盘形凸轮轮廓曲线的画法
作图法设计对心盘形凸轮轮廓曲线讲稿
作图法设计对心盘形凸轮轮廓曲线讲稿
一、教学目标:
掌握作图法设计对心盘形凸轮轮廓曲线的原理
二、课程知识点讲解
问题引入:
一对心尖顶直动从动件盘形凸轮,其基圆半径为r b,凸轮以等角速度ω逆时针方向回转,从动件的运动规律如下,试设计此凸轮的轮廓曲线。
0-90度匀速上升,90-180度静止,180到360度匀速下降,回到原点。
当凸轮机构从动件的运动规律及凸轮基圆半径确定后,就可以用作图法绘制出凸轮轮廓曲线,该方法适用于低速或对运动规律要求不严的一般机械传动机构。
作图法利用了反转法的基本原理,什么是反转法呢?就是假想给整个凸轮机构加上一个与凸轮转速ω相同,方向相反的转速“-ω”,这样凸轮就变成静止不动,而从动件则以“-ω”绕基圆中心转动的同时又按着给定的从动件运动规律进行运动。
(反转法动画慢)。
从动画中看到凸轮变成静止不动,而从动件则以“-ω”绕基圆中心转动的同时又按着给定的从动件运动规律进行运动。
三、知识点总结
作图法设计对心盘形凸轮的条件是已知运动规律曲线和基圆半径,且是低速运动规律不严格的场合。
四、作业布置:
1、作图法的前提条件是什么?
2、什么是反转法?
拓展思考:
偏置从动件可以用反转法吗?
不同从动件的端部形式不同设计方法有何区别?。
画凸轮轮廓曲线的步骤
画凸轮轮廓曲线的步骤
1. 确定绘制平面:在纸上或计算机绘图软件中确定绘制的平面大小和比例,以便合理地呈现凸轮的形状。
2. 绘制基准线:在所选的绘制平面上绘制一条水平基准线,用于确定凸轮的位置和形态。
3. 确定凸轮中心:根据具体要求和设计,确定凸轮的中心位置,通常相对于基准线上的一点。
4. 画出凸轮半径:以凸轮中心为圆心,在绘制平面上画出凸轮的半径,即凸轮的最外形状。
5. 划定凸轮的运动曲线:根据具体要求和设计,用曲线连接凸轮的起始点和结束点,形成满足运动要求的凸轮轮廓曲线。
6. 确定凸轮轴向:根据具体要求和设计,确定凸轮轮廓曲线相对于基准线的上下位置。
7. 添加凸轮特征:根据具体要求和设计,添加凸轮上的特征,如凹槽、齿轮等。
8. 检查和修改:在绘制完成后,仔细检查凸轮轮廓曲线的形状和位置是否符合要求,如有需要,进行必要的修改。
9. 添加细节:根据需要,可以添加细节,如标记尺寸和比例。
10. 上色和阴影处理:如果需要,可以对绘制的凸轮进行上色和阴影处理,以使其更加逼真和立体感。
以上是绘制凸轮轮廓曲线的一般步骤,具体步骤可能还会根据具体要求和设计而有所不同。
第4.3节(盘形凸轮廓线的设计)
第三节 盘形凸轮廓线的设计当根据工作要求和结构条件选定了凸轮机构的类型、从动件的运动规律和凸轮的基圆半径(其确定将在下节中介绍)等结构参数后,就可以设计凸轮的轮廓曲线。
凸轮廓线的设计方法有图解法和解析法,其设计原理基本相同。
本节先简要介绍图解法,后重点介绍解析法设计凸轮廓线。
一、凸轮廓线设计的基本原理图4-13 反转法设计凸轮廓线基本原理图4-13所示为一尖顶对心盘形凸轮机构,设凸轮以等角速度ω逆时针转动,推动从动件2在导路中上、下往复移动。
当从动件处于最低位置时,凸轮轮廓曲线与从动件在A 点接触,当凸轮转过1ϕ角时,凸轮的向径A A 0将转到A A '0位置,而凸轮轮廓将转到图中虚线所示的位置。
从动件尖端从最低位置A 上升至B ',上升的位移为B A S '=1,这是从动件的运动位移。
若设凸轮不动,从动件及其运动的导路一起绕A 0点以等角速度-ω转过1ϕ角,从动件将随导路一起以角速度-ω转动,同时又在导路中作相对导路的移动,如图中的虚线位置,此时从动件向上移动的位移为B A 1。
而且,11S B A B A ='=,即在上述两种情况下,从动件移动的距离不变。
由于从动件尖端在运动过程中始终与凸轮轮廓曲线保持接触,所以从动件尖端的运动轨迹即为凸轮轮廓。
设计凸轮廓线时,可由从动件运动位移先定出一系列的B 点,将其连接成光滑曲线,即为凸轮廓线。
由于这种方法是假设凸轮固定不动而使从动件连同导路一起反转,故称为反转法。
对其它类型的凸轮机构,也可利用反转法进行分析和凸轮廓线设计。
二、图解法设计凸轮廓线1. 移动从动件盘形凸轮廓线的设计(1)尖端从动件 图4-14a 所示为一偏置移动尖端从动件盘形凸轮机构。
设已知凸轮的基圆半径为b r ,从动件导路偏于凸轮轴心A 0的左侧,偏距为e ,凸轮以等角速度ω顺时针方向转动。
从动件的位移曲线如图4-14b 所示,试设计凸轮的轮廓曲线。
图4-14 尖端从动件盘形凸轮廓线设计依据反转法原理,具体设计步骤如下。
