)最省问题
第一章 导数及其应用
一艘轮船在航行中每小时的燃料费和它的速度的立方 成正比.已知速度为每小时10海里时,燃料费是每小时6元, 而其他与速度无关的费用是每小时96元,问轮船的速度是多 少时,航行1海里所需的费用总和最小? [解] 设速度为每小时 v 海里的燃料费是每小时 p 元,那 么由题设的比例关系得 p=k·v3,其中 k 为比例系数,它

生活中的节约问题——数学优化问题举例

生活中的节约问题——数学优化问题举例

教学设计生活中的节约问题——数学优化问题举例大兴一中张秀春一.内容和内容解析随着低碳生活逐步深入,节约问题成了人们最为关注的问题了。

而数学中的“优化问题”是现实生活中常碰到的节约问题,比如速度最快、距离最小、费用最低、用料最省、效率最高、增长率、膨胀率等。

而解决方法可以多样,学生较为熟悉的是线性规划问题,二次函数最值问题,或结合函数图象解决最值以及用导数求函数的单调性、最值等。

线性规划是利用数学为工具,来研究在一定的人、财、物、时、空等资源条件下,如何精打细算巧安排,用最少的资源取得最大的效益,即解决节约问题。

它在工程设计、经济管理、科学研究等方面的应用非常广泛。

而本节内容主要是应用线性规划和导数解决生活中的节约问题,使学生体会线性规划、导数在解决生活中的节约问题的广泛作用和强大实力。

教材主要在效率、利润、最大容量三个方面举例说明。

从教学内容分析,教材例题与学生生活经验有一定的差距离,问题信息量大,数学建模要求高,在具体的教学中,可以设置有一定梯度和接近学生生活中的节约问题,提高学生的学习兴趣,同时告诉学生如何去思考解决这类问题的一般思路。

二、教学目标:1、知识目标:(1)进一步了解线性规划的意义以及线性约束条件、线性目标函数、可行解、可行域、最优解等概念;巩固线性规划问题的一般解法(即图解法);会求线性目标函数的最大值、最小值。

(2)巩固导数的相关概念、性质及导数的意义,用导数求实际问题的最大值、最小值。

理解什么是数学中的优化问题。

2、能力目标:培养学生建模能力及提高学生解决实际问题的能力;同时渗透数形结合、化归的数学思想方法,培养学生的节约意识和“用数学” 的意识及创新能力。

3、情感目标:通过对物资调运、产品安排、下料问题等问题的调查、研究,培养学生的节约意识和习惯,倡导学生的低碳生活,使学生了解社会主义市场经济,建立市场经济意识,焕发学生振兴中华的责任感。

三.教学难点和重点分析重点:线性规划、导数的应用,了解生活中的节能问题,熟练掌握生活中常遇到的“效率最高”,“容量最大”,“利润最大”的解决方案。

3.4-生活中的优化问题举例解析

3.4-生活中的优化问题举例解析

课堂讲义
3.4 生活中的优化问题举例
要点一 用料最省问题 例 1 有甲、乙两个工厂,甲厂位于一直线河岸 的岸边 A 处,乙厂与甲厂在河的同侧,乙厂位 于离河岸 40 千米的 B 处,乙厂到河岸的垂足 D 与 A 相距 50 千米,两厂要在此岸边合建一个供 水站 C,从供水站到甲厂和乙厂的水管费用分别为每千米 3a 元 和 5a 元,问供水站 C 建在岸边何处才能使水管费用最省?
解 设速度为每小时 v 海里的燃料费是每小时 p 元,那么由题 设的比例关系得 p=k·v3,其中 k 为比例系数,它可以由 v=10, p=6 求得,即 k=1603=0.006,于是有 p=0.006v3.
预习导学 课堂讲义 当堂检测
课堂讲义
3.4 生活中的优化问题举例
又设当船的速度为每小时 v 海里时,行 1 海里所需的总费用为 q 元,那么每小时所需的总费用是 0.006v3+96(元),而行 1 海 里所需时间为1v小时,所以,行 1 海里的总费用为: q=1v(0.006v3+96)=0.006v2+9v6. q′=0.012v-9v62=0.v0212(v3-8 000), 令 q′=0,解得 v=20.∵当 v<20 时,q′<0;
预习导学 课堂讲义 当堂检测
当堂检测
3.4 生活中的优化问题举例
4.(2013·重庆卷)统计表明:某种型号的汽车在匀速行驶中每小 时的耗油量 y(升)关于行驶速度 x(千米/时)的函数解析式可以表 示为 y=1281000x3-830x+8(0<x≤120).已知甲、乙两地相距 100 千米,当汽车以多大的速度匀速行驶时,从甲地到乙地耗 油最少?最少为多少升?
预习导学 课堂讲义 当堂检测
课堂讲义

