等腰三角形培优提高练习题[1](精品文档)
等腰三角形大题培优专练
![等腰三角形大题培优专练](https://img.taocdn.com/s3/m/7488a97a58eef8c75fbfc77da26925c52dc59103.png)
2023-2024学年八年级数学上学期复习备考高分秘籍【人教版】专题2.5等腰三角形大题培优专练(提升篇)班级:_____________ 姓名:_____________ 得分:_____________一、解答题1.(2023秋·山东菏泽·八年级校联考期末)如图,AD∥BC,∠A=90°,E是AB上的一点,且AD=BE,∠1=∠2.求证:DE⊥CE.2.(2023秋·浙江·八年级专题练习)如图,已知△ABC中,∠B=∠E=40°,∠BAE=60°,且AD平分∠BAE.(1)求证:BD=DE;(2)若AB=AC,求∠CAD的度数.3.(2023·陕西西安·陕西师大附中校考模拟预测)如图,在△ABC中,AB=AC,延长BC至D,使得BD=AC,连接AD,再延长AB至E,使得BE=CD,连接DE.求证:△BED≌△CDA.5.(2023秋·全国·八年级专题练习)如图,(1)求证:△ADC≌△FDB;(1)如图1,求证:AD=AE;(2)如图2,当∠DAE=∠C=45°时,过点B作BF∥AC交AD的延长线于点F.在不添加任何辅助线和字母的情况下,请直接写出图2中的等腰三角形(△ABC除外).8.(2023春·八年级课时练习)如图,在△ABC中,AB=AC,AB的垂直平分线交AB于M,交AC于N,连接NB.(1)若∠ABC=65°,求∠NBC的度数.(2)若AB=8cm,△NBC的周长是14cm.求BC的长;9.(2020秋·浙江温州·八年级校考期中)在正方形网格中,已知格点(即小正方形的顶点)A、B组成的线段AB,请分别按下列要求作图:(1)在图1中作一个面积为2的△ABC(点C在格点上),且有一个内角为钝角;(2)在图2中作一个等腰△ABC(点C在格点上).10.(2022秋·湖南邵阳·八年级校考期末)如图,在△ABC中,AB=AC,CE平分∠ACB,EC=EA.(1)求∠A的度数;(2)若BD⊥AC,垂足为D,BD交EC于点F,求∠1的度数.11.(2022秋·湖北随州·八年级校考期中)如图,B、C分别在AD、AE的垂直平分线上,DE=12,∠ABC=50°,∠ACB=70°.求:(1)△ABC的周长;(2)∠DAE的度数.12.(2022秋·山西晋中·八年级校考期中)已知:如图,△ABC中,∠ABC与∠ACB的角平分线相交于点F,过点F作DE∥BC,分别交AB、AC于点D、E.求证:(1)DE=DB+EC;(2)若AB=3,AC=2,则△ADE的周长为________.13.(2021秋·湖北宜昌·八年级统考期中)如图,在△ABC中,∠BAC、∠ACB的平分线交于点M,过M作DE∥AC,分别交AB、BC于点D、E.求证:AD+CE=DE.14.(2022秋·湖北随州·八年级校考期中)已知:如图,点②AB=AE,③AC=AD,④(只写一组).15.(2023秋·湖北武汉·八年级校考阶段练习)如图,点∠ABD=∠DBC,AB=DB,(1)BM=BN;(2)BM⊥BN.16.(2023秋·福建福州·八年级福建省福州屏东中学校考开学考试)如图,点AD=BC,∠ADE=∠BED.(1)尺规作图:作∠DCE的平分线CF,交DE于点F;(2)证明:CF⊥DE.17.(2022秋·河北唐山·八年级统考期中)如图,BA⊥AF于点A,ED⊥DC于点D,点E、F在线段BC上,DE与AF交于点O,且AB=DC,BE=CF.(1)求证:AF=DE;(2)若OP平分∠EOF,求证:OP垂直平分EF.18.(2023秋·山东聊城·八年级校考阶段练习)如图,在△ABC中,AB=AC,D是BC边上的一点,以AD为边在AD右侧作△ADE,使AE=AD,连接CE,∠BAC=∠DAE=100°.(1)试说明BD=CE;(2)若DE=DC,求∠CDE的度数.19.(2023秋·黑龙江哈尔滨·八年级哈尔滨市第四十七中学校考阶段练习)已知:在△ABC中,AB=AC,点D、点E在边BC上,AD=AE.(1)如图1,求证:BD=CE;(2)如图2,当∠BAC=90°,∠DAE=45°时,过点B作BF∥AC交AD的延长线于点F,在不添加任何辅助线的情况下,请直接写出图2中的所有顶角为45°的等腰三角形.20.(2023秋·浙江·八年级专题练习)如图,已知△ABC,E是BA延长线上的点.(1)过点A在射线BE右侧作AD∥BC;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,若AB=AC,求证:AD平分∠CAE.21.(2022春·河南焦作·八年级校考期中)已知命题:“等腰三角形一腰上的高与底边的夹角等于顶角的一半.”为了探究该命题是否正确,小明采用分类讨论思想,从直角三角形、锐角三角形、钝角三角形三个角度进行思考,先对前两种情况画出了图形,写出了已知、求证并给出了证明在探究在钝角三角形中是否正确时遇到了困难,请你补全图形,写出已知、求证,并给出证明.22.(2023秋·吉林长春·八年级东北师大附中校考开学考试)在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交射线BC于点F.(1)如图①,当AE⊥BC时,求证:DE∥AC.(2)若∠C=2∠B,∠BAD=x°(0<x<60).①如图②,当DE⊥BC时,x的值为___________;②当△DEF是等腰三角形时,直接写出x的值.23.(2021秋·福建莆田·八年级校考期末)如图,在△ABC中,EF垂直平分AC,交AC于点F,交BC于点E,AD⊥BC,且BD=DE,连接AE.(1)若∠BAE=44°,求∠C的度数.(2)若AC=7cm,DC=5cm,求△ABC的周长.24.(2022秋·福建福州·八年级统考期中)如图,在△ABC中,AC>BC,∠A=45°,点D是AB边上一点,且CD=CB,过点B作BF⊥CD于点E,与AC交于点F,过点C作CG⊥BD,垂足为点G.(1)求证:∠BCD=2∠ABF;(2)判断△BCF的形状,并说明理由.25.(2023秋·江苏·八年级专题练习)如图,点D、E在△ABC的边BC上,AB=AC.(1)若AD=AE,求证:BD=CE;(2)若BD=CE,F为DE的中点,如图②,求证:AF⊥BC.26.(2021春·上海松江·七年级校考期中)如图,在△ABC中,已知D是BC边的中点,过点于F,交AC的平行线BG于点G,DE⊥GF,交AC的延长线于点E,联结EG.(1)说明BG与CF相等的理由;(2)说明∠BGD与∠DGE相等的理由.27.(江苏省泰州市部分农村学校在△ABC中,AB=AC=4(1)当∠BDA=110°时,∠DEC=(2)当DC为何值时,△ABD≌△(3)在点D的运动过程中,若△(1)在线段AB上找一点P,使AP=AN,连接DP.求证:DP=DM;(2)若△AMD的面积等于100,△AND的面积等于80,求△DHN的面积.29.(2022秋·湖南株洲·八年级校考期中)在△ABC中,AD平分∠BAC,BD⊥AD,垂足为点D,过点D作DE∥AC,交AB于点E,AB=5.(1)求证:△ADE是等腰三角形;(2)求线段DE的长.30.(2022秋·广东深圳·八年级校联考开学考试)如图,已知△ABC中,∠B=∠E=40°,∠BAE=60°,∠ADC=70°,且AD平分∠BAE.(1)求证:BD=DE;(2)若AB=CD,求∠ACD的大小.。
培优专题等腰三角形(含答案)
![培优专题等腰三角形(含答案)](https://img.taocdn.com/s3/m/a864a921f12d2af90242e6cf.png)
9、等腰三角形【知识精读】(-)等腰三角形的性质1. 有关定理及其推论定理:等腰三角形有两边相等;定理:等腰三角形的两个底角相等(简写成“等边对等角”)。
推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
推论2:等边三角形的各角都相等,并且每一个角都等于60°。
等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;2. 定理及其推论的作用等腰三角形的性质定理揭示了三角形中边相等与角相等之间的关系,由两边相等推出两角相等,是今后证明两角相等常用的依据之一。
等腰三角形底边上的中线、底边上的高、顶角的平分线“三线合一”的性质是今后证明两条线段相等,两个角相等以及两条直线互相垂直的重要依据。
(二)等腰三角形的判定1. 有关的定理及其推论定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”。
)推论1:三个角都相等的三角形是等边三角形。
推论2:有一个角等于60°的等腰三角形是等边三角形。
推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
2. 定理及其推论的作用。
等腰三角形的判定定理揭示了三角形中角与边的转化关系,它是证明线段相等的重要定理,也是把三角形中角的相等关系转化为边的相等关系的重要依据,是本节的重点。
3. 等腰三角形中常用的辅助线等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题,在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线互相重合,添加辅助线时,有时作哪条线都可以,有时需要作顶角的平分线,有时则需要作高或中线,这要视具体情况来定。
【分类解读】例1. 如图,已知在等边三角形ABC 中,D 是AC 的中点,E 为BC 延长线上一点,且CE =CD ,DM ⊥BC ,垂足为M 。
等腰三角形培优专题
![等腰三角形培优专题](https://img.taocdn.com/s3/m/90afd4a789eb172ded63b7e0.png)
等腰三角形【等腰三角形存在性问题】1.如图4×4的正方形网格中,网格线的交点叫格点,已知点A、B是格点,若C也是格点且△ABC 为等腰三角形,则点C的个数是()A.6个B.7个C.8个D.9个2.如图,正方形网格中,网格线的交点称为格点,已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6B.8C.9D.103.如图,已知每个小方格的边长为1,A,B两点都在小方格的顶点上,请在图中找一个顶点C,使△ABC为等腰三角形,则这样的顶点C有()A.8个B.7个C.6个D.5个4.如图,△ABC中,∠B=50°,∠C=90°,在射线BA上找一点D,使△ACD为等腰三角形,则∠ADC的度数为.【等腰三角形分类讨论】1.等腰三角形的一个角比另一个角2倍少20度,等腰三角形顶角的度数是()A.140°或44°或80°B.20°或80°C.44°或80°D.140°2.规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为()A.30°B.36°C.45°D.60°3.等腰三角形的两边a,b满足|a﹣7|+=0,则它的周长是()A.12 B.15 C.17 D.194.等腰三角形周长为17cm,一腰上的中线将三角形分为两个三角形,这两个三角形的周长差为4cm,则此等腰三角形的底边长为.5.若等腰三角形一腰上的中线将其周长分成9和6两部分,则这个等腰三角形的三边长分别为.页1【等腰三角形性质的应用】6.已知:如图,在△ABC中,AB=AC,∠C=72°,BC=.以点B为圆心,BC为半径画弧,交AC于点D,则线段AD的长为()A.2B.C.D.7.如图,在△ABC中,AB=AC,过点C的直线EF∥AB.若∠ACE=30°,则∠B的度数为()A.30°B.65°C.75°D.85°9.如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a交AB于点D,交AC与点E,若∠1=145°,则∠2的度数是()A.30°B.35°C.40°D.45°10.如图,BD,CE分别是△ABC的高线和角平分线,且相交于点O.若AB=AC,∠A=40°,则∠BOE的度数是()A.60°B.55°C.50°D.40°11.如图,在△ABC中,AC=AD=DB,∠C=70°,则∠CAB的度数为()A.75°B.70°C.40°D.35°12.如图,在△ABC中,BE平分∠ABC,CE平分∠ACB,BE和CE交于点E,过点E作MN∥BC 交AB于点M,交AC于点N.若MN=8,则BM+CN的长为()A.6.5B.7.2C.8D.9.513.如图,在△ABC中,∠ABC的平分线交AC于点D,AD=6,过点D作DE∥BC交AB于点E,若△AED的周长为16,则边AB的长为()A.6B.8C.10D.1214.如图,AE垂直于∠ABC的平分线交于点D,交BC于点E,CE=BC,若△ABC的面积为2,则△CDE的面积为()A.B.C.D.页215.如图,在△ABC中,AB=AC=10,BC=12,点D是BC上一点,DE∥AC,DF∥AB,则△BED 与△DFC的周长的和为()A.34B.32C.22D.2016.如图,已知△ABC,点D、E分别在边AC、AB上,∠ABD=∠ACE,下列条件中,不能判定△ABC是等腰三角形的是()A.AE=AD B.BD=CE C.∠ECB=∠DBC D.∠BEC=∠CDB.17.如图,△ABC的面积为9cm2,BP平分∠ABC,AP⊥BP于P,连接PC,则△PBC的面积为()A.3cm2B.4cm2C.4.5cm2D.5cm218.如图,已知AE平分∠BAC,BE⊥AE于E,ED∥AC,∠BAE=36°,那么∠BED的度数为()A.108°B.120°C.126°D.144°21.如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=44°,则∠CDB的度数是.22.如图,已知△ABC中,AB=AC,∠CAB的角平分线与外角∠CBD的角平分线交于点M,且∠AMB=35°,则∠CAB=.24.如图,已知BD⊥AG,CE⊥AF,BD、CE分别是∠ABC和∠ACB的角平分线,若BF=3,ED =2,GC=5,则△ABC的周长为.【最短路径】页326.如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线L成轴对称的△A′B′C′;(2)求△ABC的面积;(3)在直线L上找一点P(在答题纸上图中标出),使PB+PC的长最小.27.如图,在11×11的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1(要求A与A1,B与B1,C与C1相对应);(2)在直线l上找一点P,使得PA+PB的和最小.【等腰三角形的性质的应用综合题】28.如图在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求∠A的度数.29.如图,在△ABC中,AB=AC,点D,点E分别是BC,AC上一点,且DE⊥AD.若∠BAD=55°,∠B=50°,求∠DEC的度数.页430.如图,△ABC中,AB=AC,D,E,F分别为AB,BC,CA上的点,且BD=CE,∠DEF=∠B(1)求证:△BDE≌△CEF;(2)若∠A=40°,求∠EDF的度数.31.如图,在△ABC中,∠ABC=90°,过点B作BD⊥AC于点D,BE平分∠ABD交AC于点E.(1)求证:CB=CE;(2)若∠CEB=80°,求∠DBC的大小.32.如图,在△ABC中,∠B=90°,AB=8厘来,BC=6厘米P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动速度为1厘米/秒,点Q从点B开始沿B→C→A方向运动速度为2厘米/秒,若它们同时出发,设出发的时阃为t秒.(1)求出发2秒后,PQ的长;(2)点Q在CA边上运动时,当△BCQ成为等腰三角形时,求点Q的运动时间.33.如图,△ABC是等腰三角形,AB=AC,点D是AB上一点,过点D作DE⊥BC交BC于点E,交CA延长线于点F.页5(1)证明:△ADF是等腰三角形;(2)若∠B=60°,BD=4,AD=2,求EC的长,34.如图,在等腰△ABC中,AB=AC,D为底边BC延长线上任意一点,过点D作DE∥AB,与AC延长线交于点E.(1)则△CDE的形状是;(2)若在AC上截取AF=CE,连接FB、FD,判断FB、FD的数量关系,并给出证明.35.如图①,△ABC中,∠ABC=∠ACB,点D为BC边上一点,E为直线AC上一点,且∠ADE =∠AED.(1)试说明∠BAD=2∠CDE;(2)如图②,若点D在CB的延长线上,其他条件不变,(1)中的结论是否仍然成立?请说明理由.页6页 736.如图,在等腰三角形△ABC 中,AB =AC ,BD 平分∠ABC ,在BC 的延长线上取一点E ,使CE =CD ,连接DE ,求证:BD =DE .37.如图所示,△ABC 中,BA =BC ,点D 为BC 上一点,DE ⊥AB 交AB 于点E ,DF ⊥BC 交AC 于点F .(1)若∠AFD =160°,则∠A=°; (2)若点F 是AC 的中点,求证:∠CFD =∠B .38.如图,在△ABC 中,AB =AC ,AD 是BC 边上的中线,E 是AC 边上的一点,且∠CBE =∠CAD .求证:BE ⊥AC .39.如图,△ABC 中,∠ABC =∠ACB ,点D 在BC 所在的直线上,点E 在射线AC 上,且∠ADE =∠AED ,连接DE .(1)如图①,若∠B =∠C =30°,∠BAD =70°,求∠CDE 的度数;(2)如图②,若∠ABC=∠ACB=70°,∠CDE=15°,求∠BAD的度数;(3)当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE的数量关系,并说明理由.40.如图,等腰△ABC的底边长为16cm,腰长为10cm,一个动点P在底边上从B向C以0.25cm/s 的速度移动,请你探究,当P运动几秒时,P点与顶点A的连线PA与腰垂直.页8。
等腰三角形 培优训练2022-2023学年人教版八年级数学上册