机械原理-凸轮轮廓曲线设计图解法
-ω
3’ 2’ 1’ ω O 1 2
1
2
3
3
直动从动件盘形凸轮轮廓的绘制
1.对心直动尖顶从动件盘形凸轮 已知凸轮的基圆半径r0,角速度ω 和从 动件的运动规律,设计该凸轮轮廓曲线。
4’ 5’ 6’
-ω ω
3’ 2’ 1’
7’
8’ 5 6 7 8
1 2 3 4
设计步骤: ①作基圆r0。
②反向等分各运动角,得到一系列与基圆的交点。
7’ 5’ 3’ 1’ 1 3 5 78 8’ 9’ 11’ 12’ 13’ 14’ 9 11 13 15
e
-ω
ω 15’ 15 14’14
k12 k11 k10 k9 k15 k14 k13
A
13’
12’
k1 13 k 12 k32 k8 k7k6 k5k4 11 10 9
O
注意:与前不同的是——过 各等分点作偏距圆的一系列 切线,即是从动件导路在反 转过程中的一系列位置线。
11’
10’ 9’
直动平底从动件盘形凸轮轮廓的绘制
直动平底从动件盘形凸轮轮廓的绘制
-
实际廓线
直动平底从动件盘形凸轮轮廓的绘制
-
实际廓线
③过各交点作从动件导路线,确定反转后从动件尖顶在各等分点的位置。 ④将各尖顶点连接成一条光滑曲线。
直动从动件盘形凸轮轮廓的绘制
2.对心直动滚子从动件盘形凸轮 已知凸轮的基圆半径r0,滚子半径 rT ,角速度ω 和从动件的运动规 律,设计该凸轮轮廓曲线。
3’ 2’ 1’ 7’ 8’ 1 2 3 4 5 6 7 8 4’
-ω
理论轮廓
ω
5’ 6’
盘形凸轮轮廓曲线的设计
课前提问: 1、等速运动规律
2、等加速运动规律
新授:
一、作图原理
反转法:在整个机构上加上一个反转的角速度,机构中的各件的相对运动不变,凸轮不动,从动件一方面绕圆心作–ω,另一方面在自己的导路中按预定的规律运动。
尖顶的轨迹就是凸轮的轮廓。
二、作图
1、尖顶对心移动从动件盘形凸轮
(1)、选取适当比例尺作位移线图和基圆
(2)、作位移线图和基圆取分点保持等分角度一致
(3)、沿导路方向量取各点的位移量
(4)、光滑连接各点,形成轮廓曲线
对心移动从动件盘形凸轮轮。
凸轮轮廓曲线的绘制(精)
1.尖顶对心式移动从动件盘形凸轮轮廓曲线设计
0′ 1
-1
B2 B3
B1
B′ 2 B3 ′ 0 B′ 4 B1 ′
B0
s′
s2பைடு நூலகம்4′ 5′ 6′ 9 7′ 8′ 9′
1 0′
4
h
O
B10 ′
′) B11(B11 B10 B9 B8
2′ 1′ 0 1
3′
4 1 11
B4 B5
B′ 5
s
B6 ′ B7 ′
学习目标
1.掌握用“反转法”原理设计盘形凸轮轮廓曲线的方法。 2.能够绘制盘形凸轮轮廓曲线。
哈尔滨职业技术学院
《机械设计与应用》学习情境1 机构的设计与选用 任务4 凸轮机构的设计与选用
一、凸轮机构从动件运动过程
凸轮基圆:基圆半径,rb。 凸轮转角:推程角、远停程角、回程角、近停程角。 从动件位移:S 。
哈尔滨职业技术学院机械设计与应用学习情境1机构的设计与选用任务4凸轮机构的设计与选用1011尖顶对心式移动从动件盘形凸轮作图法设计哈尔滨职业技术学院机械设计与应用学习情境1机构的设计与选用任务4凸轮机构的设计与选用1
凸轮轮廓曲线的绘制
所属课程:机械设计与应用
所属专业:机械制造与自动化 数控技术
模具设计与制造等
O
B11 B10
0
B4
B9 B8 B5 B6 B7
滚子对心式移动从动件盘形凸轮作图法设计
哈尔滨职业技术学院
《机械设计与应用》学习情境1 机构的设计与选用 任务4 凸轮机构的设计与选用
掌握用“反转法”原理设计盘形凸轮轮
任务总结
廓曲线的方法。 能够绘制典型的盘形凸轮轮廓曲线。
图解法设计盘形凸轮轮廓曲线
山东理工职业学院教案首页
2015-2016学年 第 二 学期
课程名称
机械设计基础
任课教师
授课班级
授课时间
第周
第周
第周
第 周
第周
第 周
星期
星期
星期
星期
星期
星期
第节
第节第节Βιβλιοθήκη 第 节第节第 节
月日
月日
月日
月日
月日
月日
授课课题
图解法设计盘形凸轮轮廓曲线
教学目的
图解法设计盘形凸轮轮廓曲线
设计凸轮机构应注意的问题
教学重点
图解法设计盘形凸轮轮廓曲线
教学难点
设计凸轮机构应注意的问题
课前准备
教具模型
备 注
山东理工职业学院教案纸
教学过程
教学内容
解析法设计凸轮轮廓曲线
由方程
x y
= =
(s0 (s0
+ +
s) sin d s) cosd
+ ecosd - e sin d
ü ý þ
可得
dx / dd = (ds / dd - e) sin d + (s0 + s) cosd ü