2024年统编版春季四年级下册数学《数学广角——优化》教学设计

2024年统编版春季四年级下册数学《数学广角——优化》教学设计
3.校本课程:结合学校特色,开发校本课程,将优化思想融入到其他学科教学或课外活动中,如科学实验、艺术创作等。
十三、教学反思与调整
1.教学反思:在课程结束后,教师应收集学生的反馈信息,反思教学过程中的成功与不足,特别是学生对优化概念的理解程度和运用能力。
2.教学调整:根据学生的反馈和教师的反思,对教学内容和方法进行调整,使教学更加符合学生的实际需求,提高教学效果。
6.鼓励学生参加各级别的数学竞赛,通过竞赛的形式检验学生的学习成果,同时激发学生的学习热情和竞争意识。
7.与家长保持密切沟通,共同关注学生的学习进步,鼓励家长在家中与学生一起探索数学问题,形成家校共育的良好环境。
8.不断更新和完善教学内容,结合时代发展和社会需求,将最新的数学思想和应用融入教学之中,使学生学到的知识更具实用性和前瞻性。
二、教学目标
1.知识与技能:
-理解优化的概念,学会运用优化的方法解决实际问题。
-能够运用数学思维分析问题,提出解决问题的策略。
2.过程与方法:
-培养学生的观察能力、分析能力、合作能力和实践能力。
-通过实例让学生感受优化方法在实际生活中的应用。
3.情感态度与价值观:
-培养学生对数学的兴趣,增强学生运用数学知识解决实际问题的信心。
三、教学重点与难点
1.教学重点:理解优化概念,学会运用优化方法解决问题。
2.教学难点:如何引导学生运用优化方法解决实际问题。
四、教学过程
1.新课导入(已在上文完成)2.知识讲解-教师通过PPT展示优化概念的示意图,让学生直观理解优化。
-举例说明优化在生活中的应用,如排队购物、安排课程等。
3.实例分析
十七、教学延伸建议
1.开展主题讲座:邀请数学教育专家或相关领域的专业人士,为学生举办关于优化思维和数学应用的讲座,拓宽学生的知识视野。

生活中的优化问题举例(含过程)

生活中的优化问题举例(含过程)
(1)求 k 的值及 f(x)的表达式; (2)隔热层修建多厚时,总费用 f(x)达到最小,并求最小值.
▪ [思路分析] 代入数据求k的值,建造费用加上20年能源消耗综合得出总费用f(x),利用导数求 最值.
[解析] (1)设隔热层厚度 xcm,由题意建筑物每年的能源消耗费用为 C(x)= 3x+k 5(0≤x≤10),再由 C(0)=8 得 k=40,
上述解决优化问题的过程是一个典型的 数学建模 过程.
体积面积最值问题
例1 请你设计一个包装盒,如图所示, ABCD是边长为60 cm的正方形硬纸片, 切去阴影部分所示的四个全等的等腰 直角三角形,再沿虚线折起,使得A, B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒. 点E,F在边AB上,是被切去的一个等腰直角三角形斜边的两个端点.设AE =FB=x(cm). 某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒 的高与底面边长的比值.
自主练习巩固2
某工厂生产某种产品,已知该产品的月产量 x(吨)与每吨产品的价格 P(元/吨) 之间的关系为 P=24200-15x2,且生产 x 吨的成本为 R=50000+200x 元.问 每月生产多少吨该产品才能使利润达到最大?最大利润是多少?(利润=收 入-成本).
[思路分析] 根据题意,月收入=月产量×单价=Px,月利润=月收入-成本 =Px-(50000+200x)(x≥0),列出函数关系式建立数学模型后再利用导数求最大值.
自主练习巩固1
▪ 有一块边长为a的正方形铁板,现从铁板的四个角各截去一个相同 的小正方形,做成一个长方体形的无盖容器.为使其容积最大,截 下的小正方形边长应为多少?
▪ [思路分析] 设截下的小正方形边长为x,用x表示出长方体的边长, 根据题意列出关系式,然后利用导数求最值.

