中考数学专题—— 尺规作图
中考数学--尺规作图
一、理解“尺规作图”的含义1.在几何中,我们把只限定用直尺(无刻度)和圆规来画图的方法,称为尺规作图.其中直尺只能用来作直线、线段、射线或延长线段;圆规用来作圆和圆弧.由此可知,尺规作图与一般的画图不同,一般画图可以动用一切画图工具,包括三角尺、量角器等,在操作过程中可以度量,但尺规作图在操作过程中是不允许度量成分的.2.基本作图:(1)用尺规作一条线段等于已知线段;(2)用尺规作一个角等于已知角. 利用这两个基本作图,可以作两条线段或两个角的和或差.二、熟练掌握尺规作图题的规范语言1.用直尺作图的几何语言:①过点×、点×作直线××;或作直线××;或作射线××;②连结两点××;或连结××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;2.用圆规作图的几何语言:①在××上截取××=××;②以点×为圆心,××的长为半径作圆(或弧);③以点×为圆心,××的长为半径作弧,交××于点×;④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、×.三、了解尺规作图题的一般步骤尺规作图题的步骤:1.已知:当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;2.求作:能根据题目写出要求作出的图形及此图形应满足的条件;3.作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,而且在许多中考作图题中,又往往只要求保留作图痕迹,不需要写出作法,可见在解作图题时,保留作图痕迹很重要.四、基本作图最基本,最常用的尺规作图,通常称基本作图。
中考数学专题训练之尺规作图测试卷(01)
中考数学专题训练之尺规作图测试卷(01)一.选择题(共10小题)1.如图,在△ABC中,作BC边上的高线,下列画法正确的是()A.B.C.D.2.数学课上,晓峰同学用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你说出他作图的依据是()A.SSS B.SAS C.ASA D.AAS3.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.SSS D.AAS4.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图,一把直尺压住射线OB,另一把直尺压住射线OA并且与“射线OP就是∠BOA的平分线.”他这样做的依据是()第一把直尺交于点P,小明说:A.角平分线上的点到这个角两边的距离相等B.角的内部到角的两边的距离相等的点在角的平分线上C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确5.利用直角三角板,作△ABC的高,下列作法正确的是()A.B.C.D.6.如图,在∠MON的两边上分别截取OA,OB,使OA=OB;再分别以点A,B为圆心,OA长为半径作弧,两弧交于点C;再连接AC,BC,AB,OC.若AB=10,OA=13.则四边形AOCB的面积是()A.65B.120C.130D.2407.如图是用直尺和圆规作已知角的平分线的示意图,则说明∠CAD=∠DAB的依据是()A .SASB .ASAC .AASD .SSS8.如图,已知△ABC (AB <BC <AC ),用尺规在AC 上确定一点P ,使PB +PC =AC ,则下列选项中,一定符合要求的作图痕迹是( )A .B .C .D .9.如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC 、AB 于点M 、N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交BC 于点D ,若CD =5,AB =16,则△ABD 的面积是( )A .21B .80C .40D .4510.如图,在△ABC 中,∠B =30°,∠C =50°,请观察尺规作图的痕迹(D ,E ,F 分别是连线与△ABC 边的交点),则∠DAE 的度数是( )A .25°B .30°C .35°D .40°二.填空题(共10小题)11.如图,已知四边形ABCD 是长方形,依据尺规作图的痕迹,可知∠α= °.12.如图,矩形ABCD 中,连接BD ,按以下步骤作图:①分别以点B 和D 为圆心,以大于12BD 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 分别交边AB ,CD 于点E ,F ;③以点D 为圆心,以适当长为半径作弧,分别交边DA ,DB 于点P ,Q ;④分别以点P 和Q 为圆心,以大于12PQ 的长为半径作弧,两弧相交于点G ;⑤作射线DG 交边AB 于点E ,则∠ADB = .13.如图,在长方形ABCD 中,连接BD ,分别以B ,D 为圆心,大于12BD 长为半径画弧,两弧交于点E ,F ,作直线EF ,交AD 于点M .若AD =4,AB =2.则AM 的长为 .14.如图,在△ABC 中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M 、N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若AB =7,AC =12,BC =6,则△ABD 的周长为 .15.如图,在△ABC 中,∠B =45°.按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点D 和E ;②作直线DE 交边AB 于点F .若BF =4,AF =2,则AC 的长为 .16.如图,13个边长为1的小正方形,排列形式如图,把它们分割,使分割后能拼成一个大正方形.请在如图所示的网格中(网格的边长为1)中,用直尺作出这个大正方形,其边长为 .17.如图,在△ABC 中,∠A =32°,分别以点A 、C 为圆心,大于12AC 长为半径画弧,两弧分别相交于点M 、N ,直线MN 与AC 相交于点E ,过点C 作CD ⊥AB ,垂足为点D ,CD 与BE 相交于点F ,若BD =CE ,则∠BFC 的度数为 .18.如图,在平行四边形ABCD 中,AB ⊥AC ,AB =6,AC =8,分别以A ,C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N ,作直线MN 与BC 交于点E ,与AD 交于点F ,连接AE ,CF ,则四边形AECF 的周长为 .19.如图,在▱ABCD 中,以点C 为圆心,适当长度为半径作弧,分别交CB ,CD 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 长为半径作弧,两弧交于点P ,作射线CP 交DA 于点E ,连接BE ,若AE =3,BE =4,DE =5,则CE 的长为 .20.如图,用直尺和圆规作一个角等于已知角的示意图如图所示,则说明∠A'O'B'=∠AOB 的依据是.三.解答题(共5小题)21.如图在5×5的网格中,△ABC的顶点都在格点上.仅用无刻度的直尺在给定的网格中分别按下列要求画图.(请保留画图痕迹,画图过程用虚线表示,画图结果用实线表示)(1)在图1中,画出△ABC的重心G;(2)在图2中,画线段CE,点E在AB上,使得S△ACE:S△BCE=3:4;(3)图3中,在,△ABC内寻找一格点N,使∠ANB=2∠C.并标注点N的位置.22.如图,已知∠AOB,C为射线OB上的一点,请用尺规作图法求作∠DCB,使得∠DCB =∠AOB.(作出一种即可)(保留作图痕迹,不写作法)23.图①,图②,图③均是4×4的正方形网格,每个小正方形的顶点称为格点,线段的端点均在格点上,在图①,图②,图③给定的网格中按要求画图.(1)在图①中,画出格点C,使AC=BC,用黑色实心圆点标出点C所有可能的位置.(2)在图②中,在线段AB上画出点M,使AM=3BM.(3)在图③中,在线段AB上画出点P,使AP=2BP.(保留作图痕迹)24.如图所示方格纸中,每个小正方形的边长均为1,点A、点B、点C在小正方形的顶点上.(1)画出△ABC中边BC上的高AD;(2)画出△ABC中边AB上的中线CE;(3)直接写出△ACE的面积为.25.如图①、图②均是4×2的正方形网格,每个小正方形的边长为1,每个小正方形的顶点称为格点,△ABC的顶点均在格点上,只用无刻度的直尺,在给定的网格中,按下列要求画图:(1)在图①中画出线段CD,使得线段CD平分△ABC的面积;(2)在图②中画出线段CE,使得线段CE将△ABC分成两个直角三角形.。
2023年九年级数学中考专题:尺规作图类训练题(含简单答案)
2023年九年级数学中考专题:尺规作图类训练题一、单选题1.如图,Rt ABC △中,由90ACB ∠=︒,30B ∠=︒,要求用圆规和直尺作图,分成两个三角形,其中至少有一个三角形是等腰三角形.其作法错误的是( )A .B .C .D .2.如图,在ABC 中,已知45B ∠=︒,30C ∠=︒,分别以点A 、C 为圆心,大于12AC长为半径画弧,两弧在AC 两侧分别交于P 、Q 两点,作直线PQ 交BC 于点D ,交AC 于点E .若3DE =,则AB 的长为( )A .B .5C .6D .3.如图,在ABC 中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N ,作直线MN ,交AC 于点D ,交BC 于点E ,连接BD ,则ABD △的周长为( )A .AB BC + B .BC AC + C .+AB ACD .AB AC BC ++4.请仔细观察用直尺和圆规作一个角等于已知角的示意图如图所示,请你根据所学的三角形全等有关的知识,说明画出D O C DOC '''∠=∠的依据是( )A .SASB .AASC .SSSD .SSA5.如图,已知AOB ∠,以点O 为圆心,以任意长为半径画弧①,分别交OA ,OB 于点 E ,F , 再以点 E 为圆心,以EF 长为半径画弧,交弧①于点 D ,画射线OD .若28AOB ∠︒=,则BOD ∠的补角的度数为( )A .124︒B .39︒C .56︒D .144︒6.王师傅用角尺平分一个角,如图①,学生小顾用三角尺平分一个角,如图①,他们都在AOB ∠两边上分别取OM ON =,前者使角尺两边相同刻度分别与M ,N 重合,角尺顶点为P ;后者分别过M ,N 作OA ,OB 的垂线,交点为P ,则射线OP 平分AOB ∠,均可由OMP ONP ≌△△得知,其依据分别是( )A .SSS ;SASB .SAS ;SSSC .SSS ;HLD .SAS ;HL7.如图,在Rt ABC △中,90B ,分别以A 、C 为圆心,大于AC 长的一半为半径画弧,两弧相交于点M 、N ,连接MN ,与AC 、BC 分别相交于点D 、E ,连接AE ,当3AB =,5AC =时,ABE 周长为( )A .7B .8C .9D .108.如图,已知AOB ∠.按照以下步骤作图:①以点O 为圆心,以适当的长为半径作弧,分别交AOB ∠的两边于C ,D 两点,连接CD .①分别以点C ,D 为圆心,以大于线段OC 的长为半径作弧,两弧在AOB ∠内交于点E ,连接CE ,DE .①连接OE 交CD 于点M .下列结论中不正确的是( )A .CEO DEO ∠=∠B .CM MD =C .OCD ECD ∠=∠D .12OCED S CD OE =⋅四边形二、填空题9.如图,在ABC 中,AC BC =,以点A 为圆心,AB 长为半径作弧交BC 于点D ,交AC 于点E ,再分别以点C ,D 为圆心,大于CD 的长为半径作弧,两弧相交于F ,G两点,作直线FG .若直线FG 经过点E ,则C ∠的度数为______︒,AEG ∠的度数为______︒.10.如图,Rt ABC △中,90C ∠=︒,13AB =,5BC =,利用尺规在AC ,AB 上分别截取AD ,AE ,使AD AE =,分别以D ,E 为圆心,以大于12DE 为长的半径作弧,两弧在BAC ∠内交于点F ,作射线AF 交边BC 于点G ,点P 为边AB 上的一动点,则GP的最小值为______.11.如图,在ABC 中,90C ∠=︒.按以下步骤作图:①以点A 为圆心,适当长为半径作圆弧,分别交边AB 、AC 于点M 、N ;①分别以点M 和点N 为圆心、大于MN 一半的长为半径作圆弧,在BAC ∠内,两弧交于点P ;①作射线AP 交边BC 于点D .若DAC ABC ∽△△,则B ∠的大小为______度.12.如图,在Rt ABC △中,90C ∠=︒,以顶点B 为圆心,BC 长为半径画弧,交AB 于点D ,再分别以点C ,D 为圆心,大于12CD 长为半径画弧,两弧交于点E ,作射线BE交AC 于点F .若12BC =,15AB =,若BCF △的面积为24,则ABC 的面积为__________.13.如图,在四边形ABCD 中,30A ∠=︒,AB AD =,取大于12AB 的长为半径,分别以点A ,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE ,BD .则EBD ∠的度数为______.14.如图,在t R ABC 中,90C ∠=︒,以点B 为圆心,以任意长为半径作弧,分别交,AB BC于点M ,N ;①分别以M ,N 为圆心12MN 的长为半径作弧,两弧在ABC ∠内交于点P ,交AC 于点D .若16,8ABDSAB ==,则线段CD 的长为 ___________.15.如图,在ABCD 中,以A 为圆心,AB 长为半径画弧交AD 于F ,分别以F 、B 为圆心,大于12BF 长为半径画弧,两弧交于点G ,作射线AG 交BC 于点E ,6BF =,5AB =,则AE 的长为 ___________.16.如图,四边形ABCD 是平行四边形,以点B 为圆心,BC 的长为半径作弧交AD 于点E ,分别以点C ,E 为圆心、大于12CE 的长为半径作弧,两弧交于点P ,作射线BP交AD 的延长线于点F ,60CBE ∠=︒,6BC =,则BF =___________.三、解答题17.如图,在ABC 中,50A ∠=︒,30C ∠=,请用尺规作图法,在AC 上求作一点D ,使得BDC ABC ∽.(保留作图痕迹,不写作法)18.(1)操作实践:ABC 中,90A ∠=︒,22.5B ∠=︒,请画出一条直线把ABC 分割成两个等腰三角形,并标出分割成两个等腰三角形底角的度数;(要求画出一种分割方法即可)(2)分类探究:ABC 中,最小内角24B ∠=︒,若ABC 被一直线分割成两个等腰三角形,请画出相应示意图并写出ABC 最大内角的所有可能值;(3)猜想发现:若一个三角形能被一直线分割成两个等腰三角形,需满足什么条件?(请你至少写出两个条件,无需证明)19.如图,在ABC 中,点P ,Q 分别在边BC 及CB 的延长线上,且BQ CP =.(1)实践与探索:利用尺规按下列要求作图(不写作法,保留作图痕迹). ①作PQM CBA ∠=∠,且点M 在QC 的上方; ①在QM 上截取QR BA =; ①连接PR .(2)猜想与验证:试猜想线段AC 和RP 的数量关系,并证明你的猜想.20.如图,点D 是等边ABC 内部一点,且DB DC =,请仅用无刻度的直尺......,分别按下列要求画图.(1)在图①中BC 上找一点E ,使12BE BC =; (2)若2BDC A ∠=∠,在图①中AB AC 、边上分别找点M 、N ,使12MN BC =.参考答案:1.B2.A3.C4.C5.A6.C7.A8.C9.3612610.12 511.30 12.54 13.45︒14.4 15.816.18.(2)ABC的最大内角可能值是117︒或108︒或90︒或84︒;19.(2)RP AC=,答案第1页,共1页。