dy / dd
= (ds / dd
- e) cosd
- (s0
+
s)
sin
d
ý þ
sinq = (dx / dd ) / (dx / dd )2 + (dy / dd )2 ïü
ý
cosq = -(dy / dd ) / (dx / dd )2 + (dy / dd )2 ïþ
式中e为代数值: (1)当凸轮逆时针转动,推杆在O点右侧时,正偏置,取“+”号;
推杆在O点左侧时,负偏置,取“”号; (2)当凸轮顺时针转动,推杆在O点左侧时,正偏置,取“+”号;
推杆在O点右侧时,负偏置,取“”号;
2.对心平底推杆盘形凸轮机构
已知:基圆半径r0、s=s(d)、凸轮转动角 速度w。 建立图示坐标系,当凸轮转过d角, 推杆产生位移s,平底与凸轮在B点 相切,P为凸轮与推杆的相对瞬心。
n =n P = OPw
OP =n / w = ds / dd
B点的坐标为:
x y
= =
(r0 (r0
+ +
s) s)
解析法设计凸轮轮廓曲线
1.偏置直动滚子推杆盘形凸轮机构
已知:基圆半径r0、偏心距e、s=s(d)、凸 轮转动角速度w、滚子半径rr。
建立图示坐标系,当凸轮转过d角,推 杆产生位移s,采用反转法,确定滚子 中心在B点的坐标。
图解法设计凸轮轮廓
已知凸轮的基圆半径rmin,角速度ω、
e
从动件的运动规律和偏心距e,设计该
凸轮轮廓曲线。
8’ 7’ 5’ 3’ 1’
1 3 5 78
9’ 11’ 12’
13’ 14’
9 11 13 15
ωA
15’15 14’14
13’ 12’
13 12
11
10
kk9k1k0k1181kk21k73k14k6O1k55k4kk3k21
的距离d,摆杆角位移方程,设计该凸轮轮廓曲线。
4’ 3’ 2’ 1’
12 3 4
5’ 6’
7’
8’ 5 67 8
d A8
A7
A
l B’1 B B1
rminω1
A1-ω1
φ1
B’2 B’3φ2
A2
B2 B3
B’φ4 3
120°B4A3来自φ790 °B8 B7
60 B6
B’7
设计:潘存云
°B5
B’6
B’5
1 3 5 78
9’ 11’ 12’
13’ 14’
9 11 13 15
理论轮廓
ω
设计:潘存云
设计步骤:
实际轮廓
①选比例尺μl作基圆rmin。 ②反向等分各运动角。原则是:陡密缓疏。
③确定反转后从动件尖顶在各等份点的位置。
④将各尖顶点连接成一条光滑曲线。
⑤作各位置滚子圆的内(外)包络线。
ρa-工作轮廓的曲率半径,ρ-理论轮廓的曲率半径,
8’ 7’ 5’ 3’ 1’
1 3 5 78
9’10’ 11’ 12’
13’ 14’
9 11 13 15
-ω ω
设计:潘存云
8盘型凸轮轮廓曲线设计
“反转法”原理
凸轮转动、从动件 在导路中移动
对整个系统施 加-运动
凸轮保持不动 推杆:复合运动=
反转运动(-) + 预期运动(s)
机
械
基
-
础
A
AA
AA
AAAA
r0
r
0
对心尖顶移动从动件盘形凸轮轮廓的设计
已设知计::r凸0,轮推廓杆线运动规律,凸轮逆s 时针方向转动
简单直观,可直接得出凸轮的轮廓,但作图有一定误差,设计精度不高。
机
工程上应用较多。
械
基
础
解析法
精度较高,但设计计算量大,
多用于精密或高速凸轮机构的设计中
凸轮轮廓的设计方法 图解法
依据“反转法” 对整个系统施加-w运动
机 械 基 础上面的图,在图片中 是动画,帮录下来凸轮轮廓的设计方法
1、偏置尖顶移动从动件盘形凸轮轮廓的设计
凸轮轮廓的设计方法
2、滚子移动从动件盘形凸轮轮廓的设计
已知:r0,推杆运动规
机 械
律,滚子半径r1, 凸 轮逆时针方 向转
基
动
础
设计:凸轮廓线
h
s
0
120 600
900
900
理论轮廓 实际轮廓
凸轮轮廓的设计方法
总结
1、偏置尖顶移动从动件盘形凸轮轮廓曲线设计
机
械
2、滚子移动从动件盘形凸轮轮廓的设计
h
机
解:
械
基
1. 定比例尺l
φ
0
120 1800
2700 3600
础
2. 初始位置及推杆位移曲线
3. 确定推杆反转运动占据的各 角度位置
proe凸轮画法
3.造型过程以下就一个盘形凸轮的造型过程详细说明此种凸轮的设计思路。
零件如图1所示。
图1 盘形凸轮零件图步骤1:基础特征造型使用拉伸命令作一圆柱形基础特征,草图和拉伸后的特征如图2所示。
图2 草图及拉伸特征步骤2:创建方程曲线在“基准” 工具栏中单击“插入基准曲线”按钮,在弹出的菜单管理器中选则“从方程”选项,单击“完成”,如图3中所示。