生活中的优化问题举例

生活中的优化问题举例

x
图3.4-1
海报四周的空白面积与什么量 相关?是随着什么的变化而变 化?
第一步
第二步
读题(文字语言) 建模(数学语言)
所谓建模,就是设出两个变量,列 并且确定自变量的定义域。 出函数关系式,
128 解:设版心的高为 m,则版心的宽为 m, 二、建模 x 此时四周空白面积为S(x)
x
128 512 8, S ( x) ( x 4)( 2) 128 =2 x x x
1
情景引入
问题
观察下面这个数学题是属于什么题型呢? 3箱橘子比3筐苹果少24千克。平均每箱 橘子重20千克,每筐苹果重多少千克?
2
明确概念
1、什么是最优
1、什么是优化问题?
2、什么是求最大值、最小值最 有力的工具?
3
教学目标
1、利用导数解决生活中的一些优 化问题 2、体会导数在解决实际问题的 作用
x0
x
第一步
第二步
读题(文字语言) 建模(数学语言)
函数建模,要设出两个变量,根据题意 分析它们的关系,把变量转化为函数关系式, 确定自变量的定义域。
第三步
求解(数学应用)
解:设版心的高为
x
128 m,则版心的宽为 m, 二、建2 512 三、求解 2 x 512 令S ( x) 2 2 0,解得x 16(x=-16舍去) 或x=-16 x 128 128 8 于是宽为 x 16 当x 0,16时,s ' x 0;当x 16,时,s ' x 0.
(2)x多大时,方盒的容积V最大?
6
课堂小结
1.解决优化问题的基本思路:
优化问题 用函数表示的数学问题

