场论与张量数学基础.ppt
1_场论与张量基础
张量表示法
张量表示法具有书写简洁,运算方便的优点。 在张量表示法中我们将坐标改写成 x1,x2,x3。 并引进以下 几种符号。 (1)ai 表示一个矢量, i 是自由指标,可取1,2,3,符号
a 可任取。
例如的 grad 张量表示法为
xi
18/72
第二节 张量
张量表示法
(2)约定求和法则。为书写简便,我们约定在同一
张量表示法
ijk
例如:
0 1
两个以上(含两个)下标相同 下标为偶排列或奇排列
a b ijk a j bk ak rota ijk x j
ijk ist js kt jt ks
20/72
第二节 张量
3. 二阶张量
二阶张量性质
(1)二阶张量的主值、主轴及不变量
场论中的奥高公式可以推广到张量中去。设 P 是 n 阶张量,则张量情形下的奥高公式可写为:
rotn a lim
S 0
a d r
L
S
11/72
第一节 场论
8.无旋场及其性质
环量与旋度
rota 0 的矢量场称为无旋场。
无旋场最重要的性质是无旋场和位势场的等价性。
即若 a 是位势场,则 a 必为无旋场。
a grad rota 0
反之,若矢量 a 是无旋场,则 a 必为位势场。
( 1) P的反对称性不因坐标转化而改变;
(2)反对称张量的三个分量 1 ,2 , 3 组成一矢量 ;
(3)反对称张量 P 和矢量 b 的内积等于矢量 和 b 的矢积,即:
P b aij bj ijk b jk ikjkb j b
《张量基础知识》课件
线性变换是指一个向量到另一个向量的映射,保持向量的加法和数乘运算。
3 奇异值分解(SVD)
奇异值分解是将矩阵分解为三个矩阵乘积的形式,被广泛应用于数据降维和信号处理。
总结
1 张量的概述
2 张量的运算和应用
张量是一种多维数组,用于表示和处理多 维数据。
《张量基础知识》PPT课 件
# 张量基础知识
什么是张量?
1 张量的定义
张量是一种多维数组, 用于表示和处理多维数 据。它具有多个轴和形 状,可以存储和计算多 维数据。
2 张量的基本特征
张量具有数据类型、维 度和形状。它可以是标 量、向量、矩阵或更高 维度的数组。
3 张量的分类
张量根据维度和形状的 不同可以分为标量、向 量、矩阵和高阶张量。
2 张量的象性
3 张量的幺模性
张量的象性描述了张量 在基向量变换下的行为。 张量的象性可以用来研 究线性变换和坐标变换。
张量的幺模性表示张量 在坐标变换中的不变性。 幺模张量在物理和拓扑 学中具有重要应用。
张量的相关概念
1 秩(rank)
秩是张量的非零元素的个数。秩为0的张量是标量,秩为1的张量是向量。
张量具有丰富的运算和广泛的应用,涵盖 物理学、数学和机器学习等领域。
3 张量的性质和相关概念的介绍
4 知识点总结
张量具有特定的性质和相关概念,如对称 性、象性和幺模性。
总结张量基础知识的关键概念和要点。
Q&A
1 相关问题解答
回答听众提出的与张量基础知识相关的问题。
2 课程结束
感谢听众参与本次张量基础知识课程, 张量乘法
张量加法是对应位置元素的相加操作。两 个形状相同的张量可以直接相加。
0-场论与张量(数学基础)
(1)指标表示法和符号约定
哈密顿算子
利用哈密顿算子进行运算时,需分别进行微分和矢量两 种运算。
梯度
散度
ei ( ) ei xi xi
a j ai a j a ei x a j e j ei e j x ij x x i i i i
i j k (2) v w 1 2 5 i (2 1 1 5) j ( 3 5 1 1) k ( 1 1 2 3) 3 1 1 3 i 16 j 7 k
e1 e2 e3 a b a1 b1 a2 b2 a3 b3
26
ij ji
12 21, 31 13
ij a j ai
1 j a j 11a1 12a2 13a3 a1 , 2 j a j a2 , 3 j a j a3
ij 与 a j 相乘,相当于把 a j 的下标 j 置换为 i。
18
(2)笛卡尔张量
共轭张量、对称张量、反对称张量和张量的分解 张量分解定理 一个二阶张量可以唯一地分解为一个对称张量和一个反对 称张量之和
P 1 1 P Pc P Pc 2 2
容易验证上式右边第一项是对称张量,第二项是反对称张 量。
19
梯度、散度和旋度 2.1 哈密尔顿(Hamilton)算子 哈密尔顿(Hamilton)算子是矢量微分算子,其定义如下:
i, j, k 奇排列, 213,321,132
9
(1)指标表示法和符号约定
置换符号
ijk
ijk 有以下重要性质:
ijk ist js kt jt ks
预备知识-场论与张量基础
张量基础知识
张量的简单例子 张量的数学定义 对称张量的性质 张量与对称性的关系
张量的简单例子-电导率