中考数学专题复习导学案尺规作图》(含答案)
中考数学专题练习《尺规作图》【知识归纳】一)尺规作图1.定义只用没有刻度的和作图叫做尺规作图.2.步骤①根据给出的条件和求作的图形,写出已知和求作部分;②分析作图的方法和过程;③用直尺和圆规进行作图;④写出作法步骤,即作法.二)五种基本作图1.作一条线段等于已知线段;2.作一个角等于已知角;3.作已知角的平分线;4.过一点作已知直线的垂线;5.作已知线段的垂直平分线.三)基本作图的应用1.利用基本作图作三角形(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.2.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆).(2)作三角形的内切圆.【基础检测】1.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b +1),则a 与b 的数量关系为( )A .a =bB .2a +b =﹣1C .2a ﹣b =1D .2a +b =12.如图,已知△ABC ,以点B 为圆心,AC 长为半径画弧;以点C 为圆心,AB 长为半径画弧,两弧交于点D ,且点A ,点D 在BC 异侧,连结AD ,量一量线段AD 的长,约为( )A .2.5cmB .3.0cmC .3.5cmD .4.0cm3.如图,已知△ABC ,∠BAC=90°,请用尺规过点A 作一条直线,使其将△ABC 分成两个相似的三角形(保留作图痕迹,不写作法)4.如图,在边长为1的正方形网格中,△ABC 的顶点均在格点上,点A 、B 的坐标分别是A (4,3)、B (4,1),把△ABC 绕点C 逆时针旋转90°后得到△A 1B 1C .(1)画出△A 1B 1C ,直接写出点A 1、B 1的坐标;(2)求在旋转过程中,△ABC 所扫过的面积.5.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD 的两条边AB 与BC ,且四边形ABCD 是一个轴对称图形,其对称轴为直线AC .(1)试在图中标出点D ,并画出该四边形的另两条边;(2)将四边形ABCD 向下平移5个单位,画出平移后得到的四边形A′B′C′D′.6.已知:线段a 及∠ACB .求作:⊙O ,使⊙O 在∠ACB 的内部,CO=a ,且⊙O 与∠ACB 的两边分别相切.7.如图,OA=2,以点A 为圆心,1为半径画⊙A 与OA 的延长线交于点C ,过点A 画OA 的垂线,垂线与⊙A 的一个交点为B ,连接BC(1)线段BC 的长等于 ; (2)请在图中按下列要求逐一操作,并回答问题:A B C①以点为圆心,以线段的长为半径画弧,与射线BA交于点D,使线段OD的长等于②连OD,在OD上画出点P,使OP得长等于,请写出画法,并说明理由.【达标检测】一、选择题1.如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A.65°B.60°C.55°D.45°2.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧○1;步骤2:以B为圆心,BA为半径画弧○2,将弧○1于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()第10题图A.BH垂直分分线段AD B.AC平分∠BAD=BC·AH D.AB=ADC.S△ABC二、填空题3.如图,已知线段AB,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于C、D 两点,作直线CD交AB于点E,在直线CD上任取一点F,连接FA,FB.若FA=5,则FB=.4.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的是。
2024中考备考热点09 尺规作图(7大题型+满分技巧+限时分层检测)(原卷版)
热点09 尺规作图中考数学中《尺规作图》部分主要考向分为三类:一、尺规作图的痕迹(每年1道,3~8分)二、尺规作图画图(每年1道,3~12分)三、网格问题中的作图设计(每年1题,6~8分)尺规作图指的是只用无刻度的直尺和圆规,作已知线段的中垂线、已知角的角平分线;部分题型则考察由作图痕迹逆向推导是什么线,然后利用中垂线或者角平分线的性质继续解题。
最近几年又出现一类不用“尺规”,只用无刻度的直尺在网格图中按要求画图或找点。
当考察作图痕迹时,基本以选择题为主,实际画图题或者网格类问题则是简单题,虽然难度中等,但是对应考点的综合性已经越来越强,需要在做题时更加全面的分析。
考向一:尺规作图的痕迹【题型1 线段中垂线的尺规作图痕迹】满分技巧1、线段垂直平分线的画图痕迹:2、线段垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等1.(2023•凉山州)如图,在等腰△ABC中,∠A=40°,分别以点A、点B为圆心,大于AB为半径画弧,两弧分别交于点M和点N,连接MN,直线MN与AC交于点D,连接BD,则∠DBC的度数是()A.20°B.30°C.40°D.50°2.(2023•西宁)如图,在△ABC中,∠ACB=90°,分别以点A和点C为圆心,大于AC的长为半径作弧,两弧相交于P,Q两点,作直线PQ交AB,AC于点D,E,连接CD.下列说法错误的是()A.直线PQ是AC的垂直平分线B.CD=ABC.DE=BCD.S△ADE:S四边形DBCE=1:43.(2023•随州)如图,在▱ABCD中,分别以B,D为圆心,大于BD的长为半径画弧,两弧相交于点M,N,过M,N两点作直线交BD于点O,交AD,BC于点E,F,下列结论不正确的是()A.AE=CF B.DE=BF C.OE=OF D.DE=DC4.如图,在△ABC中,∠C=40°,分别以点B和点C为圆心,大于BC的长为半径画弧,两弧相交于M,N两点,作直线MN,交边AC于点D,连接BD,则∠ADB的度数为()A.40°B.50°C.80°D.100°5.(2023•西藏)如图,在△ABC中,∠A=90°,分别以点B和点C为圆心,大于的长为半径画弧,两弧相交于M,N两点;作直线MN交AB于点E.若线段AE=5,AC=12,则BE长为.6.(2023•广元)如图,a∥b,直线l与直线a,b分别交于B,A两点,分别以点A,B为圆心,大于AB 的长为半径画弧,两弧相交于点E,F,作直线EF,分别交直线a,b于点C,D,连接AC,若∠CDA =34°,则∠CAB的度数为.【题型2 角平分线的尺规作图痕迹】满分技巧1、角平分线的画法:2、角平分线的性质:角平分线上的点到角两边的距离相等1.(2023•衢州)如图,在△ABC中,以点A为圆心,适当长为半径画弧,分别交AB,AC于点D,E.分别以点D,E为圆心,大于长为半径画弧,交于∠BAC内一点F.连结AF并延长,交BC于点G.连结DG,EG.添加下列条件,不能使BG=CG成立的是()A.AB=AC B.AG⊥BC C.∠DGB=∠EGC D.AG=AC2.(2023•辽宁)如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,以点A为圆心,适当长为半径作弧,分别交AB,AC于点E,F,分别以点E,F为圆心,大于EF的长为半径作弧,两弧在∠BAC的内部相交于点G,作射线AG,交BC于点D,则BD的长为()A.B.C.D.3.阅读以下作图步骤:①在OA和OB上分别截取OC,OD,使OC=OD;②分别以C,D为圆心,以大于CD的长为半径作弧,两弧在∠AOB内交于点M;③作射线OM,连接CM,DM,如图所示.根据以上作图,一定可以推得的结论是()A.∠1=∠2且CM=DM B.∠1=∠3且CM=DMC.∠1=∠2且OD=DM D.∠2=∠3且OD=DM4.(2023•湖北)如图,矩形ABCD中,AB=3,BC=4,以点B为圆心,适当长为半径画弧,分别交BC,BD于点E,F,再分别以点E,F为圆心,大于长为半径画弧交于点P,作射线BP,过点C作BP 的垂线分别交BD,AD于点M,N,则CN的长为()A.B.C.D.45.(2023•丹东)如图,在四边形ABCD中,AB∥CD,以点B为圆心,以任意长为半径作弧,分别交AB,BC于点E,F,分别以E,F为圆心,以大于长为半径作弧,两弧在∠ABC内交于点P,作射线BP,交AD于点G,交CD的延长线于点H.若AB=AG=4,GD=5,则CH的长为()A.6B.8C.9D.106.(2023•内蒙古)如图,在△ABC中,∠ABC=90°,∠BAC=60°,以点A为圆心,以AB的长为半径画弧交AC于点D,连接BD,再分别以点B,D为圆心,大于BD的长为半径画弧,两弧交于点P,作射线AP交BD于点M,交BC于点E,连接DE,则S△BDE:S△CDE是()A.1:2B.1:C.2:5D.3:87.如图,在▱ABCD中,∠D=60°.以点B为圆心,以BA的长为半径作弧交边BC于点E,连接AE.分别以点A,E为圆心,以大于AE的长为半径作弧,两弧交于点P,作射线BP交AE于点O,交边AD 于点F,则的值为.8.(2023•鞍山)如图,△ABC中,在CA,CB上分别截取CD,CE,使CD=CE,分别以D,E为圆心,以大于的长为半径作弧,两弧在∠ACB内交于点F,作射线CF,交AB于点M,过点M作MN⊥BC,垂足为点N.若BN=CN,AM=4,BM=5,则AC的长为.9.(2023•甘孜州)如图,在平行四边形ABCD(AB<AD)中,按如下步骤作图:①以点A为圆心,以适当长为半径画弧,分别交AB,AD于点M,N;②分别以点M,N为圆心,以大于的长为半径画弧,两弧在∠BAD内交于点P;③作射线AP交BC于点E.若∠B=120°,则∠EAD为°.10.(2023•阜新)如图,在矩形ABCD中,AB=6,AD=8.连接AC,在AC和AD上分别截取AE,AF,使AE=AF,分别以点E和点F为圆心,以大于EF的长为半径作弧,两弧交于点G,作射线AG交CD 于点H,则线段DH的长是.考向二:尺规作图画图【题型3 作一条线段的垂直平分线】满分技巧线段垂直平分线的画图步骤:1、分别以线段两端点为圆心,相同适当长(大于线段的一半)为半径画圆弧,上下各得两个弧的一个交点;2、过两个弧的交点作一条直线,则该直线即为所求作的线段中垂线。
2024中考数学总复习冲刺专题:尺规作图 通用版
“尺规作图”一、教学目标:1.知识与技能:(1)再认识什么是尺规作图,经历五个基本作图的复习与巩固,能在解答题中按要求进行尺规作图(不要求写出具体做法,但需要保留作图痕迹);(2)能在题目中识别出具体是哪种类型的尺规作图,并利用所做的线的性质来解决几何问题。
2.过程与方法:经历五个基本作图的复习与巩固,感受尺规作图的几何意义,规范学生的作图语言,积累一些尺规作图的方法与经验,感受数学的严谨性以及数学结论的确定性。
3.情感、态度与价值观:通过复习尺规作图,进一步加强学生的作图能力,使学生养成良好的动手操作、实践探索、合作交流的学习习惯。
二、教学重点:掌握五个基本尺规作图的作法三、教学难点:能利用尺规作图解决实际问题四、教学过程:知识技能梳理1.尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。
2.五种基本作图:1)作一条线段等于已知线段;2)作已知角的平分线;3)作已知线段的垂直平分线;4)作一个角等于已知角;5)过一点作已知直线的垂线【点在线上、点在线外】。
模块一:五种尺规作图复习1.作一条线段等于已知线段已知:如图所示线段a.求作:线段AB,使AB=a.作法:(1)作射线AP;(2)在射线AP上截取AB=a.则线段AB就是所求作的图形。
2.作线段的垂直平分线(中垂线)或中点3.作已知角的平分线已知:如图,∠AOB.求作:射线OP,使∠AOP=∠BOP(即OP平分∠AOB).作法:(1)以O为圆心,任意长度为半径画弧,分别交OA,OB于M,N;(2)分别以M、N为圆心,大于的线段长为半径画弧,两弧交∠AOB内于P;作射线OP。
则射线OP就是∠AOB的角平分线。
4.作一个角等于已知角已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:1)作射线O′A′;2)以O为圆心,任意长度为半径画弧,交OA于M,交OB于N;3)以O′为圆心,以OM的长为半径画弧,交O′A′于M′;4)以M′为圆心,以MN的长为半径画弧,交前弧于N′;5)连接O′N′并延长到B′。
2024年中考数学微专题复习+尺规作图+课件
+ +
= , = +
10.[原创新题]如图,一次函数 y = 3x 与反比例函数
y=
k
x
x > 0 的图象交于点 A 1, a ,点 B 在 x 轴正半轴
上.
(1)求反比例函数的表达式.
[答案] 将 , 代入 = ,得 = , ∴ , . 将 , 代入 =
[答案] ∵ 四边形 是菱形, ∴ = , // ,
∴△ ∼△ , ∴
=
.
设 = ,则 = − ,
∴
−
=
,解得
= ,
∴ 中所作菱形 的边长为6.
5.[2023洛阳二模] 如图,在 △ ABC 中,
∴ = , ∴ ∠ = ∠ , ∴ ∠ = ∠ , ∴ // , ∴ △ =
△ = .
8.[原创新题]如图,点 A , B 在反比例函数
y=
k
x
x > 0 的图象上, AC ⊥ x 轴于点 C , BD ⊥ x
轴于点 D .已知 OC =
=
.
4.如图,已知 △ ABC .
(1)请用无刻度的直尺和圆规在边 BC , CA , AB 上
分别确定点 D , E , F ,使四边形 BDEF 是菱形,并画
出菱形 BDEF (要求:不写作法,保留作图痕迹).
[答案] 如图所示,菱形 即为所求.
(2)若 AB = 10 , BC = 15 ,求(1)中所作菱形 BDEF 的边长.