![等腰三角形 培优训练2022-2023学年人教版八年级数学上册](https://img.taocdn.com/s3/m/b47aefe56037ee06eff9aef8941ea76e58fa4ac9.png)
13.3 等腰三角形 培优训练一、单选题1.如图,B 在AC 上,D 在CE 上, AD =BD =BC , ∠ACE =25° , ∠ADE 的度数为( )A .50°B .65°C .75°D .80°2.如图,平面直角坐标系中,已知定点A (3,0)和B (0,4),若动点C 在y 轴上运动,则使△ABC 为等腰三角形的点C 有( )个.A .3B .4C .5D .63.如图, △ABC 中, BD 是角平分线, DE ∥BC 交 AB 于 E ,交 AC 于 D ,若 DE =7 , AE =5 ,则 AB = ( )A .10B .12C .14D .164.如图是正五边形ABCDE , DG 平分正五边形的外角△EDF ,连接AD ,则△ADG= ( )A .54°B .60°C .72°D .88°5.如图,在△ABC 中,运用尺规作图的方法在BC 边上取一点P ,使PA +PB =BC ,下列作法正确的是( )A .B .C .D .6.如图, △ABC 是等边三角形, BD 是中线,延长 BC 至E ,使 CE =CD ,则下列结论错误..的是( )A .∠CED =30°B .∠BDE =120°C .DE =BD D .DE =AB7.下列命题是真命题的是( )A .等腰三角形的角平分线、中线、高线互相重合B .一个三角形被截成两个三角形,每个三角形的内角和是90度C .有两个角是60°的三角形是等边三角形D .在 △ ABC 中, ∠A =∠B =2∠C ,则 △ ABC 为直角三角形8.如图,在Rt△ABC 中,△ACB =90°,AC =5,BC =12,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为( )A .44B .43C .42D .419.如图,△ABC 是等边三角形,点E 是AC 的中点,过点E 作EF△AB 于点F,延长BC交EF 的反向延长线于点D ,若EF=1,则DF 的长为( )A .2B .2.5C .3D .3.5二、填空题10.等腰三角形腰AB =10,底边BC =12,则△ABC 的周长为 .11.规定:在直角三角形中,如果直角边是斜边的一半,那么它所对的锐角为30°.等腰三角形ABC 中,AD ⊥BC 于点D ,若AD =12BC ,则△ABC 底角的度数为 .12.如图,在等边三角形ABC 中,AB =2,BD 是AC 边的高线,延长BC 至点E ,使CE =CD ,则BE 的长为 .13.如图,在 ΔABC 中, ∠ACB =120° , CD 平分 ∠ACB ,作 AE//DC ,交 BC 的延长线于点 E ,则ΔACE 是 三角形.14.已知射线OM.以O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以点A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,如图所示,则△AOB= (度)15.如图,在△ABC 中,△ACB=90°,△B =30°,CD 是高.若AD=2,则BD= .三、作图题16.如图,在9×4的方格纸ABCD 中,每个小正方形的边长均为1,点E 为格点(注:小正方形顶点称为格点).请仅用无刻度直尺按要求画图.△在CD 边上找一点P ,连结AP ,使△AEP 是等腰三角形; △在AB 边上找一点Q ,使EQ△AP ,画出线段EQ.四、解答题17.如图, △ABC 中, AB=AC ,D 、E 分别是AB 、AC 上的点,且 △ABE=△ACD ,BE 、CD 交于点O ,求证: △OBC 是等腰三角形.18.已知a ,b ,c 是△ABC 的三边,a =4,b =6,若三角形的周长是小于16的偶数,判断△ABC 的形状.19.如图,在△ABC 中,D ,E 分别是边AC ,AB 的中点,连接ED ,BD .若BD 平分∠ABC ,求证:BD ⊥AC .20.如图, △ABC 是等边三角形, BD 是中线,延长 BC 至E ,使CE=CD.求证:DB =DE .21.如图,在△ABC 中,AB =AC ,D 为AB 边的中点,DE△AC 于点E ,DF△BC 于点F ,DE =DF .求证:△ABC 是等边三角形.22.如图,在△ABC 中,AB =AC ,D 、E 是△ABC 内的两点,AD 平分△BAC ,∠EBC =∠E =60°.若BE =6cm ,DE =2cm ,求BC 的长.23.如图,在△ABC 中,△ACB=90°,CD 是高,△A=30°,求证:BD =14AB .24.阅读下列材料:小明遇到一个问题:已知:如图1,在△ABC 中,△BAC=120°,△ABC=40°,试过△ABC 的一个顶点画一条直线,将此三角形分割成两个等腰三角形.他的做法是:如图2,首先保留最小角△C ,然后过三角形顶点A 画直线交BC 于点D .将△BAC 分成两个角,使△DAC=20°,△ABC 即可被分割成两个等腰三角形.喜欢动脑筋的小明又继续探究:当三角形内角中的两个角满足怎样的数量关系时,此三角形一定可以被过顶点的一条直线分割成两个等腰三角形. 他的做法是:如图3,先画△ADC ,使DA=DC ,延长AD 到点B ,使△BCD 也是等腰三角形,如果DC=BC ,那么△CDB =△ABC ,因为△CDB=2△A ,所以△ABC= 2△A .于是小明得到了一个结论:当三角形中有一个角是最小角的2倍时,则此三角形一定可以被过顶点的一条直线分割成两个等腰三角形.请你参考小明的做法继续探究:当三角形内角中的两个角满足怎样的数量关系时,此三角形一定可以被过顶点的一条直线分割成两个等腰三角形.请直接写出你所探究出的另外两条结论(不必写出探究过程或理由).25.如图[感知]如图①,△ABC 是等边三角形,点D 、E 分别在AB 、BC 边上,且AD=BE ,易知:△ADC△△BEA (1)[探究]如图②,△ABC 是等边三角形,点D 、E 分别在边BA 、CB 的延长线上,且AD=BE ,△ADC与△BEA 还全等吗?如果全等,请证明:如果不全等,请说明理由.(2)[拓展]如图③,在△ABC 中,AB=AC ,△1=△2,点D 、E 分别在BA 、FB 的延长线上,且AD=BE=CF ,若AF=2AD ,S△ABF=6,则S△BCD的大小为答案解析部分1.【答案】C【解析】【解答】解:∵BD=BC,∠ACE=25°,∴∠BDC=∠C=25°,∴∠ABD=50°,∵AD=BD,∴∠A=∠ABD=50°,∴∠ADE=∠A+∠C=75°.故答案为:C.【分析】由等边对等角得∠BDC=∠C=25°,利用三角形外角的性质求出∠ABD=50°,由等边对等角得∠A=∠ABD=50°,根据三角形外角的性质求出∠ADE=∠A+∠C=75°.2.【答案】B【解析】【解答】解:如图所示:当BC=BA时,使△ABC为等腰三角形的点C有2个;当AB=AC时,使△ABC为等腰三角形的点C有1个;当CA=CB时,使△ABC为等腰三角形的点C有1个;综上所述,若动点C在y轴上运动,使△ABC为等腰三角形的点C有4个;故答案为:B.【分析】利用等腰三角形的判定方法求解即可。
等腰三角形培优提高练习题1
![等腰三角形培优提高练习题1](https://img.taocdn.com/s3/m/357ee19caff8941ea76e58fafab069dc5022478c.png)
一. 选择题(共6小题)1.已知, 等腰三角形的一条边长等于6, 另一条边长等于3, 则此等腰三角形的周长是()A. 9B. 12C. 15D. 12或152.如图所示, 在△ABC中, AB=AC, ∠A=36°, BD.CE分别为∠ABC与∠ACB的角平分线且相交于点F, 则图中的等腰三角形有()A. 6个B. 7个C. 8个D. 9个(第2题)(第3题)(第4题)3. 如图, 直线a、b相交于点O, ∠1=50°, 点A在直线a上, 直线b上存在点B, 使以点O、A.B为顶点的三角形是等腰三角形, 这样的B点有()A. 1个B. 2个C. 3个D. 4个4.如图, △ABC的面积为8cm2, AP垂直∠B的平分线BP于P, 则△PBC的面积为()A. 3cm2 B. 4cm2 C. 5cm2 D. 6cm25.在等腰△ABC中, AB=AC, 中线BD将这个三角形的周长分为15和12两个部分, 则这个等腰三角形的底边长为()A. 7B. 11C. 7或11D. 7或106.如图:D, E分别是△ABC的边BC、AC上的点, 若AB=AC, AD=AE, 则()A. 当∠B为定值时, ∠CDE为定值B. 当∠α为定值时, ∠CDE为定值C.当∠β为定值时, ∠CDE为定值D.当∠γ为定值时, ∠CDE为定值二. 填空题(共8小题)7. 已知等腰三角形一腰上的中线将三角形周长分成2: 1两部分, 已知三角形底边长为5cm,则腰长为cm.8.如图, 在△ABC中, EG∥BC, BF平分∠ABC, CF平分∠ACB, AB=10, AC=12, △AEG的周长为.(第8题)(第9题)(第10题)9. 如图, 已知△ABC中, AB=AC, D是BC上一点, 且AD=DB, DC=CA, 则∠BAC=°.10. 如图, △ABC中, AP垂直∠ABC的平分线BP于点P. 若△ABC的面积为32cm2, BP=6cm, 且△APB的面积是△APC的面积的3倍. 则AP=cm.11. 等腰三角形一腰上的高与另一腰的夹角为48°, 则该等腰三角形的底角的度数为.12.如图是由9个等边三角形拼成的六边形, 若已知中间的小等边三角形的边长是2, 则六边形的周长是.(第12题)(第14题)(第14题)13. 如图, ∠AOB=60°, C是BO延长线上的一点, OC=10cm, 动点P从点C出发沿CB以2cm/s 的速度移动, 动点Q从点O发沿OA以1cm/s的速度移动, 如果点P、Q同时出发, 用t(s)表示移动的时间, 当t=时, △POQ是等腰三角形.14.如图: 已知在Rt△ABC中, ∠C=90°, ∠A=30°, 在直线AC上找点P, 使△ABP是等腰三角形, 则∠APB的度数为.三. 解答题(共15小题)15.如图, 已知AB=AC=AD, 且AD∥BC, 求证:∠C=2∠D.16. 如图, 在△ABC中, ∠BAC=90°, AD⊥BC于点D, BE平分∠ABC交AD于点F, 交AC于点E. 求证: △AEF为等腰三角形.17. 如图, 已知点A.C分别在∠GBE的边BG、BE上, 且AB=AC, AD∥BE, ∠GBE的平分线与AD交于点D, 连接CD.(1)求证: ①AB=AD;②CD平分∠ACE.(2)猜想∠BDC与∠BAC之间有何数量关系?并对你的猜想加以证明.18. 如图(1), 等边△ABC中, D是AB边上的动点, 以CD为一边, 向上作等边△EDC, 连接AE.(1)△DBC和△EAC会全等吗?请说说你的理由;(2)试说明AE∥BC的理由;(3)如图(2), 将(1)动点D运动到边BA的延长线上, 所作仍为等边三角形, 请问是否仍有AE∥BC?证明你的猜想.19. 如图, AD平分∠BAC, AD⊥BD, 垂足为点D, DE∥AC.求证:△BDE是等腰三角形.20. 如图, 在△ABC中, AD平分∠BAC, BD⊥AD, 垂足为D, 过D作DE∥AC, 交AB于E.求证:△BDE是等腰三角形.21. 如图, 已知△ABC中, AB=AC, BD.CE是高, BD与CE相交于点O(1)求证: OB=OC;(2)若∠ABC=50°, 求∠BOC的度数.22. 如图, 已知在△ABC中, ∠ACB=90°, 在AB上截取AE=AC, BD=BC. 求证: ∠DCE=45°.23. 如图, 在△ABC中, AB=AC, ∠BAC=80°, O为△ABC内一点, 且∠OBC=10°, ∠OCA=20°,求∠BAO的度数.24. 如图, △ABC是边长为l的等边三角形, △BDC是顶角∠BDC=120°的等腰三角形, 以D为顶点作一个60°角, 角的两边分别交AB于M, 交AC于N, 连接MN, 形成一个三角形, 求证:△AMN的周长等于2.25. 如图, 在△ABC中, AB=AC, 点D.E、F分别在AB.BC.AC边上, 且BE=CF, BD=CE.(1)求证: △DEF是等腰三角形;(2)当∠A=40°时, 求∠DEF的度数.26. 如图:(1)P是等腰三角形ABC底边BC上的一个动点, 过点P作BC的垂线, 交AB于点Q, 交CA 的延长线于点R. 请观察AR与AQ, 它们有何关系?并证明你的猜想.(2)如果点P沿着底边BC所在的直线, 按由C向B的方向运动到CB的延长线上时, (1)中所得的结论还成立吗?请你在图(2)中完成图形, 并给予证明.27. (1)如图1, Rt△ABC中, ∠ACB=90°, 点D.E在边AB上, 且AD=AC, BE=BC, 求∠DCE的度数;(2)如图2, 在△ABC中, ∠ACB=40°, 点 D.E在直线AB上, 且AD=AC, BE=BC, 则∠DCE=;(3)在△ABC中, ∠ACB=n°(0<n<180°), 点D、E在直线AB上, 且AD=AC, BE=BC, 求∠DCE的度数(直接写出答案, 用含n的式子表示).28. 如图, 在△ABC中, AB=AC, ∠BAC=100°, 点D在BC边上, △ABD.△AFD关于直线AD对称, ∠FAC的角平分线交BC边于点G, 连接FG.(1)求∠DFG的度数.(2)设∠BAD=θ, 当θ为何值时, △DFG为等腰三角形?。
人教版 八年级数学 13.3 等腰三角形 培优训练(含答案)
![人教版 八年级数学 13.3 等腰三角形 培优训练(含答案)](https://img.taocdn.com/s3/m/f37d85127fd5360cbb1adb45.png)
人教版八年级数学13.3 等腰三角形培优训练一、选择题(本大题共10道小题)1. 如图,已知P A=PB,在证明∠A=∠B时,需要添加辅助线,下面有甲、乙两种辅助线的作法:甲:作底边AB的中线PC;乙:作PC平分∠APB交AB于点C.则()A.甲、乙两种作法都正确B.甲的作法正确,乙的作法不正确C.甲的作法不正确,乙的作法正确D.甲、乙两种作法都不正确2. 已知实数x、y满足|x-4|+y-8=0,则以x、y的值为两边长的等腰三角形的周长是()A. 20或16B. 20C. 16D. 以上答案均不对3. 如图,△ABC中,AB=AC,AD是∠BAC的平分线,已知AB=5,AD=3,则BC的长为()A. 5B. 6C. 8D. 104. 如图,∠AOB=50°,OM平分∠AOB,MA⊥OA于点A,MB⊥OB于点B,则∠MAB等于()A.50°B.40°C.25°5. 如图,下列条件不能推出△ABC是等腰三角形的是()A.∠B=∠C B.AD⊥BC,∠BAD=∠CADC.AD⊥BC,BD=CD D.AD⊥BC,∠BAD=∠ACD6. 如图所示,△ABC是等边三角形,D为AB的中点,DE⊥AC,垂足为E. 若AE=1,则△ABC的边长为()A. 2B. 4C. 6D. 87. 如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠BCD的度数为()A.150°B.160°C.130°D.60°8. 如图,在△ABC中,∠BAC=72°,∠C=36°,∠BAC的平分线AD交BC于点D,则图中有等腰三角形()A.0个B.1个C.2个D.3个9. 如图所示的正方形网格中,网格线的交点称为格点. 已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形.....,那么符合题意的点C的个数是()A. 6B. 7C. 8D. 910. “三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在点O相连并可绕点O转动,点C固定,OC=CD=DE,点D,E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是()A.60°B.65°C.75°D.80°二、填空题(本大题共6道小题)11. 如图,在等边三角形ABC中,点D在边AB上,点E在边AC上,将△ADE 折叠,使点A落在BC边上的点F处,则∠BDF+∠CEF=________°.12. 如图,在△ABC中,AB=AC,D是AC上一点,且BC=BD.若∠CBD=46°,则∠A=________°.13. 在△ABC中,若∠A=100°,∠B=40°,AC=5,则AB=________.14. 如图,BO平分∠CBA,CO平分∠ACB,MN过点O且MN∥BC,设AB=12,AC=18,则△AMN的周长为________.15. 如图,在△ABC中,若AB=AC=8,∠A=30°,则S△ABC=________.16. 一个等腰三角形的一边长是2,一个外角是120°,则它的周长是________.三、解答题(本大题共4道小题)17. 如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB于点E,DF⊥AC 于点F.求证:DE=DF.18. 如图,在等边三角形ABC中,D为AC上一点,E为AB延长线上一点,DE ⊥AC交BC于点F,且DF=EF.(1)求证:CD=BE;(2)若AB=12,求BF的长.19. 如图,将一张长方形的纸条ABCD沿EF折叠,若折叠后∠AGC′=48°,AD交EC′于点G.(1)求∠CEF的度数;(2)求证:△EFG是等腰三角形.20. 如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.求证:DF=2DC.人教版八年级数学13.3 等腰三角形培优训练-答案一、选择题(本大题共10道小题)1. 【答案】A2. 【答案】B【解析】∵|x -4|+y -8=0,∴x -4=0,y -8=0,解得x =4,y =8.分两种情况讨论:①当4为腰时,根据三角形三边关系知4+4=8,∴这样的等腰三角形不存在;②当8为腰时,则有4+8>8,这样能够组成等腰三角形,∴此三角形的周长是8+8+4=20.3. 