对于均匀导体,电流密度J与电场强度E同向,其大小成比例关系-欧姆 定律
J=sE 或 Ji=sEi (i=1,2,3)。此处,s为电导率,标量。
对于晶体而言,J与E将不再同向。欧姆定律变为
[定理] 任何一个张量总可以分解为一个对称张量和一个反对 称张量之和,并且分解的方法是唯一的。
共轭张量:若Tij(i,j=1,2,3)为张量,则可以证明, Tji(i,j=1,2,3) 也为张量。我们称它们互为共轭张量。
T11 T12 T13 T T21 T22 T23
T31 T32 T33
p
,je
, j
j1 i 1
j1
比较两边3系数,得
p
, j
a ji pi
(4)
i1
矢量的数学定义
同样可得
3
pi
a ij
p
, j
(5)
i 1
矢量的数学定义:若有一组数p1, p2, p3, 当坐标系变换后变为p1’, p2’, p3’, 并且满足(4)和(5)式的关系,则这一组数构成一个矢量。
T11 T21 T31
(13)
Tc T12 T22 T32
T13 T23 T33
张量分解定理之证明
设有一个张量T,我们假定它可以分解为对称张量S与反对 称张量A之和。即
T=S+A
(14)
两边取共轭,于是 Tc=Sc+Ac
而S=Sc, Ac=-Ac,所以
Tc=S-A
(15)
由式(14)与(15)解得
3
ei, aij ej
流体力学-第一讲 场论与张量分析初步ppt精选课件
•
标量场(scalar
field):f
(r,t)
• 向量场(vector field):g (r,t) g=f(r,t)
• 均匀场(homogeneous field):f c
• •
非 定均常匀流场场((nstoen-adhyomfoigeelndou)s:ffi(erl)d): field):f(r,t)
a x b x a yb y a zb z 标量
18.06.2021
ppt精选版
9
1
如a、b正交 ,则
abab0
2
如a、b平行 ,则
aba b
3 4
如 分a在 配b正 律交 ab投 c影 aba表 用 b示 ac
m a b a m b m a b
a
ax2ay 2az2
散度是标量,而不是向量。
diav l
im sa dsaxayaz a
v 0 v x y z
于是Gauss定理可以写作:
sa n d s sa d s v( a x x a y y a z z)d v v( a )dv
18.06.2021
ppt精选版
28
div A 0 的场称为无源场。其性质:
运动学 动力学
以实际流体为主
18.06.2021
ppt精选版
2
主要内容:
第一章 场论与张量分析初步
第二章 流体运动学
第三章 流体力学基本方程组
第四章 粘性流动基础
第五章 Navier-Stokes 方程的解
第六章 边界层理论
第七章 流体的旋涡运动
第八章 湍流理论
18.06.2021
ppt精选版
3
第一章-场论及张量初步分析
全国范围内温度场分布
速度场
速度场
速度场
电场
磁场
均匀场:同一时刻场内各点 函数值都相等
定常场:场内函数值不随时 间t改变
均匀场
定常场
1.2 场的几何表示
等高线
等高线
根据等高线的相对位置、疏密程度 看出标量函数-高度的变化状况
矢量场的几何表示
矢量的大小是一个标量,可以用等位 面的概念来几何表示,矢量的方向则 采用矢量线来表示。
rotxa
az y
a y z
rot y a
ax z
az x
rot z a
a y x
ax y
1.6 环量. 旋度. 斯托克斯定理
极限存在的证明: Stockes公式:线积分与面积分的关系 中值公式:面积分与函数值的关系
i jk
rota
x y z
ax ay az
1.6 环量. 旋度. 斯托克斯定理
矢量线:线上每一点的切线方向与该 点的矢量方向重合
dr
r r
根据矢量定义有: a dr 0
直角坐标形式:
1.3 梯度-标量场不均匀性的量度
对于给定标量场 (r,t),用它的梯度
来表明在任一时刻标量场中每点邻域 内的函数变化。
函数在M点上沿曲线S方 向的方向导数:
表明函数φ(r,t)在M点上 沿曲线S方向的变化率
p31
p13
1 2
p23
p32
0
二阶反对称张量
2 1
0
张量分解定理
二阶张量可以唯一地分解成为一个对称张 量和一个反对称张量之和。
P
1 2
P
Pc
1 2
P
Pc
1第一章-场论与张量基本知识
(r), a(r)
1.1 标量、矢量、场
场的几何表示
标量场可用函数等值面(线)来表示。 可直观看出函数值的大小分布,以及变 化快慢
矢量场可用矢量线来表示。 任一点的矢量方向可由矢量线的切线方 向定出;也可以从矢量线的疏密程度估 计矢量在各点的大小。
1.2 标量场的梯度
方向导数(Directional Gradient)