(完整版)中考数学尺规作图专题复习(含答案)
中考尺规作图专题复习(含答案)尺规作图定义:用无刻度的直尺和圆规画图,中考中常见画的图是线段的垂线,垂直平分线,角平分线、画等长的线段,画等角。
1.直线垂线的画法:【分析】:以点C为圆心,任意长为半径画弧交直线与A,B两点,再分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线l两侧于点M,N,连接MN,则MN即为所求的垂线2.线段垂直平分线的画法【分析】:作法如下:分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线AB两侧于点C,D,连接CD,则CD即为所求的线段AB的垂直平分线.3.角平分线的画法【分析】1.选角顶点O为圆心,任意长为半径画圆,分别交角两边A,B点,再分别以A,B为圆心,大于12AB的长为半径画圆弧,交H点,连接OH,并延长,则射线OH即为所求的角平分线.4.等长的线段的画法直接用圆规量取即可。
5.等角的画法【分析】以O为圆心,任意长为半径画圆,交原角的两边为A,B两点,连接AB;画一条射线l,以上面的那个半径为半径,l的顶点K为圆心画圆,交l与L,以L为圆心,AB 为半径画圆,交以K为圆心,KL为半径的圆与M点,连接KM,则角LKM即为所求.备注:1.尺规作图时,直尺主要用作画直线,射线,圆规主要用作截取相等线段和画弧;2.求作一个三角形,其实质是依据三角形全等的基本事实或判定定理来进行的;3.当作图要满足多个要求时,应逐个满足,取公共部分.例题讲解例题1.已知线段a,求作△ABC,使AB=BC=AC=a.解:作法如下:①作线段BC=a;(先作射线BD,BD截取BC=a).②分别以B、C为圆心,以a半径画弧,两弧交于点A;③连接AB、AC.则△ABC 要求作三角形.例2.已知线段a 和∠α,求作△ABC ,使AB=AC=a ,∠A=∠α.解:作法如下:①作∠MAN=∠α;②以点A 为圆心,a 为半径画弧,分别交射线AM ,AN 于点B ,C. ③连接B ,C.△ABC 即为所求作三角形.例3.(深圳中考)如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA +PC =BC ,则下列选项中,正确的是(D )【解析】由题意知,做出AB 的垂直平分线和BC 的交点即可。
2024陕西中考数学二轮专题训练 题型四 尺规作图 (含答案)
2024陕西中考数学二轮专题训练题型四尺规作图【题型解读】尺规作图近7年每年解答题考查1道,分值均为5分,题目不会明确说明作图方式,需要将题目信息转化一次,得出要作的基本图形.已考基本作图:①过一点作已知直线的垂线;②作一个角等于已知角;③作线段的垂直平分线;④作角平分线.考查形式包含:①找一点到两直线距离相等;②过一点作直线平分三角形的面积;③过一点作直线分直角三角形为两个相似三角形;④在正方形中作已知三角形的相似三角形;⑤作等腰三角形的外接圆;⑥作一个角等于已知角.1.如图,已知矩形ABCD,连接AC,请用尺规作图法,在AC上求作一点P,使得△DPA∽△AB C.(保留作图痕迹,不写作法)2.如图,在Rt△ABC中,∠BAC=90°,请用尺规作图法,在BC边上求作一点P,使得AP的长最小.(保留作图痕迹,不写作法)3.如图,已知四边形ABCD是矩形,请用尺规作图法,分别在AD、BC边上求作点E、F,使得四边形BEDF为菱形.(保留作图痕迹,不写作法)4.如图,在△ABC中,AB=AC,∠BAC的平分线AD交BC于点D.请用尺规在AD上找一点P,使得点P到AB的距离等于PD.(保留作图痕迹,不写作法)5.如图,在△ABC中,BD是△ABC的中线,请用尺规作图法,在BC边上求作一点P,=S△BC D.(保留作图痕迹,不写作法)使得S△ABP6.如图,已知∠AOB=30°,点M在边OA上.请用尺规作图法,在OB边上求作一点P,使得∠MPO=60°.(保留作图痕迹,不写作法)7.如图,在菱形ABCD中,∠ABC=60°,请用尺规作图法,在对角线BD上求作一点P,使得PD=2BP.(保留作图痕迹,不写作法)8.如图,在平行四边形ABCD中,∠A=60°,BE平分∠ABC交AD于点E.请用尺规作图法,求作⊙E,使得⊙E与AB、BC均相切.(保留作图痕迹,不写作法)9.如图,AB是半圆的直径,在半圆上求作一点C,使得∠CBA=2∠CA B.(保留作图痕迹,不写作法)10.如图,△ABC是一块等边三角形的铁皮,AD是△ABC的中线,工人师傅想在AD上找一点P,然后沿AP、BP、CP裁剪,得到三块面积相等的小三角形铁皮.请用尺规作图法,帮助工人师傅确定点P的位置.(保留作图痕迹,不写作法)11.如图,在Rt△ABC中,∠BAC=90°,∠C=30°,AD是中线,请用尺规作图法,在AC边上求作一点P,使得BP平分∠APD.(保留作图痕迹,不写作法)12.如图,在正方形ABCD中,点E是BC的中点,请用尺规作图法,在CD边上求作一点F,使得△ABE的面积等于△ECF面积的4倍.(保留作图痕迹,不写作法)13.如图,已知点A是⊙O上任意一点,请用尺规作图法,作⊙O的内接矩形ABCD,且该矩形的面积最大.(保留作图痕迹,不写作法)14.如图,在6×6的正方形网格中,已知△ABC和△CDE的顶点A、B、C、D、E均在格点上.要求仅用一把无刻度的直尺,按下列要求作图.(1)在图①中,以BD为斜边作一个等腰直角△BDF;(2)在图②中,作出点C关于DE的对称点C′.第14题图参考答案1.解:如解图①②,点P即为所求.第1题解图2.解:如解图①②,点P即为所求.第2题解图3.解:如解图①②,点E、F即为所求.第3题解图4.解:如解图①②,点P即为所求.第4题解图5.解:如解图①②,点P即为所求.第5题解图6.解:如解图①②,点P即为所求.第6题解图7.解:如解图①②,点P即为所求.第7题解图8.解:如解图①②,⊙E即为所求.第8题解图9.解:如解图①②,点C即为所求.第9题解图10.解:如解图①②,点P即为所求.第10题解图11.解:如解图①②,点P即为所求.第11题解图12.解:如解图①②,点F即为所求.第12题解图13.解:如解图①②,矩形ABCD即为所求.第13题解图14.解:(1)如解图①,△BDF即为所求;图①(2)如解图②,点C′即为所求.图②第14题解图。
【中考数学考点复习】第一节 尺规作图 课件(23张PPT)
直平分
线(已 知线段 结论:AB⊥l
, AB)
AO=OB
到线段两
1.分别以点A,B为圆心,大于
个端点距
1
__2_A__B___的长为半径,在AB两侧 离相等的
作弧,两弧交于两点;
点在这条
2.连接两弧交点所成直线l即为所求 线段的垂
作的垂直平分线
直平分线
上
第一节 尺规作图
类型
步骤
五种基本 尺规作图
第一节 尺规作图
返回目录
成都10年真题及拓展
尺规作图的相关计算
1. 如图,在△ABC 中,按以下步骤作图:①分别以点 B 和点 C 为圆心,
以大于 12BC 的长为半径作弧,两弧相交于点 M 和 N;②作直线 MN 交
AC 于点 D,连接 BD.若 AC=6,AD=2,则 BD 的长为( C )
A.2
的两侧;
到线段两 2.以点P为圆心,PM的长为半径作弧
个端点距 ,交直线l于点A和点B,可得到PA=
PB;
离相等的
1
3大.分于别2以AB点A、点B为圆心,以
点在这条 线段的垂
________长为半径作弧,交点M的
直平分线
同侧于点N,可得到AN=BN;
上
4连接PN,则直线PN即为所求作的垂
线
第一节 尺规作图
长为( C )
A.252 3 C.20
B.12 3 D.15
第9题图
第一节 尺规作图
返回目录
10.人教版初中数学教科书八年级上册第 35-36 页告诉我们作一个三角 形与已知三角形全等的方法: 已知:△ABC. 求作:△A′B′C′,使得△A′B′C′≌△ABC. 作法:如图.
中考数学知识点复习:尺规作图全面版
如何利用尺规作图解决最值问题?
最值问题的求解
最值问题是一类求解最优解的问题,可以利用尺规作图来解决。例如,在几何、代数等领域中,经常需要使用尺规作 图来求解最值问题。
作图方法
利用尺规作图求解最值问题,需要先了解问题的具体内容,然后根据问题内容进行尺规作图。在作图过程中,需要注 意图形绘制的准确性和规范性,以保证求解的准确性。
03
多边形的尺规作图
作已知线段的垂线
01
总结词:通过一个已知点,作 已知线段的垂线,是尺规作图
的基础。
02
详细描述
03
04
1. 分别以线段的两个端点为 圆心,以大于线段的一半为半 径画圆弧,得到两个交点。
2. 连接两个交点,得到的直 线即为已知线段的垂线。
已知二线段平行的垂线段的中垂线
总结词:找到一个已知的平行线段的中垂线,是尺规作 图的进阶技能。
1. 以平行线段的一个端点为圆心,以适当长度为半径画 圆弧,与平行线段相交于两点。
详细描述
2. 连接这两个交点得到的直线即为已知平行线段的中垂 线。
作已知直线的平行线
01
总结词:通过一个已知点,作已知直线的平行线,是尺规作图的基本 技能之一。
02
详细描述
03
1. 以已知点为圆心,以适当长度为半径画圆弧,与直线相交于两点。
04
2. 连接这两个交点得到的直线即为已知直线的平行线。
作已知二线段的中垂线
01 总结词:通过两个已知点,作已知二线段 的中垂线,是尺规作图的高级技能。
02
详细描述
Hale Waihona Puke 031. 以两个已知点为圆心,以适当长度为半 径画圆弧,得到两个交点。
04
中考数学专题练习:尺规作图(含答案)
中考数学专题练习:尺规作图(含答案)1.(·随州)如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是( )A. 以点F为圆心,OE长为半径画弧B. 以点F为圆心,EF长为半径画弧C. 以点E为圆心,OE长为半径画弧D. 以点E为圆心,EF长为半径画弧2.(·河北) 尺规作图要求,Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.做线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线.Ⅳ.作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是( )A.①—Ⅳ,②—Ⅱ,③—Ⅰ,④—ⅢB.①—Ⅳ,②—Ⅲ,③—Ⅱ,④—ⅠC.①—Ⅱ,②—Ⅳ,③—Ⅲ,④—ⅠD.①—Ⅳ,②—Ⅰ,③—Ⅱ,④—Ⅲ3.(·潍坊) 如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段AB,分别以A,B为圆心,以AB长为半径作弧,两弧的交点为C;(2)以C为圆心,仍以AB长为半径作弧交AC的延长线于点D;(3)连接BD,BC.下列说法不正确的是( ) A. ∠CBD=30°B. S △BDC =34AB 2 C. 点C 是△ABD 的外心 D. sin 2A +cos 2D =14. (·湖州) 尺规作图特有魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r 的⊙O 六等分,依次得到A 、B 、C 、D 、E 、F 六个分点; ②分别以A ,D 为圆心,AC 长为半径画弧,G 是两弧的一个交点; ③连接OG.问:OG 的长是多少?大臣给出的正确答案应是( ) 3rB. (1+22)r C. (1+32)rD. 2r5. (·河南) 如图,已知▱AOBC 的顶点O(0,0),A(-1,2),点B 在x 轴正半轴上按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交边OA ,OB 于点D ,E ;②分别以点D ,E 为圆心,大于12DE 的长为半径作弧,两弧在∠AOB 内交于点F ;③作射线OF ,交边AC 于点G.则点G 的坐标为( )A.(5-1,2) B. (5,2)C.(3-5,-2) D. (5-2,2)6.(·南通) 如图,Rt△ABC中,∠ACB=90°,CD平分∠ACB交AB于点D,按下列步骤作图.步骤1:分别以点C和点D为圆心,大于12CD的长为半径作弧,两弧相交于M,N两点;步骤2:作直线MN,分别交AC,BC于点E,F;步骤3:连接DE,DF.若AC=4,BC=2,则线段DE的长为( )A. 53B.32C. 2D.437.(·南京) 如图,在△ABC中,用直尺和圆规作AB、AC的垂直平分线,分别交AB、AC于点D、E,连接DE.若BC=10 cm,则DE=________cm.8.(·山西) 如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于12CD长为半径作弧,两弧在∠NA B内交于点E;③作射线AE交PQ于点F.若AB=2,∠ABP=60°,则线段AF的长为______.9.(·创新) 下面是“作一个30°角”的尺规作图过程.已知:平面内一点A.求作:∠A,使得∠A=30°.作图:如图,(1)作射线AB;(2)在射线AB上取一点O,以O为圆心,OA为半径作圆,与射线AB相交于点C;(3)以C为圆心,OC为半径作弧,与⊙O交于点D,作射线AD,∠DAB即为所求的角.请回答:该尺规作图的依据是__________________________________________________________________________________________________________.10.(·广东) 如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.11.(·福建)求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC及线段A′B′,∠A′(∠A′=∠A).以线段A′B′为一边,在给出的图形上用尺规作出△A′B′C′,使得:△A′B′C′∽△ABC.不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.12.(·北京) 下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线及直线外一点P.求作:PQ,使得PQ∥l.作法:如图,①在直线上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.