弹出“曲线”对话框和次级菜单。
根据系统提示选择系统默认坐标系PRT_CSYS_DEF。
在下一级菜单中选择“笛卡尔”坐标系(如图5、6所示),随后弹出记事本中定义曲线方程,该方程就是从动件的位移曲线方程,根据设计的不同,可编写不同的曲线方程。
图3 曲线菜单 1图4 “曲线”对话框图5 曲线菜单2图6 曲线菜单 3 在记事本输入图5所示的方程,保存并退出记事本。
图7 曲线方程图8 生成的曲线(图中红色部分)选择菜单“文件/保存副本”,保存格式为IGES,给定输出名称“cuve1”,在随后弹出的“输出IGES”对话框中选则“基准曲线和点”复选框,单击确定,完成IGES文件输出。
图9 “输出IGES”对话框步骤3:创建图形特征选择菜单“插入/模型基准/图形”选项,根据系统提示在消息输入图形名称cuve2,确定后进入草绘模式。
在草绘模式中,在绘图区绘制一个坐标系,同时绘制两条通过此坐标系的中心线。
选择菜单“草绘/数据来自文件”选项,选择刚才输出的“cuve1.igs”文件,打开后,在“缩放旋转”对话框输入比例和角度,拖动曲线至适当位置,单击确定按钮推出。
在草绘模式中对曲线进行编辑增加,最终结果如图10中所示。
图10 最终曲线步骤4:创建变剖面扫描特征选择菜单“插入/可变剖面扫描”命令,单击草绘按钮,进入草绘模式绘制如图11所示的剖面。
图11 剖面选择菜单“工具/关系”选项,将需要驱动的尺寸附加到上步所建图形上,实现在扫描过程中尺寸的实时驱动。
具体方法就是在弹出的“关系”对话框中输入图12中所示的关系式,单击确定按钮退出草绘模式。
第18讲盘形凸轮
压力角越小, 传力越好。
自锁 :如果凸轮机构运动到某 一位置的压力角大到使有效分力 不足以克服摩擦阻力,不论推力 多大,都不能使从动件运动。这 种现象称为凸轮机构的自锁。机 构开始出现自锁时的压力角称为 临界压力角 。
2.凸轮机构的压力角
K
c min 0
实际轮廓相交而造成 从动件运动失真 对于内凹的凸轮廓线 : 实际轮廓为光滑曲线
c 0
K
0 . 8 min
c min 1 ~ 5 mm
2.凸轮机构的压力角
压力角:不计摩擦时,凸轮对从 动件的作用力(法向力)与从动 件上受力点速度方向所夹的锐角。 该力可分解为两个分力 :
对心滚子移动从动件盘形凸轮轮廓曲线的设计
实 际 轮 廓 曲 线
理 论 轮 廓 曲 线
偏置尖顶移动从动件盘形凸轮轮廓曲线的设计
已知:如图所示
e
凸轮机构设计中应 注意的几个问题
设计凸轮机构,不仅要保证从动件能实现预定的运动规律, 还须使设计的机构传力性能良好,结构紧凑,满足强度和 安装等要求,为此,设计时应注意处理好下述问题。
移动从动件盘形凸轮 轮廓曲线的图解设计
设计方法:
1.图解法 2.解析法
设计一般精度凸轮时常被采用图解法。而设计高精度 凸轮,则必须用解析法,但计算复杂。本节主要讨论 图解法。
基本原理:
反转法原理
移动从动件盘形凸轮 轮廓曲线的图解设计
反转法原理
:
反转法原理
:
设想给凸轮机构加上一个绕凸轮轴心并与凸轮角速度等值 反向的角速度。根据相对运动原理,机构中各构件间的相对 运动并不改变,但凸轮已视为静止,而从动件则被看成随同 导路以角速度绕点转动,同时沿导路按预定运动规律作往复 移动。从动件尖顶的运动轨迹即为凸轮的轮廓。这就是图解 法绘制凸轮轮廓曲线的原理,称为“反转法”。
凸轮轮廓曲线的设计
2)过辅助圆上B0点作该辅助圆的切线,该切线即为 从动件导路中心线的位置线。该位置线与基圆相交于 A0点,点A0即是从动件的初始位置,如图7-15(a)。
3)连接O A0。从O A0开始,沿(-ω)方向在基圆 上依次量取凸轮各转角δ0、δs、δ’0、δ’s,再将 推程角δ0、回程角δ’0分成与位移线图相同的等份, 得到A1、A2、A3、…等各点。
(7-6)
3.压力角与传力性能
在设计凸轮机构时,应使最大压力角αmax不超过某 一许用值[α],即
αmax≤[α]
(7-7)
工程上,一般推程阶段许用压力角[α]的推荐值分别为
移动从动件 [α]=30°~40°
摆动从动件 [α]=40°~50°
机械设计基础
Machine Design Foundation
机械设计基础
Machine Design Foundation
凸轮轮廓曲线的设计
图7-13对心滚子移动从动件盘形凸轮轮廓的绘制
机械设计基础
Machine Design Foundation
凸轮轮廓曲线的设计
图7-14平底从动件盘形凸轮轮廓的绘制
机械设计基础
Machine Design Foundation