1. 如果一个方程式或表达式的一项中,一种下标只出现一次,则 称之为自由指标,自由指标在表达式或方程的每一项中必须只 出现一次。 2. 如果在一个表达式或方程的一项中,一种指标正好出现两次, 则称之为哑指标,它表示从1到3求和。哑指标在其他任何项中 可以刚好出现两次,也可以不出现。 3. 如果在一个表达式或方程中的一项中,一种指标出现的次数多 于两次,则是错误的。
2 3
2
ij ij ij ij
i 1 j 1
3
3
1111 1212 1313 21 21 22 22 23 23 31 31 32 32 33 33
1.4 张量表示法
自由指标: 定义:凡在同一项内不重复出现的指标。如
i j k x y z
是一个矢性微分算子,即在运算中具有矢量和微分的双重性质, 其运算规则是:
u u u u i j k x y z
Ay Ax A A i j z k x y z
Az Ay Ax Az Ay Ax A y z i z x j x y k
2 ( ) ( ),ij xi x j
uk ,ij
2uk xi x j
1.5 坐标变换与张量定义
张量分析及场论
u
w
v
图 1.1、矢量加法的平行四边形法则
W | F || u | cos
其中 F 、| u |分别表示矢量 F 、 u 的大小,θ表示矢量 F 与矢量 u 之间的夹角,这就 定义了一种称为点积的运算。
点积的定义: 设 u ,v 为两个任意不为零的矢量, 设| u |, | v |分别为其大小 (也称为模) 。 θ为这两个矢量之间的夹角,则 u 与 v 的点积为
张 量 分 析 及 场 论 Tensor Analysis and Field Theory
刘长根第一章 张量代数 ..................................................................................................................... 1 §1.1 点积、矢量分量及记号 ij .......................................................................................... 1 1.2 记号 ijk 、矢积(叉乘)、 关系 ........................................................................ 5 1.3、坐标变换 ...................................................................................................................... 9 1.4、并矢、张量 ................................................................................................................ 12 1.5 张量的代数运算 ........................................................................................................... 14 1.6 张量识别定理(商判则) ........................................................................................... 16 1.7、二阶张量 .................................................................................................................... 17 1.8、张量举例 .................................................................................................................... 21 习题一 ................................................................................................................................. 36 第二章 正交曲线坐标系中的张量分析与场论 ................................................................. 