∴直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=________,CB=________,∴PQ∥l(____________________________________)(填推理的依据).13.(·绥化) 如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,D、E分别是斜边AB、直角边BC上的点,把△ABC沿着直线DE折叠.(1)如图1,当折叠后点B和点A重合时,用直尺和圆规作出直线DE (不写作法和证明,保留作图痕迹).(2)如图2,当折叠后点B落在AC边上点P处,且四边形PEBD是菱形时,求折痕DE的长.参考答案【基础训练】1.D 2.D 3.D 4.D 5.A 6.D7.5 8.2 39.直径所对的圆周角是直角,等边三角形的每个内角为60°,直角三角形两锐角互余等10.解:(1)如解图所示;(2)∵菱形ABCD,∠CBD=75°,∴CD=CB,∠CBD=∠CDB=75°,∴∠C=180°-∠CBD-∠CDB=180°-75°-75°=30°,∴∠A=∠C=30°,∵EF是AB的垂直平分线,∴∠A=∠FBA=30°,∵∠ABD=∠CBD=75°,∴∠DBF=∠ABD-∠FBA=75°-30°=45°.11.解:①如解图,△A′B′C′即为所求作的三角形.②已知:△A′B′C′∽△ABC,CD和C′E分别为AB和A′B′边上的中线,求证:CDC′E=BCB′C′.证明:∵C D和C′E分别为AB和A′B′边上的中线,∴BD=12AB,B′E=12A′B′,∴BDAB=B′EA′B′=12,∴BDB′E=ABA′B′,∵△A′B′C′∽△ABC,∴∠CBA=∠C′B′A′,BCB′C′=ABA′B′,∴BDB′E=BCB′C′,∴△B′C′E∽△BCD,∴CDC′E=BCB′C′.12.解:(1)尺规作图如解图所示:(2)PA,CQ,三角形中位线平行于三角形的第三边.13.解:(1)如解图1,DE为所求作的直线.(2)如解图2,连接BP,∵四边形PEBD是菱形,∴PE=BE,设CE=x,则BE=PE=4-x,∵PE∥AB,∴△PCE∽△ACB,∴CECB=PEAB,∴x4=4-x5,∴x=169,∴CE=169,∴BE=PE=209,在Rt△PCE中,∵PE=209,CE=169,∴PC=43在Rt△PCB中,∵PC=43,BC=4,∴BP=4310,又∵S菱形PEBD =BE·PC=12DE·BP,∴12×4310DE=209×43,∴DE=4910.。
中考数学专题训练-尺规作图 (3)(原卷版)
中考数学专题训练-尺规作图 (3)1.尺规作图的定义:只用不带刻度的直尺和圆规通过有限次操作,完成画图的一种作图方法.尺规作图可以要求写作图步骤,也可以要求不一定要写作图步骤,但必须保留作图痕迹。
2.尺规作图的五种基本情况 (1)作一条线段等于已知线段; (2)作一个角等于已知角; (3)作已知线段的垂直平分线; (4)作已知角的角平分线; (5)过一点作已知直线的垂线。
3.对尺规作图题解法写出已知,求作,作法(不要求写出证明过程)并能给出合情推理。
4.中考要求(1)能完成以下基本作图:作一条线段等于已知线段,作一个角等于已知角,作角的平分线,作线段的垂直平分线.(2)能利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形. (3)能过一点、两点和不在同一直线上的三点作圆.(4)了解尺规作图的步骤,对于尺规作图题,会写已知、求作和作法(不要求证明).【例题1】 如图,已知线段AB ,分别以A ,B 为圆心,大于12AB 同样长为半径画弧,两弧交于点C ,D ,连接AC ,AD ,BC ,BD ,CD ,则下列说法错误的是( )A .AB 平分∠CADB .CD 平分∠ACBC .AB ⊥CDD .AB =CD【对点练习】 如图,小红在作线段AB 的垂直平分线时,是这样操作的:分别以点A ,B 为圆心,大于线段AB 长度一半的长为半径画弧,相交于点C ,D ,则直线CD 即为所求.连结AC ,BC ,AD ,BD ,根据她的作图方法可知,四边形ADBC 一定是( )A.矩形B.菱形C.正方形D.等腰梯形【例题2】 如图,在Rt △ABC 中,∠ACB =90°,AC =2BC ,分别以点A 和B 为圆心,以大于12AB 的长为半径作弧,两弧相交于点M 和N ,作直线MN ,交AC 于点E ,连接BE ,若CE =3,则BE 的长为 . 【对点练习】 如图,BD 是矩形ABCD 的对角线,在BA 和BD 上分别截取BE ,BF ,使BE =BF ;分别以E ,F 为圆心,以大于EF 的长为半径作弧,两弧在∠ABD 内交于点G ,作射线BG 交AD 于点P ,若AP =3,则点P 到BD 的距离为 .【例题3】如图,在△ABC中,D是BC边上一点,且BD=BA.(1)尺规作图(保留作图痕迹,不写作法):①作∠ABC的角平分线交AD于点E;②作线段DC的垂直平分线交DC于点F.(2)连接EF,直接写出线段EF和AC的数量关系及位置关系.【对点练习】如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).一、选择题1.如图1,已知∠ABC,用尺规作它的角平分线.如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D ,E 为圆心,以b 为半径画弧,两弧在∠ABC 内部交于点P ; 第三步:画射线BP .射线BP 即为所求. 下列正确的是( )A .a ,b 均无限制B .a >0,b >12DE 的长 C .a 有最小限制,b 无限制D .a ≥0,b <12DE 的长2. 如图,Rt △ABC 中,∠ABC =90°,根据尺规作图的痕迹判断以下结论错误的是( )A .DB =DEB .AB =AEC .∠EDC =∠BACD .∠DAC =∠C3. 如图,Rt △ABC 中,∠C =90°,利用尺规在BC ,BA 上分别截取BE ,BD ,使BE =BD ;分别以D ,E 为圆心、以大于12DE 的长为半径作弧,两弧在∠CBA 内交于点F ;作射线BF 交AC 于点G .若CG =1,P 为AB 上一动点,则GP 的最小值为( )A .无法确定B .12C .1D .24. 如图,已知△ABC (AC <BC ),用尺规在BC 上确定一点P ,使PA+PC=BC ,则符合要求的作图痕迹是( )A .B .C .D .5. 已知M 、N 是线段AB 上的两点,AM =MN =2,NB =1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连接AC ,BC ,则△ABC 一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形6. 如图,Rt △ABC 中,∠C =90°,∠B =30°,分别以点A 和点B 为圆心,大于AB 的长为半径作弧,两弧相交于M 、N 两点,作直线MN ,交BC 于点D ,连接AD ,则∠CAD 的度数是( )A .20°B .30°C .45°D .60°7. 用直尺和圆规作一个角等于已知角,如图,能得出∠A ′O ′B ′=∠AOB 的依据是( )A .(SAS )B . (SSS )C . (ASA )D . (AAS )二、填空题8. 如图,已知∠MON 是一个锐角,以点O 为圆心,任意长为半径画弧,分别交OM 、ON 于点A 、B ,再分别以点A 、B 为圆心,大于12AB 长为半径画弧,两弧交于点C ,画射线OC .过点A 作AD ∥ON ,交射线OC 于点D ,过点D 作DE ⊥OC ,交ON 于点E .设OA =10,DE =12,则sin ∠MON = .9. 如图,在Rt △ABC 中,∠C =90°,以顶点B 为圆心,适当长度为半径画弧,分别交AB ,BC 于点M ,N ,再分别以点M ,N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D .若∠A =30°,则= .10. 如图, 矩形ABCD , ∠BAC =600. 以点A 为圆心,以任意长为半径作弧分别交A B.AC 于点M 、N 两点,再分别以点M 、N 为圆心,以大于21MN 的长为半径作弧交于点P ,作射线AP 交BC 于点E ,若BE =1,则矩形ABCD 的面积等于___________.三、解答题(一)11. 如图,已知△ABC ,AC >AB ,∠C =45°.请用尺规作图法,在AC 边上求作一点P ,使∠PBC =45°.(保留作图痕迹.不写作法)12. 人教版初中数学教科书八年级上册第48页告诉我们一种作已知角的平分线的方法: 已知:∠AOB .求作:∠AOB 的平分线.作法:(1)以点O 为圆心,适当长为半径画弧,交OA 于点M ,交OB 于点N .(2)分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在∠AOB 的内部相交于点C . (3)画射线OC ,射线OC 即为所求(如图). 请你根据提供的材料完成下面问题.(1)这种作已知角的平分线的方法的依据是 .(填序号) ①SSS ②SAS ③AAS ④ASA(2)请你证明OC为∠AOB的平分线.13.如图,C为线段AB外一点.(1)求作四边形ABCD,使得CD∥AB,且CD=2AB;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的四边形ABCD中,AC,BD相交于点P,AB,CD的中点分别为M,N,求证:M,P,N三点在同一条直线上.14.已知:如图,△ABC为锐角三角形,AB=AC,CD∥AB.求作:线段BP,使得点P在直线CD上,且∠ABP=12∠BAC.作法:①以点A为圆心,AC长为半径画圆,交直线CD于C,P两点;②连接BP.线段BP就是所求作的线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵CD∥AB,∴∠ABP=.∵AB=AC,∴点B在⊙A上.又∵点C,P都在⊙A上,∴∠BPC=12∠BAC()(填推理的依据).∴∠ABP=12∠BAC.15.如图,点O在∠ABC的边BC上,以OB为半径作⊙O,∠ABC的平分线BM交⊙O于点D,过点D作DE ⊥BA于点E.(1)尺规作图(不写作法,保留作图痕迹),补全图形;(2)判断⊙O与DE交点的个数,并说明理由.16.如图,在△ABC中,利用尺规作图,画出△ABC的外接圆或内切圆(任选一个.不写作法,必须保留作图痕迹)17. 请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图①,四边形ABCD中,AB=AD,∠B=∠D,画出四边形ABCD的对称轴m;(2)如图②,四边形ABCD中,AD∥BC,∠A=∠D,画出BC边的垂直平分线n.18. 如图,在Rt △ABC 中,∠ACB =90°,AC =2,BC =3. (1)尺规作图:不写作法,保留作图痕迹. ①作∠ACB 的平分线,交斜边AB 于点D ; ②过点D 作BC 的垂线,垂足为点E . (2)在(1)作出的图形中,求DE 的长.19. 如图,在△ABC 中,点D 是AB 边上的一点.(1)请用尺规作图法,在△ABC 内,求作∠ADE .使∠ADE =∠B ,DE 交AC 于E ;(不要 求写作法,保留作图痕迹) (2)在(1)的条件下,若DB AD =2,求ECAE的值.20. 尺规作图(只保留作图痕迹,不要求写出作法):如图,已知△ABC,请根据“SAS”基本事实作出△DEF,使△DEF≌△AB C.21. 如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.22. 如图,Rt△ABC中,∠ACB=90°,一同学利用直尺和圆规完成如下操作:①以点C为圆心,以CB为半径画弧,交AB于点G;分别以点G、B为圆心,以大于GB的长为半径画弧,两弧交点K,作射线CK;②以点B为圆心,以适当的长为半径画弧,交BC于点M,交AB的延长线于点N;分别以点M、N为圆心,以大于MN的长为半径画弧,两弧交于点P,作直线BP交AC的延长线于点D,交射线CK于点E.请你观察图形,根据操作结果解答下列问题;(1)线段CD与CE的大小关系是;(2)过点D作DF⊥AB交AB的延长线于点F,若AC=12,BC=5,求tan∠DBF的值.23. 下面是小元设计的“经过已知直线外一点作这条直线的垂线”的尺规作图过程.已知:如图1,直线l和l外一点P.求作:直线l的垂线,使它经过点P.作法:如图2,(1)在直线l上任取一点A;(2)连接AP,以点P为圆心,AP长为半径作弧,交直线l于点B(点A,B不重合);(3)连接BP,作∠APB的角平分线,交AB于点H;(4)作直线PH,交直线l于点H.所以直线PH就是所求作的垂线.根据小元设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵PH平分∠APB,∴∠APH= .∵PA= ,∴PH⊥直线l于H.( )(填推理的依据)24. 已知:在△ABC中,AB=A C.(1)求作:△ABC的外接圆.(要求:尺规作图,保留作图痕迹,不写作法)(2)若△ABC的外接圆的圆心O到BC边的距离为4,BC=6,则S⊙O=.25. 如图,⊙O的直径AB=10,弦AC=8,连接B C.(1)尺规作图:作弦CD,使CD=BC(点D不与B重合),连接AD;(保留作图痕迹,不写作法)(2)在(1)所作的图中,求四边形ABCD的周长.四、解答题(二)26.已知线段a 、b ,画一条线段,使其等于b a 2 .27.如下图,已知线段a 和b ,求作一条线段AD 使它的长度等于2a -b .28.求作一个角等于已知角∠MON (如图1).图(1) 图(2)29.如下图,已知∠α及线段a ,求作等腰三角形,使它的底角为α,底边为a .30.如图(1),已知直线AB 及直线AB 外一点C ,过点C 作CD ∥AB (写出作法,画出图形)图(1) 图(2)31.正在修建的中山北路有一形状如下图所示的三角形空地需要绿化.拟从点A 出发,将△ABC 分成面积相等的三个三角形,以便种上三种不同的花草,请你帮助规划出图案(保留作图痕迹,不写作法).32.已知∠AOB,求作∠AOB的平分线OC.图(1)图(2)33.如图(1)所示,已知线段a、b、h(h<b).求作△ABC,使BC=a,AB=b,BC边上的高AD=h.图(1)34.如图,已知线段a,b,求作Rt△ABC,使∠ACB=90°,BC=a,AC=b(用直尺和圆规作图,保留作图痕迹).35.如图,已知钝角△ABC,∠B是钝角.求作:(1)BC边上的高;(2)BC边上的中线(写出作法,画出图形).。