生活中的优化问题举例

生活中的优化问题举例

3.4 生活中的优化问题举例1.掌握应用导数解决实际问题的基本思路.(重点)2.灵活利用导数解决实际生活中的优化问题,提高分析问题,解决问题的能力.(难点)[基础·初探]教材整理优化问题阅读教材P101第一自然段,完成下列问题.1.优化问题(1)生活中经常会遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.(2)用导数解决优化问题的实质是求函数的最值.2.用导数解决优化问题的基本思路甲工厂八年来某种产品年产量与时间(单位:年)的函数关系如图3-4-1所示:图3-4-1现有下列四种说法:①前四年该产品产量增长速度越来越快;②前四年该产品产量增长速度越来越慢;③第四年后该产品停止生产;④第四年后该产品年产量保持不变.其中说法正确的有()A.①④B.②④C.①③D.②③【解析】由图象可知,②④是正确的.【答案】 B[小组合作型]先在四个角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成(如图3-4-2).问该容器的高为多少时,容器的容积最大?最大容积是多少?【导学号:97792051】图3-4-2【精彩点拨】设自变量(高)为x―→根据长方体的体积公式建立体积关于x的函数―→利用导数求出容积的最大值―→结论【自主解答】设容器的高为x cm,容器的容积为V(x)cm3,则:V(x)=x(90-2x)(48-2x)=4x3-276x2+4 320x(0<x<24).所以V′(x)=12x2-552x+4 320=12(x2-46x+360)=12(x-10)(x-36).令V′(x)=0,得x=10或x=36(舍去).当0<x<10时,V′(x)>0,即V(x)是增加的;当10<x<24时,V′(x)<0,即V(x)是减少的.因此,在定义域(0,24)内,函数V (x )只有当x =10时取得最大值,其最大值为V (10)=19 600(cm 3).因此当容器的高为10 cm 时,容器的容积最大,最大容积为19 600 cm 3.1.求几何体面积或体积的最值问题,关键是分析几何体的几何特征,根据题意选择适当的量建立面积或体积的函数,然后再用导数求最值.2.实际问题中函数定义域确定的方法(1)根据图形确定定义域,如本例中长方体的长、宽、高都大于零; (2)根据问题的实际意义确定定义域,如人数必须为整数,销售单价大于成本价、销售量大于零等.[再练一题]1.已知矩形的两个顶点位于x 轴上,另两个顶点位于抛物线y =4-x 2在x 轴上方的曲线上,求这个矩形面积最大时的长和宽.【解】 设矩形边长AD =2x (0<x <2), 则|AB |=y =4-x 2,则矩形面积为S =2x (4-x 2)=8x -2x 3(0<x <2), ∴S ′=8-6x 2,令S ′=0, 解得x 1=233,x 2=-233(舍去).当0<x <233,S ′>0,当233<x <2时,S ′<0, 所以,当x =233时,S 取得最大值, 此时S max =3239.即矩形的边长分别为433,83时,矩形的面积最大.10 000平方米,该中心每块球场的建设面积为1 000平方米,球场的总建筑面积的每平方米的平均建设费用与球场数有关,当该中心建球场x 块时,每平方米的平均建设费用(单位:元)可近似地用f (x )=800⎝ ⎛⎭⎪⎫1+15ln x 来刻画.为了使该球场每平方米的综合费用最省(综合费用是建设费用与购地费用之和),该网球中心应建几个球场?【精彩点拨】 先求每平方米的购地费用,综合费用是建设费用与购地费用之和.【自主解答】 设建成x 个球场,则1≤x ≤10,每平方米的购地费用为128×1041 000x =1 280x 元,因为每平方米的平均建设费用(单位:元)可近似地用f (x )=800⎝ ⎛⎭⎪⎫1+15ln x 来表示,所以每平方米的综合费用为g (x )=f (x )+1 280x =800+160ln x +1 280x (x >0),所以g ′(x )=160(x -8)x 2(x >0),令g ′(x )=0,则x =8,当0<x <8时,g ′(x )<0,当x >8时,g ′(x )>0,所以x =8时,函数取得极小值,且为最小值. 故当建成8个球场时,每平方米的综合费用最省.实际生活中用料最省、费用最低、损耗最小、最节省时间等问题都需要利用导数求解相应函数的最小值.根据f ′(x )=0求出极值点(注意根据实际意义舍去不合适的极值点)后,函数在该点附近满足左减右增,则此时唯一的极小值就是所求函数的最小值.[再练一题]2.甲、乙两地相距400千米,汽车从甲地匀速行驶到乙地,速度不得超过100千米/时,已知该汽车每小时的运输成本P (元)关于速度v (千米/时)的函数关系是P =119 200v 4-1160v 3+15v .(1)求全程运输成本Q (元)关于速度v 的函数关系式;(2)为使全程运输成本最少,汽车应以多大速度行驶?并求此时运输成本的最小值.【解】 (1)Q =P ·400v =⎝ ⎛⎭⎪⎫119 200v 4-1160v 3+15v ·400v =⎝ ⎛⎭⎪⎫119 200v 3-1160v 2+15·400 =v 348-52v 2+6 000(0<v ≤100). (2)Q ′=v 216-5v ,令Q ′=0,则v =0(舍去)或v =80, 当0<v <80时,Q ′<0; 当80<v ≤100时,Q ′>0,∴v =80千米/时时,全程运输成本取得极小值,即最小值,且Q min =Q (80)=2 0003(元).[探究共研型]探究 【提示】 关于利润问题常用的两个等量关系: ①利润=收入-成本;②利润=每件产品的利润×销售件数.某生产饮料的企业拟投入适当的广告费对产品进行促销,在一年内,预计年销量Q (万件)与广告费x (万元)之间的函数关系为Q =3x +1x +1(x ≥0),已知生产此产品的年固定投入为3万元,每生产1万件此产品需再投入32万元.