【答案】C 【解析】∵AB =AC ,AD 平分∠BAC ,∴根据等腰三角形三线合一性质可知AD ⊥BC ,BD =CD ,在Rt △ABD 中,AB =5,AD =3,由勾股定理得BD =4,∴BC =2BD =8.4. 【答案】C[解析] ∵OM 平分∠AOB ,MA ⊥OA 于点A ,MB ⊥OB 于点B ,∴∠AOM =∠BOM =25°,MA =MB.∴∠OMA =∠OMB =65°.∴∠AMB =130°.∴∠MAB =12×(180°-130°)=25°.故选C.5. 【答案】D[解析] 选项A 由等角对等边可得△ABC 是等腰三角形;选项B 由所给条件可得△ADB ≌△ADC ,由全等三角形的性质可得AB =AC ;选项C 由垂直平分线的性质可得AB =AC ;选项D 不可以得到AB =AC. 6. 【答案】B7. 【答案】A[解析] ∵AB ∥ED ,∴∠E =180°-∠EAB =180°-120°=60°. 又∵AD =AE ,∴△ADE 是等边三角形.∴∠EAD =60°.∴∠BAD =∠EAB -∠EAD =120°-60°=60°.∵AB =AC =AD ,∴∠B =∠ACB ,∠ACD =∠ADC.在四边形ABCD 中,∠BCD =∠B +∠ADC =12(360°-∠BAD)=12×(360°-60°)=150°. 故选A.8. 【答案】D[解析] ∵∠BAC =72°,∠C =36°,∴∠ABC =72°.∴∠BAC =∠ABC. ∴CA =CB.∴△ABC 是等腰三角形.∵∠BAC 的平分线AD 交BC 于点D ,∴∠DAB=∠CAD=36°.∴∠CAD=∠C.∴CD=AD,∴△ACD是等腰三角形.∵∠ADB=∠CAD+∠C=72°,∴∠ADB=∠B.∴AD=AB.∴△ADB是等腰三角形.9. 【答案】C10. 【答案】D[解析] ∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC.∴∠DCE=∠O+∠ODC=2∠ODC.∵∠O+∠OED=3∠ODC=∠BDE=75°,∴∠ODC=25°.∵∠CDE+∠ODC=180°-∠BDE=105°,∴∠CDE=105°-∠ODC=80°.二、填空题(本大题共6道小题)11. 【答案】120[解析] 由于△ABC是等边三角形,所以∠A=60°.所以∠ADE+∠AED=120°.因为将△ADE折叠,使点A落在BC边上的点F处,所以∠ADE=∠EDF,∠AED=∠DEF.所以∠ADF+∠AEF=2(∠ADE+∠AED)=240°.所以∠BDF+∠CEF=360°-(∠ADF+∠AEF)=120°.12. 【答案】46[解析] ∵BC=BD,∠CBD=46°,∴∠C=∠BDC=12(180°-46°)=67°.∵AB=AC,∴∠ABC=∠C=67°.∴∠A=46°.13. 【答案】514. 【答案】30[解析] ∵MN∥BC,∴∠MOB=∠OBC. ∵∠OBM=∠OBC,∴∠MOB=∠OBM.∴MO=MB.同理NO=NC.∴△AMN的周长=AM+MO+AN+NO=AM+MB+AN+NC=AB+AC=30.15. 【答案】16[解析] 如图,过点C作CD⊥AB,垂足为D,则△ADC是含30°角的直角三角形,那么DC=12AC=4,∴S△ABC=12AB·DC=12×8×4=16.16. 【答案】6[解析] 已知三角形的一外角为120°,则相邻内角度数为60°,那么含有60°角的等腰三角形是等边三角形.已知等边三角形的一边长为2,则其周长为6.三、解答题(本大题共4道小题)17. 【答案】证明:连接AD.∵AB=AC,D为BC的中点,∴AD平分∠BAC.又∵DE⊥AB,DF⊥AC,∴DE=DF.18. 【答案】解:(1)证明:如图,过点D作DM∥AB,交CF于点M,则∠MDF=∠E.∵△ABC是等边三角形,∴∠CAB=∠CBA=∠C=60°.∵DM∥AB,∴∠CDM=∠CAB=60°,∠CMD=∠CBA=60°.∴△CDM是等边三角形.∴CM=CD=DM.在△DMF 和△EBF 中,⎩⎨⎧∠MDF =∠E ,DF =EF ,∠DFM =∠EFB ,∴△DMF ≌△EBF(ASA).∴DM =BE. ∴CD =BE.(2)∵ED ⊥AC ,∠CAB =∠CBA =60°, ∴∠E =∠FDM =30°. ∴∠BFE =∠DFM =30°. ∴BE =BF ,DM =MF.∵△DMF ≌△EBF ,∴MF =BF. ∴CM =MF =BF.又∵BC =AB =12,∴BF =13BC =4.19. 【答案】解:(1)∵四边形ABCD 是长方形, ∴AD ∥BC.∴∠BEG =∠AGC′=48°. 由折叠的性质得∠CEF =∠C′EF , ∴∠CEF =12(180°-48°)=66°. (2)证明:∵四边形ABCD 是长方形, ∴AD ∥BC.∴∠GFE =∠CEF. 由折叠的性质得∠CEF =∠C′EF , ∴∠GFE =∠C′EF.∴GE =GF ,即△EFG 是等腰三角形.20. 【答案】证明:∵△ABC 是等边三角形, ∴∠A =∠B =∠ACB =60°. ∵DE ∥AB ,∴∠EDC =∠B =60°,∠DEC =∠A =60°. ∵EF ⊥DE ,∴∠DEF =90°. ∴∠F =90°-∠EDC =30°.∵∠ACB=∠EDC=∠DEC=60°,∴△EDC是等边三角形.∴DE=DC. ∵∠DEF=90°,∠F=30°,∴DF=2DE=2DC.。
等腰三角形的提升练习docx
![等腰三角形的提升练习docx](https://img.taocdn.com/s3/m/eea34ada58f5f61fb7366662.png)
辅导十二-----等腰三角形姓名___________【一要点梳理】要点一、等腰三角形的定义:有两条边相等的三角形,叫做等腰三角形要点二、等腰三角形的性质性质1:等腰三角形的两个底角相等(简称“等边对等角”).性质2:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合(简称“三线合一”).要点三、等腰三角形的判定:如果一个三角形中有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”).【二基础夯实】1. 已知一个等腰三角形两边长分别为5,6,则它的周长为( )A .16B .17C .16或17D .10或122.已知等腰三角形的底边BC =8cm ,且|AC -BC|=2cm ,那么腰AC 的长为( ).A .10cm 或6cmB .10cmC .6cmD .8cm 或6cm3. 若一个三角形的三个外角度数比为2:3:3,则这个三角形是( )A. 等腰三角形B. 等边三角形C. 直角三角形D. 等腰直角三角形4.等腰三角形的顶角比其中一个底角大30°,则顶角的度数为 .5. 等腰三角形的一个角是70°,则它的顶角的度数是6. 如图,D 是AB 边上的中点,将ABC ∆沿过D 的直线折叠,使点A 落在BC 上F 处,若50B ∠=︒,则BD F ∠度数是( )A .60° B.70° C.80° D.不确定7.如图,△ABC 是等腰直角三角形,∠C =90°,BD 平分∠CBA 交AC 于点D ,DE ⊥AB 于E .若△ADE 的周长为8cm ,则AB =_________cm .8.如图,△ABC 中,D 为AC 边上一点,AD =BD =BC ,若∠A =40°,则∠CBD =_____°.9.将两个全等的且有一个角为30°的直角三角形拼成如图所示形状,两条长直角边在同一条直线上,则图中等腰三角形的个数是( )A. 4个B. 3个C. 2个D. 1个10. 如图,ΔABC 中,AB =AC ,∠BAC =108°,若AD 、AE 三等分∠BAC ,则图中等腰三角形有 ( )A .4个B .5个C .6个D .7个【三典型例题】类型一、等腰三角形中有关度数的计算题11.已知:如图,D、E分别为AB、AC上的点,AC=BC=BD,AD=AE,DE=CE,求∠B的度数.12.13.直角三角形纸片ABC中,∠ACB=90°,AC≤BC,如图,将纸片沿某条直线折叠,使点A落在直角边BC上,记落点为D,设折痕与AB、AC边分别交于点E、F,探究:如果折叠后的△CDF与△BDE均为等腰三角形,那么纸片中的∠B的度数是多少?写出你的计算过程,并画出符合条件的折叠后的图形.类型二、等腰三角形中的分类讨论14.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为( ).A.60° B.120° C.60°或150° D.60°或120°15.已知等腰三角形的周长为13,一边长为3,求其余各边.16.类型三、等腰三角形性质和判定综合应用17.如图,在△ABC中,∠ABC、∠ACB的平分线相交于F,过F作DE∥BC,交AB于D,交AC于E,那么下列结论正确的有( )①△BDF,△CEF都是等腰三角形;②DE=DB+CE;③AD+DE+AE=AB+AC;④BF=CF.A.1个B.2个C.3个D.4个18.【能力平台】19.如图,ΔABC中,AB=AC,BE=CD,BD=CF,则∠EDF=()A.2∠A B.90°-2∠A C.90°-∠A D.1902A ︒-∠20. 如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=5,BC=3,则BD的长为().A.1 B.1.5 C.2 D.2.521.如图,在ΔABC中,高AD、BE交于H点,若BH=AC,则∠ABC=______°.22.如图,钝角三角形纸片ABC中,∠BAC=110°,D为AC边的中点.现将纸片沿过点D的直线折叠,折痕与BC交于点E,点C的落点记为F.若点F恰好在BA的延长线上,则∠ADF =_________°.23.. 如图,在ΔABC中,∠ABC=120°,点D、E分别在AC和AB上,且AE=ED=DB=BC,则∠A的度数为______°.24..如图所示,在长方形ABCD的对称轴l上找点P,使得△PAB、△PBC均为等腰三角形,则满足条件的点P有()A.1个 B.3个 C.5个 D.无数多个如图所示,矩形ABCD中,AB=4,BC=E是折线段A-D-C上的一个动点(点E与点A不重合),点P是点A关于BE的对称点、在点E运动的过程中,使△PCB为等腰三角形的点E的位置共有()A、2个B、3个C、4个D、5个25.已知:如图,ΔABC中,AB=AC,D是AB上一点,延长CA至E,使AE=AD.试确定ED与BC的位置关系,并证明你的结论.26. 已知:如图,AD是∠BAC的平分线,∠B=∠EAC,EF⊥AD于F.求证:EF平分∠AEB.27.如图,在△ABC中,AD是BC 边上的中线,E是AD上一点,且BE=AC,延长BE交AC于F.求证:AF=EF。
初二数学等腰等边三角形培优题1(完整资料).doc
![初二数学等腰等边三角形培优题1(完整资料).doc](https://img.taocdn.com/s3/m/65282f16d4d8d15abe234ec4.png)
此文档下载后即可编辑等腰等边三角形培优题11.如图,将△ABC 绕直角顶点C 顺时针旋转90°,得到△DEC ,连接AD ,若∠BBB =25∘,则∠BBB =______.2.如图,P ,Q 是△ABC 的边BC 上的两点,且BP =PQ =QC =AP =AQ ,则∠ABC =_____.3.如图,在△BBBBBB 中,BB BB =BBBB ,CD 是∠BBBBBB 的平分线,BB BB //BBBB ,交AC 于点E .若∠BBBB =35∘,则∠BBB=.4.如图,等边△BBBBBB 中,AD 是中线,BBBB ⊥BBBB 于点E ,BBBB =3,则点D 到AB 的距离为:______.5.已知:在△ABC 中,AH ⊥BC ,垂足为点H ,若AB +BH =CH ,∠ABH =70∘,则∠BAC =______ ∘.6.如图,在△ABC 中,BI ,CI 分别平分∠ABC,∠ACB,过I 点作DE∥BC,交AB 于D ,交AC 于E ,给出下列结论:①△DBI 是等腰三角形;②△ACI 是(第1题) (第2题) (第3题)(第4题) (第6题) (第7题)等腰三角形;③AI 平分∠BAC;④△ADE 周长等于AB +AC .其中正确的是( )A . ①②③B . ②③④C . ①③④D . ①②④7.如图,已知AB =A 1B ,A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4,….若∠A=70°,则∠B n -1A n A n -1的度数为( )A . 702n ⎛⎫︒ ⎪⎝⎭B . 1702n +⎛⎫︒ ⎪⎝⎭C . 1702n -⎛⎫︒ ⎪⎝⎭D . 2702n +⎛⎫︒ ⎪⎝⎭8.如图,在等边△ABC 中,AD 是BC 边上的高,∠BDE=∠CDF=30°, 在下列结论中:①△ABD≌△ACD;②2DE=2DF=AD;③△ADE≌△ADF;④4BE=4CF=AB.正确的有 (填序号) 9.如图所示,在Rt △ABC 中,∠A=30°,∠B=90°,AB=12,D 是斜边AC 的中点,P 是AB 上一动点,则PC+PD 的最小值为 .10.如图,已知△BBBBBB 是等边三角形,D 为BC 延长线上一点,CE 平分∠BBBBBB ,BBBB =BBBB ,BBBB =7, 则 AE 的长度是 . 11.如图,△ABC 中,BD 平分∠ABC ,BC 的垂直平分线交BC 于点E ,交BD于点F ,连接CF .若∠A =60°,∠ABD =24°,则∠ACF 的度数为 .12.如图,已知点C 是线段AB 的中点,点D 是线段BC 上的定点(不同于端点B 、C ),过点D 作直线l 垂直线段AB ,若点P 是直线l 上的任意一点,连接PA 、PB ,则能使△PAB 成为等腰三角形的点P 一共有_______ 个.(填写确切的数字)(第11题) (第9题) (第10题)(第8题)(第12题) (第13题)13.如图,AB=2,BC=5,AB⊥BC于点B,l⊥BC于点C,点P自点B开始沿射线BC移动,过点P作PQ⊥PA交直线l于点Q,当BP= 时,PA=PQ. 14.已知△ABC是等边三角形,E是AC边上一点,F是BC边延长线上一点,且CF=AE,连接BE,EF.(1)如图1,若E是AC边的中点,猜想BE与EF的数量关系为___________________.(2)如图2,若E是线段AC上的任意一点,其它条件不变,上述线段BE、EF 的数量关系是否发生变化,写出你的猜想并加以证明.(3)如图3,若E是线段AC延长线上的任意一点,其它条件不变,上述线段BE、EF的数量关系是否发生变化,写出你的猜想并加以证明。
人教版八年级数学13.3《等腰三角形》同步提高测试(有答案)
![人教版八年级数学13.3《等腰三角形》同步提高测试(有答案)](https://img.taocdn.com/s3/m/735482205f0e7cd184253678.png)
八年级数学人教版13.3《等腰三角形》同步提高测试一、选择题:1、如图,在△ABC中,AB=AC,∠A=36°,BD,CE是角平分线,则图中的等腰三角形共有()A.8个B.7个C.6个D.5个2、如图,在△ABC中,AB=AC,CD是∠ACB的平分线,DE∥BC,交AC于点E.若∠CDE=35°,则∠A的度数为().A.30°B.40°C.44°D.60°3、(2019天水)如图,等边△OAB的边长为2,则点B的坐标为()A.(1,1)B.(1,)C.(,1)D.(,)4、如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=11,则线段MN的长为( ).A.11 B.9 C.8 D.125、如图,在△ABC中,BD平分∠ABC,ED∥BC,若AB=4,AD=2,则△AED的周长是()A.6 B.7 C.8 D.106、如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为2的正六边形。
则原来的纸带宽为()A. 1B.C.D. 27、如图,∠ABC,∠ACB的平分线相交于点F,过点F作DE∥BC,交AB于D,交AC于E,那么下列结论:①△BDF,△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长为AB+AC;④BD=CE.其中正确的是( ).A.①②③B. ①②④C. ④②③D.①④③8、已知:如图,△ABC中,BO,CO分别是∠ABC和∠ACB的平分线,过O点的直线分别交AB、AC于点D、E,且DE∥BC.若AB=6cm,AC=8cm,则△ADE的周长为( )cm.A.14 B.17 C.18 D.109、如图,△ABC中,∠A=36°,AB=AC,BD平分∠ABC,下列结论错误的是()A.∠C=2∠A B.BD=BCC.△ABD是等腰三角形D.点D为线段AC的中点10、如图,在△ABC中,AB=AC,点D是BC边上一点,EF垂直平分CD,交AC于点E,交BC于点F,连结DE,∠B=55°,则∠DEF=( ).A.40°B.50°C.35°D.55°11、(2019衢州)“三等分角”大约是在公元前五世纪由古希腊人提出来的。
中考数学等腰三角形培优辅导训练试题
![中考数学等腰三角形培优辅导训练试题](https://img.taocdn.com/s3/m/65fbae5ffd4ffe4733687e21af45b307e871f981.png)