2024年中考数学一轮复习考点精析与真题精讲—尺规作图
2024年中考数学一轮复习考点精析与真题精讲—尺规作图→➊考点精析←一、尺规作图1.尺规作图的定义:在几何里,把限定用没有刻度的直尺和圆规来画图称为尺规作图.2.五种基本作图1)作一条线段等于已知线段;2)作一个角等于已知角;3)作一个角的平分线;4)作一条线段的垂直平分线;5)过一点作已知直线的垂线.3.根据基本作图作三角形1)已知三角形的三边,求作三角形;2)已知三角形的两边及其夹角,求作三角形;3)已知三角形的两角及其夹边,求作三角形;4)已知三角形的两角及其中一角的对边,求作三角形;5)已知直角三角形一直角边和斜边,求作直角三角形.4.与圆有关的尺规作图1)过不在同一直线上的三点作圆(即三角形的外接圆);2)作三角形的内切圆.5.有关中心对称或轴对称的作图以及设计图案是中考常见类型.6.作图题的一般步骤(1)已知;(2)求作;(3)分析;(4)作法;(5)证明;(6)讨论.其中步骤(3)(4)(5)(6)一般不作要求,但作图中一定要保留作图痕迹.二、尺规作图的方法1.尺规作图的关键1)先分析题目,读懂题意,判断题目要求作什么;2)读懂题意后,再运用几种基本作图方法解决问题.2.根据已知条件作等腰三角形或直角三角形求作三角形的关键是确定三角形的三个顶点,作图依据是三角形全等的判定,常借助基本作图来完成,如作直角三角形就先作一个直角.尺规作图是指用没有刻度的直尺和圆规作图。
尺规作图可以作出许多基本图形,如线段、角、等腰三角形、矩形、正方形、正五边形、正六边形等。
一、平行线的尺规作法:已知直线a和直线外一点A,过点A作已知直线的平行线b。
1.用直尺以点A为圆心,适当长为半径画弧,交直线a于点C和点D。
2.分别以点C、D为圆心,大于二分之一CD的长为半径画弧,两弧相交于点E。
3.连接AE,并延长AE交直线b于点B。
4.直线AB就是所求作的平行线。
已知直线a和直线外一点A,过点A作已知直线的平行线b。
完整版)中考数学尺规作图专题复习(含答案)
完整版)中考数学尺规作图专题复习(含答案)尺规作图是用无刻度的直尺和圆规画图的方法,常见的作图包括线段的垂线、垂直平分线、角平分线、等长线段和等角。
以下是各种作图的具体方法:1.直线垂线的画法:以点C为圆心,任意长为半径画弧交直线与A、B两点,再以点A、B为圆心,大于AB的长为半径画圆弧,分别交直线l两侧于点M、N,连接MN,即可得到所求的垂线。
2.线段垂直平分线的画法:以点A、B为圆心,大于AB的长为半径画圆弧,分别交直线AB两侧于点C、D,连接CD,即可得到线段AB的垂直平分线。
3.角平分线的画法:以角顶点O为圆心,任意长为半径画圆,分别交角两边A、B点,再以A、B为圆心,大于AB的长为半径画圆弧,交点为H,连接OH并延长,即可得到所求的角平分线。
4.等长的线段的画法:直接用圆规量取即可。
5.等角的画法:以O为圆心,任意长为半径画圆,交原角的两边为A、B两点,连接AB;画一条射线l,以上面的半径为半径,l的顶点K为圆心画圆,交l与L,以L为圆心,AB为半径画圆,交以K为圆心,KL为半径的圆与M点,连接KM,则角LKM即为所求。
需要注意的是,直尺主要用于画直线和射线,圆规主要用于截取相等线段和画弧。
在作图时,如果有多个要求,应逐个满足并取公共部分。
例如,对于要求作一个三角形的问题,可以根据三角形全等的基本事实或判定定理来进行作图。
以下是例题解析:例题1:已知线段a,求作△ABC,使AB=BC=AC=a。
作法如下:1.作线段BC=a;2.分别以B、C为圆心,以a半径画弧,两弧交于点A;3.连接AB、AC。
例题2:已知线段a和∠α,求作△ABC,使AB=AC=a,∠A=∠α。
作法如下:1.作∠XXX∠α;2.以点A为圆心,a为半径画弧,分别交射线AM、AN 于点B、C;3.连接B、C。
例题3:已知△ABC,AB<BC,用尺规作图的方法在BC 上取一点P,使得PA+PC=BC。
作法如下:作出AB的垂直平分线,与BC交于点P。
中考数学总复习《尺规作图》专项测试卷带答案
中考数学总复习《尺规作图》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________A层·基础过关1.(2024·深圳中考)在如图的三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是( )A.①②B.①③C.②③D.只有①2.(2024·呼伦贝尔、兴安盟中考)如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,适当长为半径画弧分别交AB,AC于点M和点N,再分别以点M,N为圆心,大于1MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D.若△ACD的面2积为8,则△ABD的面积是( )A.8B.16C.12D.243.(2024·广西中考)如图,在△ABC中,∠A=45°,AC>BC.(1)尺规作图:作线段AB的垂直平分线l,分别交AB,AC于点D,E;(要求:保留作图痕迹,不写作法,标明字母)(2)在(1)所作的图中,连接BE,若AB=8,求BE的长.4.(2024·浙江中考)尺规作图问题:如图1,点E是▱ABCD边AD上一点(不包含A,D),连接CE.用尺规作AF∥CE,F是边BC上一点.小明:如图2以C为圆心,AE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小丽:以点A为圆心,CE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小明:小丽,你的作法有问题.小丽:哦…我明白了!(1)证明:AF∥CE;(2)指出小丽作法中存在的问题.B层·能力提升AC的5.(2024·济南莱芜区模拟)如图,在矩形ABCD中,分别以点A,C为圆心,大于12长为半径画弧,两弧相交于M,N两点;作直线MN,分别交AD,BC于点E,F,连接AF 和CE.已知DE=3,AB=4,则以下四个结论中正确的是( )AC·EF;②AE=5;①S四边形AFCE=12③∠F AC=∠ACF=30°;④EF=2√5.A.①②③B.①②④C.②③④D.①②6.(2024·武汉中考)如图是由小正方形组成的3×4网格,每个小正方形的顶点叫格点.△ABC三个顶点都是格点.仅用无刻度的直尺在给定网格中完成四个画图任务,每个任务的画线不得超过三条.(1)在图(1)中,画射线AD交BC于点D,使AD平分△ABC的面积;(2)在(1)的基础上,在射线AD上画点E,使∠ECB=∠ACB;(3)在图(2)中,先画点F,使点A绕点F顺时针旋转90°到点C,再画射线AF交BC 于点G;(4)在(3)的基础上,将线段AB绕点G旋转180°,画对应线段MN(点A与点M对应,点B与点N对应).7.(2024·绥化中考)已知:△ABC.(1)尺规作图:画出△ABC的重心G.(保留作图痕迹,不要求写作法和证明)(2)在(1)的条件下,连接AG,BG.已知△ABG的面积等于5 cm2,则△ABC的面积是_________cm2.C层·素养挑战8.(2024·淄博淄川区二模)如图,在四边形ABCD中,AB=AD,AB⊥AD,顶点(k>0,x>0)的图象经过C(4,n),D两A(0,2),B(1,0)分别在y轴、x轴上反比例函数y=kx点.(1)求反比例函数的解析式;(2)请用无刻度的直尺和圆规作出线段BC的垂直平分线;(要求:不写作法,保留作图痕迹)(3)线段BC与(2)中所作的垂直平分线分别与BC,AD交于点M,N两点.求点M的坐标.参考答案A层·基础过关1.(2024·深圳中考)在如图的三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是(B)A.①②B.①③C.②③D.只有①2.(2024·呼伦贝尔、兴安盟中考)如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,适当长为半径画弧分别交AB,AC于点M和点N,再分别以点M,N为圆心,大于1MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D.若△ACD的面2积为8,则△ABD的面积是(B)A.8B.16C.12D.243.(2024·广西中考)如图,在△ABC中,∠A=45°,AC>BC.(1)尺规作图:作线段AB的垂直平分线l,分别交AB,AC于点D,E;(要求:保留作图痕迹,不写作法,标明字母)【解析】(1)图形如图所示:(2)在(1)所作的图中,连接BE,若AB=8,求BE的长.【解析】(2)∵DE垂直平分线段AB,∴EB=EA∴∠EBA=∠A=45°,∴∠BEA=90°AB=4∵BD=DA,∴DE=DB=DA=12∴BE=√2BD=4√2.4.(2024·浙江中考)尺规作图问题:如图1,点E是▱ABCD边AD上一点(不包含A,D),连接CE.用尺规作AF∥CE,F是边BC上一点.小明:如图2以C为圆心,AE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小丽:以点A为圆心,CE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小明:小丽,你的作法有问题.小丽:哦…我明白了!(1)证明:AF∥CE;【解析】(1)根据小明的作法知,CF=AE∵四边形ABCD是平行四边形∴AD∥BC,又∵CF=AE∴四边形AFCE是平行四边形∴AF∥CE;(2)指出小丽作法中存在的问题.【解析】(2)以A为圆心,EC为半径画弧,交BC于点F,此时可能会有两个交点,只有其中之一符合题意.故小丽的作法有问题.B层·能力提升AC的5.(2024·济南莱芜区模拟)如图,在矩形ABCD中,分别以点A,C为圆心,大于12长为半径画弧,两弧相交于M,N两点;作直线MN,分别交AD,BC于点E,F,连接AF 和CE.已知DE=3,AB=4,则以下四个结论中正确的是(B)AC·EF;②AE=5;①S四边形AFCE=12③∠F AC=∠ACF=30°;④EF=2√5.A.①②③B.①②④C.②③④D.①②6.(2024·武汉中考)如图是由小正方形组成的3×4网格,每个小正方形的顶点叫格点.△ABC三个顶点都是格点.仅用无刻度的直尺在给定网格中完成四个画图任务,每个任务的画线不得超过三条.(1)在图(1)中,画射线AD交BC于点D,使AD平分△ABC的面积;(2)在(1)的基础上,在射线AD上画点E,使∠ECB=∠ACB;(3)在图(2)中,先画点F,使点A绕点F顺时针旋转90°到点C,再画射线AF交BC 于点G;(4)在(3)的基础上,将线段AB绕点G旋转180°,画对应线段MN(点A与点M对应,点B与点N对应).【解析】(1)如图(1)中,线段AD即为所求;(2)如图(1)中,点E即为所求;(3)如图(2)中,点C,射线AF,点G即为所求;(4)如图(2)中,线段MN即为所求.7.(2024·绥化中考)已知:△ABC.(1)尺规作图:画出△ABC的重心G.(保留作图痕迹,不要求写作法和证明)【解析】(1)分别作出AB边和BC边的垂直平分线,与AB和BC边分别交于点N 和点M连接AM和CN如图所示,点G即为所求作的点.(2)在(1)的条件下,连接AG,BG.已知△ABG的面积等于5 cm2,则△ABC的面积是_________cm2.答案:15【解析】(2)∵点G是△ABC的重心∴AG=2MG∵△ABG的面积等于5 cm2∴△BMG的面积等于2.5 cm2∴△ABM的面积等于7.5 cm2.又∵AM是△ABC的中线∴△ABC的面积等于15 cm2.C层·素养挑战8.(2024·淄博淄川区二模)如图,在四边形ABCD中,AB=AD,AB⊥AD,顶点A(0,2),B(1,0)分别在y轴、x轴上反比例函数y=k(k>0,x>0)的图象经过C(4,n),D两x点.(1)求反比例函数的解析式;【解析】(1)过点D作DT⊥OA于点T.∵A(0,2),B(1,0)∴OA=2,OB=1∵AB⊥AD,DT⊥OT∴∠DTA=∠DAB=∠AOB=90°∵∠DAT+∠OAB=90°,∠OAB+∠ABO=90°,∴∠DAT=∠ABO ∵AD=AB∴△DTA≌△AOB(AAS)∴AT=OB=1,DT=AO=2∴OT=OA+AT=3∴D(2,3)∵反比例函数y=kx (k>0,x>0)的图象经过D点,∴3=k2,∴k=6∴反比例函数解析式为y=6x;(2)请用无刻度的直尺和圆规作出线段BC的垂直平分线;(要求:不写作法,保留作图痕迹)【解析】(2)如图,直线MN即为所求;(3)线段BC与(2)中所作的垂直平分线分别与BC,AD交于点M,N两点.求点M的坐标.【解析】(3)∵C(4,n)在y=6x的图象上∴n=32∴C(4,32)∵BM=CM,B(1,0)∴M(4+12,32+02)即M(52,34).第11页共11页。
2024年中考数学复习重难点题型训练—尺规作图(含答案解析)