若每件产品售价为“年平均每件成本的150%”与“年平均每件所占广告费的50%”之和,则(1)试将年利润y(万元)表示为年广告费x(万元)的函数.如果年广告费投入100万元,那么企业是亏损还是盈利?(2)当年广告费投入多少万元时,企业年利润最大?【精彩点拨】(1)利用题中等量关系列出y与x的函数关系式,将x=100代入所求关系式判断y>0还是y<0;(2)先求出(1)中函数关系式的导函数,再利用导数求最值.【自主解答】(1)由题意,每年销售Q万件,成本共计为(32Q+3)万元.销售收入是(32Q+3)·150%+x·50%,∴年利润y=年收入-年成本-年广告费=12(32Q+3-x)=12⎝⎛⎭⎪⎫32×3x+1x+1+3-x=-x2+98x+352(x+1)(x≥0),∴所求的函数关系式为:y=-x2+98x+352(x+1)(x≥0).因为当x=100时,y<0,所以当年广告费投入100万元时,企业亏损.(2)由y=f(x)=-x2+98x+352(x+1)(x≥0),得f′(x)=-x2-2x+632(x+1)2(x≥0).令f′(x)=0,则x2+2x-63=0.∴x=-9(舍去)或x=7.又∵当x∈(0,7)时,f′(x)>0;当x∈(7,+∞)时,f′(x)<0,∴f(x)极大值=f(7)=42.又∵在(0,+∞)上只有一个极值点,∴f(x)max=f(x)极大值=f(7)=42.故当年广告费投入7万元时,企业年利润最大.1.利润最大问题是生活中常见的一类问题,一般根据“利润=收入-成本”或“利润=每件产品利润×销售件数”建立函数关系式,再用导数求最大值.2.解答此类问题时,要认真理解相应的概念,如:成本、利润、单价、销售量、广告费等等,以免因概念不清而导致解题错误.[再练一题]3.某工厂生产某种产品,已知该产品的月生产量x (吨)与每吨产品的价格p (元/吨)之间的关系式为p =24 200-15x 2,且生产x 吨产品的成本为R =50 000+200x (元).问该工厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润=收入-成本)【导学号:97792052】【解】 每月生产x 吨时的利润为 f (x )=⎝ ⎛⎭⎪⎫24 200-15x 2x -(50 000+200x )=-15x 3+24 000x -50 000(x ≥0). 由f ′(x )=-35x 2+24 000=0, 解得x 1=200,x 2=-200(舍去).因为f (x )在[0,+∞)内只有一个点x =200使f ′(x )=0, 故它就是最大值点,且最大值为 f (200)=-15×2003+24 000×200-50 000 =3 150 000(元).所以每月生产200吨产品时利润达到最大,最大利润为315万元.1.要做一个圆锥形漏斗,其母线长为20 cm ,要使其体积最大,则其高为( )A.2033 cmB.100 cmC.20 cmD.203 cm【解析】 设圆锥的高为h cm , 则V =13π(400-h 2)×h , 所以V ′(h )=13π(400-3h 2). 令V ′(h )=0,得h 2=4003, 所以h =2033.故选A. 【答案】 A2.某产品的销售收入y 1(万元)是产品x (千台)的函数:y 1=17x 2(x >0);生产总成本y 2(万元)也是x 的函数:y 2=2x 3-x 2(x >0),为使利润最大,应生产( )A.9千台B.8千台C.6千台D.3千台【解析】 利润函数y =y 1-y 2=18x 2-2x 3(x >0),求导得y ′=36x -6x 2,令y ′=0,得x =6或x =0(舍去).因0<x <6时,y =18x 2-2x 3递增, x >6时,y =18x 2-2x 3递减, ∴x =6时利润最大,故选C. 【答案】 C3.把长度为16的线段分成两段,各围成一个正方形,则它们的面积和的最小值为________.【解析】 设其中一段长为x ,则另一段长为16-x ,设两正方形的面积分别为S 1,S 2,面积之和为S ,则S =S 1+S 2=⎝ ⎛⎭⎪⎫x 42+⎝⎛⎭⎪⎫16-x 42=116x 2+116x 2-2x +16 =18x 2-2x +16(0<x <16). 令S ′=14x -2=0,得x =8.即x=8时,S有最小值,最小值为8.【答案】84.某商品一件的成本为30元,在某段时间内,若以每件x元出售,可卖出(200-x)件,当每件商品的售价为________元时,利润最大.【解析】利润为S(x)=(x-30)(200-x)=-x2+230x-6 000,S′(x)=-2x +230,由S′(x)=0得x=115,这时利润达到最大.【答案】1155.某造船公司年最高造船量是20艘,已知造船x艘的产值函数为R(x)=3 700x+45x2-10x3(单位:万元),成本函数为C(x)=460x+5 000(单位:万元).求:(1)利润函数P(x)(提示:利润=产值-成本)的解析式;(2)年造船量安排多少艘时,可使造船公司的年利润最大?【导学号:97792053】【解】(1)P(x)=R(x)-C(x)=-10x3+45x2+3 240x-5 000(x∈N且x∈[1,20]).(2)P′(x)=-30x2+90x+3 240=-30(x+9)(x-12)(x∈N且x∈[1,20]),当1≤x≤12时,P′(x)>0,P(x)单调递增;当12<x≤20时,P′(x)<0,P(x)单调递减;∴x=12时,P(x)取最大值,即年造船12艘时,造船公司的年利润最大.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.4生活中的优化问题举例(教学设计)(1)(2)(2课时)教学目标:知识与技能目标:会利用导数求利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用,提高将实际问题转化为数学问题的能力。