凸轮轮廓曲线的设计
4.基圆半径 rb的确定
在选取基圆半径时,应综合考虑下述几个方面:
(1)在保证αmax≤[α]的前提下,应尽可能选用较 小的基圆半径,以满足结构紧凑的要求。
(2)为了满足凸轮结构及制造的要求,基圆半径rb 必须大于凸轮轴的半径rs,即rb> rs。
(3)为了避免从动件运动失真,必须使凸轮实际轮 廓曲线的最小曲率半径ρ’min大于零,通常规定ρ’min> 1~5 mm 。
凸轮轮廓设计PPT课件
9’
设计:潘存云
③确定反转后,从动件尖顶在各等份点的位置;
④将各尖顶点连接成一条光滑曲线。 第4页/共31页
(右)偏置直动尖顶从动件盘形凸轮绘制过程
第5页/共31页
(右)偏置直动滚子从动件盘形凸轮绘制过程
第6页/共31页
4)摆动尖顶推杆盘形凸轮机构
已知凸轮的基圆半径r0,角速度ω,摆杆长度l以及摆
由图可知: s0=(r02-e2)1/2
x= (s0+s)sinδ+ ecosδ y= (s0+s)cosδ- esinδ
(1)
实际轮廓线-为理论轮廓的等距线。
曲线任意点切线与法线斜率互为负倒数:
tgθ= -dx/dy =(dx/dδ)/(- dy/dδ) =sinθ/cosθ 第11页/共31页
对(1)式求导,得:
提问:在设计一对心凸轮机构设计时,当出现α≥[α]
的情况,在不改变运动规律的前提下,可采取哪些措 施来进行改进?
tgα=(ds/dδ-e)/[(r02-e2)1/2+s] 1)加大基圆半径r0 , r0↑ →α↓ 2)将对心改为偏置, e↑ →α↓
3)采用平底从动件, α=0
确定上述极值r0min不方便,工程上常根据诺模图
若不满足此条件时:
增大r0 减小rr
第25页/共31页
4.平底尺寸l 的确定 作图法确定: l=2lmax+(5~7)mm
ω
1’ 2’
3’
B’7
B’6
B’5
φ4
A4
φ6
φ5
A5
5)直动推杆圆柱凸轮机构
思路:将圆柱外表面展开,得一长度为2πR的平面移 动凸轮机构,其移动速度为V=ωR,以-V反向移动 平面凸轮,相对运动不变,滚子反向移动后其中心点 的轨迹即为理论轮廓,其内外包络线为实际轮廓。
图解法设计凸轮轮廓曲线法设计凸轮轮廓曲线
设计方法:图解法 解析法 1. 凸轮廓线设计基本原理 设计凸轮廓线时,假 设凸轮静止,使推杆相对 于凸轮作反向转动,推杆 又在导轨内作预期运动, 推杆尖顶的复合运动的轨 迹即是凸轮轮廓曲线,这 种方法又叫反转法 种方法又叫 反转法。 。
2. 图解法设计凸轮轮廓曲线
1)偏置直动尖顶推杆盘形凸轮机构
5)摆动尖顶推杆盘形凸轮机构 已知:基圆半径r ,凸轮逆时针 0 转动w,推杆的运动规律 j=j(d),LOA、LAB
A B
确定基圆 A点所在圆、AB初始位置 确定基圆、 将A点所在圆瓜分
O
自基圆向外量取等分点角位移 确定推程、远休、回程、近休廓线
3)对心直动滚子推杆盘形凸轮机构
以滚子中心为尖顶,按尖顶推杆设计凸轮廓线 按尖顶推杆设计凸轮廓线, 得到理论廓线。 以理论廓线上的各点为圆心,滚子半径为半径 滚子半径为径, 画一系列滚子圆,这些滚子圆的包络线即为 这些滚子圆的包络线即为实 际廓线。 注意:基圆半径是理论廓线上的最小向径。
4)对心直动平底推杆盘形凸轮机构 以平底中心A为尖顶,按尖顶推杆 设计凸轮廓线,得到理论廓线。 以理论廓线上的各点为平底中心, 画一系列平底,这些平底的包络线 即为实际廓线。
已知:基圆半径r ,凸轮逆时针转动w,推 0 杆的运动规律s=s(d),偏距为e,推杆在 凸轮回转中心右侧。
作偏距圆、基圆、推杆的初始位置 将偏距圆瓜分 将推程运动角等分,作偏距圆的切线 从基圆向外量推杆的位移,得推程廓线
2)对心直动尖顶推杆盘形凸轮机构
对心直动尖顶推杆盘形凸轮机构推杆在反转过 程中始终通过凸轮的回转中心。
盘形凸轮轮廓曲线的设计
目录摘要 (11. 绪论 (31.1凸轮机构概述 (31.2凸轮机构课题研究背景及意义 (31.3凸轮机构国内外发展及研究状况 (52. 盘形凸轮轮廓曲线的设计 (82.1反转法概念 (82.2反转法的原理: (82.3对心直动尖顶从动件盘形凸轮机构轮廓曲线的设计 (8 2.4对心直动滚子从动件盘形凸轮机构轮廓曲线的设计 (10 2.6对心直动平底从动件盘形凸轮机构轮廓曲线的设计 (11 2.7偏置尖顶直动从动件盘形凸轮机构 (112.8摆动从动件盘形凸轮机构 (123. 盘形凸轮轮廓曲线的参数化设计 (133.1盘形凸轮基圆半径的确定 (133.2确定摆动从动件盘形凸轮基圆半径的方法 (133.3凸轮轮廓曲线的数学模型 (143.4盘形凸轮轮廓曲线的计算 (163.5轮廓面方程的建立 (163.6平面盘形凸轮系统的开发 (17总结与展望 (18致谢 (19参考文献 (20盘形凸轮轮廓曲线的设计【摘要】本文分析了反转法的基本原理、图解法的方法和步骤,阐述了几种盘形凸轮轮廓曲线的设计方法,并配以图形来解析,在现实生活中我们经常可以见得到凸轮机构,在各种机械,特别是自动机和自动装置,广泛采用各种形式的凸轮机构.凸轮机构常用与内燃机的装配机构,自动机场的进刀机构以及各种自动装置中.凸轮机构的有点在于要适当的设计出凸轮轮廓曲线,就可以使推杆得到各种预期的运动规律,而其响应快速,机构简单紧凑。