中考数学等腰三角形培优辅导训练试题D AF21EDCA B等腰三角形培优专练一、选择题1、下列命题正确的是[ ]A.等腰三角形只有一条对称轴B.直线不是轴对称图形C.直角三角形都不是轴对称图形D.任何角都是轴对称图形 2、等腰三角形一腰上的高与底所夹的角等于[]A.顶角B.顶角的21C.顶角的2倍 D 底角的213、如图, 在△ABC 中, AB =AC, CD ⊥AB 于D, 则下列判断正确的是[]A.∠A =∠BB.∠A =∠ACDC.∠A =∠DCBD.∠A =2∠BCD 4、如图已知: AB =AC =BD, 那么∠1与∠2之间的关系满足[]A.∠1=2∠2B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1-∠2=180°第3题第4题5、下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;?③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有() A .①②③ B .①②④ C .①③ D .①②③④6、如图,D 、E 、F 分别是等边△ABC 各边上的点,且AD=BE=CF ,则△DEF?的形状是()A .等边三角形B .腰和底边不相等的等腰三角形C .直角三角形D .不等边三角形第6题第8题7、Rt △ABC 中,CD 是斜边AB 上的高,∠B=30°,AD=2cm ,则AB 的长度是() A .2cm B .4cm C .8cm D .16cm8、如图,E 是等边△A BC 中AC 边上的点,∠1=∠2,BE=CD ,则对△ADE 的形状最准备的判断是()A .等腰三角形B .等边三角形C .不等边三角形D .不能确定形状 9、正△ABC 的两条角平分线BD 和CE 交于点I ,则∠BIC 等于()A .60°B .90°C .120°D .150°10、如图,△ABC 中,AB =AC ,∠A =36°,BD 、CE 分别为∠ABC 与∠ACB 的角平分线,且相交于点F ,则图中的等腰三角形有() A. 6个 B. 7个 C. 8个 D. 9个A36°E DFB CCA1DB23第10题第12题11、等腰三角形底边长为5cm,一腰上的中线把其周长分为两部分的差为3cm,则腰长为()A. 2cmB. 8cmC. 2cm或8cmD. 以上都不对二、填空题12、如图,ABC是等边三角形,BCBD90CBD==∠,,则1∠的度数是________。
中考数学总复习《等腰三角形》专项提升练习题(附答案)
![中考数学总复习《等腰三角形》专项提升练习题(附答案)](https://img.taocdn.com/s3/m/7b6baab50342a8956bec0975f46527d3240ca6c2.png)
中考数学总复习《等腰三角形》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________一、选择题1.若一个等腰三角形的两边长分别是2和5,则它的周长为( )A.12B.9C.12或9D.9或72.若等腰三角形的顶角为40°,则它的底角度数为( )A.40°B.50°C.60°D.70°3.如图,在等腰三角形ABC中,AB=AC,BD平分∠ABC,∠A=36°,则∠1的度数为( )A.36°B.60°C.72°D.108°4.如图,在△ABC中,D为BC的中点,AD⊥BC,E为AD上一点,∠ABC=60°,∠ECD=40°,则∠ABE=( )A.10°B.15°C.20°D.25°5.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为( )A.BD=CEB.AD=AEC.DA=DED.BE=CD6.等腰三角形补充下列条件后,仍不一定成为等边三角形的是( )A.有一个内角是60°B.有一个外角是120°C.有两个角相等D.腰与底边相等7.等边△ABC的两条角平分线BD和CE相交所夹锐角的度数为( )A.60°B.90°C.120°D.150°8.如图,等边△OAB的边长为2,则点B的坐标为( )A.(1,1)B.(3,1)C.(3,3)D.(1,3)9.如图,△ABC中∠A=30°,E是AC边上的点,先将△ABE沿着BE翻折,翻折后△ABE的AB边交AC于点D,又将△BCD沿着BD翻折,C点恰好落在BE上,此时∠CDB=82°,则原三角形的∠B为( )A.75°B.76°C.77°D.78°10.如图,在△ABC中,AB=AC,D、E是△ABC内的两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=6 cm,DE=2 cm,则BC的长为( )A.4 cmB.6 cmC.8 cmD.12 cm二、填空题11.等腰三角形的一个内角为100°,则顶角的度数是________.12.如图,已知△ABC的角平分线CD交AB于D,DE∥BC交AC于E,若DE=3,AE=4,则AC=.13.如图,l∥m,等边△ABC的顶点B在直线m上,∠1=20°,则∠2的度数为.14.如图所示,△ABC为等边三角形,AD⊥BC,AE=AD,则∠ADE=________.15.已知一张三角形纸片ABC(如图甲),其中AB=AC.将纸片沿过点B的直线折叠,使点C落到AB边上的E点处,折痕为BD(如图乙).再将纸片沿过点E的直线折叠,点A恰好与点D重合,折痕为EF(如图丙).原三角形纸片ABC中,∠ABC的大小为.16.《蝶几图》是明朝人戈汕所作的一部组合家具的设计图(蜨,同“蝶”),如图为某蝶几设计图,其中△ABD和△CBD为“大三斜”组件(大三斜组件为两个全等的等腰直角三角形),已知某人位于点P处,点P与点A关于直线DQ对称,连接CP、DP.若∠ADQ=25°,则∠DCP的度数为.三、解答题17.如图,在△ABC中,AC=DC=DB,∠ACD=100°,求∠B的度数.18.如图,△ABC中,AC=BC,点D在BC上,作∠ADF=∠B,DF交外角∠ACE的平分线CF于点F.(1)求证:CF∥AB;(2)若∠CAD=20°,求∠CFD的度数.19.如图,等边△ABC中,AD是∠BAC的角平分线,E为AD上一点,以BE为一边且在BE下方作等边△BEF,连接CF.(1)求证:AE=CF;(2)求∠ACF的度数.20.如图,△ABC是等边三角形,D、E、F分别是AB、BC、AC上一点,且∠DEF=60°.(1)若∠1=50°,求∠2;(2)连接DF,若DF∥BC,求证:∠1=∠3.21.如图,在△ABC中,AB=BC,CD⊥AB于点D,CD=BD,BE平分∠ABC,点H是BC 边的中点,连接DH,交BE于点G,连接CG.(1)求证:△ADC≌△FDB;(2)求证:CE=12BF;(3)判断△ECG的形状,并证明你的结论;22.如图,已知在等边三角形ABC中,点D、E分别在直线AB、直线AC上,且AE=BD.(1)当点D、E分别在边AC、边AB上时,如图1所示,EB与CD相交于点G,求∠CGE 的度数;(2)当点D、E分别在边CA、边AB的延长线上时,如图2所示,∠CGE的度数是否变化?如不变,请说明理由.如变化,请求出∠CGE的度数.答案1.A2.D3.C4.C.5.C6.C7.A8.D9.D10.C.11.答案为:100°.12.答案为:7.13.答案为:40°.14.答案为:75°15.答案为:72°.16.答案为:20°.17.解:∵AC=DC=DB,∠ACD=100°∴∠CAD=(180°﹣100°)÷2=40°∵∠CDB是△ACD的外角∴∠CDB=∠A+∠ACD=100°=40°+100°=140°∵DC=DB∴∠B=(180°﹣140°)÷2=20°.18.(1)证明:∵AC=BC∴∠B=∠BAC∵∠ACE=∠B+∠BAC∴∠BAC=12∠ACE∵CF平分∠ACE∴∠ACF=∠ECF=12∠ACE∴∠BAC =∠ACF∴CF ∥AB ;(2)解:∵∠BAC =∠ACF ,∠B =∠BAC ,∠ADF =∠B ∴∠ACF =∠ADF∵∠ADF+∠CAD+∠AGD =180°,∠ACF+∠F+∠CGF =180° 又∵∠AGD =∠CGF∴∠F =∠CAD =20°.19.证明:(1)∵△ABC 是等边三角形∴AB =BC ,∠ABE +∠EBC =60°.∵△BEF 是等边三角形∴EB =BF ,∠CBF +∠EBC =60°.∴∠ABE =∠CBF.在△ABE 和△CBF 中⎩⎨⎧AB =BC ,∠ABE =∠CBF EB =BF ,∴△ABE ≌△CBF(SAS).∴AE =CF.(2)∵等边△ABC 中,AD 是∠BAC 的角平分线∴∠BAE =30°,∠ACB =60°.∵△ABE ≌△CBF∴∠BCF =∠BAE =30°.∴∠ACF =∠BCF +∠ACB =30°+60°=90°.20.解:(1)∵△ABC 是等边三角形∴∠B =∠A =∠C =60°∵∠B +∠1+∠DEB =180°∠DEB +∠DEF +∠2=180°∵∠DEF =60°∴∠1+∠DEB =∠2+∠DEB∴∠2=∠1=50°;(2)连接DF∵DF∥BC∴∠FDE=∠DEB∵∠B+∠1+∠DEB=180°,∠FDE+∠3+∠DEF=180°∵∠B=60°,∠DEF=60°∴∠1=∠3.21.证明:(1)∵AB=BC,BE平分∠ABC∴BE⊥AC,CE=AE∵CD⊥AB∴∠ACD=∠DBF在△ADC和△FDB中∴△ADC≌△FDB(ASA);(2)∵△ADC≌△FDB∴AC=BF又∵CE=AE∴CE=12BF;(3)△ECG为等腰直角三角形.∵点H是BC边的中点∴GH垂直平分BC∴GC=GB∵∠DBF=∠GBC=∠GCB=∠ECF,得∠ECG=45°又∵BE⊥AC∴△ECG为等腰直角三角形.22.(1)证明:∵△ABC为等边三角形∴AB=BC,∠A=∠ABC=60°在△ABE和△BCD中AE=BD,∠A=∠DBC,AB=BC∴△ABE≌△BCD∴∠ABE=∠BCD∵∠ABE+∠CBG=60°∴∠BDG+∠CBG=60°∵∠CGE=∠BCG+∠CBG∴∠CGE=60°;(2)证明:∵△ABC为等边三角形∴AB=BC,∠CAB=∠ABC=60°∴∠EAB=∠CBD=120°在△ABE和△BCD中AB=BC,∠EAB=∠CBD,AE=BD∴△ABE≌△BCD(SAS)∴∠D=∠E∵∠ABE=∠DBG,∠CAB=∠E+ABE=60°∴∠CGE=∠D+∠DBG=60°.。
中考数学总复习《等腰三角形》专项提升练习题(附答案)
![中考数学总复习《等腰三角形》专项提升练习题(附答案)](https://img.taocdn.com/s3/m/7557eb9e77eeaeaad1f34693daef5ef7ba0d12a6.png)
中考数学总复习《等腰三角形》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________1.如图已知ABC △中AB=3,AC=5,BC=7,若过点A 的一条直线将ABC △分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画( )A.1条B.2条C.3条D.4条2.如图在ABC △中AB=AC ,D 是BC 边上的中点30B ∠=︒,则DAC ∠等于( )A.30°B.40°C.50°D.60°3.等腰三角形的一个内角是40︒,则它的顶角度数为( )A.100︒B.40︒或100︒C.70︒D.40︒4.如图,a//b,AB=AC,若162∠=︒,则A ∠的度数为( )A.56︒B.59︒C.62︒D.76︒5.已知等腰三角形的周长为19,其中一边长为3,则该等腰三角形的底边是( )A.3B.8C.3或8D.136.如图在ABC △中AC DC DB ==,100ACD ∠=︒则B ∠等于( )A.50°B.40°C.25°D.20°7.如图在Rt ABC △中90ACB ∠=︒,35ABC ∠=︒将ABC △绕点C 顺时针旋转至A B C '''△,使点A '恰好落在AB 上,则旋转角度为( )A.35︒B.55︒C.70︒D.90︒8.如图在ABC △中点D 在AC 上,点E 在AB 上,且AB AC =,BC BD =,AD DE EB ==,则A ∠等于( )A.45°B.30°C.60°D.75°9.如图点A 、B 、C 三点在O 上40OCB ∠=︒,则A ∠=_____________10.已知等腰三角形的一个外角是80︒,则它顶角的度数为________.11.等腰三角形的周长为20cm ,一边长为6cm ,则底边长为__________cm .12.如图52ABC ∠=︒,AD 是线段BC 的垂直平分线,垂足为点D ,ABC ∠的平分线BE 交AD 于点E ,连接EC ,则AEC ∠的度数是__________.13.如图将ABC △绕点A 逆时针旋转140︒得到ADE △,B ,C ,D 三点恰好在同一直线上.(1)判断ACE △的形状;(2)连接CE ,若CE BD ⊥,求BAC ∠的度数.14.如图在ABC △中AC 边的垂直平分线分别交BC 、AC 于点E 、F ,连接AE ,作AD BC ⊥于点D ,且D 为BE 的中点.(1)试说明:AB CE =;(2)若32C ∠=︒,求BAC ∠的度数.参考答案及解析1.答案:C解析:如图所示,当3AB AF ==,3BA BD ==与BG AG =时,都能得到符合题意的等腰三角形.综上,这样的直线最多可画3条.2.答案:D解析:在ABC △中已知AB AC =,D 是BC 边上的中点AD BC ∴⊥90ADC ∴∠=︒30B C ∠=∠=︒ 60DAC ∴∠=︒ 故选:D.3.答案:B解析:当40︒为等腰三角形的底角时,顶角为1804040100︒-︒-︒=︒;当40︒为等腰三角形的顶角时,则顶角为40︒.所以该等腰三角形的顶角度数为40︒或100︒.4.答案:A解析:AB AC =如图A B ABC C ∴=∠∠如图//a b 如图162ABC ∴∠=∠=︒如图180A ABC ACB ∠+∠+∠=︒如图18026256A ∠=⨯∴︒-︒=︒如图故选:A.5.答案:A解析:当3是腰长时,底边为193213-⨯=此时33613+=<,不能组成三角形;当3是底边时,腰长为()119382-=此时3,8,8三边能够组成三角形. 所以等腰三角形的底边是3.故选:A.6.答案:D解析:AC DC DB == 100ACD ∠=︒180100402CAD -∴︒︒∠==︒ CDB ∠是ACD △的外角10040100140CDB A ACD ︒∴∠=∠+∠=︒=+=︒︒DC DB =180140202B ︒︒-∴∠==︒.7.答案:C 解析:90ACB ∠=︒ 35ABC ∠=︒∴180903555A ∠=︒-︒-︒=︒将ABC △绕点C 顺时针旋转至A B C '''△,即其中一个旋转角为ACA '∠A C AC '∴=∴CAA '△是等腰三角形∴55CA A CAA ''∠=∠=︒∴180555570ACA '∠=︒-︒-︒=︒故选:C.8.答案:A解析:设EBD x ∠=DE EB =EBD EDB x ∴∠=∠=2AED EBD EDB x ∴∠=∠+∠=AD DE =2A AED x ∴∠=∠=3BDC A EBD x ∴∠=∠+∠=BC BD =3BDC C x ∴∠=∠=AB AC =3ABC C x ∴∠=∠=在ABC △中有180A ABC C ∠+∠+∠=︒,则233180x x x ++=︒22.5x ∴=︒245A x ∴∠==︒故选:A.9.答案:50︒解析:OB OC = 40OCB ∠=︒40OBC OCB ∴∠=∠=︒1804040100BOC ∴∠=︒-︒-︒=︒1502A BOC ∴∠=∠=︒.故答案为:50︒.10.答案:100︒.解析:等腰三角形一个外角为80︒,那相邻的内角为100︒如图三角形内角和为180︒,如果这个内角为底角,内角和将超过180︒如图所以100︒︒只可能是顶角.故答案为:100︒.11.答案:6或8. 解析:①6cm 是底边时,腰长()12067cm 2=-=此时三角形的三边分别为7cm 7cm 6cm 、、能组成三角形②6cm 是腰长时,底边20628cm =-⨯=此时三角形的三边分别为6cm 6cm 8cm 、、能组成三角形综上所述,底边长为6或8cm .故答案为:6或8.12.答案:116︒解析:52ABC ∠=︒,ABC ∠的平分线BE 交AD 于点E 11522622EBD ABC ∴∠=∠=⨯︒=︒点E 在BC 的垂直平分线上BE CE ∴= 90EDC ∠=︒26C EBD ∴∠=∠=︒2690116AEC C EDC ∴∠=∠+∠=︒+︒=︒.故答案为:116︒.13.答案:(1)顶角为140︒的等腰三角形(2)90︒解析:(1)ABC △绕点A 逆时针旋转140︒得到ADE △ AC AE ∴= 140CAE ∠=︒ ACE ∴△是以顶角为140︒的等腰三角形;(2)ABC △绕点A 逆时针旋转140︒得到ADE △ 140BAD CAE ∴∠=∠=︒ AB AD = AC AE = ∴在ABD △中180140202ABC ADB ︒-︒∠=∠==︒ 在ACE △中180140202ACE AEC ︒-︒∠=∠==︒ CE BD ⊥90ECB ∴∠=︒902070ACB ECB ACE ∴∠=∠-∠=︒-︒=︒在ABC △中180180207090BAC ABC ACB ∠=︒-∠-∠=︒-︒-︒=︒ BAC ∴∠的度数为90︒.14.答案:(1)见解析(2)84︒解析:(1)D 为BE 的中点BD DE ∴=AD BC ⊥ AB AE ∴=EF 是AC 的垂直平分线AE CE ∴=AB CE ∴=; (2)32C ∠=︒ AE CE =32C EAC ∴∠=∠=︒64AEB C EAC ∴∠=∠+∠=︒AB AE =64B AEB ∴∠=∠=︒180180646452BAE B AEB ∴∠=︒-∠-∠=︒-︒-︒=︒ 523284BAC BAE EAC ∴∠=∠+∠=︒+︒=︒.。
(完整word版)八上等腰三角形精品提高题系列
![(完整word版)八上等腰三角形精品提高题系列](https://img.taocdn.com/s3/m/8905ae99a98271fe900ef904.png)