过程与方法目标:在利用导数解决实际问题中的优化问题的过程中,进一步巩固导数的相关知识,学生通过自主探究,体验数学发现与创造的历程,提高学生的数学素养。

情感、态度与价值观目标:在学习应用数学知识解决问题的过程中,培养学生善于发现问题、解决问题的自觉性,以及科学认真的生活态度,并以此激发他们学习知识的积极性。

教学重点:利用导数解决生活中的一些优化问题.教学难点:将实际问题转化为数学问题,根据实际利用导数解决生活中的优化问题. 教学过程:一.创设情景、新课引入生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.通过前面的学习,我们知道,导数是求函数最大(小)值的有力工具.这一节,我们利用导数,解决一些生活中的优化问题. 二.师生互动,新课讲解导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方面: 1、与几何有关的最值问题; 2、与物理学有关的最值问题;3、与利润及其成本有关的最值问题;4、效率最值问题。

例1(课本P101例1).海报版面尺寸的设计学校或班级举行活动,通常需要张贴海报进行宣传。

现让你设计一张如图1.4-1所示的竖向张贴的海报,要求版心面积为128dm 2,上、下两边各空2dm,左、右两边各空1dm 。

如何设计海报的尺寸,才能使四周空心面积最小?解:设版心的高为xdm ,则版心的宽为128xdm,此时四周空白面积为 128512()(4)(2)12828,0S x x x x x x=++-=++>。

求导数,得'2512()2S x x =-。

令'2512()20S x x =-=,解得16(16x x ==-舍去)。

于是宽为128128816x ==。

当(0,16)x ∈时,'()S x <0;当(16,)x ∈+∞时,'()S x >0.因此,16x =是函数()S x 的极小值,也是最小值点。

所以,当版心高为16dm ,宽为8dm 时,能使四周空白面积最小。

答:当版心高为16dm ,宽为8dm 时,海报四周空白面积最小。

解决优化问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是建立适当的函数关系。

再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具.利用导数解决优化问题的基本思路:例2(课本P102例2).饮料瓶大小对饮料公司利润的影响(1)你是否注意过,市场上等量的小包装的物品一般比大包装的要贵些? (2)是不是饮料瓶越大,饮料公司的利润越大?【背景知识】:某制造商制造并出售球型瓶装的某种饮料.瓶子的制造成本是20.8r π分,其中 r 是瓶子的半径,单位是厘米。

已知每出售1 mL 的饮料,制造商可获利 0.2 分,且制造商能制作的瓶子的最大半径为 6cm 问题:(1)瓶子的半径多大时,能使每瓶饮料的利润最大? (2)瓶子的半径多大时,每瓶的利润最小?解:由于瓶子的半径为r ,所以每瓶饮料的利润是()332240.20.80.8,0633r y f r r r r r πππ⎛⎫==⨯-=-<≤ ⎪⎝⎭令()20.8(2)0f r r r π'=-= 解得 2r =(0r =舍去) 当()0,2r ∈时,()0f r '<;当()2,6r ∈时,()0f r '>.当半径2r >时,()0f r '>它表示()f r 单调递增,即半径越大,利润越高; 当半径2r <时,()0f r '< 它表示()f r 单调递减,即半径越大,利润越低.(1)半径为2cm 时,利润最小,这时()20f <,表示此种瓶内饮料的利润还不够瓶子的成本,此时利润是负值. (2)半径为6cm 时,利润最大.换一个角度:如果我们不用导数工具,直接从函数的图像上观察,会有什么发现?有图像知:当3r =时,()30f =,即瓶子的半径为3cm 时,饮料的利润与饮料瓶的成本恰好相等;当3r >时,利润才为正值.当()0,2r ∈时,()0f r '<,()f r 为减函数,其实际意义为:瓶子的半径小于2cm 时,瓶子的半径越大,利润越小,半径为2cm 时,利润最小.例3(课本P102例3).磁盘的最大存储量问题计算机把数据存储在磁盘上。

磁盘是带有磁性介质的圆盘,并有操作系统将其格式化成磁道和扇区。

磁道是指不同半径所构成的同心轨道,扇区是指被同心角分割所成的扇形区域。

磁道上的定长弧段可作为基本存储单元,根据其磁化与否可分别记录数据0或1,这个基本单元通常被称为比特(bit )。

为了保障磁盘的分辨率,磁道之间的宽度必需大于m ,每比特所占用的磁道长度不得小于n 。

为了数据检索便利,磁盘格式化时要求所有磁道要具有相同的比特数。

问题:现有一张半径为R 的磁盘,它的存储区是半径介于r 与R 之间的环形区域. (1) 是不是r 越小,磁盘的存储量越大?(2) r 为多少时,磁盘具有最大存储量(最外面的磁道不存储任何信息)? 解:由题意知:存储量=磁道数×每磁道的比特数。