这些优点使得它不能被数控,电控设备完全代替。
随着现代机械的发展和计算机辅助设计和制造获得了普遍应用,凸轮机构的设计和加工的速度和质量越来越高,凸轮运动速度也越来越高,这就为凸轮机构更广泛的应用创造了条件。
【关键词】反转法凸轮轮廓曲线Design of cam profile curve【Abstract】In real life we can often see cam, particularly automata and robotics, widely used in various forms of cam. Can is commonly Used for internal combustion engine valvetrain, automatic feed mechanism of machine tools ,as well as variety of robotic.Advantage is as long as the appropriate design of cam. Motion of the push rod can be expected, and its fast response , institutions simple and compact. These advantagesmake it cannot be NC, electrical control equipment and completely replaced .As modern machinery is increasingly informed the development and application of computer–aided design and manufacturing was general ,cam design and machining speed and quality become higher and higher ,cam movement speed is geeting higher and higher ,which created the conditions for a wider application of cam.This design is intended to complete the base circle radius r=500mm maximum lift and follower h=30mm Push way motion angle =120 Far angle of repose =60º, return angle =120ºand near of Angle of repose =60º, follower pushing motion law of Cheng Yi speed increase ,return to, sine acceleration motion law of Downward bias follower disc cam mechanism with roller follower of the designs.【Key Words】Reversal process Disc CAM Profile Curve1.绪论1.1 凸轮机构概述凸轮机构一般是由凸轮,从动件和机架三个构件组成的高副机构。
凸轮曲线设计
凸轮曲线设计当根据使用要求确定了凸轮机构的类型、基本参数以及从动件运动规律后,即可进行凸轮轮廓曲线的设计。
设计方法有几何法和解析法,两者所依据的设计原理基本相同。
几何法简便、直观,但作图误差较大,难以获得凸轮轮廓曲线上各点的精确坐标,所以按几何法所得轮廓数据加工的凸轮只能应用于低速或不重要的场合。
对于高速凸轮或精确度要求较高的凸轮,必须建立凸轮理论轮廓曲线、实际轮廓曲线以及加工刀具中心轨迹的坐标方程,并精确地计算出凸轮轮廓曲线或刀具运动轨迹上各点的坐标值,以适合在数控机床上加工。