1.如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角两边分别交AB,AC边于M,N两点,连接MN.( I)探究:线段BM,MN,NC之间的关系,并加以证明.(Ⅱ)若点M是AB的延长线上的一点,N是CA的延长线上的点,其它条件不变,请你再探线段BM,MN,NC之间的关系,在图②中画出图形,并说明理由.2.如图,点P为△ABC内部一点,使得∠PBC=30°,∠PBA=8°,且∠PAB=∠PAC=22°,求∠APC的度数.3.如图,已知P是△ABC边BC上一点,且PC=2PB,若∠ABC=45°,∠APC=60°,求∠ACB的大小.5.在△ABC中,BD平分∠ABC(∠ABC<60°)(1)如图1,当点D在AC边上时,若∠ABC=42°,∠ACB=32°,直接写出AB,DC和BC之间的数量关系.(2)如图2,当点D在△ABC内部,且∠ACD=30°时,①若∠BDC=150°,直接写出AB,AD和BC之间的数量关系,并写出结论成立的思路.②若∠ABC=2α,∠ACB=60°-α,请直接写出∠ADB的度数(用含α的式子表示).6.如图,已知△ABC中,AB=AC,D是△ABC外一点且∠ABD=60°,求证:AC=BD+CD.在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于E.(1)如图1,连接CE,求证:△BCE是等边三角形;(2)如图2,点M为CE上一点,连结BM,作等边△BMN,连接EN,求证:EN∥BC;(3)如图3,点P为线段AD上一点,连结BP,作∠BPQ=60°,PQ交DE延长线于Q,探究线段PD,DQ与AD之间的数量关系,并证明.如图,过△ABC的边BC的中点M作直线垂直于∠A的平分线AA′,且分别交直线AB,AC于点E,F,已知:如图在△ABC中,BD,CE为两条高线,F为BD上一点,G为CE延长线上一点,BF=AC,CG=AB.(1)请你判断△AFG的形状并证明.(2)当F为BD反向延长线上一点,G为CE反向延线上一点,其它条件不变,(1)中的结论是否仍然成立?请你画出图形,并证明你的结论.如图,在Rt△ABC中,∠ACB=90°,AC=BC,点E,F为线段BC上的两点,且CE=BF,连接AF,过点C 作CD⊥AF于点G,交AB于点D,连接DE,交AF于点M.(1)求证:∠ACD=∠AFC;(2)求证:ME=MF在△ABC中,BD为∠ABC的平分线.(1)如图1,∠C=2∠DBC,∠A=60°,求证:△ABC为等边三角形;(2)如图2,若∠A=2∠C,BC=8,AB=4.8,求AD的长度;(3)如图3,若∠ABC=2∠ACB,∠ACB的平分线OC与BD相交于点O,且OC=AB,求∠A的度数.1.如图,已知AM∥BN,AC平分∠MAB,BC平分∠NBA.(1)过点C作直线DE,分别交AM、BN于点D、E,则AB、AD、BE三条线的长度之间存在何种等量关系?请直接写出关系式_______(2)如图,若将直线DE绕点C转动,使DE与AM交于点D,与NB的延长线交于点E,则AB、AD、BE三条线的长度之间存在何种等量关系?请你给出结论并加以证明.2.如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B 同时出发,且它们的速度都为1cm/s,(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数.3.已知△ABC,∠BAC=45°,以AB、AC为边在△ABC外作等腰△ABD和△ACE,AD=AB、AE=AC,且∠BAD=∠CAE,连CD、BE交于F,连AF.(1)①如图1,若∠BAD=60°,则∠AFE=_______度;②如图2,若∠BAD=90°,则∠AFE=_______度;(2)如图3,若∠BAD=a°,猜想∠AFE的度数(用a表示),并予以证明.4.如图,等腰直角三角形ABC中,∠BAC=90°,D、E分别为AB、AC边上的点,AD=AE,AF⊥BE交BC 于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M.(1)求证:△ADC≌△AEB;(2)判断△EGM是什么三角形,并证明你的结论;(3)判断线段BG、AF与FG的数量关系并证明你的结论1.如图,点D是△ABC三条角平分线的交点,∠ABC=68°(1)求证:∠ADC=124°;(2)若AB+BD=AC,求∠ACB的度数2.已知:在△ABC中,AB=3AC,AD平分∠BAC,BE⊥AD交AD的延长线于点E.设△ACD的面积是S.(1)求△ABD的面积;(2)求证:AD=DE;(3)探究BE-AC和BD-CD之间的大小关系并证明你的结论3.在△ABC中,∠BAC=90°,射线AM∥BC,点D在射线AM上(不与点A重合),连接BD,过点D作BD的垂线交CA的延长线于点P(1)如图①,若∠C=30°,且AB=DB,求∠APD的度数;(2)如图②,若∠C=45°,当点D在射线AM上运动时,PD与BD之间有怎样的数量关系?请写出你的结论,并加以证明;(3)如图③,在(2)的条件下,连接BP,设BP与射线AM的交点为Q,∠AQP=α,∠APD=β,当点D在射线AM上运动时,α与β之间有怎样的数量关系?请写出你的结论,并加以证明.4.已知等边△ABC的边长为4cm,点P,Q分别从B,C两点同时出发,其中点P沿BC向终点C运动,速度为1cm/s;点Q沿CA,AB向终点B运动,速度为2cm/s,设它们运动的时间为x(s),(1)如图(1),当x为何值时,PQ∥AB;(2)如图(2),若PQ⊥AC,求x;(3)如图(3),当点Q在AB上运动时,PQ与△ABC的高AD交于点O,OQ与OP是否总是相等?请说明理由.1.在锐角三角形ABC中,AF是BC边上的高,分别以AB、AC为一边,向外作△ABD和△ACE,使得AB=AD,AC=AE,∠BAD=∠CAE=90°,连接BE、DE、DC,DE与FA的延长线交于点G,下列结论:①BE=DC;②BE⊥DC;③AG是△ADE的中线;④∠DAG=∠ABC.其中正确的结论有哪些?2.在△ABC中,AB≠AC,分别以AB,AC为边作等腰△ABD和△ACE,AD=AB,AC=AE,且∠ACB=∠BAD=∠CAE=α,连接DE,交CA延长线于点M,求证:M为DE中点3.如图,已知△ABC,分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB=∠CAE,连接DC与BE.G、F分别是DC与BE的中点.(1)求证:DC=BE;(2)当∠DAB=80°,求∠AFG的度数;(3)若∠DAB=α,求∠AFG与α的数量关系.4.如图,△ABC中,AB=AC,∠BAC=90°,点D在CB上,连接AD,EA⊥AD,∠ACE=∠ABD.(1)求证:AD=AE;(2)若点F为CD中点,AF交BE于点G,求∠AGE的度数.1.如图△ABD和△ACE是△ABC外两个等腰直角三角形,∠BAD=∠CAE=90°.(1)判断CD与BE有怎样的数量关系;(2)探索DC与BE的夹角的大小;(3)求证:FA平分∠DFE;(4)取BC的中点M,连MA,探讨MA与DE的数量关系和位置关系2.如图1,已知△ABC,分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB=∠CAE,连接DC与BE.(1)求证:△DAC≌△BAE;(2)F、H分别是BE与DC的中点;①如图2.当∠DAB=∠CAE=90°时,求∠AFH的度数;②请探究当∠DAB等于多少度时,AF=FH?请说明理由.3.如图,△ABC向外侧作等腰Rt△ABD与Rt△ACE,∠BAD=∠CAE=90°,F为BC的中点,连接F、A并延长交DE于G点,请问:AF与DE之间存在怎样的数量关系和位置关系?4.已知△ABC,分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB=∠CAE,连接DC与BE,G、F分别是DC与BE的中点.(1)如图1,若∠DAB=60°,则∠AFG=_______;如图2,若∠DAB=90°,则∠AFG=_______.(2)如图3,若∠DAB=α,试探究∠AFG与α的数量关系,并给予证明;(3)如果∠ACB为锐角,AB≠AC,∠BAC≠90°,点M在线段BC上运动,连接AM,以AM为一边以点A为直角顶点,且在AM的右侧作等腰直角△AMN,连接NC;试探究:若NC⊥BC(点C、M重合除外),则∠ACB等于多少度?画出相应图形,并说明理由.(画图不写作法)5.在等腰△ABC中,∠BAC=90°,AB=AC,直线MN过点A且MN∥BC,过B点作∠BDE=90°,且点D 在直线MN上(不与点A重合).(1)如图①,当DE与AC交于P时,求证:BD=DP;(2)如图②,当DE与AC的延长线交于点P时,(1)中的结论还成立吗?请说明理由.(3)如图③,当DE与CA的延长线交于点P时,请直接写出DB与PD的数量关系,此时过D作DF⊥AB于F,求证:AP+AB=2AF.6.在等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN过点A且MN∥BC,过点B为一锐角顶点作Rt△BDE,∠BDE=90°,且点D在直线MN上(不与点A重合),如图1,DE与AC交于点P,易证:BD=DP.(无需写证明过程)(1)在图2中,DE与CA延长线交于点P,BD=DP是否成立?如果成立,请给予证明;如果不成立,请说明理由;(2)在图3中,DE与AC延长线交于点P,BD与DP是否相等?请直接写出你的结论,无需证明.1.已知:在△ABC中,AC=BC,∠ACB=90°,过点C作CD⊥AB于点D,点E是AB边上一动点(不含端点A、B),连接CE,过点B作CE的垂线交直线CE于点F,交直线CD于点G(如图①).(1)求证:AE=CG;(2)若点E运动到线段BD上时(如图②),试猜想AE、CG的数量关系是否发生变化,请直接写出你的结论;(3)过点A作AH垂直于直线CE,垂足为点H,并交CD的延长线于点M(如图③),找出图中与BE 相等的线段,并证明.2.如图,已知在△ABC中,AB=AC,P是BC边上的-点,过点P引直线分别交AB于点M,交AC的延长线于点N,且PM=PN.(1)写出图中除AB和AC,PM和PN外的其他相等的线段.(2)证明你的结论3.在Rt△ABC中,∠BAC=90°,AB=AC,D,E为边AC上的两动点,以相同的速度D从A向C,E从C 向A运动,AM⊥BD交BC于N,连NE并延长交BD延长线于F.①说明∠ABD=∠NAC②当D,E运动到如图2所示的位置时,试作出图形,并判断FD与FE的数量关系,请写出你的结论.(不要求证明)③对图1证明△FED为等腰三角形.4.已知:△ABC和△ADE是两个不全等的等腰直角三角形,其中BA=BC,DA=DE,连接EC,取EC的中点M,连接BM和DM.(1)如图1,如果点D、E分别在边AC、AB上,那么BM、DM的数量关系与位置关系是_______(2)将图1中的△ADE绕点A旋转到图2的位置时,判断(1)中的结论是否仍然成立,并说明理由.5.如图,△ABD与△ACE中,AB=AC,∠ACE+∠ABD=180°,BD=CE,BC延长线交ED于F.(1)求证:∠DBF=∠ECF;(2)图中是否存在与DF相等的线段?若存在,请找出,并加以证明;若不存在,说明理由6.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)DG=CF;(3)直接写出CF与DE的数量关系.1.已知等腰直角△ABC和等腰直角△CDE中,AB=BC,CD=DE,∠ABC=90°,∠CDE=90°,CD>BC,取线段AE的中点M,连结BM、DM、BD.(1)如图1,当BC⊥CE时,连接AE,试猜想BM与MD的数量关系和位置关系,请直接写出答案;(2)如图2,当点A、C、E三点在同一条直线上时,其他条件不变,试探究BM与MD的数量关系和位置关系,请说明理由.2.如图1,△ABC中,AB=AC,连B,C分别作BD⊥AB,CD⊥AC,BD、CD相交于D点,P为BC上一点,过P的直线交AB于E,AC延长线于F,且满足PE=PF,连结DP.(1)求证:DP⊥EF;(2)如图2,若P为BC延长线上,其它条件不变,(1)中结论是否成立?3.(1)如图①,已知:△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥m于D,CE⊥m于E,求证:DE=BD+CE;(2)拓展:如图②,将(1)中的条件改为:△ABC中,AB=AC,D、A、E三点都在直线m上,并且∠BDA=∠AEC=∠BAC=α,α为任意锐角或钝角,请问结论DE=BD+CE是否成立?如成立,请证明;若不成立,请说明理由;(3)应用:如图③,在△ABC中,∠BAC是钝角,AB=AC,∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,直线m与BC的延长线交于点F,若BC=2CF,△ABC的面积是12,求△ABD与△CEF的面积之和.4.如图,D是Rt△ABC斜边AB上一点,且BD=BC=AC=1,P为CD上任意一点,PF⊥BC于点F,PE⊥AB于点E,则PE+PF的值是()A.B.C.D.5.如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H(1)求∠APB度数;(2)求证:△ABP≌△FBP;(3)求证:AH+BD=AB6.已知:在△ABC中,AB=AC,∠BAC=90°,点D是BC的中点,点P是BC边上的一个动点,连接AP.直线BE垂直于直线AP,交AP于点E,直线CF垂直于直线AP,交AP于点F.(1)当点P在BD上时(如图①),求证:CF=BE+EF;(2)当点P在DC上时(如图②),CF=BE+EF还成立吗?若不成立,请画出图形,并直接写出CF、BE、EF之间的关系(不需要证明).(3)若直线BE的延长线交直线AD于点M(如图③),找出图中与CP相等的线段,并加以证明.8.如图,等腰直角三角形ABC中,∠BAC=90°,D、E分别为AB、AC边上的点,AD=AE,AF⊥BE交BC 于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M.(1)求证:△EGM为等腰三角形;(2)判断线段BG、AF与FG的数量关系并证明你的结论.9.在△ABC中,AB=AC,D在AC上,AE=AC交BD的延长线于点E,AF平分∠CAE交BE于F. (1)如图1,连CF,求证:∠ABE=∠ACF;(2)如图2,当∠ABC=60°时,且BD平分∠ABC,请写出AF、EF、BF的数量关系,不需证明;(3)如图3,若∠BAC=90°,且BD平分∠ABC,求证:BD=2EF.1.在△ABC中,∠ACB=90°,AC=BC,点D为线段AC上的一点(不和点A、C重合),点E在线段BD 的延长线上,点F在线段BD上,连接CE、CF、AE,且∠ECF=90°,CE=CF,过点F作FG⊥BD分别交线段BC、线段AC的延长线于点P、G.(1)如图l,求证:AC=CG;(2)如图2,延长线段GF交线段AB于点H,连接DH,当AH=BH时,求证:∠BHG=∠AHD.2.如图,在△ABC中,AB=AC,BC=6,点P从点B出发沿线段BA移动,同时,点Q从点C出发沿线段AC的延长线移动,当点P运动到A时,点P、Q随即停止运动,若点P、Q移动的速度相同,PQ与直线BC相交于点D.(1)如图①,当点P自点B出发在线段BA上运动是,过点P作AC的平行交BC于点F,连接PC、FQ,判断四边形PFQC的形状,并证明你的结论.(2)如图②,过点P作PE⊥BC,垂足为E,请说明在点P、Q在移动的过程中,DE长度保持不变.4.如图,等腰三角形ABC中,∠AC=90°,D,E分别为AB,AC边上的点,AD=AE,AF⊥BE交BC于点F,过点F作FG⊥CD,交BE于点G,交AC于点M.(1)求证:GM=GE;(2)求证:BG=AF+FG.1.在Rt△ABC中,∠ACB=90°,AC=BC,D为直线AC上一点,直线AE⊥直线BD,垂足为E,直线AE 和直线BC交于点H,过点C作AB的平行线,交直线AE于F,连DF.(1)若D在线段AC上(如图1),求证:∠CDB=∠CDF;(2)若D在AC延长线上(如图2),求证:∠CDB+∠CDF=180°.2.已知:如图,△ABC中,AB=AC,占M在线段AC上(不与C重合),BM延长线与过点C的直线交于D,连接AD,∠MAD=∠DBC,AE⊥BM于E,当M在线段AC上时,求证:BD-CD=2DE3.已知△ABC,∠BAC=90°,等腰直角△BDE,∠BDE=90°,BD=DE,点D在线段AC上.(1)如图1,当∠ACB=30°,点E在BC上时,试判断AD与CE的数量关系,并加以证明;(2)如图2,当∠ACB=45°,点E在BC外时,连结EC、BD并延长交于点F,设ED与BC交于点N,(完整word版)八上等腰三角形精品提高题系列图中是否存在与BN相等的线段?若存在.请加以证明.若不存在,请说明理由.。
等腰三角形培优题目有答案
![等腰三角形培优题目有答案](https://img.taocdn.com/s3/m/f34dcd12a7c30c22590102020740be1e650ecc35.png)
等腰三⾓形培优题⽬有答案2014.3.29 等腰三⾓形1.等腰三⾓形⼀腰上的⾼与另⼀腰的夹⾓为30°则顶⾓的度数为什么?2.等腰三⾓形顶⾓为α,⼀条腰上的⾼与底边所夹的⾓是β,则β与α的关系式为β=___________。
图1解答:如图1,AB=AC ,BD ⊥AC 于D ,作底边BC 上的⾼AE ,E 为垂⾜,则可知∠EAC=∠EAB =12α,⼜∠EAC C C =-=-9090°∠,∠°∠β,所以∠,EAC ==ββα12。