设存储区的半径介于r 与R 之间,由于磁道之间的宽度必需大于m ,且最外面的磁道不存储任何信息,故磁道数最多可达R rm-。

由于每条磁道上的比特数相同,为获得最大存储量,最内一条磁道必须装满,即每条磁道上的比特数可达2rnπ。

所以,磁盘总存储量 ()f r =R r m -×2r nπ2()r R r mn π=- (1)它是一个关于r 的二次函数,从函数解析式上可以判断,不是r 越小,磁盘的存储量越大.(2)为求()f r 的最大值,计算()0f r '=.()2()2f r R r mnπ'=- 令()0f r '=,解得2R r =当2R r <时,()0f r '>;当2Rr >时,()0f r '<. 因此2R r =时,磁盘具有最大存储量。

此时最大存储量为224R mn π例4.汽油的使用效率何时最高我们知道,汽油的消耗量w (单位:L )与汽车的速度v (单位:km/h )之间有一定的关系,汽油的消耗量w 是汽车速度v 的函数.根据你的生活经验,思考下面两个问题:(1)是不是汽车的速度越快,汽车的消耗量越大? (2)“汽油的使用率最高”的含义是什么?分析:研究汽油的使用效率(单位:L/m )就是研究秋游消耗量与汽车行驶路程的比值.如果用G 表示每千米平均的汽油消耗量,那么wG s=,其中,w 表示汽油消耗量(单位:L ),s 表示汽油行驶的路程(单位:km ).这样,求“每千米路程的汽油消耗量最少”,就是求G 的最小值的问题.通过大量的统计数据,并对数据进行分析、研究,人们发现,汽车在行驶过程中,汽油平均消耗率g (即每小时的汽油消耗量,单位:L/h )与汽车行驶的平均速度v (单位:km/h )之间有如图所示的函数关系()g f v =.从图中不能直接解决汽油使用效率最高的问题.因此,我们首先需要将问题转化为汽油平均消耗率g (即每小时的汽油消耗量,单位:L/h )与汽车行驶的平均速度v (单位:km/h )之间关系的问题,然后利用图像中的数据信息,解决汽油使用效率最高的问题.解:因为 w w gt G s s vt ===这样,问题就转化为求g v 的最小值.从图象上看,gv表示经过原点与曲线上点的直线的斜率.进一步发现,当直线与曲线相切时,其斜率最小.在此切点处速度约为90/km h .因此,当汽车行驶距离一定时,要使汽油的使用效率最高,即每千米的汽油消耗量最小,此时的车速约为90/km h .从数值上看,每千米的耗油量就是图()90f ',约为 L .中切线的斜率,即例5.在边长为60 cm 的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少?_ 60解法一:设箱底边长为x cm ,则箱高602xh -=cm ,得箱子容积 260)(322x x h x x V -== )600(<<x .23()602x V x x '=- )600(<<x令 23()602x V x x '=-=0,解得 x=0(舍去),x=40,并求得V(40)=16 000由题意可知,当x 过小(接近0)或过大(接近60)时,箱子容积很小,因此,16 000是最大值答:当x=40cm 时,箱子容积最大,最大容积是16 000cm 3解法二:设箱高为x cm ,则箱底长为(60-2x )cm ,则得箱子容积x x x V 2)260()(-=)300(<<x .(后面同解法一,略)由题意可知,当x 过小或过大时箱子容积很小,所以最大值出现在极值点处.事实上,可导函数260)(322x x h x x V -==、x x x V 2)260()(-=在各自的定义域中都只有一个极值点,从图象角度理解即只有一个波峰,是单峰的,因而这个极值点就是最值点,不必考虑端点的函数值例6.圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才能使所用的材料最省? 解:设圆柱的高为h ,底半径为R ,则表面积S=2πRh+2πR 2由V=πR 2h ,得2Vh R π=,则 S(R)= 2πR 2V R π+ 2πR 2=2V R +2πR 2令 22()Vs R R'=-+4πR=0解得,R=32V π,从而h=2V Rπ=23()2VV ππ=34V π=23V πx60-2x60-2x60-2xx60-2x6060即h=2R因为S(R)只有一个极值,所以它是最小值 答:当罐的高与底直径相等时,所用材料最省变式:当圆柱形金属饮料罐的表面积为定值S 时,它的高与底面半径应怎样选取,才能使所用材料最省?