圆柱凸轮的廓线虽属空间曲线,但由于圆柱面可展成平面,所以也可以借用平面盘形凸轮轮廓曲线的设计方法设计圆柱凸轮的展开轮廓。
本节分别介绍用几何法和解析法设计凸轮轮廓曲线的原理和步骤。
1 几何法反转法设计原理:以尖底偏置直动从动件盘形凸轮机构为例:凸轮机构工作时,凸轮和从动件都在运动。
为了在图纸上画出凸轮轮廓曲线,应当使凸轮与图纸平面相对静止,为此,可采用如下的反转法:使整个机构以角速度(-w)绕O转动,其结果是从动件与凸轮的相对运动并不改变,但凸轮固定不动,机架和从动件一方面以角速度(-w)绕O转动,同时从动件又以原有运动规律相对机架往复运动。
根据这种关系,不难求出一系列从动件尖底的位置。
由于尖底始终与凸轮轮廓接触,所以反转后尖底的运动轨迹就是凸轮轮廓曲线。
1). 直动从动件盘形凸轮机构尖底偏置直动从动件盘形凸轮机构:已知从动件位移线图,凸轮以等角速w顺时针回转,其基圆半径为r0,从动件导路偏距为e,要求绘出此凸轮的轮廓曲线。
运用反转法绘制尖底直动从动件盘形凸轮机构凸轮轮廓曲线的方法和步骤如下:1) 以r0为半径作基圆,以e为半径作偏距圆,点K为从动件导路线与偏距圆的切点,导路线与基圆的交点B0(C0)便是从动件尖底的初始位置。
2) 将位移线图s-f的推程运动角和回程运动角分别作若干等分(图中各为四等分)。
3) 自OC0开始,沿w的相反方向取推程运动角(1800)、远休止角(300)、回程运动角(1900)、近休止角(600),在基圆上得C4、C5、C9诸点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教案封面
盘形凸轮轮廓曲线的画法
(专业基础理论新授课)
节
课
尝试法、发现法钟
项目评价展示学生刚才的优秀作品,让学生体验
成功,组织学生做项目评价和小结。
作品展示法
竞赛激励法
6分钟
布置作业引导学生学会分析题目的含义和意图。
引导教学法1分钟
教学
环节
教学过程及内容教学方法及目的
情境设置(5min) 1、组织教学赏识教育法
调节学生情绪,活
跃课堂气氛,调动学习
积极性。
检查学生的出勤、着装和精神状态,师生互相问候,赞
扬学生的优良表现。
2、情境教学【看一看,想一想】演示法
1、播放多媒体课件,
让学生了解凸轮机构
的应用情况,认识到画
凸轮的重要性。
2、模型演示是为了增
强学生的感性认识,营
造生动活泼、讨论热烈
的课堂氛围,引导学生
分析和思考。
情境教学法
创设实际应用的
教学情境,通过情感共
鸣和态度体验,使学生
明确本次课的重要性
和针对性,激发学习热
情,产生认真学习的动
力。
(1)多媒体课件播放内燃机配气机构的工作过程,缓慢
播放凸轮机构与气阀杆作间歇运动间的联系,边播放边引导
学生思考:该机构属于什么机构?是
什么类型的凸轮?凸轮与间歇运动
之间的关系如何?间歇运动的关键
是什么?
(2)演示附近农村学生利用自
家木料做的对心尖顶移动从动件盘
形凸轮机构的模型,展示其运动过
程,提问设置悬念:从动件为什么
会运动?
学生边观看演示边思考:凸轮
对转动中心的轮廓半径发生变化引
起从动件运动。
教师边演示边提问:从动件的
运动规律由什么决定?
学生:由凸轮轮廓的变化决定。
教师总结:设计凸轮时应反其凸轮机构的工作过程
对心尖顶凸轮机构
项目
示范
(32min )
实际的凸轮机构是凸轮作回转运动,从动件作直线往复
运动。
假设机构中的凸轮静止不动,从动件除保持原来的直
线运动外,还绕着凸轮的回转中心作反向转动。
根据位移曲线图用找点法找到从动件与凸轮表面的接触
点,将多个接触点光滑连接即可得到凸轮轮廓。
同时播放左边的
两个动画,让学生对比
思考相对反转原理,理
解“运用反转法作图”
的原因和方法。
教学
环节
教学过程及内容教学方法及目的
项目示范
(32min
) 2、分析已知条件
启发式教学法
利用对应挂图,边
讲解边启发学生思考,
授之于渔,让学生了解
作图的步骤和方法。
已知:一对心尖顶移动从动件盘形凸轮机构,凸轮的基
圆半径r0=20mm,以等角速度ω逆时针回转,从动件的运动
规律为:凸轮转过120°,从动件等速上升30mm;凸轮转过
30°,从动件停止不动;凸轮转过60°,从动件等速下降回
原位;凸轮转过剩余的150°,从动件停止不动。
求作凸轮
轮廓。
分析:(1)该机构从动件
的直线运动方向通过凸轮的
回转中心;(2)机构的工作
过程有升程、远停程、回程
和近停程等四个,位移曲线
有四段,轮廓曲线也有四段。
(3)四段位移曲线分别是什
么形状?