39 2.1、矢量函数、及其导数与微分 .................................................................................... 39 2.2 场 ................................................................................................................................... 43 2.3、曲线坐标 .................................................................................................................... 45 2.4、标量场的方向导数、梯度 ........................................................................................ 49 2.5、矢量场的通量、散度、奥高定理 ............................................................................ 53 2.6、矢量场的环量、旋度、斯托克斯公式 .................................................................... 56 2.7、哈密顿算子 ................................................................................................................ 58 2.8、基矢量对坐标的导数及其应用 ................................................................................ 62 2.9、几种重要的场 ............................................................................................................ 69 习题二 ................................................................................................................................. 75 第三章 一般曲线坐标系中的张量分析初步 ....................................................................... 77 3.1、曲线坐标,基矢量,度量张量 ................................................................................ 77 3.2、克里斯托弗尔符号及其性质 .................................................................................... 80 3.3、协变导数,逆变导数 ................................................................................................ 82
高等流体力学—场论及张量初步67页PPT
33、如果惧怕前面跌宕的山岩,生命 就永远 只能是 死水一 潭。 34、当你眼泪忍不住要流出来的时候 ,睁大 眼睛, 千万别 眨眼!你会看到 世界由 清晰变 模糊的 全过程 ,心会 在你泪 水落下 的那一 刻变得 清澈明 晰。盐 。注定 要融化 的,也 许是用 眼泪的 方式。
35、不要以为自己成功一次就可以了 ,也不 要以为 过去的 光荣可 以被永 远肯定 。
高等流体力学—场论及张量 初步
31、别人笑我太疯癫,我笑他人看不 穿。(名 言网) 32、我不想听失意者的哭泣,抱怨者 的牢骚 ,这是 羊群中 的瘟疫 ,我不 能被它 传染。 我要尽 量避免 绝望, 辛勤耕 耘,忍 受苦楚 。我一 试再试 ,争取 每天的 成功, 避免以 失败收 常在别 人停滞 不前时 ,我继 续拼搏 。
第一章场论及张量初步知识分享
证明:其他方向的方向导数可以由过M点的法 线方向上的方向导数来表示
lim(M1)(M)
n MM 1 0
MM 1
lim (M)(M)
s M M 0 M M
当M1无限接近M时,近 似为过M1点的切线