提示:S =2Rh π+22R π⇒h =RR S ππ222-⇒V (R )=R R S ππ222-πR 2=3221)2(21R SR R R S ππ-=- )('R V )=026R S π=⇒ ⇒R h R Rh R 222622=⇒+=πππ.例7.已知某商品生产成本C 与产量q 的函数关系式为C =100+4q ,价格p 与产量q 的函数关系式为q p 8125-=.求产量q 为何值时,利润L 最大?分析:利润L 等于收入R 减去成本C ,而收入R 等于产量乘价格.由此可得出利润L 与产量q 的函数关系式,再用导数求最大利润.解:收入211252588R q p q q q q ⎛⎫=⋅=-=- ⎪⎝⎭, 利润221125(1004)2110088L R C q q q q q ⎛⎫=-=---=-- ⎪⎝⎭(0100)q << 1214L q '=-+令0L '=,即12104q -+=,求得唯一的极值点84q =答:产量为84时,利润L 最大例8.一条水渠,断面为等腰梯形,如图所示,在确定断面尺寸时,希望在断面ABCD 的面积为定值S 时,使得湿周l =AB +BC +CD 最小,这样可使水流阻力小,渗透少,求此时的高h 和下底边长b .解:由梯形面积公式,得S =21(AD +BC )h ,其中AD =2DE +BC ,DE =33h ,BC =b∴AD =332h +b , ∴S =h b h h b h )33()2332(21+=+ ① ∵CD =h h 3230cos =︒,AB =CD .∴l =h 32×2+b②由①得b =33-h S h ,代入②,∴l =hSh h h S h +=-+333334 l ′=23h S -=0,∴h =43S , 当h <43S 时,l ′<0,h >43S 时,l ′>0. ∴h =43S时,l 取最小值,此时b =S 3324 例9.已知矩形的两个顶点位于x 轴上,另两个顶点位于抛物线y =4-x 2在x 轴上方的曲线上,求这种矩形中面积最大者的边长.【解】设位于抛物线上的矩形的一个顶点为(x ,y ),且x >0,y >0, 则另一个在抛物线上的顶点为(-x ,y ), 在x 轴上的两个顶点为(-x ,0)、(x ,0),其中0< x <2. 设矩形的面积为S ,则S =2 x (4-x 2),0< x <2.由S ′(x )=8-6 x 2=0,得x =332,易知 x =34是S 在(0,2)上的极值点, 即是最大值点,所以这种矩形中面积最大者的边长为332和38. 【点评】应用题求解,要正确写出目标函数并明确题意所给的变量制约条件.应用题的分析中如确定有最小值,且极小值唯一,即可确定极小值就是最小值.例10:一书店预计一年内要销售某种书15万册,欲分几次订货,如果每次订货要付手续费30元,每千册书存放一年要耗库费40元,并假设该书均匀投放市场,问此书店分几次进货、每次进多少册,可使所付的手续费与库存费之和最少?【解】假设每次进书x 千册,手续费与库存费之和为y 元,由于该书均匀投放市场,则平均库存量为批量之半,即2x,故有 y =x 150×30+2x ×40,y ′=-24500x+20, 令y ′=0,得x =15,且y ″=39000x,f ″(15)>0,所以当x =15时,y 取得极小值,且极小值唯一, 故 当x =15时,y 取得最小值,此时进货次数为15150=10(次). 即该书店分10次进货,每次进15000册书,所付手续费与库存费之和最少.例11:有甲、乙两城,甲城位于一直线形河岸,乙城离岸40千米,乙城到岸的垂足与甲城相距50千米,两城在此河边合设一水厂取水,从水厂到甲城和乙城的水管费用分别为每千米500元和700元,问水厂应设在河边的何处,才能使水管费用最省?【解】设水厂D 点与乙城到岸的垂足B 点之间的距离为x 千米,总费用为y 元,则CD =2240+x .y =500(50-x )+70016002+x =25000-500 x +70016002+x ,y ′=-500+700 · 21(x 2+1600)21-· 2 x=-500+16007002+x x ,令y ′=0,解得x =3650.答:水厂距甲距离为50-3650千米时,总费用最省. 【点评】当要求的最大(小)值的变量y 与几个变量相关时,我们总是先设几个变量中的一个为x ,然后再根据条件x 来表示其他变量,并写出y 的函数表达式f (x ). 三、课堂小结,巩固反思:12.解决优化问题的方法:通过搜集大量的统计数据,建立与其相应的数学模型,再通过研究相应函数的性质,提出优化方案,使问题得到解决.在这个过程中,导数往往是一个有利的工具。

相关文档
最新文档