3.如图1,在△ABC 中,∠A=36°,AB=AC ,∠ABC 的平分线BE 交AC 于E .(1)求证:AE=BC ;(2)如图(2),过点E 作EF ∥BC 交AB 于F ,将△AEF 绕点A 逆时针旋转⾓α(0°<α<144°)得到△AE′F′,连结CE′,BF′,求证:CE′=BF′;(1)证明:∵AB=BC,∠A=36°,∴∠ABC=∠C=72°,⼜∵BE平分∠ABC,∴∠ABE=∠CBE=36°,∴∠BEC=180°﹣∠C﹣∠CBE=72°,∴∠ABE=∠A,∠BEC=∠C,∴AE=BE,BE=BC,∴AE=BC.(2)证明:∵AC=AB且EF∥BC,∴AE=AF;由旋转的性质可知:∠E′AC=∠F′AB,AE′=AF′,∵在△CAE′和△BAF′中,∴△CAE′≌△BAF′,∴CE′=BF′.4.如图,在等腰梯形ABCD中,AB∥DC,线段AG,BG分别交CD于点E,F,DE=CF.求证:△GAB是等腰三⾓形.证明:∵在等腰梯形中ABCD中,AD=BC,∴∠D=∠C,∠DAB=∠CBA,在△ADE和△BCF中,,∴△ADE≌△BCF(SAS),∴∠DAE=∠CBF,∴∠GAB=∠GBA,∴GA=GB,即△GAB为等腰三⾓形.5.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂⾜为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.证明:(1)∵AB=AC,D是BC的中点,∴∠BAE=∠EAC,在△ABE和△ACE中,,∴△ABE≌△ACE(SAS),∴BE=CE;(2)∵∠BAC=45°,BF⊥AF,∴△ABF为等腰直⾓三⾓形,∴AF=BF,∵AB=AC,点D是BC的中点,∴AD⊥BC,∴∠EAF+∠C=90°,∵BF⊥AC,∴∠CBF+∠C=90°,∴∠EAF=∠CBF,在△AEF和△BCF中,,∴△AEF≌△BCF(ASA).6.如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OC=6,OA=8,直线MN的解析式为y=﹣x+6 在直线MN上存在点P,使以点P,B,C三点为顶点的三⾓形是等腰三⾓形,请直接写出P点的坐标.解答:(1)∵A(8,0),C(0,6),∴根据题意知B(8,6).∵点P在直线MNy=﹣x+6上,∴设P(a,﹣a+6)当以点P,B,C三点为顶点的三⾓形是等腰三⾓形时,需要分类讨论:①当PC=PB时,点P是线段BC的中垂线与直线MN的交点,则P1(4,3);②当PC=BC时,a2+(﹣a+6﹣6)2=64,解得,a=,则P2(﹣,),P3(,);③当PB=BC时,(a﹣8)2+(﹣a+6﹣6)2=64,解得,a=,则﹣a+6=﹣,∴P4(,﹣).综上所述,符合条件的点P有:P1(4,3),P2(﹣,)P3(,),P4(,﹣).8.已知:如图,△ABC中,AB=AC,CE⊥AE于E,CE BC12,E在△ABC外,求证:∠ACE=∠B。
实验班八年级(上)《等腰三角形》提高训练及答案解析
![实验班八年级(上)《等腰三角形》提高训练及答案解析](https://img.taocdn.com/s3/m/f68a070f5f0e7cd1842536b6.png)
八年级(上)《等腰三角形》提高训练班级:________________姓名:_______________________一、选择题(共10小题)1.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17.5° C.20°D.22.5°第1题第2题2.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°3.如图,已知∠AOB=40°,在∠AOB的两边OA、OB上分别存在点Q、点P,过点Q作直线QR∥OB,当OP=QP时,∠PQR的度数是()A.60°B.80°C.100°D.120°第3题第4题4.如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50°B.51°C.51.5° D.52.5°5.如图,已知AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4…,若∠A=70°,则∠A n﹣1A n B n 的度数为()﹣1A.B.C.D.第5题第6题6.如图所示,在等边三角形ABC中,O是三个内角平分线的交点,OD∥AB,OE∥AC,则图中等腰三角形的个数是()A.7 B.6 C.5 D.47.如图,在△ABC、△ADE中,C、D两点分别在AE、AB上,BC、DE交于点F,若BD=DC=CE,∠ADC+∠ACD=114°,则∠DFC为()A.114°B.123°C.132°D.147°第7题第8题第9题8.如图,在△ABC中,BD平分∠ABC,ED∥BC,已知AB=3,AD=1,则△AED的周长为()A.2 B.3 C.4 D.59.如图,△ABC中,BA=BC,BD是三角形的角平分线,DE∥BC交AB于E,下列结论:①∠1=∠3;②DE=AB;③S△ADE=S△ABC.正确的有()A.0个B.1个C.2个D.3个10.如图,△PBC的面积为10cm2,AP垂直∠B的平分线BP于P,则△ABC的面积为()A.10cm2B.12cm2C.16cm2D.20cm2第10题第12题二、填空题(共10小题)11.等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为.12.如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G、F,若FG=2,ED=6,则EB+DC=.13.如图,在△ABC中,BI、CI分别平分∠ABC、∠ACF,DE过点I,且DE∥BC.BD=8cm,CE=5cm,则DE等于.第13题第14题14.如图,△ABC中,∠B与∠C的平分线交于点O,过O作EF∥BC交AB、AC于E、F,若△ABC的周长比△AEF的周长大12cm,O到AB的距离为3cm,△OBC的面积cm2.15.有一三角形纸片ABC,∠A=80°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两纸片均为等腰三角形,则∠C的度数可以是.第15题第16题16.如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A 的路径,以2cm每秒的速度运动,设运动时间为t秒,当t为时,△ACP是等腰三角形.17.如图,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分线BE交AD于点F,AG平分∠DAC.给出下列结论:①∠BAD=∠C;②AE=AF;③∠EBC=∠C;④FG∥AC;⑤EF=FG.其中正确的结论是.第17题第18题18.如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B 点时,M、N同时停止运动.(1)当点M、N运动秒时,M、N两点重合;(2)当点M、N运动秒后,M、N与△ABC中的某个顶点可得到等腰三角形.19.如图,在△ABC中,AC=BC>AB,点P为△ABC所在平面内一点,且点P与△ABC 的任意两个顶点构成的△PAB,△PBC,△PAC均为等腰三角形,则满足上述条件的所有点P有个.(请在图形中表示点P的位置)第19题第20题20.如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC 重合在一起,△ABC不动,点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.若△AEM构成等腰三角形,则BE的长为.三、解答题(共10小题)21.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.第21题22.如图,已知点A、C分别在∠GBE的边BG、BE上,且AB=AC,AD∥BE,∠GBE的平分线与AD交于点D,连接CD.(1)求证:①AB=AD;②CD平分∠ACE.(2)猜想∠BDC与∠BAC之间有何数量关系?并对你的猜想加以证明.第22题23.如图,在△ABC中,AB=AC=2,∠B=∠C=50°,点D在线段BC上运动(点D不与B、C重合),连接AD,作∠ADE=50°,DE交线段AC于E.(1)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请求出∠BDA 的度数;若不可以,请说明理由.(2)若DC=2,求证:△ABD≌△DCE.第23题24.如图,在△ABC中,AD平分∠BAC交BC于D,DE∥AC交AB于E,过E作EF⊥AD,垂足为H,并交BC延长线于F.(1)求证:AE=ED;(2)Q请猜想∠B与∠CAF的大小关系,并证明你的结论.第24题25.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E,EH⊥AB,垂足是H.在AB上取一点M,使BM=2DE,连接ME.求证:ME⊥BC.第25题26.如图,BD和CD分别平分△ABC的内角∠EBA和外角∠ECA,BD交AC于F,连接AD.(1)求证:∠BDC=∠BAC;(2)若AB=AC,请判断△ABD的形状,并证明你的结论;(3)在(2)的条件下,若AF=BF,求∠EBA的大小.第26题27.定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.(如图1所示)(1)请你在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(2)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC 边上,且AD=BD,DE=CE,设∠C=x°,试画出示意图,并求出x所有可能的值.第27题28.如图1,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M.(1)求证:△ABQ≌△CAP;(2)如图1,当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说理由;若不变,求出它的度数.(3)如图2,若点P、Q在分别运动到点B和点C后,继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC=度.(直接填写度数)第28题29.如图,已知△ABC中,AB=AC=12cm,BC=10cm,点D为AB的中点.如果点P在线段BC上以2cm/s的速度由点B向C点运动,同时,点Q在线段AC 上由点A向C点以4cm/s的速度运动.(1)若点P、Q两点分别从B、A 两点同时出发,经过2秒后,△BPD与△CQP是否全等,请说明理由;(2)若点P、Q两点分别从B、A 两点同时出发,△CPQ的周长为18cm,问:经过几秒后,△CPQ是等腰三角形?第29题30.如图1,C是线段BE上一点,以BC、CE为边分别在BE的同侧作等边△ABC 和等边△DCE,连结AE、BD.(1)求证:BD=AE;(2)如图2,若M、N分别是线段AE、BD上的点,且AM=BN,请判断△CMN 的形状,并说明理由.第30题八年级(上)《等腰三角形》提高训练参考答案与试题解析一.选择题(共10小题)1.(2016•枣庄)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC 与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17.5° C.20°D.22.5°【解答】解:∵∠ABC的平分线与∠ACE的平分线交于点D,∴∠1=∠2,∠3=∠4,∵∠ACE=∠A+∠ABC,即∠1+∠2=∠3+∠4+∠A,∴2∠1=2∠3+∠A,∵∠1=∠3+∠D,∴∠D=∠A=×30°=15°.故选A.2.(2016•泰安)如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°【解答】解:∵PA=PB,∴∠A=∠B,在△AMK和△BKN中,,∴△AMK≌△BKN,∴∠AMK=∠BKN,∵∠MKB=∠MKN+∠NKB=∠A+∠AMK,∴∠A=∠MKN=44°,∴∠P=180°﹣∠A﹣∠B=92°,故选:D.3.(2016•聊城模拟)如图,已知∠AOB=40°,在∠AOB的两边OA、OB上分别存在点Q、点P,过点Q作直线QR∥OB,当OP=QP时,∠PQR的度数是()A.60°B.80°C.100°D.120°【解答】解:∵QR∥OB,∠AOB=40°,∴∠AQR=∠AOB=40°,∵OP=QP,∴∠PQO=∠AOB=40°,∵∠AQR+∠PQO+∠PQR=180°,∴∠PQR=180°﹣2∠AQR=100°.故选C4.(2016•滨州)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50°B.51°C.51.5° D.52.5°【解答】解:∵AC=CD=BD=BE,∠A=50°,∴∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED,∵∠B+∠DCB=∠CDA=50°,∴∠B=25°,∵∠B+∠EDB+∠DEB=180°,∴∠BDE=∠BED=(180°﹣25°)=77.5°,∴∠CDE=180°﹣∠CDA﹣∠EDB=180°﹣50°﹣77.5°=52.5°,故选D.5.(2016•六盘水)如图,已知AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4…,若∠A=70°,则∠A n﹣1A n B n﹣1的度数为()A.B.C.D.【解答】解:∵在△ABA1中,∠A=70°,AB=A1B,∴∠BA1A=70°,∵A1A2=A1B1,∠BA1A是△A1A2B1的外角,∴∠B1A2A1==35°;同理可得,∠B2A3A2=17.5°,∠B3A4A3=×17.5°=,∴∠A n﹣1A n B n﹣1=.故选:C.6.(2016春•蓝田县期末)如图所示,在等边三角形ABC中,O是三个内角平分线的交点,OD∥AB,OE∥AC,则图中等腰三角形的个数是()A.7 B.6 C.5 D.4【解答】解:①∵△ABC为等边三角形,∴AB=AC,∴△ABC为等腰三角形;②∵BO,CO,AO分别是三个角的角平分线,∴∠ABO=∠CBO=∠BAO=∠CAO=∠ACO=∠BCO,∴AO=BO,AO=CO,BO=CO,∴△AOB为等腰三角形;③△AOC为等腰三角形;④△BOC为等腰三角形;⑤∵OD∥AB,OE∥AC,∴∠B=∠ODE,∠C=∠OED,∵∠B=∠C,∴∠ODE=∠OED,∴△DOE为等腰三角形;⑥∵OD∥AB,OE∥AC,∴∠BOD=∠ABO,∠COE=∠ACO,∵∠DBO=∠ABO,∠ECO=∠ACO,∴∠BOD=∠DBO,∠COE=∠ECO,∴△BOD为等腰三角形;⑦△COE为等腰三角形.故答案是:7个.7.(2016•慈溪市一模)如图,在△ABC、△ADE中,C、D两点分别在AE、AB上,BC、DE交于点F,若BD=DC=CE,∠ADC+∠ACD=114°,则∠DFC为()A.114°B.123°C.132°D.147°【解答】解:∵BD=CD=CE,∴∠B=∠DCB,∠E=∠CDE,∵∠ADC+∠ACD=114°,∴∠BDC+∠ECD=360°﹣114°=246°,∴∠B+∠DCB+∠E+∠CDE=360°﹣246°=114°,∴∠DCB+∠CDE=57°,∴∠DFC=180°﹣57°=123°,故选B.8.(2016•阿坝州)如图,在△ABC中,BD平分∠ABC,ED∥BC,已知AB=3,AD=1,则△AED的周长为()A.2 B.3 C.4 D.5【解答】解:∵BD平分∠ABC,∴∠ABD=∠CBD,∵ED∥BC,∴∠CBD=∠BDE,∴∠ABD=∠BDE,∴BE=DE,△AED的周长=AE+DE+AD=AE+BE+AD=AB+AD,∵AB=3,AD=1,∴△AED的周长=3+1=4.故选C.9.(2016•海曙区一模)如图,△ABC中,BA=BC,BD是三角形的角平分线,DE∥BC交AB于E,下列结论:①∠1=∠3;②DE=AB;③S△ADE=S△ABC.正确的有()A.0个B.1个C.2个D.3个【解答】解:∵BA=BC,BD平分∠ABC,∴∠1=∠2,BD⊥AC,且AD=CD,∵DE∥BC,∴∠2=∠3,△ADE∽△ACB,∴∠1=∠3,故①正确;===,即DE=BC,故②正确;由△ADE∽△ACB,且=可得=()2=,即S△ADE=S△ABC,故③正确;故选:D.10.(2016秋•江阴市期中)如图,△PBC的面积为10cm2,AP垂直∠B的平分线BP于P,则△ABC的面积为()A.10cm2B.12cm2C.16cm2D.20cm2【解答】解:如图,延长AP交BC于点Q,∵AP垂直∠ABC的平分线BP于P,∴AP=QP,∴S△ABP=S△BQP,S△APC=S△PQC,∴S△ABC=2S阴影=20cm2,故选D.二.填空题(共10小题)11.(2016•通辽)等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为69°或21°.【解答】解:分两种情况讨论:①若∠A<90°,如图1所示:∵BD⊥AC,∴∠A+∠ABD=90°,∵∠ABD=48°,∴∠A=90°﹣48°=42°,∵AB=AC,∴∠ABC=∠C=(180°﹣42°)=69°;②若∠A>90°,如图2所示:同①可得:∠DAB=90°﹣48°=42°,∴∠BAC=180°﹣42°=138°,∵AB=AC,∴∠ABC=∠C=(180°﹣138°)=21°;综上所述:等腰三角形底角的度数为69°或21°.故答案为:69°或21°.12.(2016秋•玉环县期中)如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G、F,若FG=2,ED=6,则EB+DC=8.【解答】解:∵ED∥BC,∴∠EGB=∠GBC,∠DFC=∠FCB,∵∠GBC=∠GBE,∠FCB=∠FCD,∴∠EGB=∠EBG,∠DCF=∠DFC,∴BE=EG,CD=DF,∵FG=2,ED=6,∴EB+CD=EG+DF=EF+FG+FG+DG=ED+FG=8,故答案为8.13.(2016秋•雁塔区校级月考)如图,在△ABC中,BI、CI分别平分∠ABC、∠ACF,DE 过点I,且DE∥BC.BD=8cm,CE=5cm,则DE等于3cm.【解答】解:∵BI、CI分别平分∠ABC、∠ACF,∴∠ABI=∠CBI,∠ECI=∠ICF,∵DE∥BC,∴∠DIB=∠CBI,∠EIC=∠ICF,∴∠ABI=∠DIB,∠ECI=∠EIC,∴DI=BD=8cm,EI=CE=5cm,∴DE=DI﹣EI=3(cm).故答案为:3cm.14.(2016秋•东湖区月考)如图,△ABC中,∠B与∠C的平分线交于点O,过O作EF∥BC 交AB、AC于E、F,若△ABC的周长比△AEF的周长大12cm,O到AB的距离为3cm,△OBC的面积18cm2.