(M)(M 1)
M1 M M M co n,s s)(
MM MM1 cosn(,s)
(M)(M 1)
对于给定的矢量场a(r,t) ,在场内取一点M, 围绕M取无限小封闭曲线L,张于L上的曲面 为S,按右手螺旋法则定义S的法线方向n。
速度场
速度场
电场
磁场
均匀场:同一时刻场内各点 函数值都相等
定常场:场内函数值不随时 间t改变
均匀场
定常场
1.1 场的几何表示
等高线
等高线
根据等高线的相对位置、疏密程度 看出标量函数-高度的变化状况
矢量场的几何表示
矢量的大小是一个标量,可以用等位 面的概念来几何表示,矢量的方向则 采用矢量线来表示。
V a xx a yy a zz d V V a xx a yy a zz Q
函数在体积V上的积分
在积分体上Q点处的函数值
注意:Q点是积分体上的一个确定点
sandSVaxx
ay y
az z
Q
1.4 矢量的通量.散度.奥高定理
sandSVaxx
ay y
az z
Q
它来描述M点邻域内函数的变化状况,是标量 场不均匀性的量度。
g rad n
n
其他方向的方向导数可以由过M点的梯度 的大小来表示
g rad n
n
cosn,(s)
s
n
s•grad
梯度在直角坐标系中的表达式
场论和张量初步
w ∫∫ ρV ⋅ dS
Σ
K
K =− ∂ρ =单位体积空间内的质量变化率的负值, ∂t
δτ
即单位时间从单位体积空间流出的质量。为精确表述空间任意一点 M 0 处的质量变化率,可
对 δτ 取极限, lim
w ∫∫ ρV ⋅ dS
Σ
K
K =−
Σ→ M 0
δτ
K ∂ρ 。可见 div ( ρV ) 表示单位时间内从单位空间体积表 ∂t
δ ls
K
K M ( x + δ x, y + δ y , z + δ z , t ) ,密度沿方向 s 上的
变化率为
δ l →0
M ( x, y , z )
lim
ρ ( x + δ x, y + δ y, z + δ z , t ) − ρ ( x, y, z , t ) ∂ρ . = δl ∂l
K K 磁通量 w B ∫∫ ⋅ dS = 0
Σ
一般地,对于任意矢量场 m ,定义其散度 div m = lim 散度是标量。 3)散度计算公式(直角坐标系)
K
K
K K m w ∫∫ ⋅ dS
Σ
Σ→ M 0
Hale Waihona Puke τ。以体积通量为例。 以 M 0 ( x0 , y0 , z 0 ) 为中心取正六面体形状的闭合曲面 Σ , 边长分别为
⎛ ∂u ⎜ ∂x K ⎛ δ u ⎞ ⎛ gradu ⋅ δ r ⎞ ⎜ K ⎟ ⎜ ∂v ⎜ ⎟ ⎜ δ δ = ⋅ =⎜ v gradv r ⎜ ⎟ ⎜ K⎟ ⎜ δ w ⎟ ⎜ gradw ⋅ δ r ⎟ ⎜ ∂x ⎝ ⎠ ⎝ ⎠ ⎜∂ w ⎜ ∂x ⎝ ∂u ∂y ∂v ∂y ∂w ∂y ∂u ⎞ ⎟ ∂z ⎟ ⎛δ x ⎞ ∂v ⎟ ⎜ ⎟ ⎟ δ y⎟ ∂z ⎟ ⎜ ⎜δ z ⎟ ⎝ ⎠ ∂w ⎟ ∂z ⎟ ⎠
0 场论与张量基本知识
l 上的单位向量, 设e cos i sin j 是方向
由方向导数公式知
f f f f f cos sin { , } {cos , sin } x y l x y gradf ( x , y ) e | gradf ( x , y ) | cos , 其中 ( gradf ( x, y ), e ) f 当 cos( gradf ( x , y ), e ) 1时, 有最大值. l
如果已知区域 S 中的场,根据斯托克斯定理即可求出
边界 l 上的场,反之亦然。
1.2.6 基本运算公式列表
a、微分公式
(1) 1
(2) 1 (3) (4)
1 2 2 1 f f A B A B
数学中的高斯定理 (Gauss’s theorem) 将体积 积分与面积积分联系起来,在流体力学中,可以 利用这一定理将通量与散度联系在一起。 令 V 为一封闭曲面所包围的体积,在曲面上 考虑一微小面积 dS,其外法线方向为n, dS= ndS 是一向量 ( 其大小为 dS ,方向为 n) ,令 A 表示一个 标量场、向量场或张量场,则高斯公式为
1.2.2 向量场的散度
(2) 向量A的散度 在直角坐标系中,A=Ax i+Ay j+Az k
Ax Ay Az div A A x y z
散度等于零 (divA = 0) 的向量场称为无源场或管式 场。div u=0是不可压缩流体流动的连续性方程。 散度基本运算法则:
在向量场 A 中任取一点 M ,包围 M 作一微小体积 ΔV , 其界面的表面积为ΔS。考虑向量A通过ΔS面的通量,除以 体积ΔV,令体积ΔV向M点无限收缩,得极限
高等流体力学—场论及张量初步
Vz diva lim V 0 x y z Q