2024年中考数学复习重难点题型训练—尺规作图(含答案解析)类型一角平分线1.(2022·辽宁营口)如图,在△ABC 中,AB =AC ,∠A =36°,由图中的尺规作图得到的射线与AC 交于点D ,则以下推断错误的是()A .BD BC=B .AD BD =C .108ADB ∠=︒D .12CD AD =【答案】D 【分析】根据作图过程可得BD 平分∠ABC ,然后根据等腰三角形的性质即可解决问题.【详解】解:∵AB =AC ,∠A =36°,∴∠ABC =∠ACB =12(180°-36°)=72°,根据作图过程可知:BD 平分∠ABC ,∴∠ABD =∠DBC =12∠ABC =36°,∴∠BDC =180°-36°-72°=72°,∠ADB =∠DBC +∠ACB =36°+72°=108°,故选项C 成立;∵∠BDC =∠ACB =72°,∴BD =BC ,故选项A 成立;∵∠ABD =∠A =36°,∴AD =BD ,故选项B 成立;没有条件能证明CD =12AD ,故选项D 不成立;故选:D .【点睛】本题考查了作图-基本作图,等腰三角形的判定和性质,解决本题的关键是掌握基本作图方法.2.(2021·湖北中考真题)如图,在Rt ABC 中,90ACB ∠=︒,按以下步骤作图:①以B 为圆心,任意长为半径作弧,分别交BA 、BC 于M 、N 两点;②分别以M 、N 为圆心,以大于12MN 的长为半径作弧,两弧相交于点P ;③作射线BP ,交边AC 于D 点.若10AB =,6BC =,则线段CD 的长为()A .3B .103C .83D .165【答案】A【分析】由尺规作图痕迹可知,BD 是∠ABC 的角平分线,过D 点作DH ⊥AB 于H 点,设DC=DH=x 则AD=AC-DC=8-x ,BC=BH =6,AH=AB-BH =4,在Rt △ADH 中,由勾股定理得到222(8)4x x -=+,由此即可求出x 的值.【详解】解:由尺规作图痕迹可知,BD 是∠ABC 的角平分线,过D 点作DH ⊥AB 于H 点,∵∠C=∠DHB=90°,∴DC=DH ,AC 8===,设DC=DH=x ,则AD=AC-DC=8-x ,BC=BH =6,AH=AB-BH =4,在Rt △ADH 中,由勾股定理:222AD AH DH =+,代入数据:222(8)4x x -=+,解得3x =,故3CD =,故选:A .【点睛】本题考查了角平分线的尺规作图,在角的内部角平分线上的点到角两边的距离相等,勾股定理等相关知识点,熟练掌握角平分线的尺规作图是解决本题的关键.3.(2022·浙江舟山·中考真题)用尺规作一个角的角平分线,下列作法中错误的是()A .B .C .D .【答案】D【分析】根据作图轨迹及角平分线的定义判断即可得出答案.【详解】A 、如图,由作图可知:,OA OC AB BC ==,又∵OB OB =,∴OAB OCB ≅ ,∴AOB COB ∠=∠,∴OB 平分AOC ∠.故A 选项是在作角平分线,不符合题意;B 、如图,由作图可知:,OA OB OC OD ==,又∵COB AOD ∠=∠,∴OBC OAD ≅ ,∴OA OB OAD OBC OCB ODA =∠=∠∠=∠,,,∴AC BD =,∵CEA BED ∠=∠,ECA EDB ∠=∠,∴AEC BED ≅△△,∴AE BE =,∵,EAO EBO OA OB ∠=∠=,∴AOE BOE ∠=∠,∴OE 平分AOB ∠.故B 选项是在作角平分线,不符合题意;C 、如图,由作图可知:,AOB MCN OC CD ∠=∠=,∴CD OB ∥,COD CDO =∠∠,∴DOB CDO ∠=∠,∴COD DOB ∠=∠,∴OD 平分AOB ∠.故C 选项是在作角平分线,不符合题意;D 、如图,由作图可知:,OA BC OC AB ==,又∵OB OB =,∴AOB CBO ≅ ,∴,,AOB OBC COB ABO ∠=∠∠=∠故D 选项不是在作角平分线,符合题意;故选:D【点睛】本题考查了角平分线的作图,全等三角形的性质与判定,掌握以上知识是解题的关键.4.(2022·陕西·中考真题)如图,已知,,ABC CA CB ACD =∠△是ABC 的一个外角.请用尺规作图法,求作射线CP ,使CP AB ∥.(保留作图痕迹,不写作法)【答案】见解析【分析】作ACD ∠的角平分线即可.【详解】解:如图,射线CP 即为所求作.【点睛】本题考查了角平分线、三角形外角的性质、平行线的判定,解题的关键是掌握平行线的判定定理.5.(2021·内蒙古)如图,在Rt ABC 中,90ACB ∠=︒,根据尺规作图的痕迹,判断以下结论错误的是()A .BDE BAC∠=∠B .BAD B =∠∠C .DE DC=D .AE AC=【答案】B【分析】先通过作图过程可得AD 平分∠BAC ,DE ⊥AB ,然后证明△ACD ≌△AED 说明C 、D 正确,再根据直角三角形的性质说明选项A 正确,最后发现只有AE =EB 时才符合题意.【详解】解:由题意可得:AD 平分∠BAC ,DE ⊥AB ,在△ACD 和△AED 中∠AED =∠C ,∠EAD =∠CAD ,AD =AD∴△ACD ≌△AED (AAS )∴DE =DC ,AE =AC ,即C 、D 正确;在Rt △BED 中,∠BDE =90°-∠B在Rt △BED 中,∠BAC =90°-∠B∴∠BDE =∠BAC ,即选项A 正确;选项B ,只有AE =EB 时,才符合题意.故选B .【点睛】本题主要考查了尺规作图、全等三角形的性质与判定、直角三角形的性质,正确理解尺规作图成为解答本题的关键.6..(2022·湖南永州)如图,BD 是平行四边形ABCD 的对角线,BF 平分DBC ∠,交CD 于点F.(1)请用尺规作ADB∠的角平分线DE,交AB于点E(要求保留作图痕迹,不写作法,在确认答案后,请用黑色笔将作图痕迹再填涂一次);(2)根据图形猜想四边形DEBF为平行四边形,请将下面的证明过程补充完整.证明:∵四边形ABCD是平行四边形,∴AD BC∥∵ADB∠=∠______(两直线平行,内错角相等)又∵DE平分ADB∠,BF平分DBC∠,∴12EDB ADB∠=∠,12DBF DBC∠=∠∴EDB DBF∠=∠∴DE∥______(______)(填推理的依据)又∵四边形ABCD是平行四边形∴BE DF∥∴四边形DEBF为平行四边形(______)(填推理的依据).【答案】(1)详见解析(2)∠DBC;BF;内错角相等,两直线平行;两组对边分别相等的四边形是平行四边形【分析】(1)根据作角平分线的步骤作DE平分ADB∠即可;(2)结合图形和已有步骤合理填写即可;(1)解:如图,根据角平分线的作图步骤,得到DE,即为所求;(2)证明:∵四边形ABCD 是平行四边形,∴AD BC∥∵ADB =∠DBC ∠.(两直线平行,内错角相等).又∵DE 平分ADB ∠,BF 平分DBC ∠,∴12EDB ADB ∠=∠,12DBF DBC ∠=∠∴EDB DBF ∠=∠.∴DE ∥BF (内错角相等,两直线平行)(填推理的依据)又∵四边形ABCD 是平行四边形.∴BE DF ∥,∴四边形DEBF 为平行四边形(两组对边分别平行的四边形是平行四边形)(填推理的依据).【点睛】本题主要考查平行四边形的性质、角平分线的性质,掌握相关性质并灵活应用是解题的关键.7.(2022·山东青岛)已知:Rt ABC ,90B ∠=︒.求作:点P ,使点P 在ABC 内部,且,45PB PC PBC =∠=︒.【答案】见解析【分析】分别以点B 、C 为圆心,大于BC 长的一半为半径画弧,交于两点,连接这两点,然后再以点B 为圆心,适当长为半径画弧,交AB 、BC 于点M 、N ,以点M 、N 为圆心,大于MN 长一半为半径画弧,交于一点Q ,连接BQ ,进而问题可求解.【详解】解:如图,点P 即为所求:【点睛】本题主要考查角平分线与垂直平分线的尺规作图,熟练掌握角平分线与垂直平分线的尺规作图是解题的关键.8.(2022·黑龙江绥化)已知:ABC .(1)尺规作图:用直尺和圆规作出ABC 内切圆的圆心O ;(只保留作图痕迹,不写作法和证明)(2)如果ABC 的周长为14cm ,内切圆的半径为1.3cm ,求ABC 的面积.【答案】(1)作图见详解(2)9.1【分析】(1)根据角平分线的性质可知角平分线的交点为三角形内切圆的圆心,故只要作出两个角的角平分线即可;(2)利用割补法,连接OA,OB,OC,作OD⊥AB,OE⊥BC,OF⊥AC,这样将△ABC 分成三个小三角形,这三个小三角形分别以△ABC的三边为底,高为内切圆的半径,利用提取公因式可将周长代入,进而求出三角形的面积.(1)解:如下图所示,O为所求作点,(2)解:如图所示,连接OA,OB,OC,作OD⊥AB,OE⊥BC,OF⊥AC,∵内切圆的半径为1.3cm,∴OD=OF=OE=1.3,∵三角形ABC的周长为14,∴AB+BC+AC=14,则111222 ABC AOB COB AOCS S S S AB OD BC OE AC OF =++=⋅⋅+⋅⋅+⋅⋅△△△△111.3() 1.3149.122AB BC AC =⨯⨯++=⨯⨯=故三角形ABC 的面积为9.1.【点睛】本题考查三角形的内切圆,角平分线的性质,割补法求几何图形的面积,能够将角平分线的性质与三角形的内切圆相结合是解决本题的关键.9.人教版初中数学教科书八年级上册第48页告诉我们一种作已知角的平分线的方法:已知:AOB∠求作:AOB ∠的平分线做法:(1)以O 为圆心,适当长为半径画弧,交OA 于点M ,交OB 于点N ,(2)分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在AOB ∠的内部相交于点C(3)画射线OC ,射线OC 即为所求.请你根据提供的材料完成下面问题:(1)这种作已知角平分线的方法的依据是__________________(填序号).①SSS ②SAS ③AAS ④ASA(2)请你证明OC 为AOB ∠的平分线.【答案】(1)①;(2)证明见解析【解析】【分析】(1)根据作图的过程知道:OM=ON ,OC=OC ,CM=CM ,由“SSS”可以证得△EOC ≌△DOC ;(2)根据作图的过程知道:OM=ON ,OC=OC ,CM=CM ,由全等三角形的判定定理SSS 可以证得△EOC ≌△DOC ,从而得到OC 为AOB ∠的平分线.【详解】(1)根据作图的过程知道:OM=ON ,OC=OC ,CM=CM ,所以由全等三角形的判定定理SSS 可以证得△EOC ≌△DOC ,从而得到OC 为AOB ∠的平分线;故答案为:①;(2)如图,连接MC 、NC .根据作图的过程知,在△MOC 与△NOC 中,OM ON OC OC CM CN ⎧⎪⎨⎪⎩===,∴△MOC ≌△NOC (SSS ),∠AOC=∠BOC ,∴OC 为AOB ∠的平分线.【点睛】本题考查了作图-基本作图及全等三角形的判定定理的应用,注意:三角形全等的判定定理有SAS ,ASA ,AAS ,SSS ,HL .10.如图,在△ABC 中,已知∠ABC =90°.(1)请在BC 上找一点P ,作⊙P 与AC ,AB 都相切,与AC 的切点为Q ;(尺规作图,保留作图痕迹)(2)连接BQ ,若AB =3,(1)中所作圆的半径为32,求sin ∠CBQ.【分析】(1)要求作⊙P 与AB 、AC 相切,根据切线的性质,即点P 到AB 、AC 的距离相等,且点P 在边BC 上,想到角平分线上的点到角两边的距离相等,即作∠BAC 的平分线交BC 于P 点,以点P 为圆心,PB 为半径作圆即可;(2)由切线长定理得AB =AQ ,又PB =PQ ,则判定AP 为BQ 的垂直平分线,利用等角的余角相等得到∠CBQ =∠BAP ,然后在Rt △ABP 中利用正弦函数求出sin ∠BAP ,从而可得到sin ∠CBQ 的值.解:(1)如图所示,⊙P即为所求:(2)∵AB 、AQ 为⊙P 的切线,∴AB =AQ ,∵PB =PQ ,∴AP 为BQ 的垂直平分线,∴∠BAP +∠ABQ =90°,∵∠CBQ +∠ABQ =90°,∴∠CBQ =∠BAP ,在Rt △ABP 中,AP =AB 2+PB 2=32+(32)2=352,∴sin ∠BAP =BP AP =32352=55,∴sin ∠CBQ =5511.如图,AB 为⊙O 的直径,点C 在⊙O 上.(1)尺规作图:作∠BAC 的平分线,与⊙O 交于点D ;连接OD ,交BC 于点E (不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑);(2)探究OE 与AC 的位置及数量关系,并证明你的结论.【分析】(1)利用基本作图作AD平分∠BAC,然后连接OD得到点E;(2)由AD平分∠BAC得到∠BAD=∠BAC,由圆周角定理得到∠BAD=∠BOD,则∠BOD=∠BAC,再证明OE为△ABC的中位线,从而得到OE∥AC,OE=AC.【解答】解:(1)如图所示;(2)OE∥AC,OE=AC.理由如下:∵AD平分∠BAC,∴∠BAD=∠BAC,∵∠BAD=∠BOD,∴∠BOD=∠BAC,∴OE∥AC,∵OA=OB,∴OE为△ABC的中位线,∴OE∥AC,OE=AC.12.如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图在BC 边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)【分析】:要满足条件:在BC边上求作一点P,使得点P到AC的距离等于BP的长,则DP为∠BDC的角平分线.【答案】解:如图所示,点P即为所求.中.13.如图,在Rt ABC()1利用尺规作图,在BC边上求作一点P,使得点P到AB的距离(PD的长)等于PC的长;()2利用尺规作图,作出()1中的线段PD.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)【答案】()1作图见解析;(2)作图见解析.∠平分线上,再【分析】()1由点P到AB的距离(PD的长)等于PC的长知点P在BAC根据角平分线的尺规作图即可得(以点A为圆心,以任意长为半径画弧,与AC、AB分别交于一点,然后分别以这两点为圆心,以大于这两点距离的一半长为半径画弧,两弧交于一点,过点A及这个交点作射线交BC于点P,P即为要求的点);()2根据过直线外一点作已知直线的垂线的尺规作图即可得(以点P 为圆心,以大于点P 到AB 的距离为半径画弧,与AB 交于两点,分别以这两点为圆心,以大于这两点间距离一半长为半径画弧,两弧在AB 的一侧交于一点,过这点以及点P 作直线与AB 交于点D ,PD 即为所求).【详解】()1如图,点P 即为所求;()2如图,线段PD 即为所求.【点睛】本题考查了作图-复杂作图、角平分线的性质定理等知识,解题的关键是熟练掌握基本作图,灵活运用所学知识解决问题.14.(1)如图,已知线段AB 和点O ,利用直尺和圆规作ABC ,使点O 是ABC 的内心(不写作法,保留作图痕迹);(2)在所画的ABC 中,若90,6,8C AC BC ∠=︒==,则ABC 的内切圆半径是______.【答案】(1)作法:如图所示,见解析;(2)2.【分析】(1)内心是角平分线的交点,根据AO 和BO 分别是∠CAB 和∠CBA 的平分线,作图即可;(2)连接OC ,设内切圆的半径为r ,利用三角形的面积公式,即可求出答案.