结论:由分析得出作图步
骤,先作位移曲线图,利用
反转法在位移曲线上取点,
在各对应转角的基圆向径上描点,光滑连接所描各点即得轮
廓曲线。
3、示范作图示范法
反转法画凸轮的原理
(1)选取作图比例:一般长度比例为1mm/5mm或1mm/2mm,前者用于较大凸轮,后者用于较小凸轮;角度比例为1mm/6°或1mm/3°,长度比例与角度比例的大小无关。
(温馨提示:比例越大,作图越准确。
)
(2)画位移曲线图:按已知条件分段描出起点和终点,连接各段的起点和终点即可画出四段位移曲线。
(技巧提示:先判断位移曲线形状,再决定各段曲线的作图方法。
)
1、教师作图示范,学生理解作图原理、步骤和方法,为跟随练习打基础。
2、教师边示范作图边提问学生,引导学生掌握分析的思路和方法。
教学
环节
教学过程及内容教学方法及目的
项目示范
(32min
)
(3)拓展思维:假设第二段工作过程为等加速上升,则
位移曲线应是什么线,因此以取点法和描点法画位移曲线。
(4)画轮廓曲线:在位移曲线的横坐标上适当等分,并
过等分点作垂直线,得各点的位移;以O为圆心,以r0=20mm
为半径作基圆,画出对心尖顶移动从动件,
标注逆时针转向ω;以最低点为起点,与
角速度ω相反的方向,将基圆分成12等
分,每一等分为30°,按照位移曲线图横
坐标上各角度的位移值,在基圆各对应角
度标示出各半径增加点;将各点光滑连接
即可得到凸轮的轮廓曲线,如右图所示。
培养学生严谨细致的
工作态度,耐心、细心
和团结协作意识;
4、总结作图技巧
教师总结作图方法和
经验,为学生树立楷
模。
(1)远停程和近停程对应的凸轮轮廓半径不变;
(2)从动件有位移则说明凸轮轮廓半径有变化;
(3)要使轮廓半径发生变化,在取各点时就应延长各
向径,在与ω相反方向基圆半径的基础上加上各段对应位移。
布置第一关:跟随练习,闯过此关的学生得80分。
熟悉凸轮的绘制,掌握
凸轮的位移曲线
项目(5min)
每个学生独立确定操作过程和方法,完成教师所示范的
项目,所需时间越短、图形效果越好,掌握的程度就越好。
基本的知识和技能,为
深入学习打基础。
第二关:综合训练,闯过此关的学生加20分。
启发式教学法
增加对凸轮轮廓曲线
绘制技能的熟练程度,
对知识进行初步迁移,
对技能进行初步深化,
为灵活运用打基础。
项目条件:选择较大难度的对心滚子(或对心平底)移
动从动件盘形凸轮的画法作为练习项目,学生只要做好其中
一个即可得100分。
练习试题:一对心滚子(或对心平底)移动从动件盘形
凸轮机构,凸轮的基圆半径r0=20mm,滚子半径r g=5mm,以
等角速度ω逆时针回转,从动件的运动规律为:凸轮转过
120°,从动件等速上升30mm;凸轮转过30°,从动件停止
不动;凸轮转过60°,从动件等速下降回原位;凸轮转过剩
余的150°,从动件停止不动。
求作凸轮轮廓。
教学
环节
教学过程及内容教学方法及目的布置
项目(5min)
工程项目的需求分析
和应用能力、交往合作
能力和口头表达能力。
第三关:拓展训练,闯过此关的学生再加20分。
启发式教学法
对心滚子移动从动件盘形凸轮对心平底移动从动件盘形凸轮
项目条件:选择有较高难度的偏置尖顶(或偏置滚子)移动从动件盘形凸轮的画法作为拓展训练事体,学生只要做其中一个,总分即为120分。
拓展试题:一偏置尖顶(或偏置滚子)移动从动件盘形凸轮机构,凸轮的基圆半径r0=20mm,滚子半径r g=5mm,偏距e=8mm,以等角速度ω逆时针回转,从动件的运动规律为:凸轮转过120°,从动件等速上升30mm;凸轮转过30°,从动件停止不动;凸轮转过60°,从动件等速下降回原位;凸轮转过剩余的150°,从动件停止不动。
求作凸轮轮廓。
启发学生理解对心滚子(对心平底、偏置尖顶、偏置滚子)移动从动件盘形凸轮机构的工作原理,能灵活运用所学知识和技能解决实际问题。
教学
环节
教学过程及内容教学方法及目的
项目
训练
(38min
)1、学生分组
为项目训练中的分组
竞赛做好准备,培养学
生的集体荣誉感和社
会责任感。
全班学生共38人,根据性格和文化基础层次分成四组,
每组9~10人,选一名热于助人、学习认真、负责感强的学生
做组长,要求组织组内成员积极讨论、探索训练项目中的疑
难问题和解题思路和方法,协作学习,共同进步。
2、跟随练习【练一练】尝试法
学生模仿作图,跟作学
习,通过亲身尝试,体
验整个过程的每个细
节,摸索作图方法,积
累作图经验。
(1)要求:所有学生必做。
(2)学生:完成教师所示范的项目试题,重点在于理解
作图原理,熟悉作图步骤,消化和吸收教师所传授的知识和
技能,掌握作图方法和技巧。
(3)教师:巡回指导并答疑,督促进展较慢的学生尽
偏置尖顶移动从动件盘形凸轮偏置滚子移动从动件盘形凸轮
九、板书设计
十、座位编排
十、教学后记
1、从作业情况看,学生的自学能力较强,因第十题为“摆动滚子从动件盘形凸轮的绘制”,0832班有5人没有做对该题,0835班有3
人,原因是学生对此类型凸轮机构的理解
还欠缺,以及在课堂上没有接触过这种类型的作图。
2、附近农村学生做的几种移动从动件盘形凸轮机构的模型能正常工作,制作效果好。
附件1 学生自评用表
附件2 作品展示顺序表。