1.4 矢量的通量.散度.奥高定理
a x a y a z diva lim V 0 x y z Q
1.6 环量. 旋度. 斯托克斯定理
极限存在的证明: Stockes公式:线积分与面积分的关系 中值公式:面积分与函数值的关系
az a y rotx a y z a x a z rot y a z x a y ax rotz a x y
1.6 环量. 旋度. 斯托克斯定理
grad i j k x y x
dr dxi dyj dzk
梯度的主要性质
grad i j k x y z
dr dxi dyj dzk
dr grad
dx dy dz x y z
an:矢量a在法线方向的投影 an dS:矢量a通过面积元dS的通量
1.4 矢量的通量.散度.奥高定理
在整个曲面上积分,得矢量a通过S面的通量
a dS n
s
实质上相当于函数的面积分
1.4 矢量的通量.散度.奥高定理
当S面为封闭曲面时,通量为:
a dS n
s
1.4 矢量的通量.散度.奥高定理
S 0
a dr
L
S
1.6 环量. 旋度. 斯托克斯定理
极限存在的证明: Stockes公式:线积分与面积分的关系
a dr a dx a dy a dz x y z
L L
a z a y cos(n, x) s z y
i rota x ax j y ay k i z x az x j y y k 0 z z
《张量基础知识》课件
提供数学工具
详细描述
弹性力学中的张量提供了丰富的数学工具,用于描述和 计算弹性材料的应力和变形,如弹性波传播、材料稳定 性等。
04
张量在机器学习中的应用
深度学习中的张量
深度学习中的张量用于表示多维 数据,如图像、语音和文本等。
张量可以高效地存储和计算大规 模数据,支持自动微分和反向传 播算法,使得深度学习模型能够
总结词
描述微观粒子的自旋和角动量
详细描述
量子力学中的张量也用于描述微观粒子的自旋和角动量等 性质,这些性质在量子力学中非常重要,是理解微观粒子 行为的关键。
总结词
提供数学工具
详细描述
量子力学中的张量提供了丰富的数学工具,用于描述和计 算微观粒子的状态和相互作用,如量子纠缠、量子门操作 等。
弹性力学中的张量
张量的分类
根据不同的分类标准,可以将张量分为多种类型。
根据张量的阶数,可以分为零阶张量(即标量)、一阶张量(即向量)、二阶张量(即矩阵)等。根据张量的变数个数,可 以分为纯量张量、二阶张量、三阶张量等。根据张量的对称性,可以分为对称张量、反对称张量、正交张量等。根据张量的 具体应用领域,可以分为物理张量、工程张量、医学张量等。
总结词
提供数学工具
详细描述
广义相对论中的张量提供了丰富的数学工具,用于描述 和计算引力场中的物理现象,如光线传播、星体运动等 。
量子力学中的张量
总结词
描述微观粒子的状态和相互作用
详细描述
在量子力学中,张量被用来描述微观粒子的状态和相互作 用,如狄拉克符号中的矩阵和向量等。这些张量提供了描 述微观粒子波函数的数学工具。
快速训练和优化。
张量在深度学习中还用于实现各 种复杂的神经网络结构,如卷积 神经网络、循环神经网络和注意
张量ppt
示多重求和。
例如:
33
aij xi xj
aij xi x j
i1 j1
★ 若要对在同项内出现两次以上的指标进行遍历求和,
一般应加求和号。如:
3
a 1b1c1 a 2b2c2 a 3b3c3 aibici i 1
24
张量基本概念
★ 一般说不能由等式
aibi aici
bi ci
两边消去ai导得
3. 换标符号,具有换标作用。例如:
d s2 ij d xi d xj d xi d xi d xj d xj
即:如果符号 的两个指标中,有一个和同项中其它
因子的指标相重,则可以把该因子的那个重指标换成
的另一个指标,而 自动消失。
29
符号ij 与erst
类似地有
ij a jk aik ; ij aik a jk ij akj aki ; ij aki akj ij jk ik ; ij jk kl il
符号ij 与erst
➢ 常用实例
1. 三个相互正交的单位基矢量构成正交标准化基。 它具有如下重要性质:
✓ 每个基矢量的模为1,即 ei e j 1 (当i=j时) ✓ 不同基矢量互相正交,即 ei e j 0 (当i≠j时)
上述两个性质可以用ij 表示统一形式:
2. 两个矢量 a 和 b 的分量的点积(或称数量积)为:
3
a b= a1b1 a2b2 a3b3 aibi i1
Appendix A.1
张量基本概念
➢求和约定
如果在表达式的某项中,某指标重复地出现两次, 则表示要把该项在该指标的取值范围内遍历求和。 该重复的指标称为哑指标,简称哑标。
3
0下载券文档一键搜索 VIP用户可在搜索时使用专有高级功能:一键搜索0下载券文档,下载券不够用不再有压力!
