机械优化设计MATLAB程序
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
t t t 机械优化设计作业
1.用二次插值法求函数ϕ( )= ( +1)( - 2)2 极小值,精度 e=0.01。
在 MA TLAB 的 M 文件编辑器中编写的 M 文件,如下:
f=inline('(t+1)*(t -2)^2','t')
a=0;b=3;epsilon=0.01;
t1=a;f1=f(t1);
t3=b;f3=f(t3);
t2=0.5*(t1+t3);f2=f(t2);
c1=(f3-f1)/(t3-t1);
c2=((f2-f1)/(t2-t1)-c1)/(t2-t3);
t4=0.5*(t1+t3-c1/c2);f4=f(t4);
k=0;
while(abs(t4-t2)>=epsilon)
if t2 if f2>f4 f1=f2;t1=t2; t2=t4;f2=f4; else f3=f4;t3=t4; end else if f2>f4 f3=f2;t3=t2; t2=t4;f2=f4; else f1=f4;t2=t4; end end c1=(f3-f1)/(t3-t1); c2=((f2-f1)/(t2-t1)-c1)/(t2-t3); t4=0.5*(t1+t3-c1/c2);f4=f(t4); k=k+1; end %输出最优解 if f2>f4 t=t4;f=f(t4); else t=t2;f=f(t2); end fprintf(1,'迭代计算 k=%3.0f\n',k) fprintf(1,'极小点坐标 t=%3.0f\n',t) fprintf(1,'函数值 f=%3.4f\n',f) 3.用牛顿法、阻尼牛顿法及变尺度法求函数 的极小点。( ) ( ) ( )21121 22, xxxxxf -+-= 4 2 (1)在用牛顿法在 MATLAB 的 M 文件编辑器中编写的 M 文件,如下: function [x,fx,k]=niudunfa(x0) syms x1 x2 f=(x1-2)^4+(x1-2*x2)^2; fx=0; v=[x1,x2]; df=jacobian(f,v); df=df.'; G=jacobian(df,v); epson=1e -12; g1=subs(df,{x1,x2},{x0(1,1),x0(2,1)}); G1=subs(G,{x1,x2},{x0(1,1),x0(2,1)}); k=0; p=-G1\g1; x0=x0+p; while(norm(g1)>epson) p=-G1\g1; x0=x0+p; g1=subs(df,{x1,x2},{x0(1,1),x0(2,1)}); G1=subs(G,{x1,x2},{x0(1,1),x0(2,1)}); k=k+1; end x=x0; fx=subs(f,{x1,x2},{x(1,1),x(2,1)}); 运行结果如下: >> [x,fx,k]=niudunfa([1;1]) x =1.9999554476059523381489991377897 0.99997772380297616907449956889483 fx =0.0000000000000000039398907941382470301534502947647 k =23 (2)用阻尼牛顿法在 MA TLAB 的 M 文件编辑器中编写的 M 文件,如下: function [x,fx,k]=zuniniudunfa(x0)%阻尼牛顿法 syms x1 x2 f=(x1-2)^4+(x1-2*x2)^2; fx=0; v=[x1,x2]; df=jacobian(f,v); df=df.'; G=jacobian(df,v); epson=1e -12;%停机原则 k=0; while norm(r1)>eps beta=(r1'*r1)/(r0'*r0); p1=-r1+beta*p0; alpha=-(r1'*p1)/(p1'*A*p1); x1=x1+alpha*p1; r2=A*x1+b; p0=p1; r0=r1; r1=r2; k=k+1; end x=x1; y=0.5*x'*A*x+b'*x+c; 运行结果如下: [y,x,k]=CG([3-1;-11],[-2;0],0,[2;1]) y=-1 x= 1.0000 1.0000 k=1 (2)用变尺度法在MATLAB的M文件编辑器中编写的M文件,如下:function[x,fx,k]=bianchidufa(A,b,c,x0) %用变尺度法求fx=0.5*x'*A*x+b'*x+c; epson=1e-12; g0=A*x0+b; G0=A; H0=eye(2); k=0; d0=-H0*g0; a0=-d0'*g0/(d0'*G0*d0); s0=a0*d0;%x(k+1)-x(k); y0=A*a0*d0;%g(k+1)-g(k); x1=x0+a0*d0; while(norm(s0)>=epson) switch k case{10} x0=x1; g0=A*x0+b; H0=eye(2); k=0; d0=-H0*g0; a0=-d0'*g0/(d0'*G0*d0); s0=a0*d0; x1=x0+a0*d0;