【解答】解:∵∠B与∠C的平分线交于点O,∴∠EBO=∠OBC,∠FCO=∠OCB,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠EOB=∠EBO,∠FCO=∠FOC,∴OE=BE,OF=FC,∴EF=BE+CF,∴AE+EF+AF=AB+AC,∵△ABC的周长比△AEF的周长大12cm,∴(AC+BC+AC)﹣(AE+EF+AF)=12,∴BC=12cm,∵O到AB的距离为3cm,∴△OBC的面积是cm×3cm=18cm2.,故答案为:18.15.(2016•江西模拟)有一三角形纸片ABC,∠A=80°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两纸片均为等腰三角形,则∠C的度数可以是25°或40°或10°.【解答】解:由题意知△ABD与△DBC均为等腰三角形,对于△ABD可能有①AB=BD,此时∠ADB=∠A=80°,∴∠BDC=180°﹣∠ADB=180°﹣80°=100°,∠C=(180°﹣100°)=40°,②AB=AD,此时∠ADB=(180°﹣∠A)=(180°﹣80°)=50°,∴∠BDC=180°﹣∠ADB=180°﹣50°=130°,∠C=(180°﹣130°)=25°,③AD=BD,此时,∠ADB=180°﹣2×80°=20°,∴∠BDC=180°﹣∠ADB=180°﹣20°=160°,∠C=(180°﹣160°)=10°,综上所述,∠C度数可以为25°或40°或10°.故答案为:25°或40°或10°.16.(2016•河南模拟)如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A的路径,以2cm每秒的速度运动,设运动时间为t秒,当t为3,6或6.5或5.4时,△ACP是等腰三角形.【解答】解:由题意可得,第一种情况:当AC=CP时,△ACP是等腰三角形,如右图1所示,∵在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A的路径,以2cm每秒的速度运动,∴CP=6cm,∴t=6÷2=3秒;第二种情况:当CP=PA时,△ACP是等腰三角形,如右图2所示,∵在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A的路径,以2cm每秒的速度运动,∴AB=10cm,∠PAC=∠PCA,∴∠PCB=∠PBC,∴PA=PC=PB=5cm,∴t=(CB+BP)÷2=(8+5)÷2=6.5秒;第三种情况:当AC=AP时,△ACP是等腰三角形,如右图3所示,∵在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A的路径,以2cm每秒的速度运动,∴AP=6cm,AB=10cm,∴t=(CB+BA﹣AP)÷2=(8+10﹣6)÷2=6秒;第四种情况:当AC=CP时,△ACP是等腰三角形,如右图4所示,作CD⊥AB于点D,∵∠ACB=90°,AC=6cm,BC=8cm,tan∠A==,∴,AB=10cm,设CD=4a,则AD=3a,∴(4a)2+(3a)2=62,解得,a=,∴AD=3a=,∴AP=2AD=7.2cm,∴t==5.4s,故答案为:3,6或6.5或5.4.17.(2015春•重庆校级期中)如图,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分线BE交AD于点F,AG平分∠DAC.给出下列结论:①∠BAD=∠C;②AE=AF;③∠EBC=∠C;④FG∥AC;⑤EF=FG.其中正确的结论是①②④.【解答】解:①连接EG.∵∠BAC=90°,AD⊥BC.∴∠C+∠ABC=90°,∠C+∠DAC=90°,∠ABC+∠BAD=90°.∴∠ABC=∠DAC,∠BAD=∠C,故①正确;②∵BE、AG分别是∠ABC、∠DAC的平分线.∴∠ABF=∠EBD.∵∠AFE=∠FAB+∠FBA,∠AEB=∠C+∠EBD,∴∠AFE=∠AEF,∴AF=AE,故②正确;③如果∠EBC=∠C,则∠C=∠ABC,∵∠BAC=90°那么∠C=30°,但∠C≠30°,故③错误;④∵AG是∠DAC的平分线,∴AN⊥BE,FN=EN,在△ABN与△GBN中,∵∴△ABN≌△GBN,∴AN=GN,∴四边形AFGE是平行四边形,∴GF∥AE,即GF∥AC.故④正确;⑤∵AE=AF,AE=FG,而△AEF不是等边三角形,∴EF≠AE,∴EF≠FG,故⑤错误.故答案为:①②④.18.(2015秋•江阴市校级期中)如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)当点M、N运动12秒时,M、N两点重合;(2)当点M、N运动4,8,16秒后,M、N与△ABC中的某个顶点可得到等腰三角形.【解答】解:(1)设点M、N运动x秒后,M、N两点重合,x×1+12=2x,解得:x=12,故当点M、N运动12秒时,M、N两点重合;故答案为:12;(2)①当M在AC上,N在AB上时,有AM=AN,△AMN为等边三角形,符合题意,即t=12﹣2t,解得t=4;②当M、N均在AC上时,有BM=BN,△BMN为等腰三角形,符合题意,则CM=AN,即12﹣t=2t﹣12,解得t=8;③当M、N均在BC上时,N点已经追过M点,有AM=AN,△AMN为等腰三角形,符合题意,则CM=BN,即t﹣12=36﹣2t,解得t=16.故答案为4,8,16.19.(2014春•海盐县校级期末)如图,在△ABC中,AC=BC>AB,点P为△ABC所在平面内一点,且点P与△ABC的任意两个顶点构成的△PAB,△PBC,△PAC均为等腰三角形,则满足上述条件的所有点P有6个.(请在图形中表示点P的位置)【解答】解:如图所示,作AB的垂直平分线,①△ABC的外心P1为满足条件的一个点,②以点C为圆心,以AC长为半径画圆,P2、P3为满足条件的点,③分别以点A、B为圆心,以AC长为半径画圆,P4为满足条件的点,④分别以点A、B为圆心,以AB长为半径画圆,P5、P6为满足条件的点,综上所述,满足条件的所有点P的个数为6.故答案为:6.20.(2014•河南模拟)如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.若△AEM构成等腰三角形,则BE的长为1或.【解答】解:∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF=∠B,∴∠AEF=∠B=∠C,∵∠AME>∠C,∴∠AME>∠AEF,∴AE≠AM;当AE=EM时,则△ABE≌△ECM,∴CE=AB=5,∴BE=BC﹣EC=6﹣5=1,当AM=EM时,则∠MAE=∠MEA,∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,又∵∠C=∠C,∴△CAE∽△CBA,∴=,∴CE==,∴BE=6﹣=;∴BE=1或.三.解答题(共10小题)21.(2016秋•淮安期末)如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC 边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.【解答】证明:∵AB=AC,∴∠ABC=∠ACB,在△DBE和△CEF中,∴△DBE≌△CEF,∴DE=EF,∴△DEF是等腰三角形;(2)∵△DBE≌△CEF,∴∠1=∠3,∠2=∠4,∵∠A+∠B+∠C=180°,∴∠B=(180°﹣40°)=70°∴∠1+∠2=110°∴∠3+∠2=110°∴∠DEF=70°22.(2016秋•宁城县期末)如图,已知点A、C分别在∠GBE的边BG、BE上,且AB=AC,AD∥BE,∠GBE的平分线与AD交于点D,连接CD.(1)求证:①AB=AD;②CD平分∠ACE.(2)猜想∠BDC与∠BAC之间有何数量关系?并对你的猜想加以证明.【解答】解:(1)①∵AD∥BE,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠ADB,∴AB=AD;②∵AD∥BE,∴∠ADC=∠DCE,由①知AB=AD,又∵AB=AC,∴AC=AD,∴∠ACD=∠ADC,∴∠ACD=∠DCE,∴CD平分∠ACE;(2)∠BDC=∠BAC,∵BD、CD分别平分∠ABE,∠ACE,∴∠DBC=∠ABC,∠DCE=∠ACE,∵∠BDC+∠DBC=∠DCE,∴∠BDC+∠ABC=∠ACE,∵∠BAC+∠ABC=∠ACE,∴∠BDC+∠ABC=∠ABC+∠BAC,∴∠BDC=∠BAC.23.(2016秋•义乌市期末)如图,在△ABC中,AB=AC=2,∠B=∠C=50°,点D在线段BC上运动(点D不与B、C重合),连接AD,作∠ADE=50°,DE交线段AC于E.(1)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请求出∠BDA 的度数;若不可以,请说明理由.(2)若DC=2,求证:△ABD≌△DCE.【解答】解:(1)∵∠B=∠C=50°,∠ADE=50°,∴∠BDA+∠EDC=∠CED+∠EDC=130°,∴∠BDA=∠CED,∵点D在线段BC上运动(点D不与B、C重合),∴AD≠AE,ⅰ)如图所示,当EA=ED时,∠EAD=∠ADE=50°,∴∠BDA=∠CED=50°+50°=100°;ⅱ)如图所示,当DA=DE时,∠EAD=∠AED=65°,∴∠BDA=∠CED=65°+50°=115°;(2)由(1)可得∠BDA=∠CED,又∵∠B=∠C=50°,AB=DC=2,∴在△ABD和△DCE中,,∴△ABD≌△DCE(AAS).24.(2016秋•黄埔区期末)如图,在△ABC中,AD平分∠BAC交BC于D,DE∥AC交AB于E,过E作EF⊥AD,垂足为H,并交BC延长线于F.(1)求证:AE=ED;(2)Q请猜想∠B与∠CAF的大小关系,并证明你的结论.【解答】证明:(1)∵DE∥AC,∴∠EDA=∠DAC,∵AD平分∠BAC,∴∠EAD=∠DAC,∴∠EAD=∠EDA∴AE=ED;(2)∵AE=ED,EF⊥AD,AD平分∠BAC,∴EF是AD的垂直平分线,∴FA=FD,∴∠FAD=∠FDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∵∠FDA=∠B+∠BAD,∠FAD=∠FAC+∠CAD,∴∠B=∠CA.25.(2015春•威海期末)如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E,EH⊥AB,垂足是H.在AB上取一点M,使BM=2DE,连接ME.求证:ME⊥BC.【解答】解:∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵EH⊥AB于H,∴△BEH是等腰直角三角形,∴HE=BH,∠BEH=45°,∵AE平分∠BAD,AD⊥BC,∴DE=HE,∴DE=BH=HE,∵BM=2DE,∴HE=HM,∴△HEM是等腰直角三角形,∴∠MEH=45°,∴∠BEM=45°+45°=90°,∴ME⊥BC.26.(2015秋•宜城市期末)如图,BD和CD分别平分△ABC的内角∠EBA和外角∠ECA,BD交AC于F,连接AD.(1)求证:∠BDC=∠BAC;(2)若AB=AC,请判断△ABD的形状,并证明你的结论;(3)在(2)的条件下,若AF=BF,求∠EBA的大小.【解答】解:(1)∵BD、CD分别平分∠EBA、∠ECA,BD交AC于F,∴∠BDC+∠ABC=∠ACE,∠BAC+∠ABC=∠ACE,∴∠BDC+∠ABC=∠BAC+∠ABC,∴∠BDC=∠BAC.(2)△ABD为等腰三角形,证明如下:作DM⊥BG于M,DN⊥AC于N,DH⊥BE于H∵BD、CD分别平分∠EBA、∠ECA,∴DM=DH,DN=DH,∴DM=DN,∴AD平分∠CAG,即∠GAD=∠CAD,∵∠GAD+∠CAD+∠BAC=180°,∠BAC+∠ABC+∠ACB=180°,∴∠GAD+∠CAD=∠ABC+∠ACB,∵AB=AC,∴∠ABC=∠ACB,∴∠GAD=∠ABC,∴AD∥BC,∴∠ADB=∠DBC,又∵∠ABD=∠DBC,∴∠ABD=∠ADB,∴AB=AD,∴△ABD为等腰三角形;(3)∵AF=BF,∴∠BAF=∠ABF=∠ABC,∵∠BAF+∠ABC+∠ACB=180°,∠ABC=∠ACB,∴∠ABC=180°,∴∠ABC=72°.27.(2015秋•台州期中)定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.(如图1所示)(1)请你在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(2)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC 边上,且AD=BD,DE=CE,设∠C=x°,试画出示意图,并求出x所有可能的值.【解答】解:(1)如图2作图,(2)如图3 ①、②作△ABC.①当AD=AE时,∵2x+x=30+30,∴x=20.②当AD=DE时,∵30+30+2x+x=180,∴x=40.所以∠C的度数是20°或40°.28.(2016秋•盂县期末)如图1,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP 交于点M.(1)求证:△ABQ≌△CAP;(2)如图1,当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说理由;若不变,求出它的度数.(3)如图2,若点P、Q在分别运动到点B和点C后,继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC=120度.(直接填写度数)【解答】(1)证明:∵△ABC是等边三角形∴∠ABQ=∠CAP,AB=CA,又∵点P、Q运动速度相同,∴AP=BQ,在△ABQ与△CAP中,,∴△ABQ≌△CAP(SAS);(2)解:点P、Q在运动的过程中,∠QMC不变.理由:∵△ABQ≌△CAP,∴∠BAQ=∠ACP,∵∠QMC=∠ACP+∠MAC,∴∠QMC=∠BAQ+∠MAC=∠BAC=60°;(3)解:∵△ABQ≌△CAP,∴∠BAQ=∠ACP,∵∠QMC=∠BAQ+∠APM,∴∠QMC=∠ACP+∠APM=180°﹣∠PAC=180°﹣60°=120°.故答案为:120°.29.(2016秋•天津期末)如图,已知△ABC中,AB=AC=12cm,BC=10cm,点D为AB的中点.如果点P在线段BC上以2cm/s的速度由点B向C点运动,同时,点Q在线段AC 上由点A向C点以4cm/s的速度运动.(1)若点P、Q两点分别从B、A 两点同时出发,经过2秒后,△BPD与△CQP是否全等,请说明理由;(2)若点P、Q两点分别从B、A 两点同时出发,△CPQ的周长为18cm,问:经过几秒后,△CPQ是等腰三角形?【解答】解:(1),△BPD与△CQP是全等.理由如下:当P,Q两点分别从B,A两点同时出发运动2秒时有BP=2×2=4cm,AQ=4×2=8cm则CP=BC﹣BP=10﹣4=6cmCQ=AC﹣AQ=12﹣8=4cm∵D是AB的中点∴BD=AB=×12=6cm∴BP=CQ,BD=CP又∵△ABC中,AB=AC∴∠B=∠C在△BPD和△CQP中BP=CQ∠B=∠CBD=CP∴△BPD≌△CQP(SAS)(2)设当P,Q两点同时出发运动t秒时,有BP=2t,AQ=4t∴t的取值范围为0<t≤3则CP=10﹣2t,CQ=12﹣4t∵△CPQ的周长为18cm,∴PQ=18﹣(10﹣2t)﹣(12﹣4t)=6t﹣4要使△CPQ是等腰三角形,则可分为三种情况讨论:①当CP=CQ时,则有10﹣2t=12﹣4t解得:t=1 …(9分)②当PQ=PC时,则有6t﹣4=10﹣2t解得:t=…(10分)③当QP=QC时,则有6t﹣4=12﹣4t解得:t=…(11分)三种情况均符合t的取值范围.综上所述,经过1秒或秒或秒时,△CPQ是等腰三角形30.(2016秋•顺庆区期末)如图1,C是线段BE上一点,以BC、CE为边分别在BE的同侧作等边△ABC和等边△DCE,连结AE、BD.(1)求证:BD=AE;(2)如图2,若M、N分别是线段AE、BD上的点,且AM=BN,请判断△CMN的形状,并说明理由.【解答】证明:(1)∵△ABC、△DCE均是等边三角形,∴AC=BC,DC=DE,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE,在△DCB和△ACE中,,∴△DCB≌△ACE(SAS),∴BD=AE;(2)△CMN为等边三角形,理由如下:由(1)可知:△ACE≌△DCB,∴∠CAE=∠CDB,即∠CAM=∠CBN,∵AC=BC,AM=BN,在△ACM和△BCN中,,∴△ACM≌△BCN(SAS),∴CM=CN,∠ACM=∠BCN,∵∠ACB=60°即∠BCN+∠ACN=60°,∴∠ACM+∠ACN=60°即∠MCN=60°,∴△CMN为等边三角形.第31页(共8页)。
等腰三角形提高(含答案)
![等腰三角形提高(含答案)](https://img.taocdn.com/s3/m/0bdccad0b90d6c85ed3ac6aa.png)