第一章 场论和张量初步
第一章 场论和张量初步1.1 场的定义及分类设在空间中的某个区域内定义标量函数或矢量函数,则称定义在此空间区域内的函数为场。
均匀场:同一时刻内各点函数的值都相等。
反之为不均匀场。
定常场:场内函数值不依赖于时间。
反之为不定常场。
1.2场的几何表示标量场:等位线。
矢量场:矢量线的微分方程:(,,,)(,,,)(,,,)x y z dx dy dza x y z t a x y z t a x y z t ==积分,将t 看成参数,即得矢量线的分析表达式。
1.3梯度——标量场不均匀性的量度梯度:大小为n ϕ∂∂,方向为n ,的矢量称为标量函数ϕ的梯度,以grad n n ϕϕ∂=∂表之。
在s 方向上的方向导数等于梯度矢量在s 方向上的投影。
梯度grad ϕ在直角坐标系中的表达式为grad i j k x y z ϕϕϕϕ∂∂∂=++∂∂∂总结起来,梯度的主要性质是:1)梯度grad ϕ描写了场内任一点M 领域内函数ϕ的变化状况,它是标量场不均匀性的量度。
2)梯度grad ϕ的方向与等位面的法线重合,且指向ϕ增长的方向,大小是n 方向上的方向导数n ϕ∂∂;3)梯度矢量grad ϕ在任一方向s 上的投影等于该方向的方向导数;4)梯度grad ϕ的方向,即等位线的法线方向是函数ϕ变化最快的方向。
定理1 梯度grad ϕ满足关系式d dr grad ϕϕ=∙定理2 若a grad ϕ=,且ϕ是矢径r 的单值函数,则沿任一封闭曲线L 的线积分La dr⋅⎰等于零,反之,若矢量a 沿任一封闭曲线L 的线积分La 0dr ⋅=⎰则矢量a 必为某一标量函数ϕ的梯度。
例:计算仅与矢径大小r 有关的标量函数ϕ(r )的梯度ϕgrad 。
I )利用性质(2),标量函数=ϕϕ(r )的等位面是以坐标原点为心的球面,而球面的法线方向,即矢径r 的方向,故ϕgrad 的方向就是矢径r 的方向其次的大小是=r r ϕϕ∂∂’()于是rii )利用性质(5),显然x d r dr x ϕϕ∂∂=∂∂,d r y dr y ϕϕ∂∂=∂∂,z d rdr z ϕϕ∂∂=∂∂因222r x y z =++故r x x r ∂=∂,r y y r ∂=∂,r z z r ∂=∂于是x d x r dr ϕϕ∂=∂,y d y r dr ϕϕ∂=∂,z z d r dr ϕϕ∂=∂而=r r xi yj zk d grad ij k x y z r dr ϕϕϕϕϕϕϕ∂∂∂++∂=++==∂∂∂∂’()iii )利用定理1,r r dr rdrrϕϕϕ=’’()d (r)=()因2r r r ⋅=微分得r dr rdr ⋅=于是r d r drrϕϕ=⋅’()根据定理1r最后我们指出,写成a grad ϕ=的矢量场亦称位势场,ϕ称为位势函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)指标表示法和符号约定
例题1. 展开下列求和式, (1) a jkakj;(2) ti ijn j 解: (1) a jkakj a1kak1 a2kak 2 a3kak 3
a11a11 a12a21 a13a31 a21a12 a22a22 a23a32 a31a13 a32a23 a33a33 (2) t1 11n1 12n2 13n3 t2 21n1 22n2 23n3 t3 31n1 32n2 33n3
笛卡尔张量
1
§3 笛卡尔张量
一、张量
坐标旋转时能自身转换而保持不变的量,统称为张量
在三维空间和选定的坐标系中,需要用3n个数来 定义的量称为n阶张量
30
零阶张量
一个分量
31
一阶张量
32
二阶张量
三个分量 九个分量
在直角坐标系中,称笛卡儿张量; 在其他坐标系称普遍张量 。
2
(1)指标表示法和符号约定 指标表示法
sij s ji 则称此张量为对称张量,可表示为,
s11 s12 s13
S
sij
s12 s13
s22 s23
s23 s33
一个对称张量,只有6个独立的分量。
17
(2)笛卡尔张量
共轭张量、对称张量、反对称张量和张量的分解
反对称张量 若二阶张量分量 aij 之间满足
aij a ji
则称此张量为反对称张量,可表示为
直角坐标的3个方向记做1、2、3, x、y、z 分别计作 x1、x2、x3, ax、ay、az 分别计作 a1、a2、a3, i , j, k 分别计作 e1, e2 , e3,