【详解】解:(1)作法:如图所示:①作射线AO 、BO ;②以点A 为圆心,任意长为半径画弧分别交线段AB ,射线AO 于点D ,E ;③以点E 为圆心,DE 长为半径画弧,交上一步所画的弧于点F ,同理作出点M ;④作射线AF ,BM 相交于点C ,ABC 即所求.(2)如图,连接OC ,∵90,6,8C AC BC ∠=︒==,由勾股定理,得:226810AB =+=,∴168242ABC S =⨯⨯= ;∵ABC AOB AOC BOC S S S S ∆∆∆=++ ,∴11124222AB r AC r BC r ∙+∙+∙=,∴1(1068)242r ⨯++∙=,∴2r =,∴ABC 的内切圆半径是2;故答案为:2;【点睛】本题考查了求三角形内切圆的半径,角平分线的性质,勾股定理,以及三角形的面积公式,解题的关键是作出图形,利用所学的知识正确求出三角形内切圆的半径.15.已知:ABC ..求作:O ,使它经过点B 和点C ,并且圆心O 在A ∠的平分线上,【答案】见详解.【分析】要作圆,即需要先确定其圆心,先作∠A 的角平分线,再作线段BC 的垂直平分线相交于点O ,即O 点为圆心.【详解】解:根据题意可知,先作∠A 的角平分线,再作线段BC 的垂直平分线相交于O ,即以O 点为圆心,OB 为半径,作圆O ,如下图所示:【点睛】此题主要考查了学生对确定圆心的作法,要求学生熟练掌握应用.16.如图,在Rt ABC 中,90C ∠=︒.尺规作图:作Rt ABC 的外接圆O ;作ACB ∠的角平分线交O 于点D ,连接AD .(不写作法,保留作图痕迹)【答案】见解析;【分析】根据外接圆,角平分线的作法作图即可;【详解】作图如下:【点睛】本题考查了三角形的外接圆,角平分线,以及利用圆周角与圆心角的关系是解题的关键.17.如图,点O 在ABC ∠的边BC 上,以OB 为半径作O ,ABC ∠的平分线BM 交O 于点D ,过点D 作DE BA ⊥于点E .尺规作图(不写作法,保留作图痕迹),补全图形;【答案】见解析;【分析】根据已知圆心和半径作圆、作已知角的平分线、过直线外一点作已知直线的垂线的尺规作图的步骤作图即可;【详解】解:(1)如下图,补全图形:【点睛】本题考查尺规作图、圆的切线的判定是解题的关键.18.如图,在ABC 中,D 是BC 边上一点,且BD BA =.(1)尺规作图(保留作图痕迹,不写作法)①作ABC ∠的角平分线交AD 于点E ;②作线段DC 的垂直平分线交DC 于点F .(2)连接EF ,直接写出线段EF 和AC 的数量关系及位置关系.【答案】(1)①作图见解析,②作图见解析;(2)1//,.2EF AC EF AC =【解析】【分析】(1)①根据角平分线的作图方法直接作图即可;②根据垂直平分线的作图方法直接作图即可;(2)根据等腰三角形的性质与垂直平分线的定义证明EF 是DAC △的中位线,根据中位线的性质可得答案.【详解】解:(1)如图,①BE 即为所求作的ABC ∠的角平分线,②过F 的垂线是所求作的线段DC 的垂直平分线.(2)如图,连接EF ,,BA BD BE = 平分,ABC ∠,AE DE ∴=由作图可知:,DF CF =EF ∴是DAC △的中位线,1//,,2EF AC EF AC ∴=【点睛】本题考查的是角平分线与垂直平分线的尺规作图,同时考查了三角形的中位线的性质,掌握以上知识是解题的关键.类型二垂直平分线19.(2022·山东威海)过直线l 外一点P 作直线l 的垂线PQ .下列尺规作图错误的是()A .B .C .D .【答案】C 【分析】根据线段垂直平分线的逆定理及两点确定一条直线一一判断即可.【详解】A 、如图,连接AP 、AQ 、BP 、BQ ,AP=BP ,AQ=BQ ,∴点P 在线段AB 的垂直平分线上,点Q 在线段AB 的垂直平分线上,∴直线PQ 垂直平分线线段AB ,即直线l 垂直平分线线段PQ ,本选项不符合题意;B 、如图,连接AP 、AQ 、BP 、BQ ,AP=AQ ,BP =BQ ,∴点A 在线段PQ 的垂直平分线上,点B 在线段PQ 的垂直平分线上,∴直线AB 垂直平分线线段PQ ,即直线l 垂直平分线线段PQ ,本选项不符合题意;C 、C 项无法判定直线PQ 垂直直线l ,本选项符合题意;D 、如图,连接AP 、AQ 、BP 、BQ ,AP=AQ ,BP =BQ ,∴点A 在线段PQ 的垂直平分线上,点B 在线段PQ 的垂直平分线上,∴直线AB 垂直平分线线段PQ ,即直线l 垂直平分线线段PQ ,本选项不符合题意;故选:C .【点睛】本题考查作图-复杂作图,线段垂直平分线的逆定理及两点确定一条直线等知识,读懂图像信息是解题的关键,属于中考常考题型.20.(2021·吉林中考真题)在ABC 中,90BAC ∠=︒,AB AC ≠.用无刻度的直尺和圆规在BC 边上找一点D ,使ACD △为等腰三角形.下列作法不正确的是()A .B .C .D .【答案】A【分析】利用直角三角形的性质、中垂线的性质、角平分线的尺规作图逐一判断即可得.【详解】解:A .此作图是作∠BAC 平分线,在ABC 中,90BAC ∠=︒,AB AC ≠,无法得出ACD △为等腰三角形,此作图不正确,符合题意;B .此作图可直接得出CA =CD ,即ACD △为等腰三角形,此作图正确,不符合题意;C .此作图是作AC 边的中垂线,可直接得出AD =CD ,此作图正确,不符合题意;D .此作图是作BC 边的中垂线,可知AD 是BC 上的中线,ACD △为等腰三角形,此作图正确,不符合题意;故选:A .【点睛】本题主要考查作图−基本作图,解题的关键是掌握直角三角形的性质、中垂线的性质、角平分线的尺规作图.21.(2022·湖南湘潭·中考真题)如图,小明在学了尺规作图后,作了一个图形,其作图步骤是:①作线段2AB =,分别以点A 、B 为圆心,以AB 长为半径画弧,两弧相交于点C 、D ;②连接AC 、BC ,作直线CD ,且CD 与AB 相交于点H .则下列说法不正确的是()A .ABC 是等边三角形B .AB CD ⊥C .AH BH =D .45ACD ∠=︒【答案】D 【分析】根据等边三角形的判定和性质,线段垂直平分线的性质一一判断即可.【详解】解:由作图可知:AB =BC =AC ,∴△ABC 是等边三角形,故A 选项正确∵等边三角形三线合一,由作图知,CD 是线段AB 的垂直平分线,∴AB CD ⊥,故B 选项正确,∴AH BH =,30ACD ∠=︒,故C 选项正确,D 选项错误.故选:D .【点睛】此题考查了作图-基本作图,等边三角形的判定和性质,线段垂直平分线的性质,解题的关键是理解题意,灵活运用所学知识解决问题.22.(2022·贵州毕节)在ABC 中,用尺规作图,分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N .作直线MN 交AC 于点D ,交BC 于点E ,连接AE .则下列结论不一定正确的是()A .AB AE=B .AD CD =C .AE CE =D .ADE CDE∠=∠【答案】A 【分析】根据作图可知AM =CM ,AN =CN ,所以MN 是AC 的垂直平分线,根据垂直平分线的性质,线段垂直平分线上的点到线段两端的距离相等,且平分此点到线段两端构成的夹角,分别对各选项进行判断.【详解】由题意得,MN 垂直平分线段AC ,∴AD CD =,AE CE =,ADE CDE∠=∠所以B 、C 、D 正确,因为点B 的位置不确定,所以不能确定AB =AE ,故选A【点睛】本题考查了线段垂直平分线,熟练掌握线段垂直平分线的作图方法和性质是解题的关键.23.(2021·山东中考真题)如图,已知ABC .(1)以点A 为圆心,以适当长为半径画弧,交AC 于点M ,交AB 于点N .(2)分别以M ,N 为圆心,以大于12MN 的长为半径画弧,两弧在BAC ∠的内部相交于点P .(3)作射线AP 交BC 于点D .(4)分别以A ,D 为圆心,以大于12AD 的长为半径画弧,两弧相交于G ,H 两点.(5)作直线GH ,交AC ,AB 分别于点E ,F .依据以上作图,若2AF =,3CE =,32BD =,则CD 的长是()A .510B .1C .94D .4【答案】C【分析】连接,FD ED ,则BDF BCA ∽,根据相似三角形对应边成比例即可得出结果【详解】如图,连接,FD EDGH 垂直平分AD2FD FA ∴==,DE AE=AD 平分BAC∠FAD EAD∴∠=∠FD FA= FAD FDA∴∠=∠FDA EAD∴∠=∠//AE FD∴同理可知//AE FD∴四边形AEDF 是平行四边形又 FD FA=∴平行四边形AEDF 是菱形2AE AF ==//FD ACBDF BCA∴∠=∠又B B∠∠= BDF BCA∴ ∽BD DF BC AC ∴=3CE = ,32BD =3223232CD ∴=++解得:94CD =故选C【点睛】本题考查了由已知作图分析角平分线的性质,垂直平分线的性质,相似三角形,菱形的性质与判定,熟知上述各类图形的判定或性质是解题的基础,寻找未知量与已知量之间的等量关系是关键.24.(2021·湖南)如图,在ABC 中,AC BC >,分别以点A ,B 为圆心,以大于12AB 的长为半径画弧,两弧交于D ,E ,经过D ,E 作直线分别交,AB AC 于点M ,N ,连接BN ,下列结论正确的是()A .AN NC=B .AN BN =C .12MN BC =D .BN 平分ABC∠【答案】B【分析】根据线段垂直平分线的尺规作图、以及性质即可得.【详解】解:由题意得:DE 是线段AB 的垂直平分线,则AN BN =,故选:B .【点睛】本题考查了线段垂直平分线的尺规作图、以及性质,熟练掌握线段垂直平分线的尺规作图是解题关键.25.(2022·吉林长春)如图,在ABC 中,根据尺规作图痕迹,下列说法不一定正确的是()A .AF BF=B .12AE AC =C .90DBF DFB ∠+∠=︒D .BAF EBC∠=∠【答案】B【分析】根据尺规作图痕迹,可得DF 垂直平分AB ,BE 是ABC ∠的角平分线,根据垂直平分线的性质和角平分线的定义,直角三角形两锐角互余,等边对等角的性质进行判断即可.【详解】根据尺规作图痕迹,可得DF 垂直平分AB ,BE 是ABC ∠的角平分线,,90,AF BF BDF ABF CBE ∴=∠=︒∠=∠,,90ABF BAF DBF DFB ∴∠=∠∠+∠=︒,BAF EBC ∴∠=∠,综上,正确的是A 、C 、D 选项,故选:B .【点睛】本题考查了垂直平分线和角平分线的作图,垂直平分线的性质,角平分线的定义,直角三角形两锐角互余,等边对等角的性质,熟练掌握知识点是解题的关键.26.(2021·湖南)如图,在ABC 中,AB AC =,分别以点A ,B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M 和点N ,作直线MN 分别交BC 、AB 于点D 和点E ,若50B ∠=︒,则CAD ∠的度数是()A .30°B .40︒C .50︒D .60︒【答案】A【分析】由尺规作图痕迹可知,MN 是线段AB 的垂直平分线,进而得到DB =DA ,∠B =∠BAD ,再由AB =AC 得到∠B =∠C =50°,进而得到∠BAC =80°,∠CAD =∠BAC -∠BAD =30°即可求解.【详解】解:由题意可知:MN 是线段AB 的垂直平分线,∴DB =DA ,∴∠B =∠BAD=50°,又AB =AC ,∴∠B =∠C =50°,∴∠BAC =80°,∴∠CAD =∠BAC -∠BAD =30°,故选:A .【点睛】本题考查等腰三角形的两底角相等,线段垂直平分线的尺规作图等,属于基础题,熟练掌握线段垂直平分线的性质是解决本题的关键.27.(2022·四川广元·中考真题)如图,在△ABC 中,BC =6,AC =8,∠C =90°,以点B 为圆心,BC 长为半径画弧,与AB 交于点D ,再分别以A 、D 为圆心,大于12AD 的长为半径画弧,两弧交于点M 、N ,作直线MN ,分别交AC 、AB 于点E 、F ,则AE 的长度为()A .52B .3C .D .103【答案】A【分析】由题意易得MN 垂直平分AD ,AB =10,则有AD =4,AF =2,然后可得4cos 5AC A AB ∠==,进而问题可求解.【详解】解:由题意得:MN 垂直平分AD ,6BD BC ==,∴1,902AF AD AFE =∠=︒,∵BC =6,AC =8,∠C =90°,∴10AB ==,∴AD=4,AF=2,4cos5ACAAB∠==,∴5cos2AFAEA==∠;故选A.【点睛】本题主要考查勾股定理、垂直平分线的性质及三角函数,熟练掌握勾股定理、垂直平分线的性质及三角函数是解题的关键.28.(2022·江苏常州)如图,斑马线的作用是为了引导行人安全地通过马路.小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是()A.垂线段最短B.两点确定一条直线C.过一点有且只有一条直线与已知直线垂直D.过直线外一点有且只有一条直线与已知直线平行【答案】A【分析】根据垂线段最短解答即可.【详解】解:行人沿垂直马路的方向走过斑马线,体现的数学依据是垂线段最短,故选:A.【点睛】本题考查垂线段最短,熟知垂线段最短是解答的关键.29.(2021·吉林中考真题)如图,已知线段2cmAB=,其垂直平分线CD的作法如下:①分别以点A和点B为圆心,cmb长为半径画弧,两弧相交于C,D两点;②作直线CD.上述作法中b满足的条作为b___1.(填“>”,“<”或“=”)【答案】>【分析】作图方法为:以A,B为圆心,大于12AB长度画弧交于C,D两点,由此得出答案.【详解】解:∵2cmAB=,∴半径b长度12AB >,即1cmb>.故答案为:>.【点睛】本题考查线段的垂直平分线尺规作图法,解题关键是掌握线段垂直平分线的作图方法.30.(2022·内蒙古通辽)如图,依据尺规作图的痕迹,求α∠的度数_________°.【答案】60【分析】先根据矩形的性质得出//AB CD,故可得出∠ABD的度数,由角平分线的定义求出∠EBF的度数,再由EF是线段BD的垂直平分线得出∠EFB、∠BEF的度数,进而可得出结论.