等腰三角形提高等腰三角形1.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.2.等边三角形的定义:有三条边相等的三角形叫做等边三角形.3.等腰三角形的性质:(1)两腰相等.(2)两底角相等.(3)“三线合一”,即顶角平分线、底边上的中线、底边上的高互相重合.(4)是轴对称图形,底边的垂直平分线是它的对称轴.线段的垂直平分线:性质定理:线段的垂直平分线上的点到线段的两个端点距离相等判定定理:与线段的两个端点距离相等的点在这条线段的垂直平分线上,线段的垂直平分线可以看做是和线段两个端点距离相等的所有点的集合.4.等腰三角形的判定:(1)有两条边相等的三角形是等腰三角形.(2)有两个角相等的三角形是等腰三角形.5.等边三角形的性质:三边都相等,三个角都相等,每一个角都等于60.6.等边三角形的判定:(1)三条边都相等的三角形是等边三角形.(2)三个角都相等的三角形是等边三角形.(3)有一个角是60的等腰三角形是等边三角形.7.等腰直角三角形的性质:顶角等于90,底角等于45,两直角边相等.等腰直角三角形的判定:(1)顶角为90︒的等腰三角形.(2)底角为45︒的等腰三角形.【例题讲解】板块一、等腰三角形的认识【例 1】下列两个命题:①如果两个角是对顶角,那么这两个角相等;②如果一个等腰三角形有一个内角是60,那么这个等腰三角形一定是等边三角形.则以下结论正确的是( )A.只有命题①正确B.只有命题②正确C.命题①、②都正确D.命题①、②都不正确【解析】C.【例 2】如图,在ABC∆中,AD BC⊥于D.请你再添加一个条件,就可以确定ABC∆是等腰三角形.你添加的条件是.D CBA【解析】BD DC=或AD平分BAC∠或B C∠=∠.【例 3】如图,在ABC△中,D、E分别是AC、AB上的点,BD与CE交于点O,给出下列四个条件:①EBO DOC∠=∠;②BEO CDO∠=∠;③BE CD=;④OB OC=.(1)上述四个条件中,哪两个条件可判定ABC△是等腰三角形(用序号写出所有情况);(2)选择第⑴小题中的一种情形,证明ABC△是等腰三角形.O ED C B A【解析】 (1)①③,①④,②③,②④四种情况可判定ABC △是等腰三角形.(2)下面以①③两个条件证明ABC △是等腰三角形.∵EBO DOC ∠=∠,BE CD =,BEO CDO ∠=∠,∴EOB DOC ∠=∠,∴OB OC =,∴OBC OCB ∠=∠.∴EBC DCB ∠=∠,∴ABC △是等腰三角形.【例 4】 如图,点O 是等边ABC ∆内一点,110AOB ∠=,BOC α∠=.将BOC △绕 点C 按顺时针方向旋转19060αα-=-∴°°得ADC △,连接OD ,则COD △是等边三角形;当α为多少度时,AOD △是等腰三角形?ODCB A【解析】 分三种情况讨论:①要使AO AD =,需AOD ADO ∠=∠.∵190AOD α∠=-°,60ADO α∠=-°,19060αα-=-∴°°.125α=∴°.②要使OA OD =,需OAD ADO ∠=∠.∵180()50OAD AOD ADO ∠=-∠+∠=°°,6050α-=∴°°.110α=∴°.③要使OD AD =,需OAD AOD ∠=∠.19050α-=∴°°.140α=∴°.综上所述:当α的度数为125°或110°或140°时,ABC △是等腰三角形.【例 5】 如图,将一个等腰直角三角形按图示方式依次翻折,若DE =a ,则下列 说法正确的个数有( )①DC '平分BDE ∠; ②BC长为2)a ;③△BC D '是等腰三角形; ④△CED 的周长等于BC 的长.A . 1个;B .2个;C .3个;D .4个C B AD C B AE C'DC B A【解析】 由图可知△ABD ≌△EBD ,∴AD =DE =a ,DBE ∠=45.又∵C ∠=ABC ∠=45,∴DC,∴BC()a=2)a =△CED 的周长.又∵△CDE ≌△C DE ',∴45DC E '∠=,∴22.5DBE BDC '∠=∠=.∴BC C D ''=,△BC D '是等腰三角形.故②③④正确.【例 6】 如图⑴,AB AC =,BD ,CD 分别平分ABC ∠,ACB ∠.问:⑴图中有几个等腰三角形?⑵过D 点作EF ∥BC ,如图⑵,交AB 于E ,交AC 于F ,图中又增加了几个等腰三角形? ⑶如图⑶,若将题中的ABC ∆改为不等边三角形,其他条件不变,图中有几个等腰三角形?线段EF 与BE 、CF 有什么关系?⑷如图⑷,BD 平分ABC ∠,CD 平分外角ACG ∠.DE ∥BC 交AB 于E ,交AC 于F .线段EF 与BE 、CF 有什么关系?⑸如图⑸,BD 、CD 为外角CBM ∠、BCN ∠的平分线,DE ∥BC 交AB 延长线于E ,交AC 延长线于F ,线段EF 与BE 、CF 有什么关系?(1)C D B A (5)(4)(3)(2)M D D DC C C B B BAA AAB C DEE E EF F F FG N【解析】 ⑴图⑴中有两个等腰三角形:ABC ∆、BCD ∆⑵图⑵中又增加了三个等腰三角形:AEF ∆、BED ∆、CFD ∆⑶图⑶中有两个等腰三角形:BED ∆、CFD ∆,由于ED BE =,DF CF =,EF ED FD BE CF =+=+,故EF BE CF =+⑷图⑷所示中仍有两个等腰三角形BED ∆、CDF ∆从而DE BE =,CF DF =,又EF ED DF BE CF =-=-,故EF BE CF =-⑸如图⑸所示与⑶类似,EF BE CF =+板块二、等腰三角形的性质【例 7】 某等腰三角形的两条边长分别为3cm 和6cm ,则它的周长为( )A .9cm B.12cm C.15cm D.12cm 或15cm【解析】 C【例 8】 已知等腰三角形的周长为24cm ,一腰长是底边长的2倍,则腰长是( ) A .4.8cm B .9.6cm C .2.4cm D .1.2cm【解析】 B【例 9】 若等腰三角形中有一个角等于50︒,则这个等腰三角形的顶角的度数为( )A .50︒ B.80︒ C.65︒或50︒ D.50︒或80︒【解析】 D【巩固】已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角 的度数为( )A .20B .120 C .20或120 D .36【解析】 当等腰三角形的顶角为钝角时,内角的度数之比为1:4:4 ,此时顶角为20;当顶角为钝角时,内角的度数之比为1:1:4 ,此时顶角为120.故选C .【例10】 若等腰三角形一腰上的高和另一腰的夹角为25,则该三角形的一个底角为( )A .32.5B .57.5C .65或57.5D .32.5或57.5【解析】 C【例11】 从等腰三角形底边上任意一点分别作两腰的平行线,与两腰所围成的平行四边形的周长等于三角形的( )A .两腰长的和 B.周长一半C.周长 D.一腰长与底边长的和【解析】 A【例12】 已知等腰三角形一腰上的中线将它们的周长分为9和12两部分,求腰长和底长.【解析】 设这个三角形的腰长为x ,底长为y ,则12292x x x y ⎧+=⎪⎪⎨⎪+=⎪⎩,解得85x y =⎧⎨=⎩,或92122x x x y ⎧+=⎪⎪⎨⎪+=⎪⎩,解得69x y =⎧⎨=⎩, 而8,8,5和6,6,9均能组成等腰三角形.注意等腰三角形中的分类讨论.【巩固】等腰三角形的周长是50,一腰上的中线分得两个三角形的周长是32和22,求腰长.【解析】 设这个三角形的腰长为x ,底长为y ,一腰上的中线为[](3222)5022+÷=-, 根据题意可得:2502222x y x y +=⎧⎪⎨+=-⎪⎩或2503222x y x y +=⎧⎪⎨+=-⎪⎩,解得20x =或1133 【例13】 已知等腰三角形的周长为12,腰长为x ,求x 的取值范围.【解析】 122x x x +>-,且1220x ->,解得36x <<【例14】 已知等腰三角形的周长为16,三边长为整数,求底边长.【解析】 设腰长为x ,则48x <<,则5x =,6,7,底边分别为6,4,2【巩固】已知等腰三角形的周长为20,三边长为整数,求底边长.【解析】 设腰长为x ,202x x x +>-,且2020x ->,解得510x <<,则腰长为6、7、8、9,对应的底边长为8、6、4、2【例15】 等腰三角形中一角是另一角的2倍,求各内角的度数.【解析】 (1)若底角是顶角的2倍,设顶角为α,则22180ααα++=︒,36α=︒,272α=︒三角形三内角依次是72︒,72︒,36︒.(2)若顶角是一底角的2倍,设底角为α,则2180ααα++=︒,45α=︒,290α=︒,三角形三内角依次是45︒,45︒,90︒.【例16】 已知BD 是等腰ABC ∆一腰上的高,且50ABD ∠=︒,求ABC ∆三个内角 的度数.【解析】 若ABC ∆为钝角三角形时,A ∠为顶角时,三内角大小为140,20,20;若ABC ∆为钝角三角形时,A ∠为底角时,三内角大小为100,40,40;若ABC ∆为锐角三角形时,A ∠为顶角,三内角大小为40,70,70.【例17】 在ABC ∆中,AB AC =,BC BD ED EA ===.求A ∠.2x =,3BDC x ∠=,32DBC x x x ∠=-=,在BDC ∆中,可得33180x x x ++=︒,∴180()7x =︒【巩固】在ABC ∆中,AB AC =,BC BD =,AD ED EB ==.求A ∠.EDC B A【解析】 设A x ∠=,则1802ADE x ∠=︒-,12EDB x ∠=,13180(1802)22BDC x x x ∠=︒-︒--=,18019022x ACB x ︒-∠==︒-,在DBC ∆中,319022x x =︒-,解得45x =︒【例18】 等腰三角形的顶角90α>︒,如果过它的顶角顶点作一直线能够将它 分成两个等腰三角形,求α.AB C D【解析】 由题意,画出图形如图所示,这里90BAC ∠>︒,ABD ∆和ADC ∆都是等腰三角形AB AC =,AD CD =,AB BD =,∴B C DAC ∠=∠=∠,2BDA BAD C ∠=∠=∠设C x ∠=︒,则DAC B x ∠=∠=︒,2BAD x ∠=︒ABC ∆中,180BAC B C ∠+∠+∠=︒∴3180x x x ++=,36x =,∴3108x α=︒=︒【例19】 ABC ∆的两边AB 和AC 的垂直平分线分别交BC 于D 、E ,若150BAC DAE ∠+∠=︒,求BAC ∠.E D C B A【解析】 根据题意可得:B BAD ∠=∠,C CAE ∠=∠则BAC BAD CAE DAE B C DAE ∠=∠+∠+∠=∠+∠+∠即180150BAC BAC BAC ∠=-∠+-∠,解得110BAC ∠=【例20】 如图,在ABC ∆中,B C ∠=∠,D 在BC 上,50BAD ∠=,在AC 上取 一点E ,使得ADE AED ∠=∠,求EDC ∠的度数.AB C D E【解析】 由题设B C ∠=∠,ADE AED ∠=∠,及三角形外角定理,即EDC C AED ∠+∠=∠,有1802DAE AED ∠=︒-∠18022EDC C =-∠-∠而180250C DAE ︒=∠+︒+∠250(18022)C EDC C =∠+︒+︒-∠-∠180502EDC =+-∠故250EDC ∠=︒,即25EDC ∠=︒【例21】 如图所示,已知ABC ∆中,D 、E 为BC 边上的点,且AD AE =,BD EC =, 求证:AB AC =.【解析】 作AF DE ⊥于F ,∵AD AE =,∴DF EF =又BD EC =,∴BF FC =,∴AB AC =A B C D E AB CD E F考察垂直平分线的性质.【例22】 如图,ABC ∆为等边三角形,延长BC 到D ,又延长BA 到E ,使AE BD =, 连接,CE DE ,求证:CDE ∆为等腰三角形. E D C B AFEDC B A 【解析】 延长BD 到F ,使得DF BC =,连接EF .∵ABC ∆为等边三角形,∴60,B AB BC ∠==.又∵,AE BD =∴BE AB AE =+=BC BD FD BD FB +=+=.∴BEF ∆为等边三角形.∴60,B F BE FE ∠=∠==.∴BEC ∆≌FED ∆,∴CE DE =.练习:1、等腰三角形的两边长分别为4和9,则第三边长为 .【解析】 当腰长为9时,三边长为4、9、9;当腰长为4时,三边长为4、4、9 ,不符合三角形的三边关系,故腰长为9.2、等腰三角形一腰上的中线把这个三角形的周长分成12cm 和21cm 两部分,则这 个等腰三角形的底边的长为( )A .17cmB .5cmC .17cm 或5cmD .无法确定【解析】 设腰长为a ,底边长为b ,此题可分为两类,112212122a a b a a b ⎧+=⎪⎪⎪+=⎨⎪>⎪⎪⎩或121211222a a b a a b ⎧+=⎪⎪⎪+=⎨⎪>⎪⎪⎩,第一类无解;第二类解为145a b =⎧⎨=⎩,故选B .3、已知等腰三角形的周长为20,腰长为x ,求x 的取值范围.【解析】 202x x x +>-,且2020x ->,解得510x <<4、如下图所示,ABC ∆中,B C ∠=∠,D 在BC 上,50BAD ∠=︒,AE AD =,求EDC ∠ 的度数.50︒ECB A【解析】 设B α∠=,ADE β∠=.则C α∠=,AED β∠=,由外角定理得,50ADC α∠=+︒,即50EDC βα∠+=+︒,则50EDC βα=+︒-∠.又EDC βα=∠+, ∴50EDC EDC αα∠+=+︒-∠,∴250EDC ∠=︒,∴25EDC ∠=︒.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等腰三角形提高训练题
培优训练
1.等腰三角形一腰上的中线把这个三角形的周长分成12cm和21cm两部分,则这个等腰三角形
底边的长为.
2.△ABC中,AB=AC,∠A=40°,BP=CE,BD=CP,则∠DPF= 度.
3.如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,
若BF=AC,则∠ABC的大小是.(烟台市中考题)
4.△ABC的一个内角的大小是40°,且∠A=∠B,那么∠C的外角的大小是( ) A.140°B.80°或100° C .100°或140°D.80°或140°
5.已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,
两边PE、PF分别交AB、AC于点F、F,给出以下四个结论:①AE=CF;
②△EPF是等腰直角三角形,③S
AEPF
四边形
=
2
1
S ABC
;④EF=AP.当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),上述结论中始终正确的是( )
A.1个B.2个C.3个D.4个(苏州市中考题)
6.如图,在△ABC中,∠ACB=90°,AC=AE,BC=BF,则∠ECF=( )
A.60°B.45°C.30°D.不确定
7.如图,在△ABC中,∠B、∠C的平分线相交于O点.作MN∥BC,EF∥AB,GH∥AC,BC=a,AC=b,AB=c,则△GMO周长+△ENO的周长-△FHO的周长.
8.如图,△ABC中,AD平分∠BAC,AB+BD=AC,则∠B:∠C的值= .(“五羊杯”竞赛题)9.如图,四边形ABCD中,对角线AC与BD相交于E点,若AC平分∠DAB,且AB=AE,AC=AD,
有如下四个结论:①AC⊥BD;②BC=DE;③∠DBC=
2
1
∠DAB;④△ABE是等边三角形.请写出正确结论的序号.(把你认为正确结论的序号都填上) (天津市中考题)
10.等腰三角形一腰上的高等于该三角形某一条边的长度的一半,则其顶角等于( ) A.30°B.30°或150°C.120°或150°D.30°或120°或150°(“希望杯”邀请赛) 11.在锐角△ABC中,三个内角的度数都是质数,则这样的三角形( )
A.只有一个且为等腰三角形B.至少有两个且都为等腰三角形
7题
6题
8题9题
5题
B
C
A
E
12.如图,AA′、BB′分别是∠EAD、∠DBC的平分线,若AA′=
BB′=AB,则∠BAC的度数为.(全国初中数学联赛题)
13.如图,在△ABC中,AB=AC,P底边BC上一点,PD⊥AB于D,PE⊥AC于E,CF⊥AB于F.
(1)求证:PD+PE=CF;
(2)若P点在BC的延长线上,那么PD、PE、CF存在什么关系?写出你的猜想并证明.
14.如图,等边△ABC中,AB=2,点P是AB边上的任意一点(点P可以与点A重合,但不与点B重合),过点P作PE⊥BC于E,过点E作EF⊥AC于F,过点F作FQ⊥AB于Q,设BP= x,AQ=y.
(1)用x的代数式表示y;(2)当PB的长等于多少时,点P与点Q重合? (福州市中考题)
15.如图,已知在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC于F,求证:AF=EF.
16.如图,已知等边三角形ABC,在AB上取点D,在AC上取点E,使得AD=AE,作等边三角形PCD,QAE和RAB,求证:P、Q、R是等边三角形的三个顶点.
17.如图,△ABC中,AB=AC,BC=BD=ED=EA,则∠A= .
18.有一个等腰三角形纸片,若能从一个底角的顶点出发,将其剪成两个 等腰三角形纸片,则原等腰三角形纸片的顶角为 度. (江苏省竞赛题)
19.在等边△ABC 所在的平面内求一点P ,使△PAB 、△PBC 、△PAC 都是等腰三角形,具有这样性质的点P 有( )
A .1个
B .4个
C .7个
D .10个
20.如图,在五边形ABCDE 中,∠A=∠B=120°,EA=AB=BC=
21DC=21DE , 则∠D =( )
A .30°
B .450°
C . 60°
D .67.5°
21.如图,在△ABC 中,∠BAC=120°,P 是△ABC 内一点,则( )
A .PA+PB+PC<AB+AC
B . PA+PB+PC>AB+AC
C .PA+PB+PC=AB+AC
D .PA+PB+PC 与AB+AC 的大小关系不确定,与P 点位置有关
22.如图,在△ABC 内,∠BAC=60°,∠ACB=40°,P 、Q 分别在BC 、CA 上,并且AP 、BQ 分别为∠BAC 、∠ABC 的角平分线.求证:BQ+AQ=AB+BP .(2002年全国初中数学竞赛)
23.如图,在△ABC 中,∠BAC=90°,AB =AC ,D 是△ABC 内一点,且∠DAC=∠DCA=15°, 求证:BD =BA .
24.如图,等边三角形ABD 和等边三角形CBD 的长均为a ,现把它们拼合起来,E 是AD 上异于A 、D 两点的一动点,F 是CD 上一动点,满足AE+CF =a .
(1)E 、F 移动时,△BEF 的形状如何? (2)E 点在何处时,△BEF 面积的最小值.。