a axi ay j azk a1e1 a2e2 a3e3
3
(1)指标表示法和符号约定
求和约定 在同一项中如有两个指标相同时,就表示对该指标从1 到3求和
ijk ij 0
10
重要公式汇总
ij a j ai ij ei ej
ijk ei ej ek
ijk ist jskt jtks
a b aibi e1 e2 e3
a b ijk aibjek a1 a2 a3
b1 b2 b3 a1 a2 a3
a b c ijk aibjck b1 b2 b3
7
克罗内克尔(Kronecker)符号
(1)指标表示法和符号约定
ij
0 1
i j i j
ij 符号具有以下重要性质:
ij ji
12 21,31 13 ija j ai
1 ja j 11a1 12a2 13a3 a1, 2 ja j a2, 3 ja j a3 ij与 a j 相乘,相当于把 a j 的下标 j 置换为 i。
x1 a11x1 a12 x2 a13x3
x2 a21x1 a22 x2 a23x3
x3 a31x1 a32 x2 a33x3
在同一方程的所有项中出现的自由指标必须相同。
5
ei Aije j i 为自由指标,j 为哑标
表示
e1 A11e1 A12e2 A13e3 e2 A21e1 A22e2 A23e3 e3 A31e1 A32e2 A33e3
aiai a12 a22 a32 a
aibi a1b1 a2b2 a3b3 a b aiei a1e1 a2e2 a3e3 a
4
自由指标和哑指标
例如
xi aij xj
指标 i 在方程的各项中只出现一次,称之为自由指标。
一个自由指标每次可取整数1, 3, …, n,与哑标一样,无 特别说明总取n=3。于是,上式表示3个方程的缩写:
笛卡尔张量。
12
(2)笛卡尔张量
标量、矢量和张量 二阶张量
二阶张量有 9 个分量,二阶张量也可表示为矩阵形式,
p11 p12 p13
P
pij
p21
p22
p23
p31
p32
p33
张量可以用黑体大写字母 P 表示,也可用它的一个分量 pij 表示。
13
(2)笛卡尔张量
二阶张量的代数运算
张量相等
0
A
aij
a12
a31
a12 0 a23
a31
两个张量相等则各分量一一对应相等。设 A aij Β bij , 若 AB
则
aij bij
若两个张量在某一直角坐标系中相等,则它们在任意一 个直角坐标系中也相等。
14
(2)笛卡尔张量
二阶张量的代数运算 张量加减 设 A aij 、 B bij ,则
A B aij bij 张量的加减为其同一坐标系下对应元素相加减,只有同 阶的张量才 能相加减。
i, j, k 奇排列, 213,321,132
9
(1)指标表示法和符号约定
置换符号 ijk
ijk 有以下重要性质:
ijk ist js kt jt ks
ijk ijt 2 kt
ijk ijt jjkt jtkj 3kt kt 2kt
ijk ijk 2 kk 6
8
克罗内克尔(Kronecker)符号
(1)指标表示法和符号约定
ij 符号具有以下重要性质:
ii 3 ii பைடு நூலகம்1 22 33 3
ij jk ik
ij ij ii 3
置换符号 ijk
0
ijk
1
1
i、j、k 中有两个以上指标相同时 i、j、k 偶排列, 123,231,312
15
(2)笛卡尔张量
二阶张量的代数运算 张量乘积 设 A aij 、B bkl ,分量相乘,
cijkl aijbkl
cijkl 是 4 阶张量。 可以证明一个 m 阶张量和一个 n 阶张量的乘积是 m + n 阶张量。
16
(2)笛卡尔张量
共轭张量、对称张量、反对称张量和张量的分解
对称张量
若二阶张量分量 sij 之间满足
c1 c2 c3
(1)指标表示法和求和约定
11
(2)笛卡尔张量
标量、矢量和张量
标量是一维的量,它只需1个数来表示,如温度、密度等。
矢量则不仅有数量的大小,而且有指定的方向,它必需由沿某一空 间坐标系的3个坐标轴方向的3 个分量来表示,矢量是三维的量。 三维空间中的二阶张量是一个9维的量,必须用9个分量才可完整地 表示,如应力,变形速率。 三维空间中的 n 阶张量由 3n 个分量组成。 标量和矢量是低阶张量,标量为零阶张量,而矢量为一阶张量。