【详解】解:如图,∵四边形ABCD 为矩形,∴//AB CD ,∴60ABD CDB ∠=∠=︒,由尺规作图可知,BE 平分∠ABD ,∴11603022EBF ABD ∠=∠=⨯︒=︒,由尺规作图可知EF 垂直平分BD ,∴∠EFB =90°,∴9060BEF EBF ∠=︒-∠=︒,∴∠α=∠BEF =60°.故答案为:60°.【点睛】本题主要考查了尺规作图-基本作图、角平分线以及垂直平分线的知识,解题关键是熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).31.(2022·湖南衡阳·中考真题)如图,在ABC 中,分别以点A 和点B 为圆心,大于12AB 的长为半径作圆弧,两弧相交于点M 和点N ,作直线MN 交CB 于点D ,连接AD .若8AC =,15BC =,则ACD △的周长为_________.【答案】23【分析】由作图可得:MN 是AB 的垂直平分线,可得,DA DB =再利用三角形的周长公式进行计算即可.【详解】解:由作图可得:MN 是AB 的垂直平分线,,DA DB ∴= 8AC =,15BC =,81523,ACD C AC CD AD AC CD BD AC BC \=++=++=+=+=V 故答案为:23【点睛】本题考查的是线段的垂直平分线的作图,线段的垂直平分线的性质,掌握“线段的垂直平分线的性质”是解本题的关键.32..如图,在ABCD 中,BD 是它的一条对角线,(1)求证:ABD CDB △≌△;(2)尺规作图:作BD 的垂直平分线EF ,分别交AD ,BC 于点E ,F (不写作法,保留作图痕迹);(3)连接BE ,若25DBE ∠=︒,求AEB ∠的度数.【答案】(1)见解析(2)见解析(3)50°【分析】(1)由平行四边形的性质得出,AB CD AD BC ==,可利用“SSS”证明三角形全等;(2)根据垂直平分线的作法即可解答;(3)根据垂直平分线的性质可得BE DE =,由等腰三角形的性质可得DBE BDE ∠=∠,再根据三角形外角的性质求解即可.(1)四边形ABCD 是平行四边形,,AB CD AD BC ∴==,BD BD = ,∴()ABD CDB SSS △≌△(2)如图,EF 即为所求;(3)BD 的垂直平分线为EF ,BE DE ∴=,DBE BDE ∴∠=∠,25DBE ∠=︒ ,25∴∠=∠=︒,DBE BDEAEB BDE DBE∴∠=∠+∠=︒.50【点睛】本题考查了平行四边形的性质,全等三角形的判定和性质,垂直平分线的作法和性质,等腰三角形的性质及三角形外角的性质,熟练掌握知识点是解题的关键.33..如图,△ABC中,∠C=90°,AC=4,BC=8.(1)用直尺和圆规作AB的垂直平分线;(保留作图痕迹,不要求写作法)(2)若(1)中所作的垂直平分线交BC于点D,求BD的长.【分析】(1)分别以A,B为圆心,大于AB为半径画弧,两弧交于点M,N,作直线MN即可.(2)设AD=BD=x,在Rt△ACD中,利用勾股定理构建方程即可解决问题.【解答】解:(1)如图直线MN即为所求.(2)∵MN垂直平分线段AB,∴DA=DB,设DA=DB=x,在Rt△ACD中,∵AD2=AC2+CD2,∴x2=42+(8﹣x)2,解得x=5,。
中考数学必考考点专题32尺规作图含解析
专题32 尺规作图问题专题知识回顾1.尺规作图的定义:只用不带刻度的直尺和圆规通过有限次操作,完成画图的一种作图方法.尺规作图可以要求写作图步骤,也可以要求不一定要写作图步骤,但必须保留作图痕迹。
2.尺规作图的五种基本情况:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作已知线段的垂直平分线;(4)作已知角的角平分线;(5)过一点作已知直线的垂线。
3.对尺规作图题解法:写出已知,求作,作法(不要求写出证明过程)并能给出合情推理。
4.中考要求:(1)能完成以下基本作图:作一条线段等于已知线段,作一个角等于已知角,作角的平分线,作线段的垂直平分线.(2)能利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形.(3)能过一点、两点和不在同一直线上的三点作圆.(4)了解尺规作图的步骤,对于尺规作图题,会写已知、求作和作法(不要求证明).专题典型题考法及解析【例题1】(2019•湖南长沙)如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是()A.20°B.30°C.45°D.60°【答案】B【解析】根据内角和定理求得∠BAC=60°,由中垂线性质知DA=DB,即∠DAB=∠B=30°,从而得出答案.在△ABC中,∵∠B=30°,∠C=90°,∴∠BAC=180°﹣∠B﹣∠C=60°,由作图可知MN为AB的中垂线,∴DA=DB,∴∠DAB=∠B=30°,∴∠CAD=∠BAC﹣∠DAB=30°。
【例题2】(2019山东枣庄)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【答案】见解析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图①
图②
(5)(2018·金平)如图,在 R t△A B C 中,∠A C B =90°,A C =12, A B =13. ①作△A B C 的高 C D ,(要求:尺规作图,不写作法,保
解:(1)如图所示,直线 EF 即为所求,
(2)∵四边形 ABCD 是菱形,
∴∠ABD=∠DBC=12∠ABC=75°, DC∥AB,∠A=∠C. ∴∠ABC=150°,∠ABC+∠C=180° ∴∠C=∠A=30°, ∵EF 垂直平分线段 AB,∴AF=FB, ∴∠A=∠FBA=30°,
∴∠DBF=∠ABD-∠FBE=45°.
例 2 如图,作∠A O B 的平分线 O C .
(2)(广东中考节选)如图,在△A B C 中用直尺和圆规作∠A B C 的平分线 B D 交 A C 于点 D .
(2)解:如图,BD为所求作
(3)作线段的垂直平分线 例 3 作线段 AB 的垂直平分线 CD.
(3)(广东中考节选)如图,在△A B C 中作 B C 边的垂直平分线 分别交 A C ,B C 于点 D ,E.
谢谢!
解:如图,△ABC为所求作.
13.(2018·河北改编)①过直线外一点作这条直线的垂线; ②作线段的垂直平分线;③过直线上一点作这条直线的垂 线;④作角的平分线.请在下列尺规作图标出对应的序号.
____④____
___①_____ ___②_____ ____③____
B组 14. 如图,已知⊙O.
的长为( B ) A .5 B .6 C .7 尺和圆规作一个角的平分线的示意图如
图所示,则能说明∠A O C =∠B O C 的依据是( A )
A .SSS
B .SA S
C .A A S
D . 角平分线上的点到角两边距离相等
12. 已知:线段 a,b,c,求作△A B C ,使三角形三边分别 为 a,b,c.
(1)作⊙O 的内接正方形;
(1)解:如图,正方形ABCD为所求作.
(2)作⊙O 的内接正六边形; (2)解:如图,六边形ABCDEF为所求作.
(3)作⊙O 的内接正三边形.
(3)解:如图,△ABC为所求作.
C组
15.(2018·陕西)如图,已知∠A O B 与点 M 、N .求作一点 P , 使点 P 到边 O A 、O B 的距离相等,且 PM =PN (保留作图
于 H,DG⊥AB 于 G,连接 MK 如图 4.
∵AD=AF,DE=EF,∴AE 平分∠DAF,
则△ AEK≌△AEB,∴AK=AB=4,
在 Rt△ ADG 中,DG= AD2-AG2=4 2,
∵KH∥DG,∴DKHG=AADK,∴4KH2=64,∴KH=8 3 2
∵MB=MK,∴MB+MN=KM+MN,
上.
(1)作∠A D E ,使∠A D E=∠A C B,D E 交 A B 于点 E ;(尺
规作图,保留作图痕迹,不要求写作法);
(2)若 B C =5,点 D 是 A C 的中点,求 D E 的长.
解:(1)如图,∠ADE为所作;
(2)∵∠ADE=∠ACB, ∴DE∥BC, ∵点 D 是 AC 的中点, ∴DE 为△ ABC 的中位线,
证法二:如图 3 延长 DE 交 AB 的延长线于 F, ∵CD∥AF,∴∠CDE=∠F, ∵∠CDE=∠ADE,∴∠ADF=∠F,∴AD=AF, ∵AD=AB+CD=AB+BF,∴CD=BF, ∵∠DEC=∠BEF,∴△DEC≌△FEB,∴DE=EF, ∵AD=AF,∴AE⊥DE.
图3
②解:作点 B 关于 AE 的对称点 K,连接 EK,作 KH⊥AB
当 K、M、N 共线,且与 KH 重合时,
KM+MN 的值最小,最小值为 KH 的长,
∴BM+MN
的最小值为8 3
2 .
图4
考点 3 作线段的垂直平分线
5.(例 8)(2018·广东)如图,B D 是菱形 A B C D 的对角线, ∠C B D =75°, (1)请用尺规作图法,作 A B 的垂直平分线 E F ,垂足为 E , 交 A D 于 F ;(不要求写作法,保留作图痕迹) (2)在(1)条件下,连接 B F ,求∠D B F 的度数.
(3)解:如图,DE为所求作
(4)作一个角等于已知角
例 4 如图,作∠A ′O ′B ′,使∠A ′O ′B ′=∠A O B .
(4)(广州中考节选)如图,利用尺规,在△A B C 的边 A C 上方 作∠E A C =∠AC B.
(4)解:如图,∠EAC为所求作
(5)过一点作已知直线的垂线
痕迹,不写作法)
16.(2017·嘉兴)如图,已知△A B C ,∠B =40°. (1)在图中,用尺规作出△A B C 的内切圆⊙O ,并标出⊙O 与边 A B ,B C ,A C 的切点 D ,E ,F (保留痕迹,不必写
作法).
(2)连结 E F ,D F ,求∠E F D 的度数.
解:(1)如图,⊙O为所求作. (2)连接 OD,OE. ∴OD⊥AB,OE⊥BC ∴∠ODB=∠OEB=90° ∵∠B=40°,∴∠DOE=140° ∴∠EFD=70°
(2)在(1)的条件下,
①证明:A E ⊥D E ; ②若 C D =2,A B =4,点 M ,N 分别是 A E , A B 上的动点,求 B M +M N 的最小值.
解:(1)如图,∠ADC 的平分线 DE 如图 1 所示, 图1
(2)①证法一:如图 2,在 DA 上截取 DG=CD,连接 GE, 由(1)知∠GDE=∠CDE, 又 DE=DE,∴△GDE≌△CDE, ∴∠DGE=∠C=90°,∠DEC=∠DEG, 在△ AGE 和△ ABE 中,∠AGE=∠ABE=90°, 而 AD=AG+DG=AB+CD,DG=CD, ∴AG=AB, 又 AE=AE,∴Rt△ AEG≌Rt△ AEB ∴∠AEG=∠AEB, ∴∠DEG+∠AEG=∠DEC+∠AEB=90°, 图2 即∠AED=90°,故 AE⊥DE.
(2)证明:∵∠A=30°,∠ACD=90°, ∴∠ADC=60° ∴∠BCD=∠ADC-∠B=60°-30°=30° ∴∠B=∠BCD,∴CD=BD.
10.(2018·玉林)如图,在△A B C 中,∠A C B=90°,∠A =30°, B C =4,以点 C 为圆心,C B 长为半径作弧,交 A B 于点 D ;再分别以点 B 和点 D 为圆心,大于 12B D 的长为半径 作弧,两弧相交于点 E ,作射线 C E 交 A B 于点 F ,则 A F
解:(1)如图,AD 为所求作.
(2)∠BDC的度数为22.5°
考点 2 作已知角的角平分线
4.(例 7)(2018·广州)如图,在四边形 A B C D 中,∠B =∠C = 90°,A B >C D ,A D =A B +C D . (1)利用尺规作∠A D C 的平分线 D E,交 B C 于点 E ,连接 A E (保留作图痕迹,不写作法);
留作图痕迹);
②在①的条件下,求 C D 的长.
(5)解:①如图,CD为所求作. ②CD=6103
二、核心例题 考点 1 作线段等于已知线段
3.(例 6)(六盘水中考)如图,已知 R t△A B C 中,∠C =90°, ∠B A C =45°. (1)用尺规作图:在 C A 的延长线上截取 A D =A B ,并连接 BD ; (2)求∠B D C 的度数.
6.(2018·桂平市)如图,已知△A B C ,请用尺规过点 A 作一条 直线,使其将△A B C 分成面积相等的两部分,并在图中
标明相应字母(保留作图痕迹,不写作法)
解:如图,直线AD即为所求:
考点 4 作一个角等于已知角
7.(例 9)如图,点 E 为正方形 A B C D 的边 C D 上一点. (1)在 A B 的下方作射线 A F 交 C B 延长线于点 F ,且使 ∠B A F =∠D AE ; (2)求证:△D A E ≌△B A F .
PPT课程 第33课 尺规作图 主讲老师:
一、知识要点 1. 尺规作图的概念
在几何里,把限定用直尺(没有刻度的)和圆规来画 图的作法,称为尺规作图,在尺规作图中,了解作图的道理, 保留作图的痕迹,一般不要求写出作法.
对应练习 1. 尺规作图是指( C )
A . 用直尺规范作图 B . 用刻度尺和圆规作图 C . 用没有刻度的直尺和圆规作图 D . 直尺和圆规是作图工具
∴DE=12BC=52.
考点 5 过一点作已知直线的垂线
9.(例 10)(2018·潮南区)如图,∠A =∠B =30° (1)尺规作图:过点 C 作 C D ⊥A C 交 A B 于点 D ;(只要求
作出图形,保留痕迹,不要求写作法)
(2)在(1)的条件下,求证:C D =B D
证明:(1)如图所示,CD 即为所求;
(1)如图,∠BAF为所求作
(2)证明:∵四边形 ABCD 是正方形 ∴∠ADE=∠ABF=90°,AD=AB
∠ADE=∠ABF 在△ DAE 与△ BAF 中AD=AB
∠DAE=∠BAF ∴△DAE≌△BAF(ASA)
8.(2018·港南区)如图,在△A B C 中,A B >A C ,点 D 在边 A C
2. 常见五种基本作图 (尺规作图,保留作图痕迹) (1)作一条线段等于已知线段
例 1 作一条线段等于已知线段 A B .
2.(1)(广东中考节选)如图,已知▱A B C D .作图:延长 B C 并在 B C 的延长线上截取线段 C E ,使得 C E=B C .
(1)解:如图,CE为所求作
(2)作已知角的角平分线